JP2012151989A - Magnet assembly - Google Patents

Magnet assembly Download PDF

Info

Publication number
JP2012151989A
JP2012151989A JP2011008317A JP2011008317A JP2012151989A JP 2012151989 A JP2012151989 A JP 2012151989A JP 2011008317 A JP2011008317 A JP 2011008317A JP 2011008317 A JP2011008317 A JP 2011008317A JP 2012151989 A JP2012151989 A JP 2012151989A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic pole
pole
magnetic
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008317A
Other languages
Japanese (ja)
Other versions
JP5812320B2 (en
Inventor
Nobuo Fujii
信男 藤井
Takeshi Mizuma
毅 水間
Noboru Ito
昇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nat Traffic Safety & Environment Lab
Daido Signal Co Ltd
National Traffic Safety and Environment Laboratory
Original Assignee
Nat Traffic Safety & Environment Lab
Daido Signal Co Ltd
National Traffic Safety and Environment Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Traffic Safety & Environment Lab, Daido Signal Co Ltd, National Traffic Safety and Environment Laboratory filed Critical Nat Traffic Safety & Environment Lab
Priority to JP2011008317A priority Critical patent/JP5812320B2/en
Publication of JP2012151989A publication Critical patent/JP2012151989A/en
Application granted granted Critical
Publication of JP5812320B2 publication Critical patent/JP5812320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnet assembly 30 having an enhanced density of magnetic flux extending from a magnetic pole (N, S) to the outside thereof.SOLUTION: The magnet assembly 30 has tabular permanent magnets 11 magnetized in a direction of its thickness and non-tabular yoke parts 12 and 13, provided that the tabular permanent magnets 11 and the non-tabular yoke parts 12 and 13 are alternately laid out along a line, the permanent magnets 11 are changed in orientation alternately to be inclined opposite to each other with respect to the direction of the normal to the line, and the yoke parts are assigned for magnetic pole and for short circuit alternately. In the magnet assembly, an open angle θ formed between permanent magnets between which one yoke part 13 for magnetic pole is made an acute angle. In addition, the total length (W×2) of the adjacent permanent magnets between which one yoke part 13 for magnetic pole is sandwiched is made equal to or larger than 1.42 (about √2) times of the magnetic pole length L of the adjacent two permanent magnets. Preferably, the yoke part 13 for magnetic pole is shaped in an isosceles triangle in a cross section.

Description

この発明は、平板状の永久磁石と非平板状の継鉄部とを交互配置で一線状に並べた磁石体に関し、詳しくは、永久磁石が交互に向きを変えて斜めになっており、継鉄部が交互に磁極用と短絡用になっている磁石体に関する。   The present invention relates to a magnet body in which flat permanent magnets and non-flat yoke portions are arranged in a line in an alternating arrangement, and more specifically, the permanent magnets are alternately changed in direction and inclined. The present invention relates to a magnet body in which iron portions are alternately used for magnetic poles and short circuits.

従来のリニアモータでは(図7(a)〜(c)参照)、可動子にコイル(電機子)が用いられ、固定子には永久磁石を含んだ磁石体(永久磁石界磁)が用いられていた。この磁石体は、永久磁石とヨーク(継鉄)とを一直線状(一線状)に隣接配置して作られているが、何れの永久磁石も継鉄部も、横断面矩形の平板状か直方体状に形成されていて、一線方向・隣接配置方向に対して平行になる状態か直交する状態か何れかの状態で実装されていた。このような従来の磁石体では、永久磁石に形成容易な横断面矩形のものを用いているが、相対的に高価な永久磁石が相対的に安価な継鉄部より多量に使用されるため、原価低減が難しい。   In a conventional linear motor (see FIGS. 7A to 7C), a coil (armature) is used for the mover, and a magnet body (permanent magnet field) including a permanent magnet is used for the stator. It was. This magnet body is made by arranging a permanent magnet and a yoke (a yoke) adjacent to each other in a straight line (a straight line). Both the permanent magnet and the yoke part are a flat plate or a rectangular parallelepiped having a rectangular cross section. It was formed in a shape and mounted either in a state parallel to or perpendicular to the line direction and the adjacent arrangement direction. In such a conventional magnet body, a permanent magnet having a rectangular shape that is easy to form is used, but since a relatively expensive permanent magnet is used in a larger amount than a relatively inexpensive yoke part, Cost reduction is difficult.

これに対し、永久磁石式回転モータでは、厚み方向に磁化された平板状の永久磁石を円筒状の継鉄に埋め込んだ回転子(永久磁石界磁,無端可動子)が開発されており、例えば初期の回転子10では(図7(d)及び特許文献1を参照)、平板状の永久磁石11と平板状の短絡用継鉄部12と平板状の永久磁石11と横断面扇状で非平板状の磁極用継鉄部13とを交互配置で一円(一線状)に並べた磁石体となっている。永久磁石11は表裏から出した磁束を総て継鉄部12,13に送り込むようになっており、短絡用継鉄部12は磁束を内部に収めて両隣の永久磁石11,11の橋渡しを行うもので、磁極用継鉄部13は両隣の永久磁石11,11から来た磁束を外部へ出すものであって交互にN磁極とS磁極になっている。   On the other hand, in the permanent magnet type rotary motor, a rotor (permanent magnet field, endless mover) in which a flat permanent magnet magnetized in the thickness direction is embedded in a cylindrical yoke has been developed. In the initial rotor 10 (see FIG. 7D and Patent Document 1), a flat permanent magnet 11, a flat short-circuiting yoke 12, a flat permanent magnet 11, and a fan in cross section are non-flat. The magnetic pole yoke parts 13 are arranged in a circle (one line) in an alternating arrangement. The permanent magnet 11 sends all the magnetic fluxes from the front and back sides to the yoke parts 12 and 13, and the short-circuiting yoke part 12 bridges the permanent magnets 11 and 11 adjacent to each other by containing the magnetic flux inside. Thus, the magnetic pole yoke portion 13 outputs the magnetic fluxes coming from the adjacent permanent magnets 11 and 11 to the outside, and alternately forms N magnetic poles and S magnetic poles.

この回転子10では、磁極用継鉄部13を挟む永久磁石11,11同士の開角θが直角であったが(図7(d)及び特許文献1を参照)、その後に開発された回転子20(永久磁石界磁,無端可動子)では、磁極用継鉄部13を挟む永久磁石11,11同士の開角θが鈍角に広がっている(図7(e)及び特許文献2〜4を参照)。このような回転子20は、平板状の永久磁石11と非平板状の継鉄部12,13とを交互配置で一円(一線状)に並べた磁石体であって、永久磁石11が交互に向きを変えて斜めになっており、継鉄部が交互に短絡用継鉄部12と磁極用継鉄部13になっている磁石体に該当する。   In this rotor 10, the opening angle θ between the permanent magnets 11, 11 sandwiching the magnetic pole yoke portion 13 was a right angle (see FIG. 7D and Patent Document 1). In the child 20 (permanent magnet field, endless mover), the open angle θ between the permanent magnets 11 and 11 sandwiching the magnetic pole yoke portion 13 spreads to an obtuse angle (FIG. 7 (e) and Patent Documents 2 to 4). See). Such a rotor 20 is a magnet body in which flat plate-like permanent magnets 11 and non-plate-like yoke portions 12 and 13 are arranged in a circle (one line) alternately, and the permanent magnets 11 are alternately arranged. It corresponds to a magnet body whose direction is changed to be inclined and the yoke portions are alternately short-circuited yoke portions 12 and magnetic pole yoke portions 13.

そして、そのうちN磁極とS磁極とを含む部分として図7(e)の回転子20の下半分弱を特定すると、その部分の磁石体にあっては、厚み方向に磁化された平板状の第1永久磁石11(aa)と、強磁性体からなる第1磁極用継鉄部13(N)と、厚み方向に磁化された平板状の第2永久磁石11(bb)と、強磁性体からなる短絡用継鉄部12と、厚み方向に磁化された平板状の第3永久磁石11(cc)と、強磁性体からなる第2磁極用継鉄部13(S)と、厚み方向に磁化された平板状の第4永久磁石11(dd)とが、その順で図では左から下を経て右に至る半円(一線状)に隣接配置されており、前記第1永久磁石11(aa)と前記第2永久磁石11(bb)とが一端部を近接させ他端部を離隔させてN極面同士を斜めに向き合わせており、両N極面の間に装填された状態で前記第1磁極用継鉄部13(N)が外部へ磁束を出すN磁極になっており、前記第3永久磁石11(cc)と前記第4永久磁石11(dd)とが一端部を近接させ他端部を離隔させてS極面同士を斜めに向き合わせており、両S極面の間に装填された状態で前記第2磁極用継鉄部13(S)が外部へ磁束を出すS磁極になっており、前記短絡用継鉄部12が前記第2永久磁石11(bb)のS極面と前記第3永久磁石11(cc)のN極面との間に装填された状態で磁束を内部に収めるようになっている。   When the lower half of the rotor 20 in FIG. 7 (e) is specified as a portion including the N magnetic pole and the S magnetic pole, the plate-like first magnetized in the thickness direction of the magnet body in that portion is specified. 1 permanent magnet 11 (aa), a first magnetic pole yoke portion 13 (N) made of a ferromagnetic material, a plate-like second permanent magnet 11 (bb) magnetized in the thickness direction, and a ferromagnetic material. The short-circuiting yoke portion 12, the flat plate-shaped third permanent magnet 11 (cc) magnetized in the thickness direction, the second magnetic pole yoke portion 13 (S) made of a ferromagnetic material, and the magnetization in the thickness direction. The flat plate-shaped fourth permanent magnets 11 (dd) are arranged adjacent to each other in the order in a semicircle (single line) from the left to the bottom and to the right in the drawing, and the first permanent magnets 11 (aa) ) And the second permanent magnet 11 (bb) are arranged so that one end portions are close to each other and the other end portions are separated from each other so that the N pole surfaces face each other diagonally. The first magnetic pole yoke portion 13 (N) is an N magnetic pole that outputs a magnetic flux to the outside in a state of being loaded between both N pole surfaces, and the third permanent magnet 11 (cc) And the fourth permanent magnet 11 (dd) have their one end close to each other and the other end separated from each other, and their S pole faces are diagonally facing each other, and the first permanent magnet 11 (dd) is loaded between the two S pole faces. The yoke portion 13 (S) for two magnetic poles is an S magnetic pole for generating a magnetic flux to the outside, and the yoke portion 12 for short-circuiting is composed of the S pole surface of the second permanent magnet 11 (bb) and the third permanent magnet. The magnetic flux is accommodated in the state of being loaded between the 11 (cc) N pole surfaces.

特開平9−9537号公報Japanese Patent Laid-Open No. 9-9537 特開平10−51984号公報Japanese Patent Laid-Open No. 10-51984 特開2009−112121号公報JP 2009-112121 A 特開2009−284621号公報JP 2009-284621 A

このような磁石埋込形の磁石体では、継鉄に対する永久磁石の割合が小さいので、原価低減が進む。また、その磁束分布状態をみると、隣の永久磁石から磁極用継鉄部に入る磁束の本数と磁極用継鉄部の磁極面から外部へ出る磁束の本数とがほぼ等しいので、磁極用継鉄部の磁極面の磁束密度と永久磁石の極面の磁束密度との比が、磁極用継鉄部に対する永久磁石の隣接面積と磁極用継鉄部の磁極面積との比、横断面について言い換えれば磁極用継鉄部を挟む両隣の永久磁石の合計長と両永久磁石に亘る磁極長との比で決まるところ、上述したように永久磁石同士の開角が直角か鈍角であることや、磁極用継鉄部の横断面形状が三角形でなく扇形であることから、その比は1.42(約√2)未満にとどまっていた。固定子と回転子とのエアギャップを狭くできる永久磁石式回転モータにおける従来の磁石体では、永久磁石から出た磁束を磁極に向けて絞り込む磁極用継鉄部の磁束収斂能が1.42倍より小さくて足り、それが1以下になる鈍角を推奨するものもある。   In such a magnet-embedded magnet body, since the ratio of the permanent magnet to the yoke is small, cost reduction proceeds. Also, looking at the magnetic flux distribution state, the number of magnetic fluxes entering the magnetic pole yoke part from the adjacent permanent magnet is almost equal to the number of magnetic fluxes exiting from the magnetic pole surface of the magnetic pole yoke part. The ratio of the magnetic flux density of the magnetic pole face of the iron part to the magnetic flux density of the pole face of the permanent magnet is the ratio of the adjacent area of the permanent magnet to the magnetic pole yoke part and the magnetic pole area of the magnetic pole yoke part. For example, it is determined by the ratio of the total length of the adjacent permanent magnets sandwiching the yoke part for the magnetic pole and the magnetic pole length over the permanent magnets. As described above, the open angle between the permanent magnets is a right angle or an obtuse angle, Since the cross-sectional shape of the yoke portion is not a triangle but a sector, the ratio was less than 1.42 (about √2). In the conventional magnet body in the permanent magnet type rotary motor capable of narrowing the air gap between the stator and the rotor, the magnetic flux convergence capacity of the magnetic pole yoke portion that narrows the magnetic flux emitted from the permanent magnet toward the magnetic pole is 1.42 times. Some recommend an obtuse angle that is smaller and less than 1.

ところで、リニアモータについても、低コスト化を推進するには、永久磁石界磁を磁石埋込形に類似した磁石体に改造するのが良かろうと考えられる。すなわち、N磁極とS磁極とが交互に並んだ直線状の磁石体を作る際にも、上述した従来品のように永久磁石にも継鉄部にも横断面矩形のものを用いるのでなく、厚み方向に磁化された平板状の永久磁石と非平板状の継鉄部とを交互配置で一直線状(一線状)に並べたうえで、永久磁石は交互に向きを変えて斜めにするとともに、継鉄部が交互に磁極用と短絡用になるよう磁極用継鉄部は同極性の永久磁石面で挟み短絡用継鉄部は異極性の永久磁石面で挟むのである。これにより、永久磁石式回転モータの回転子のように、継鉄部の割合が上がって永久磁石の割合が下がるので原価が低下すると期待される。   By the way, in order to promote the cost reduction of the linear motor, it is considered that the permanent magnet field should be modified to a magnet body similar to the magnet embedded type. In other words, when making a linear magnet body in which N magnetic poles and S magnetic poles are alternately arranged, instead of using a permanent magnet or a yoke portion with a rectangular cross section as in the conventional product described above, After arranging the flat permanent magnets magnetized in the thickness direction and the non-flat yokes in a straight line (along line) in an alternating arrangement, the permanent magnets are alternately turned and slanted, The yoke portion for the magnetic pole is sandwiched between the permanent magnet surfaces of the same polarity and the yoke portion for the short circuit is sandwiched between the permanent magnet surfaces of the opposite polarity so that the yoke portions are alternately used for the magnetic pole and for the short circuit. Thereby, like the rotor of a permanent magnet type rotary motor, since the ratio of a yoke part goes up and the ratio of a permanent magnet falls, it is anticipated that cost will fall.

しかしながら、鉄道のリニアモータカー等に用いられるリニアモータについては、エアギャップが常に一定に維持される永久磁石式回転モータと異なり、上述したように永久磁石界磁を固定子とし電機子を可動子とした場合であれ、逆に永久磁石界磁を可動子とし電機子を固定子とした場合であれ、列車の浮上状態や走行状態に応じて固定子と可動子とのエアギャップが変動するので、固定子と可動子との不所望な接触を防止するために、エアギャップを広くしておく必要がある。そして、そのためには、エアギャップにおける磁束密度(以下、エアギャップ磁束密度)を高めることが必要であり、永久磁石界磁用の磁石体については、磁極(界磁極)から外部へ出る磁束の密度を高めることが要請される。   However, linear motors used in railway linear motor cars and the like differ from permanent magnet type rotary motors in which the air gap is always kept constant, and as described above, the permanent magnet field is the stator and the armature is the mover. Even if the permanent magnet field is the mover and the armature is the stator, the air gap between the stator and the mover varies depending on the flying state and running state of the train. In order to prevent undesired contact between the stator and the mover, it is necessary to widen the air gap. For this purpose, it is necessary to increase the magnetic flux density in the air gap (hereinafter referred to as air gap magnetic flux density). For the magnet body for the permanent magnet field, the density of the magnetic flux that goes out from the magnetic pole (field magnetic pole) Is required to increase.

また、モータの推力やトルクを高めるには電機子巻線起磁力を強めるのが直截的であるが、電機子巻線での銅損を軽減して高効率化を追求するには、電機子巻線起磁力の影響すなわち電機子反作用を極力小さくすることが必要であり、そのためにも、エアギャップを広くしておく必要があり、この観点からも、永久磁石界磁用の磁石体の磁極の磁束密度を高めることが求められる。
そこで、平板状の永久磁石と非平板状の継鉄部とを交互配置で一線状に並べた磁石体について磁極の磁束密度を高めることが技術的な課題となる。
In order to increase the thrust and torque of the motor, it is straightforward to increase the magnetomotive force of the armature winding, but to reduce the copper loss in the armature winding and pursue higher efficiency, the armature It is necessary to minimize the influence of the coil magnetomotive force, that is, the armature reaction. For this reason, it is necessary to widen the air gap. From this viewpoint, the magnetic pole of the magnet body for the permanent magnet field is required. It is required to increase the magnetic flux density.
Therefore, it is a technical problem to increase the magnetic flux density of the magnetic poles in a magnet body in which flat permanent magnets and non-flat yoke portions are alternately arranged in a line.

本発明の磁石体は、このような課題を解決するために創案されたものであるが、次のような基本構成を備えていることを前提として、改良を加えたものである。
即ち、本発明の磁石体は、厚み方向に磁化された平板状の第1永久磁石と、強磁性体からなる第1磁極用継鉄部と、厚み方向に磁化された平板状の第2永久磁石と、強磁性体からなる短絡用継鉄部と、厚み方向に磁化された平板状の第3永久磁石と、強磁性体からなる第2磁極用継鉄部と、厚み方向に磁化された平板状の第4永久磁石とが、その順で一線状に隣接配置されており、前記第1永久磁石と前記第2永久磁石とが一端部を近接させ他端部を離隔させてN極面同士を斜めに向き合わせており、両N極面の間に装填された状態で前記第1磁極用継鉄部が外部へ磁束を出すN磁極になっており、前記第3永久磁石と前記第4永久磁石とが一端部を近接させ他端部を離隔させてS極面同士を斜めに向き合わせており、両S極面の間に装填された状態で前記第2磁極用継鉄部が外部へ磁束を出すS磁極になっており、前記短絡用継鉄部が前記第2永久磁石のS極面と前記第3永久磁石のN極面との間に装填された状態で磁束を内部に収めるようになっている、ことを前提としている。なお、以下の記述では、本発明の特徴を規定するに際し、解決手段1,3は開角で規定し、解決手段2,4は磁極長比で規定しているが、本質的な相違ではない。
The magnet body of the present invention has been created in order to solve such problems, but has been improved on the assumption that the following basic configuration is provided.
That is, the magnet body of the present invention includes a flat plate-shaped first permanent magnet magnetized in the thickness direction, a first magnetic pole yoke portion made of a ferromagnetic material, and a flat plate-shaped second permanent magnet magnetized in the thickness direction. A magnet, a short-circuiting yoke portion made of a ferromagnetic material, a plate-like third permanent magnet magnetized in the thickness direction, a second magnetic pole yoke portion made of a ferromagnetic material, and magnetized in the thickness direction A flat plate-like fourth permanent magnet is adjacently arranged in a line in that order, and the first permanent magnet and the second permanent magnet are close to one end and separated from the other end, and the N pole surface The first magnetic pole yoke portion is an N magnetic pole that emits a magnetic flux to the outside in a state where they are obliquely opposed to each other and loaded between both N pole surfaces, and the third permanent magnet and the first 4 permanent magnets have one end close to each other and the other end separated from each other so that the S pole faces face each other diagonally and are loaded between both S pole faces. In this state, the second magnetic pole yoke portion is an S magnetic pole that emits a magnetic flux to the outside, and the short-circuiting yoke portion is an S pole surface of the second permanent magnet and an N pole surface of the third permanent magnet. It is assumed that the magnetic flux is accommodated in the state of being loaded between. In the following description, when the features of the present invention are defined, the solving means 1 and 3 are defined by the opening angle, and the solving means 2 and 4 are defined by the magnetic pole length ratio, but this is not an essential difference. .

すなわち、本発明の磁石体は(解決手段1)、上述した前提としての基本構成を備えた磁石体において、前記第1永久磁石と前記第2永久磁石との開角および前記第3永久磁石と前記第4永久磁石との開角が何れも鋭角になっていることを特徴とする。   That is, the magnet body of the present invention (Solution 1) is the magnet body having the basic configuration as described above, and the opening angle between the first permanent magnet and the second permanent magnet and the third permanent magnet. Each of the opening angles with the fourth permanent magnet is an acute angle.

また、本発明の磁石体は(解決手段2)、上述した前提としての基本構成を備えた磁石体において、前記第1永久磁石に係る近接側の端部から離隔側の端部に至る長さと前記第2永久磁石に係る近接側の端部から離隔側の端部に至る長さとの合計長が、前記第1磁極用継鉄部の前記N磁極について前記第1永久磁石の離隔側の端部と前記第2永久磁石の離隔側の端部とに亘る磁極長の1.42倍以上になっており、且つ、前記第3永久磁石に係る近接側の端部から離隔側の端部に至る長さと前記第4永久磁石に係る近接側の端部から離隔側の端部に至る長さとの合計長が、前記第2磁極用継鉄部の前記S磁極について前記第3永久磁石の離隔側の端部と前記第4永久磁石の離隔側の端部とに亘る磁極長の1.42倍以上になっている、ことを特徴とする。   Further, the magnet body of the present invention (Solution means 2) is a magnet body having the basic configuration as the premise described above, and has a length from the end portion on the near side to the end portion on the remote side of the first permanent magnet. The total length of the second permanent magnet from the proximal end to the remote end is a remote end of the first permanent magnet for the N magnetic pole of the first magnetic pole yoke portion. At least 1.42 times the length of the magnetic pole extending between the first permanent magnet and the remote end of the second permanent magnet, and from the close end to the remote end of the third permanent magnet. The total length of the length of the second permanent magnet and the length of the fourth permanent magnet from the proximal end to the remote end is the separation of the third permanent magnet with respect to the S magnetic pole of the second magnetic pole yoke portion. It is 1.42 times or more of the magnetic pole length over the end part on the side and the end part on the separation side of the fourth permanent magnet. And butterflies.

さらに、本発明の磁石体は(解決手段3)、上記解決手段1の磁石体であって、前記第1永久磁石および前記第4永久磁石のうち何れか一方または双方に代えて非磁性体からなる端部材が設けられ、前記第2永久磁石および前記第3永久磁石のうち前記端部材に近接しているものと前記端部材との開角が直角の半分未満になっていることを特徴とする。   Furthermore, the magnet body of the present invention (Solution means 3) is the magnet body of the above-mentioned solution means 1, in which one or both of the first permanent magnet and the fourth permanent magnet are replaced with a non-magnetic material. And an end angle between the second permanent magnet and the third permanent magnet close to the end member and the end member is less than a half of a right angle. To do.

また、本発明の磁石体は(解決手段4)、上記解決手段2の磁石体であって、前記第1永久磁石および前記第4永久磁石のうち何れか一方または双方に代えて非磁性体からなる端部材が設けられ、前記第2永久磁石および前記第3永久磁石のうち前記端部材に近接している方の永久磁石に係る近接側の端部から離隔側の端部に至る長さが、前記第1磁極用継鉄部および前記第2磁極用継鉄部のうち何れか前記端部材に隣接しているものの磁極について前記永久磁石の離隔側の端部と前記端部材の離隔側の端部とに亘る磁極長の1.42倍以上になっている、ことを特徴とする。   Further, the magnet body of the present invention (solving means 4) is the magnet body of the above-mentioned solving means 2 and is made of a non-magnetic material instead of one or both of the first permanent magnet and the fourth permanent magnet. The end member is provided and has a length from the proximal end to the remote end of the second permanent magnet and the third permanent magnet that is closer to the end member. , Of the first magnetic pole yoke portion and the second magnetic pole yoke portion adjacent to the end member, the magnetic poles on the remote side of the permanent magnet and the remote side of the end member It is characterized by being 1.42 times or more of the magnetic pole length extending to the end.

また、本発明の磁石体は(解決手段5)、上記解決手段1〜2の磁石体であって、強磁性体からなる迂回中間部と迂回端部とを連ねた迂回用継鉄部が設けられ、前記迂回端部は、前記第1永久磁石および前記第4永久磁石のうち何れか一方または双方に対して一線状の隣接配置を延長する形で隣接配置されていて、その隣接している永久磁石から来た磁束を内部に収めて前記迂回中間部へ導くようになっており、前記迂回中間部は、前記N磁極および前記S磁極と異なる所に配置されていて、前記迂回端部から来た磁束を内部に収めて前記N磁極および前記S磁極を迂回させるようになっている、ことを特徴とする。   Further, the magnet body of the present invention (Solution means 5) is the magnet body of the above-mentioned solution means 1 and 2, and is provided with a bypass yoke portion in which a bypass intermediate portion made of a ferromagnetic material and a bypass end portion are connected. The detour end portion is adjacently arranged so as to extend one line adjacent arrangement to either one or both of the first permanent magnet and the fourth permanent magnet, and is adjacent thereto. A magnetic flux coming from a permanent magnet is contained inside and guided to the detour intermediate portion, and the detour intermediate portion is arranged at a location different from the N magnetic pole and the S magnetic pole, and from the detour end portion It is characterized in that the incoming magnetic flux is housed inside to bypass the N magnetic pole and the S magnetic pole.

このような本発明の磁石体にあっては(解決手段1)、永久磁石同士の開角が従来品では直角か鈍角であったのに対し、開角を鋭角にまで狭めたことにより、永久磁石から出た磁束を磁極に向けて絞り込む磁極用継鉄部の磁束収斂能が従来よりも向上する。
したがって、この発明によれば、平板状の永久磁石と非平板状の継鉄部とを交互配置で一線状に並べた磁石体であって磁極の磁束密度が高いものを実現することができる。
In such a magnet body of the present invention (Solution 1), the opening angle between the permanent magnets was a right angle or an obtuse angle in the conventional product, whereas the opening angle was narrowed to an acute angle. The magnetic flux convergence ability of the magnetic pole yoke portion that narrows the magnetic flux emitted from the magnet toward the magnetic pole is improved as compared with the prior art.
Therefore, according to the present invention, it is possible to realize a magnet body in which flat permanent magnets and non-flat yoke portions are arranged in a line in an alternating arrangement and have a high magnetic flux density of magnetic poles.

また、本発明の磁石体にあっては(解決手段2)、永久磁石の極長と磁極用継鉄部の磁極長との比が従来品では1.42(約√2)未満であったのに対し、磁極長比を1.42以上にまで大きくしたことにより、永久磁石から出た磁束を磁極に向けて絞り込む磁極用継鉄部の磁束収斂能が従来よりも向上する。
したがって、この発明によれば、平板状の永久磁石と非平板状の継鉄部とを交互配置で一線状に並べた磁石体であって磁極の磁束密度が高いものを実現することができる。
Further, in the magnet body of the present invention (Solution means 2), the ratio of the pole length of the permanent magnet to the pole length of the magnetic pole yoke is less than 1.42 (about √2) in the conventional product. On the other hand, by increasing the magnetic pole length ratio to 1.42 or more, the magnetic flux convergence ability of the magnetic pole yoke portion for narrowing the magnetic flux emitted from the permanent magnet toward the magnetic pole is improved as compared with the conventional case.
Therefore, according to the present invention, it is possible to realize a magnet body in which flat permanent magnets and non-flat yoke portions are arranged in a line in an alternating arrangement and have a high magnetic flux density of magnetic poles.

さらに、本発明の磁石体にあっては(解決手段3)、最も端の永久磁石のところに非磁性体を配置したことにより有端化されるが、その最端のところでは、永久磁石が片方だけになったことに対応して、開角を直角の半分未満すなわち鋭角の半分にまで狭めたことにより、その最端のところでも、永久磁石から出た磁束を磁極に向けて絞り込む磁極用継鉄部の磁束収斂能が従来よりも向上する。   Furthermore, in the magnet body of the present invention (Solution means 3), the non-magnetic material is disposed at the end of the permanent magnet, but at the end of the permanent magnet, Corresponding to the fact that it has become only one side, by narrowing the opening angle to less than half of the right angle, that is, half of the acute angle, for the magnetic pole that narrows the magnetic flux emitted from the permanent magnet toward the magnetic pole even at the extreme end The magnetic flux convergence ability of the yoke part is improved as compared with the conventional case.

また、本発明の磁石体にあっては(解決手段4)、最も端の永久磁石のところに非磁性体を配置したことにより全体が有端化され、それに伴って、その最端のところでは、永久磁石が片方だけになるが、それだけでも磁極長比が1.42以上になるようにしたことにより、その最端のところでも、永久磁石から出た磁束を磁極に向けて絞り込む磁極用継鉄部の磁束収斂能が従来より向上する。   Moreover, in the magnet body of the present invention (Solution means 4), the whole body is terminated by disposing the non-magnetic material at the end of the permanent magnet, and accordingly, at the end of the magnet body. However, even if only one permanent magnet is used, the magnetic pole length ratio is 1.42 or more, so that the magnetic flux generated from the permanent magnet is narrowed toward the magnetic pole even at the extreme end. The magnetic flux convergence ability of the iron part is improved as compared with the conventional one.

また、本発明の磁石体にあっては(解決手段5)、迂回用継鉄部を設けたことにより磁路が局所で閉じられて完結するので、単体で短い有端の磁石体として使用することも、複数多数を連ねて長い有端の磁石体にすることも、さらにはその両端を繋いで無端化することもできる。しかも、単体で短い有端の磁石体として使用する場合は何時でも、複数多数を連ねて長い磁石体にする場合は連結部で同一極性の磁極が隣り合うように連ねることで、各磁極から出た磁束が両隣の磁極へ分かれることなく両隣の磁極のうち極性の異なる方へ纏まって向かうので、磁極面から出た磁束がより遠くまで届くという利点もある。   Further, in the magnet body of the present invention (Solution means 5), since the magnetic path is closed and completed by providing the bypass yoke portion, it is used as a single short-ended magnet body. In addition, it is possible to make a long-ended magnet body by connecting a plurality of them, or to connect them at both ends to make them endless. Moreover, whenever a single magnet is used as a short-ended magnet body, and when a plurality of magnets are combined into a long magnet body, magnetic poles of the same polarity are connected at the connecting portion so that they are adjacent to each other. Therefore, the magnetic fluxes coming out of the magnetic pole surfaces reach farther because the magnetic fluxes are gathered toward the different polarities of the adjacent magnetic poles without being separated into the adjacent magnetic poles.

本発明の実施例1について、磁石体の構造を示し、(a)が正面図、(b)がBB矢視の横断平面図、(c)が磁束分布図である。The structure of a magnet body is shown about Example 1 of this invention, (a) is a front view, (b) is a cross-sectional plan view of BB arrow, (c) is a magnetic flux distribution map. 本発明の実施例2について、磁石体の構造を示し、(a)が横断平面図と端部拡大図、(b)が磁束分布図である。About Example 2 of this invention, the structure of a magnet body is shown, (a) is a cross-sectional top view and an edge part enlarged view, (b) is a magnetic flux distribution map. 本発明の実施例3について、磁石体の構造を示し、(a)が正面図、(b)が横断平面図、(c)の磁束分布図である。About Example 3 of this invention, the structure of a magnet body is shown, (a) is a front view, (b) is a cross-sectional plan view, (c) is a magnetic flux distribution diagram. 本発明の実施例4について、磁石体の構造を示す横断平面図と端部拡大図である。It is the cross-sectional top view and end part enlarged view which show the structure of a magnet body about Example 4 of this invention. その横断平面図と端部拡大図に係る磁束分布図である。It is the magnetic flux distribution figure which concerns on the cross-sectional top view and an edge part enlarged view. 本発明の実施例5について、磁石体を可動子とするリニアモータの構造を示し、(a)が要部の横断平面図、(b)が磁束分布図である。About Example 5 of this invention, the structure of the linear motor which uses a magnet body as a needle | mover is shown, (a) is a cross-sectional top view of the principal part, (b) is a magnetic flux distribution map. (a)〜(b)はそれぞれ従来のリニアモータの磁石配置例であり、(d)〜(e)はそれぞれ従来の永久磁石埋込型モータの回転子の磁石配置例である。(A)-(b) is a magnet arrangement example of the conventional linear motor, respectively, (d)-(e) is a magnet arrangement example of the rotor of the conventional permanent magnet embedded type motor, respectively.

このような本発明の磁石体について、これを実施するための具体的な形態を、以下の実施例1〜5により説明する。
図1に示した実施例1は、上述した解決手段1〜2(出願当初の請求項1〜2)を具現化したものであり、図2に示した実施例2や,図3に示した実施例3は、上述した解決手段3〜4(出願当初の請求項3〜4)を具現化したものであり、図4〜5に示した実施例4は、上述した解決手段5(出願当初の請求項5)を具現化したものであり、図6に示した実施例5は、リニアモータへの適用例である。
About the magnet body of such this invention, the specific form for implementing this is demonstrated by the following Examples 1-5.
The first embodiment shown in FIG. 1 embodies the above-described solving means 1 and 2 (claims 1 and 2 as originally filed), and is shown in the second embodiment shown in FIG. 2 and the third embodiment shown in FIG. The third embodiment embodies the above-described solving means 3 to 4 (claims 3 to 4 at the time of filing), and the fourth embodiment shown in FIGS. The fifth embodiment shown in FIG. 6 is an example applied to a linear motor.

なお、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、また、それらについて背景技術の欄で述べたことは以下の各実施例についても共通するので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
また、永久磁石や継鉄部に関する素材や製法なども、公知のもので足りるので、説明を割愛する。
なお、いずれの磁束分布図でも、磁束線を二点鎖線でイメージ表示している。
In addition, since the same reference numerals are given to the same constituent elements as those in the past in the illustration thereof, and what is described in the background art section is also common to the following embodiments, it is redundant. The description of this will be omitted, and the following description will focus on differences from the prior art.
Moreover, since the material and manufacturing method regarding a permanent magnet or a yoke part are sufficient, a description is omitted.
In any of the magnetic flux distribution diagrams, the magnetic flux lines are displayed as images with two-dot chain lines.

本発明の磁石体の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、(a)が磁石体30の正面図、(b)がBB矢視の横断平面図である。
この磁石体30が既述した従来の回転子20と相違する主な点は、永久磁石と継鉄部との交互配置が円弧でなく一直線(一線状)になっている点と、開角θが鋭角になっている点と、磁極用継鉄部13を挟む両隣の永久磁石の合計長(W×2)が両永久磁石に亘る磁極長Lの1.42(約√2)倍以上になっている点と、磁極用継鉄部13の横断面形状が二等辺三角形になっている点と、短絡用継鉄部12の横断面形状が二等辺三角形に近い台形になっている点と、短絡用継鉄部12も磁極用継鉄部13も永久磁石11を囲まなくなったので非磁性体製の保持部材31で奥行Dの両側から挟んで固定している点である。
About the Example 1 of the magnet body of this invention, the specific structure is demonstrated referring drawings. 1A is a front view of a magnet body 30 and FIG. 1B is a cross-sectional plan view taken along the arrow BB.
The main differences between the magnet body 30 and the conventional rotor 20 described above are that the alternate arrangement of the permanent magnets and the yoke portion is not a circular arc but a straight line (a straight line), and an opening angle θ. And the total length (W × 2) of the adjacent permanent magnets sandwiching the magnetic pole yoke portion 13 is 1.42 (about √2) times or more of the magnetic pole length L across the permanent magnets. The cross-sectional shape of the magnetic yoke part 13 is an isosceles triangle, and the cross-sectional shape of the short-circuiting yoke part 12 is a trapezoid close to an isosceles triangle. The short-circuiting yoke portion 12 and the magnetic pole yoke portion 13 do not surround the permanent magnet 11 and are fixed by being sandwiched from both sides of the depth D by the holding member 31 made of nonmagnetic material.

詳述すると、永久磁石11も短絡用継鉄部12も磁極用継鉄部13も奥行Dが同じになっており(なお、図1(a)では高さで示している)、更に横断面が奥行D方向のどこでも同じになっている。そこで、その横断面を見ると(図1(b)参照)、永久磁石11は、何れも同じ長方形になっていて、総てについて厚さHも長さWも等しいものであり、一線方向・隣接配置方向において一方(図では左方)から他方(図では右方)へ並び順に説明すると、先ず、第1永久磁石11(aa)は、一線方向との直交面から時計回りにθ/2だけ傾斜してS極面を一方側(左方)に向けN極面を他方側(右方)に向けている。   More specifically, the permanent magnet 11, the short-circuiting yoke part 12, and the magnetic pole yoke part 13 have the same depth D (indicated by the height in FIG. 1 (a)), and further have a cross section. Is the same everywhere in the depth D direction. Then, when the cross section is seen (refer FIG.1 (b)), all the permanent magnets 11 are the same rectangles, and all have the same thickness H and length W. In the adjacent arrangement direction, description will be made in order from one side (left side in the figure) to the other side (right side in the figure). First, the first permanent magnet 11 (aa) is rotated θ / 2 clockwise from the plane perpendicular to the line direction. And the S pole face is directed to one side (left side) and the N pole face is directed to the other side (right side).

その次の第2永久磁石11(bb)は、一線方向との直交面から反時計回りにθ/2だけ傾斜してN極面を一方側(左方)に向けS極面を他方側(右方)に向けている。更にその次の第3永久磁石11(cc)は、第1永久磁石11(aa)と同様に一線方向との直交面から時計回りにθ/2だけ傾斜しているが、第1永久磁石11(aa)と異なりN極面を一方側(左方)に向けS極面を他方側(右方)に向けている。最後の第4永久磁石11(dd)は、第2永久磁石11(bb)と同様に一線方向との直交面から反時計回りにθ/2だけ傾斜しているが、第2永久磁石11(bb)と異なりS極面を一方側(左方)に向けN極面を他方側(右方)に向けている。   The next second permanent magnet 11 (bb) is inclined by θ / 2 counterclockwise from a plane perpendicular to the direction of one line, and the N pole face is directed to one side (left side) and the S pole face is placed on the other side ( (To the right) Further, the third permanent magnet 11 (cc) next to the first permanent magnet 11 (cc) is inclined by θ / 2 clockwise from the plane perpendicular to the straight line direction, like the first permanent magnet 11 (aa). Unlike (aa), the N pole face is directed to one side (left side) and the S pole face is directed to the other side (right side). The last fourth permanent magnet 11 (dd) is inclined by θ / 2 counterclockwise from the plane perpendicular to the straight line direction, like the second permanent magnet 11 (bb), but the second permanent magnet 11 ( Unlike bb), the S pole face is directed to one side (left side) and the N pole face is directed to the other side (right side).

このような配置では、第1永久磁石11(aa)と第2永久磁石11(bb)とが、両者間の近接点32のところで両者の一端部同士を近接させ、他端部を磁極長Lだけ離隔させて、N極面同士を開角θで斜めに向き合わせている。また、第3永久磁石11(cc)と最後の第4永久磁石11(dd)も、両者間の近接点32のところで両者の一端部同士を近接させ、他端部を磁極長Lだけ離隔させているが、こちらはS極面同士を開角θで斜めに向き合わせている。何れの近接点32でも、近接状態は、密接が望ましいが、磁束漏れが無視できる程度であれば多少離れていても良い。さらに、第2永久磁石11(bb)と第3永久磁石11(cc)は、S極面とN極面とを斜めに向き合わせている。短絡用継鉄部12は、そのような第2永久磁石11(bb)のS極面と第3永久磁石11(cc)のN極面とに挟まれて両極面の間にピッタリ収まっているので、両極面に亘る磁束を外部に漏らさないよう継鉄内部に収めるものとなっている。   In such an arrangement, the first permanent magnet 11 (aa) and the second permanent magnet 11 (bb) have their one ends close to each other at the proximity point 32 between them, and the other end is the magnetic pole length L. The N pole faces are diagonally faced at an opening angle θ, separated from each other. Further, the third permanent magnet 11 (cc) and the last fourth permanent magnet 11 (dd) are also close to each other at the proximity point 32 between them, and the other end is separated by the magnetic pole length L. However, in this case, the S pole faces are diagonally faced with an open angle θ. At any proximity point 32, the proximity state is preferably close, but may be somewhat apart if magnetic flux leakage is negligible. Further, the second permanent magnet 11 (bb) and the third permanent magnet 11 (cc) face the S pole face and the N pole face obliquely. The short-circuiting yoke portion 12 is sandwiched between the S-pole surface of the second permanent magnet 11 (bb) and the N-pole surface of the third permanent magnet 11 (cc) and fits between both pole surfaces. Therefore, the magnetic flux over both pole surfaces is stored inside the yoke so as not to leak to the outside.

第1磁極用継鉄部13(N)は、第1永久磁石11(aa)と第2永久磁石11(bb)とで挟まれて両磁石の間にピッタリ収まる横断面二等辺三角形に形成されていて、近接点32のところの頂角が開角θと同じになっており、そこを挟む両辺の長さが永久磁石長Wと同じになっており、対辺(図1(b)では下辺)の長さが磁極長Lになっている。この対辺のところは、奥行も考慮すれば露出面であり、両隣の永久磁石11のN極面から入ってきた磁束が外部へ出て行くN磁極(界磁極)となっている。また、第2磁極用継鉄部13(S)は、第3永久磁石11(cc)と第4永久磁石11(dd)とで挟まれて両磁石の間にピッタリ収まる横断面二等辺三角形に形成されていて、第1磁極用継鉄部13(N)と同じく、近接点32のところの頂角が開角θと同じになっており、そこを挟む両辺の長さが永久磁石長Wと同じになっており、対辺の長さが磁極長Lになっているが、第1磁極用継鉄部13(N)と異なり、対辺のところは、両隣の永久磁石11のS極面から入ってきた磁束が外部へ出て行くS磁極(界磁極)となっている。   The first magnetic pole yoke portion 13 (N) is formed in an isosceles triangle with a cross section that is sandwiched between the first permanent magnet 11 (aa) and the second permanent magnet 11 (bb) and fits between both magnets. The apex angle at the proximity point 32 is the same as the opening angle θ, the length of both sides sandwiching the apex angle is the same as the permanent magnet length W, and the opposite side (the lower side in FIG. 1B) ) Is the magnetic pole length L. The opposite side is an exposed surface in consideration of the depth, and serves as an N magnetic pole (field magnetic pole) from which the magnetic flux that has entered from the N pole surface of the adjacent permanent magnets 11 goes out. Further, the second magnetic pole yoke portion 13 (S) is sandwiched between the third permanent magnet 11 (cc) and the fourth permanent magnet 11 (dd) so as to have an isosceles cross section that fits between the two magnets. As in the first magnetic pole yoke portion 13 (N), the apex angle at the proximity point 32 is the same as the open angle θ, and the length of both sides sandwiching the apex angle is the permanent magnet length W. The length of the opposite side is the magnetic pole length L, but unlike the first magnetic pole yoke portion 13 (N), the opposite side is from the S pole surface of the permanent magnet 11 on both sides. It is an S magnetic pole (field magnetic pole) in which the incoming magnetic flux goes out.

そして、従来品との明確な相違点として、第1永久磁石11(aa)と第2永久磁石11(bb)との開角θが直角より小さな鋭角になっており、同じく第3永久磁石11(cc)と第4永久磁石11(dd)との開角θも直角より小さな鋭角になっている。また、第1永久磁石11(aa)に係る近接側の端部から離隔側の端部に至る長さWと第2永久磁石11(bb)に係る近接側の端部から離隔側の端部に至る長さWとの合計長(W×2)が、第1磁極用継鉄部13(N)のN磁極について第1永久磁石11(aa)の離隔側の端部と第2永久磁石11(bb)の離隔側の端部とに亘る磁極長Lの1.42倍以上になっている。さらに、第3永久磁石11(cc)に係る近接側の端部から離隔側の端部に至る長さWと第4永久磁石11(dd)に係る近接側の端部から離隔側の端部に至る長さWとの合計長(W×2)が、第2磁極用継鉄部13(S)のS磁極について第3永久磁石11(cc)の離隔側の端部と第4永久磁石11(dd)の離隔側の端部とに亘る磁極長Lの1.42倍以上になっている。   As a clear difference from the conventional product, the opening angle θ between the first permanent magnet 11 (aa) and the second permanent magnet 11 (bb) is an acute angle smaller than a right angle. The opening angle θ between (cc) and the fourth permanent magnet 11 (dd) is also an acute angle smaller than a right angle. Also, the length W from the end on the near side to the end on the remote side related to the first permanent magnet 11 (aa) and the end on the side remote from the end on the close side related to the second permanent magnet 11 (bb) The total length (W × 2) of the first permanent magnet 11 (aa) and the second permanent magnet with respect to the N magnetic pole of the first magnetic pole yoke portion 13 (N) 11 (bb) is 1.42 times or more of the magnetic pole length L extending to the end on the remote side. Further, the length W from the end on the close side related to the third permanent magnet 11 (cc) to the end on the remote side and the end on the remote side from the end on the close side related to the fourth permanent magnet 11 (dd) The total length (W × 2) with the length W of the third permanent magnet 11 (cc) and the fourth permanent magnet with respect to the S magnetic pole of the second magnetic pole yoke portion 13 (S) 11 (dd) is 1.42 times or more of the magnetic pole length L extending to the end on the remote side.

この実施例1の磁石体30について、磁気回路の状態を、図面を引用して説明する。図1(c)は、磁石体30の横断平面図に係る磁束分布図である。   Regarding the magnet body 30 of the first embodiment, the state of the magnetic circuit will be described with reference to the drawings. FIG. 1C is a magnetic flux distribution diagram according to a transverse plan view of the magnet body 30.

磁石体30では、第2永久磁石11(bb)のN極面から第1磁極用継鉄部13(N)に入った磁束が、その磁極用継鉄部13のN磁極面から外部に出て、右方の第2磁極用継鉄部13(S)のS磁極面に至り、そこから第2磁極用継鉄部13(S)に入って第3永久磁石11(cc)にそのS極面から入り、それから第3永久磁石11(cc)と短絡用継鉄部12と第2永久磁石11(bb)の内部を通って元の所に戻り、一巡する。
その際、外部に出るのはN磁極からS磁極へ至る部分の経路だけである。
In the magnet body 30, the magnetic flux that has entered the first magnetic pole yoke portion 13 (N) from the N pole surface of the second permanent magnet 11 (bb) exits from the N magnetic pole surface of the magnetic pole yoke portion 13 to the outside. Then, it reaches the S magnetic pole surface of the right second magnetic pole yoke portion 13 (S), and enters the second magnetic pole yoke portion 13 (S) from there to the third permanent magnet 11 (cc). It enters from the pole surface, and then returns to the original place through the third permanent magnet 11 (cc), the short-circuiting yoke portion 12 and the second permanent magnet 11 (bb), and makes a round.
At that time, only the part of the path from the N magnetic pole to the S magnetic pole exits to the outside.

また、第1永久磁石11(aa)のN極面から第1磁極用継鉄部13(N)に入った磁束は、その磁極用継鉄部13のN磁極面から外部に出て、左方へ行ってから上述したのと同様の或いは適宜な別態様の磁路を経て元の所に戻り、一巡する。さらに、第4永久磁石11(dd)のS極面から第2磁極用継鉄部13(S)に入った磁束は、その磁極用継鉄部13のS磁極面から外部に出て、右方へ行ってから上述したのと同様の或いは適宜な別態様の磁路を経て元の所に戻り、これも一巡する。   In addition, the magnetic flux that has entered the first magnetic pole yoke portion 13 (N) from the N pole surface of the first permanent magnet 11 (aa) exits from the N magnetic pole surface of the magnetic pole yoke portion 13 to the left. And then return to the original place through a magnetic path of the same or appropriate manner as described above, and go around. Furthermore, the magnetic flux that has entered the second magnetic pole yoke portion 13 (S) from the S pole surface of the fourth permanent magnet 11 (dd) goes out of the S magnetic pole surface of the magnetic pole yoke portion 13 to the right, And then return to the original position through a magnetic path of the same or appropriate manner as described above, and this also makes a round.

そして、このような磁気回路にあっては、磁極用継鉄部13の横断面が二等辺三角形であって双方の斜辺から入って来る磁束の極性が同じなので、左の斜辺から入って来た磁束は下方へ方向転換して二等辺三角形の底辺の左半分から抜け出し、右の斜辺から入って来た磁束は下方へ方向転換して二等辺三角形の底辺の右半分から抜け出す。そのため、永久磁石11の磁束密度が磁極用継鉄部13の磁極(界磁極)では磁極長比の(W×2/L)倍に高まるが、磁極用継鉄部13を挟む永久磁石11同士の開角θが鋭角なので、1.42倍以上に高まることとなり、例えば、磁極用継鉄部13の横断面が正三角形であれば、開角θが60゜で、磁極長比が2なので、磁束密度も2倍に高まる。   And in such a magnetic circuit, since the cross section of the yoke part 13 for magnetic poles is an isosceles triangle and the polarity of the magnetic flux which enters from both hypotenuses is the same, it came in from the hypotenuse on the left The magnetic flux turns downward and escapes from the left half of the base of the isosceles triangle, and the magnetic flux entering from the right hypotenuse turns downward and escapes from the right half of the base of the isosceles triangle. Therefore, the magnetic flux density of the permanent magnet 11 increases to (W × 2 / L) times the magnetic pole length ratio at the magnetic pole (field magnetic pole) of the magnetic pole yoke portion 13, but the permanent magnets 11 sandwiching the magnetic pole yoke portion 13 Since the opening angle θ is an acute angle, it increases to 1.42 times or more. For example, if the cross section of the magnetic pole yoke 13 is an equilateral triangle, the opening angle θ is 60 ° and the magnetic pole length ratio is 2. The magnetic flux density is also doubled.

また、磁極用継鉄部13の内部では、磁束分布がほぼ均一になり、磁束密度がどこでも同程度になって、各部が同様に磁化されるので、継鉄が磁化に無駄なく利用される。すなわち、磁化状態について、一部の継鉄がほとんど磁化されないうちに他の部分の継鉄が磁気飽和してしまう、といったことが発生しにくい。なお、磁極用継鉄部13の形状は、横断面で正三角形や二等辺三角形になっているのが磁気的性能ばかりか製造容易性等の観点からも好ましいが、多少であれば辺長の異なる三角形になっていても良く、角部や隅部が面取りされていても良く、磁極面が少しなら曲がっていても良い。   Further, inside the magnetic pole yoke portion 13, the magnetic flux distribution is almost uniform, the magnetic flux density is almost the same everywhere, and the respective portions are magnetized in the same manner, so that the yoke is used without waste for magnetization. That is, with respect to the magnetized state, it is unlikely that other portions of the yoke will be magnetically saturated while some of the yokes are hardly magnetized. The shape of the magnetic pole yoke portion 13 is preferably an equilateral triangle or an isosceles triangle in cross section from the viewpoint of not only the magnetic performance but also the ease of manufacture. Different triangles may be used, corners and corners may be chamfered, and the pole face may be bent if it is a little.

本発明の磁石体の実施例2について、その具体的な構成を、図面を引用して説明する。図2(a)は、磁石体40の横断平面図と端部拡大図である。   A specific configuration of the magnet body according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 2A is a cross-sectional plan view and an enlarged end view of the magnet body 40.

この磁石体40が上述した実施例1の磁石体30と相違するのは、磁石体30を一直線方向(一線方向・隣接配置方向・図では左右方向)に繰り返し配設して長物になった点と、両端にそれぞれ端部材41を配設して有端の磁石体になった点である。
磁石体40の中間部は、上述した磁石体30と同じなので、繰り返しとなる説明は割愛する。磁石体40の左端部は裏から見ると右端部と同じ構造なので、左端部の説明も割愛して、以下、磁石体40の右端部の構造を説明する。
This magnet body 40 is different from the magnet body 30 of the first embodiment described above in that the magnet body 30 is repeatedly arranged in a straight line direction (one-line direction, adjacent arrangement direction, left-right direction in the drawing) and becomes a long product. And the end member 41 is arrange | positioned at both ends, respectively, and it is the point which became the end magnet body.
Since the intermediate part of the magnet body 40 is the same as the magnet body 30 mentioned above, the repeated description is omitted. Since the left end portion of the magnet body 40 has the same structure as the right end portion when viewed from the back, the description of the left end portion will be omitted and the structure of the right end portion of the magnet body 40 will be described below.

磁石体40の右端部が上述の磁石体30と相違するのは、非磁性体からなる平板状の端部材41(dd)が第4永久磁石11(dd)の代わりに導入された点と、端部材41の向きが一直線方向に直交する状態になっている点と、それに伴って第2磁極用継鉄部13(S)の横断面形状が二等辺三角形を縦に二分した左方の直角三角形になっている点である。そして、この磁石体40では、第3永久磁石11(cc)と端部材41(dd)が、第3永久磁石11(cc)と第4永久磁石11(dd)との近接点32だったところで両者の一端部同士を近接させるとともに、他端部を磁極長M=L/2だけ離隔させており、さらに、S極面と非磁化面とを開角φ=θ/2で斜めに向き合わせている。   The right end portion of the magnet body 40 is different from the magnet body 30 described above in that a flat end member 41 (dd) made of a non-magnetic material is introduced instead of the fourth permanent magnet 11 (dd); The point in which the direction of the end member 41 is in a state orthogonal to the straight line direction, and accordingly, the cross-sectional shape of the second magnetic pole yoke portion 13 (S) is a left-right angle obtained by vertically dividing an isosceles triangle. It is a point that is a triangle. In the magnet body 40, the third permanent magnet 11 (cc) and the end member 41 (dd) are the proximity points 32 between the third permanent magnet 11 (cc) and the fourth permanent magnet 11 (dd). Both end portions are close to each other, the other end portion is separated by a magnetic pole length M = L / 2, and the S pole surface and the non-magnetized surface are obliquely faced at an opening angle φ = θ / 2. ing.

また、片割れ状態になった第2磁極用継鉄部13(S)は、第3永久磁石11(cc)のS極面と端部材41(dd)の非磁化面とで挟まれて両者の間にピッタリ収まる横断面直角三角形に形成されていて、近接点のところの頂角が開角φ=θ/2と同じで直角の半分未満になっており、対辺(図では下辺)の長さが磁極長Mになっているが、この対辺は、第3永久磁石11(cc)のS極面から入ってきた磁束が外部へ出て行くS磁極(界磁極)となっている。さらに、磁極長Mは磁極長Lの半分なので、端部材41(dd)に近接している方の永久磁石である第3永久磁石11(cc)に係る近接側の端部から離隔側の端部に至る長さWが、端部材41(dd)に隣接している第2磁極用継鉄部13(S)のS磁極について永久磁石11の離隔側の端部と端部材41の離隔側の端部とに亘る磁極長Mの1.42倍以上になっている。   Further, the second magnetic pole yoke portion 13 (S) which has been in a half-cracked state is sandwiched between the S pole surface of the third permanent magnet 11 (cc) and the non-magnetized surface of the end member 41 (dd). It is formed in a right-angled triangular cross section that fits in between, the apex angle at the proximity point is the same as the opening angle φ = θ / 2 and less than half the right angle, the length of the opposite side (bottom side in the figure) Is the magnetic pole length M, but this opposite side is an S magnetic pole (field magnetic pole) from which the magnetic flux entering from the S pole surface of the third permanent magnet 11 (cc) goes out. Furthermore, since the magnetic pole length M is half of the magnetic pole length L, the end on the far side from the end on the close side related to the third permanent magnet 11 (cc), which is a permanent magnet closer to the end member 41 (dd), is provided. The end W on the remote side of the permanent magnet 11 and the remote side of the end member 41 with respect to the S magnetic pole of the second magnetic pole yoke 13 (S) adjacent to the end member 41 (dd) It is 1.42 times or more of the magnetic pole length M extending to the end of each.

この実施例2の磁石体40について、磁気回路の状態を、図面を引用して説明する。図2(b)は、磁石体40の横断平面図と端部拡大図に係る磁束分布図である。
この場合、第2磁極用継鉄部13(S)のS磁極から外部へ出た磁束が右端の端部材41(dd)によって、そこから右方への磁束の展開が阻止される。
Regarding the magnet body 40 of the second embodiment, the state of the magnetic circuit will be described with reference to the drawings. FIG. 2B is a magnetic flux distribution diagram according to a transverse plan view and an enlarged end view of the magnet body 40.
In this case, the magnetic flux emitted from the S magnetic pole of the second magnetic pole yoke portion 13 (S) to the outside is prevented from being expanded rightward by the right end member 41 (dd).

そのため、繰り返しとなる詳細な説明は割愛するが、磁石体30の磁気回路と同様、第1磁極用継鉄部13(N)のN極面から外部に出た磁束が、右方の第2磁極用継鉄部13(S)のS磁極面に至り、そこから第2磁極用継鉄部13(S)に入って第3永久磁石11(cc)と短絡用継鉄部12と第2永久磁石11(bb)と第1磁極用継鉄部13(N)を経て一巡する。また、第2磁極用継鉄部13(S)における磁束分布状態が第1磁極用継鉄部13(N)の半分の鏡像状態になるので、第2磁極用継鉄部13(S)についても第1磁極用継鉄部13(N)と同じく磁極(界磁極)の磁束密度が永久磁石11の磁束密度に比べて1.42倍以上に高まる。   Therefore, the detailed description which will be repeated will be omitted, but as with the magnetic circuit of the magnet body 30, the magnetic flux emitted to the outside from the N pole surface of the first magnetic pole yoke portion 13 (N) is the second on the right side. It reaches the S magnetic pole surface of the magnetic pole yoke portion 13 (S), enters the second magnetic pole yoke portion 13 (S) from there, enters the third permanent magnet 11 (cc), the short-circuited yoke portion 12 and the second magnetic pole portion 13 (S). It goes around through the permanent magnet 11 (bb) and the first magnetic pole yoke 13 (N). Moreover, since the magnetic flux distribution state in the second magnetic pole yoke portion 13 (S) is a mirror image of the first magnetic pole yoke portion 13 (N), the second magnetic pole yoke portion 13 (S). As with the first magnetic pole yoke portion 13 (N), the magnetic flux density of the magnetic pole (field magnetic pole) is increased by 1.42 times or more compared to the magnetic flux density of the permanent magnet 11.

本発明の磁石体の実施例3について、その具体的な構成を、図面を引用して説明する。図3は、(a)が磁石体50の正面図、(b)が横断平面図である。   A specific configuration of the magnet body according to the third embodiment of the present invention will be described with reference to the drawings. 3A is a front view of the magnet body 50, and FIG. 3B is a transverse plan view.

この磁石体50が上述した実施例2の磁石体40と相違するのは、非磁性体からなる平板状の端部材41(aa)による置き換えが第1永久磁石11(aa)のところにもなされた点である。右端の端部材41(dd)と同様、左端の端部材41も、その向きが一直線方向に直交する状態になっている。また、第1磁極用継鉄部13(N)は、第2磁極用継鉄部13(S)とほぼ同様だがそれとは鏡像状態で、横断面形状が二等辺三角形を縦に二分した右方の直角三角形になっている。そして、この磁石体50では、第2永久磁石11(bb)が、第1永久磁石11(aa)との近接点32だったところで端部材41(aa)と一端部同士を近接させるとともに、他端部を磁極長M=L/2だけ離隔させており、さらに、S極面を非磁化面と開角φ=θ/2で斜めに向き合わせている。   This magnet body 50 is different from the magnet body 40 of the second embodiment described above in that the first permanent magnet 11 (aa) is replaced with a flat end member 41 (aa) made of a non-magnetic material. It is a point. Similar to the right end member 41 (dd), the left end member 41 is in a state in which the direction is orthogonal to the straight line direction. Further, the first magnetic pole yoke portion 13 (N) is substantially the same as the second magnetic pole yoke portion 13 (S), but it is in a mirror image state, and the right cross-section is an isosceles triangle divided into two vertically. It is a right triangle. And in this magnet body 50, while the 2nd permanent magnet 11 (bb) was the proximity point 32 with the 1st permanent magnet 11 (aa), while making the end member 41 (aa) and one end part adjoin, other The ends are separated by the magnetic pole length M = L / 2, and the S pole surface is obliquely opposed to the non-magnetized surface at an opening angle φ = θ / 2.

また、片割れ状態になった第1磁極用継鉄部13(N)は、第2永久磁石11(bb)のN極面と端部材41(aa)の非磁化面とで挟まれて両者の間にピッタリ収まる横断面直角三角形に形成されていて、近接点のところの頂角が開角φ=θ/2と同じで直角の半分未満になっており、対辺(図では下辺)の長さが磁極長Mになっているが、この対辺は、第2永久磁石11(bb)のN極面から入ってきた磁束が外部へ出て行くN磁極(界磁極)となっている。さらに、磁極長Mは磁極長Lの半分なので、端部材41(aa)に近接している方の永久磁石である第2永久磁石11(bb)に係る近接側の端部から離隔側の端部に至る長さWが、端部材41(aa)に隣接している第1磁極用継鉄部13(N)のN磁極について永久磁石11の離隔側の端部と端部材41の離隔側の端部とに亘る磁極長Mの1.42倍以上になっている。   Further, the first magnetic pole yoke portion 13 (N) that has been split into pieces is sandwiched between the N pole surface of the second permanent magnet 11 (bb) and the non-magnetized surface of the end member 41 (aa). It is formed in a right-angled triangular cross section that fits in between, the apex angle at the proximity point is the same as the opening angle φ = θ / 2 and less than half the right angle, the length of the opposite side (bottom side in the figure) Is the magnetic pole length M, but this opposite side is an N magnetic pole (field magnetic pole) from which the magnetic flux entering from the N pole surface of the second permanent magnet 11 (bb) goes out. Furthermore, since the magnetic pole length M is half of the magnetic pole length L, the end on the remote side from the end on the near side related to the second permanent magnet 11 (bb) which is the permanent magnet closer to the end member 41 (aa). The end W on the separation side of the permanent magnet 11 and the separation side of the end member 41 with respect to the N magnetic pole of the first magnetic pole yoke portion 13 (N) adjacent to the end member 41 (aa). It is 1.42 times or more of the magnetic pole length M extending to the end of each.

この実施例3の磁石体50について、磁気回路の状態を、図面を引用して説明する。図3(c)は、磁石体50の横断平面図に係る磁束分布図である。   Regarding the magnet body 50 of the third embodiment, the state of the magnetic circuit will be described with reference to the drawings. FIG. 3C is a magnetic flux distribution diagram according to a cross-sectional plan view of the magnet body 50.

磁石体50は、磁石体40を左方から削り落として最も短くできる限界のものであり、この場合、右半分に磁石体40の構造をそのまま引き継いだ右端部については上述のように第2磁極用継鉄部13(S)のS磁極から外部へ出た磁束が右端の端部材41(dd)によってそこから右方への磁束の展開が阻止されるとともに、端部材41(aa)を導入した左端部については、第1磁極用継鉄部13(N)のN磁極から外部へ出た磁束が、左端の端部材41(aa)によって、そこから左方への磁束の展開が阻止される。   The magnet body 50 is the limit that allows the magnet body 40 to be scraped from the left and shortened to the shortest. In this case, the second magnetic pole as described above is applied to the right end portion that inherits the structure of the magnet body 40 as it is in the right half. The magnetic flux that has flowed outside from the S magnetic pole of the yoke portion 13 (S) is prevented from expanding to the right by the right end member 41 (dd), and the end member 41 (aa) is introduced. With respect to the left end portion, the magnetic flux that has flowed out from the N magnetic pole of the first magnetic pole yoke portion 13 (N) is prevented from being expanded to the left by the left end member 41 (aa). The

そのため、ここでも、上述した磁石体30,40の磁気回路と同様、第1磁極用継鉄部13(N)のN極面から外部に出た磁束が、右方の第2磁極用継鉄部13(S)のS磁極面に至り、そこから第2磁極用継鉄部13(S)に入って第3永久磁石11(cc)と短絡用継鉄部12と第2永久磁石11(bb)と第1磁極用継鉄部13(N)を経て一巡する。また、左方の第1磁極用継鉄部13(N)における磁束分布状態が上述した右方の第2磁極用継鉄部13(S)におけるそれの鏡像状態になるので、第1磁極用継鉄部13(N)についても第2磁極用継鉄部13(S)と同じく磁極(界磁極)の磁束密度が永久磁石11の磁束密度に比べて1.42倍以上に高まる。   For this reason, as in the magnetic circuit of the magnet bodies 30 and 40 described above, the magnetic flux that has flowed to the outside from the N pole surface of the first magnetic pole yoke portion 13 (N) is also transferred to the right second magnetic pole yoke. To the S magnetic pole surface of the portion 13 (S), from which it enters the second magnetic pole yoke portion 13 (S), the third permanent magnet 11 (cc), the short-circuiting yoke portion 12 and the second permanent magnet 11 ( bb) and the first magnetic pole yoke 13 (N) make a round. Further, since the magnetic flux distribution state in the left first magnetic pole yoke portion 13 (N) is the mirror image of the right second magnetic pole yoke portion 13 (S) described above, Similarly to the yoke portion 13 (S) for the second magnetic pole, the magnetic flux density of the magnetic pole (field magnetic pole) is increased 1.42 times or more compared to the magnetic flux density of the permanent magnet 11 in the yoke portion 13 (N).

本発明の磁石体の実施例4について、その具体的な構成を、図面を引用して説明する。図4は、磁石体60の横断平面図と端部拡大図である。
この磁石体60は、端部材61と閉路ユニット62(正)と閉路ユニット62(逆)と端部材61とを左から右へその順で一直線状(一線状)に隣接配置したものである。端部材61は、何れも、上述の端部材41と同様に磁石体60の有端化のために設けられており、平板状の非磁性体からなり、一直線方向に対して直交する状態で配置されている。
A specific configuration of the magnet body according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional plan view and an enlarged end view of the magnet body 60.
In this magnet body 60, an end member 61, a closing unit 62 (forward), a closing unit 62 (reverse), and an end member 61 are arranged adjacently in a straight line (one line) in this order from left to right. Each of the end members 61 is provided for the end of the magnet body 60 similarly to the above-described end member 41, is made of a flat nonmagnetic material, and is arranged in a state orthogonal to the straight line direction. Has been.

閉路ユニット62(正)と閉路ユニット62(逆)は同一構造のものであって違いは配置に際して左右反転させただけのことなので、以下の構造説明では、閉路ユニット62(正)を閉路ユニット62として説明する。
閉路ユニット62が上述した実施例1の磁石体30と相違するのは、磁石体30相当部分に後背側から迂回用継鉄部63が装着されている点である。なお、後背側はN磁極やS磁極と磁気的にも機械的にも最も干渉の少ないところなので迂回用継鉄部63の装着に好適であるが、干渉が許容範囲内であれば、磁石体30相当部分に対して上側や下側あるいは斜め方向など他の方向から迂回用継鉄部63を装着するようになっていても良い。
Since the circuit closing unit 62 (forward) and the circuit closing unit 62 (reverse) have the same structure and the difference is that they are simply reversed left and right during the arrangement, in the following description of the structure, the circuit closing unit 62 (normal) Will be described.
The circuit closing unit 62 is different from the magnet body 30 of the first embodiment described above in that a bypass yoke portion 63 is attached to a portion corresponding to the magnet body 30 from the back side. Since the back side is the least magnetically and mechanically interfering with the N and S magnetic poles, it is suitable for mounting the bypass yoke 63. However, if the interference is within an allowable range, the magnet body The bypass yoke portion 63 may be attached to the 30 equivalent portion from another direction such as an upper side, a lower side, or an oblique direction.

迂回用継鉄部63は、強磁性体からなる一体物であり、後背側の迂回中間部64と左方の迂回端部65と中央の直接短絡部66と右方の迂回端部65とを具備している。そのうち直接短絡部66は、短絡用継鉄部12と同じ形状であって、それと同じく第2永久磁石11(bb)と第3永久磁石11(cc)との間で両者に挟まれている。左方の迂回端部65は、短絡用継鉄部12を左右に2分割した右方の片割れと同じ形状であって、第1永久磁石11(aa)に対して左側から隣接配置されて一線状の隣接配置を左方へ延長するものとなっている。右方の迂回端部65は、短絡用継鉄部12を左右に2分割した左方の片割れと同じ形状であって、第4永久磁石11(dd)に対して右側から隣接配置されて一線状の隣接配置を右方へ延長するものとなっている。迂回中間部64は、左右に長いもので、上述した各部65,66,65をその後背側で連結している。なお、直接短絡部66は、ここでは一体化しているが、分割して別体にしても良く、そうすれば上述した磁石体30における短絡用継鉄部12になる。   The bypass yoke portion 63 is an integral body made of a ferromagnetic material, and includes a rearward bypass intermediate portion 64, a left bypass end portion 65, a central direct short-circuit portion 66, and a right bypass end portion 65. It has. Among them, the direct short-circuit portion 66 has the same shape as the short-circuiting yoke portion 12 and is sandwiched between the second permanent magnet 11 (bb) and the third permanent magnet 11 (cc). The detour end portion 65 on the left side has the same shape as the right side crack obtained by dividing the short-circuiting yoke portion 12 into left and right parts, and is arranged adjacent to the first permanent magnet 11 (aa) from the left side. The adjacent arrangement of the shape extends to the left. The detour end 65 on the right side has the same shape as the left side crack obtained by dividing the short-circuiting yoke portion 12 into left and right parts, and is arranged adjacent to the fourth permanent magnet 11 (dd) from the right side. The adjacent arrangement of the shape extends to the right. The detour intermediate part 64 is long on the left and right, and connects the above-described parts 65, 66, 65 on the back side. In addition, although the direct short circuit part 66 is integrated here, you may divide | segment and make it a separate body, and it will become the short-circuiting yoke part 12 in the magnet body 30 mentioned above.

この実施例4の磁石体60について、磁気回路の状態を、図面を引用して説明する。図5は、磁石体60の横断平面図と端部拡大図に係る磁束分布図である。   Regarding the magnet body 60 of the fourth embodiment, the state of the magnetic circuit will be described with reference to the drawings. FIG. 5 is a magnetic flux distribution diagram according to a cross-sectional plan view and an enlarged end view of the magnet body 60.

閉路ユニット62(正)と閉路ユニット62(逆)は磁気回路の状態も左右反転したものになるので、閉路ユニット62(正)に係る磁気回路の状態を詳述すると(端部拡大図を参照)、第2永久磁石11(bb)のN極面から第1磁極用継鉄部13(N)に入った磁束は、その磁極用継鉄部13のN磁極面の右半分から外部に出て、右方の第2磁極用継鉄部13(S)のS磁極面の左半分に至り、そこから第2磁極用継鉄部13(S)に入って第3永久磁石11(cc)にそのS極面から入り、それから第3永久磁石11(cc)と短絡用継鉄部12相当の直接短絡部66と第2永久磁石11(bb)の内部を通って元の所に戻り、一巡する。その際、外部に出るのはN磁極からS磁極へ至る部分の経路だけである。そして、この一巡する磁路は、磁石体30について上述したのと同様である。   Since the circuit unit 62 (forward) and the circuit unit 62 (reverse) are also reversed in the state of the magnetic circuit, the state of the magnetic circuit related to the circuit unit 62 (forward) will be described in detail (see the enlarged end view). ), The magnetic flux that has entered the first magnetic pole yoke 13 (N) from the N pole surface of the second permanent magnet 11 (bb) exits from the right half of the N magnetic pole surface of the magnetic pole yoke 13 to the outside. Thus, it reaches the left half of the S magnetic pole surface of the right second magnetic pole yoke portion 13 (S), and enters the second magnetic pole yoke portion 13 (S) from there to enter the third permanent magnet 11 (cc). From the S pole surface, and then returns to the original position through the third permanent magnet 11 (cc), the direct short-circuit portion 66 corresponding to the short-circuiting yoke portion 12 and the second permanent magnet 11 (bb). Go round. At that time, only the part of the path from the N magnetic pole to the S magnetic pole exits to the outside. The one-round magnetic path is the same as that described above for the magnet body 30.

これに対し、第1永久磁石11(aa)のN極面から第1磁極用継鉄部13(N)に入った磁束は、その磁極用継鉄部13のN磁極面から外部に出てから、上述した磁石体30とは異なる磁路を通る。すなわち、N磁極面の左半分から外部に出た磁束も、左方でなく右方へ行って、右方の第2磁極用継鉄部13(S)のS磁極面の右半分に至り、そこから第2磁極用継鉄部13(S)に入る。それから、第4永久磁石11(dd)にそのS極面から入って第4永久磁石11(dd)と右方の迂回端部65と後背側の迂回中間部64と左方の迂回端部65と第1永久磁石11(aa)の内部を通って元の所に戻り、一巡する。このときも外部に出るのはN磁極からS磁極へ至る部分の経路だけであるが、その一巡する経路は、上述した磁石体30同様の経路の外側を辿ることとなる。   On the other hand, the magnetic flux that has entered the first magnetic pole yoke portion 13 (N) from the N pole surface of the first permanent magnet 11 (aa) exits from the N magnetic pole surface of the magnetic pole yoke portion 13 to the outside. Therefore, it passes through a magnetic path different from that of the magnet body 30 described above. That is, the magnetic flux that has flowed out of the left half of the N magnetic pole face also goes to the right instead of to the left, and reaches the right half of the S magnetic pole face of the right second yoke portion 13 (S). From there, it enters the second magnetic pole yoke 13 (S). Then, the fourth permanent magnet 11 (dd) enters from the S pole face thereof, the fourth permanent magnet 11 (dd), the right detour end portion 65, the rear detour intermediate portion 64, and the left detour end portion 65. And return to the original position through the inside of the first permanent magnet 11 (aa) and make a round. At this time as well, only the part of the path from the N magnetic pole to the S magnetic pole goes out to the outside, but the circuit that makes a round follows the outside of the same path as the magnet body 30 described above.

このように、左右の迂回端部65が何れも隣接している永久磁石11から来た磁束を内部に収めて迂回中間部64へ導くとともに、第1磁極用継鉄部13(N)のN磁極の位置とも第2磁極用継鉄部13(S)のS磁極の位置とも異なる後背側に配置された迂回中間部64が、迂回端部65から来た磁束を内部に収めてその磁束に第1磁極用継鉄部13(N)のN磁極も第2磁極用継鉄部13(S)のS磁極も迂回させるようになっているので、第1磁極用継鉄部13(N)のN磁極から外部に出た磁束は、そのほどんどが、第2磁極用継鉄部13(S)のS磁極に到達する。しかも、各磁極(界磁極)の磁束密度は磁石体30と同様に従来より高密になっているので、磁束が磁極面から従来より遠くまで到達する。   In this way, the left and right bypass end portions 65 both contain the magnetic flux coming from the adjacent permanent magnet 11 and guide it to the bypass intermediate portion 64, and the first magnetic pole yoke portion 13 (N) N The detour intermediate portion 64 disposed on the back side, which is different from the position of the magnetic pole and the position of the S magnetic pole of the second magnetic pole yoke portion 13 (S), accommodates the magnetic flux coming from the detour end portion 65 in the inside thereof. Since the N magnetic pole of the first magnetic pole yoke portion 13 (N) and the S magnetic pole of the second magnetic pole yoke portion 13 (S) are bypassed, the first magnetic pole yoke portion 13 (N) Most of the magnetic flux emitted from the N magnetic pole reaches the S magnetic pole of the second magnetic pole yoke portion 13 (S). Moreover, since the magnetic flux density of each magnetic pole (field magnetic pole) is higher than that of the conventional magnet body 30 as in the case of the magnet body 30, the magnetic flux reaches farther than before from the magnetic pole surface.

そして、複数・多数の閉路ユニット62を一方向に連ねて長い磁石体を作るときには、磁石体60のように閉路ユニット62(正)と閉路ユニット62(逆)とを交互に並べれば、隣のユニットからの磁気干渉が防止されるので、任意の長さの磁石体が容易に作れるうえ、閉路ユニット62単位で簡単に交換できるので、修理や保守も遣りやすい。しかも、永久磁石11の形状や配置は磁石体30,40と同じなのに、N磁極とS磁極のサイズとピッチは磁石体30,40の2倍になり、外部への磁束の到達距離も磁石体30,40のそれより増して遠くなる。   When a long magnetic body is formed by connecting a plurality of closed circuit units 62 in one direction, the closed circuit units 62 (forward) and the closed circuit units 62 (reverse) are alternately arranged as in the magnet body 60, so that Since magnetic interference from the unit is prevented, a magnet body having an arbitrary length can be easily formed, and since it can be easily replaced in units of the closed circuit unit 62, repair and maintenance are easy to perform. Moreover, although the shape and arrangement of the permanent magnet 11 are the same as those of the magnet bodies 30 and 40, the sizes and pitches of the N magnetic pole and the S magnetic pole are twice that of the magnet bodies 30 and 40, and the reach of the magnetic flux to the outside is also the magnet body. More than that of 30,40.

本発明の磁石体の実施例5について、その具体的な構成を、図面を引用して説明する。図6(a)は、上述した実施例2の磁石体40を可動子とするリニアモータ40+70の要部の横断平面図である。   A specific configuration of the magnet body according to the fifth embodiment of the present invention will be described with reference to the drawings. FIG. 6A is a cross-sectional plan view of the main part of a linear motor 40 + 70 using the magnet body 40 of the second embodiment described above as a mover.

このリニアモータ40+70は、有端可動子の磁石体40に加えて固定子70も備えたものであり、磁石体40と固定子70は、鉄道の列車と線路と分かれて並列状態・並走状態で設置されて、所定の離隔距離で磁極面を対向させている。
このリニアモータ40+70では、磁石体40が永久磁石界磁として列車に搭載され、固定子70が電機子として軌道に敷設されるが、逆でも良い。磁石体40も固定子70もそれぞれ必要なだけ一線方向に連ねて設置されるが、図示したのは繰り返しの基本単位となる磁石体30一個分だけである。また、磁石体40におけるポールピッチτは、N磁極とS磁極それぞれの中心位置に相当する近接点32,32の距離で図示した。
This linear motor 40 + 70 is provided with a stator 70 in addition to the magnet body 40 of the end mover. The magnet body 40 and the stator 70 are separated from the train and the railroad track in a parallel state and a parallel running state. The magnetic pole faces are opposed to each other with a predetermined separation distance.
In this linear motor 40 + 70, the magnet body 40 is mounted on the train as a permanent magnet field, and the stator 70 is laid on the track as an armature, but the reverse is also possible. Although both the magnet body 40 and the stator 70 are arranged in a line as necessary, only one magnet body 30 serving as a repetitive basic unit is illustrated. Further, the pole pitch τ in the magnet body 40 is shown by the distance between the proximity points 32 and 32 corresponding to the center positions of the N magnetic pole and the S magnetic pole, respectively.

固定子70は、三相電流で駆動されるU相コイルとV相コイルとW相コイルとを、その順で繰り返し隣接状態で並べて、幅J×奥行Dの長方形を断面形状とする長い角柱状の強磁性体に、嵌め込んだものである。U相コイルとV相コイルとW相コイルとを連ねた長さが磁石体30の長さと同じになっており、各コイルの奥行Dは磁石体40(30)と同じでありコイル断面は縦E×横Fの長方形である。固定子70のコイル嵌入面と磁石体40(30)の磁極面とはギャップ長Gのエアギャップを挟んで対向している。   The stator 70 is a long prismatic shape in which a U-phase coil, a V-phase coil, and a W-phase coil driven by a three-phase current are repeatedly arranged in that order in an adjacent state, and a rectangular shape having a width J × depth D is taken as a cross-sectional shape. It is inserted into the ferromagnetic material. The length of the U-phase coil, V-phase coil, and W-phase coil connected to each other is the same as the length of the magnet body 30, the depth D of each coil is the same as that of the magnet body 40 (30), and the coil cross section is vertical. E × width F rectangle. The coil insertion surface of the stator 70 and the magnetic pole surface of the magnet body 40 (30) face each other across an air gap having a gap length G.

この実施例5のリニアモータ40+70について、磁気回路の状態を、図面を引用して説明する。図6(b)は、リニアモータ40+70の横断平面図に係る磁束分布図である。磁石体40(30)における第1永久磁石11(aa)から第4永久磁石11(dd)までの部分と、固定子70においてU相コイルとV相コイルとW相コイルとを連ねた部分とが真向かいで対向しているときが、推進力の最大になるときであるが、その状態でも、磁石体40(30)の磁極用継鉄部13における磁束分布に生じる濃淡差・密度の高低差すなわち磁束の乱れは小さいので、磁極用継鉄部13は、全域が適度に磁化されて、推進力の発生に無駄なく寄与する。   Regarding the linear motor 40 + 70 of the fifth embodiment, the state of the magnetic circuit will be described with reference to the drawings. FIG. 6B is a magnetic flux distribution diagram according to a cross-sectional plan view of the linear motor 40 + 70. A portion of the magnet body 40 (30) from the first permanent magnet 11 (aa) to the fourth permanent magnet 11 (dd), and a portion of the stator 70 in which a U-phase coil, a V-phase coil, and a W-phase coil are connected; Is the time when the propulsive force is at the maximum, but even in this state, the difference in density and the difference in density produced in the magnetic flux distribution in the magnetic pole yoke portion 13 of the magnet body 40 (30). That is, since the magnetic flux disturbance is small, the whole area of the magnetic pole yoke portion 13 is moderately magnetized and contributes to the generation of thrust without waste.

数値例を挙げると、永久磁石11の保持力Hcを915kA/mとし、継鉄部にJFE50JN800を用い、ギャップ長Gを12mmとし、磁極長Lを160mmとし、ポールピッチτを240mmとし、永久磁石長Wを160mmとし、永久磁石厚さHを30mmとし、奥行Dを200mmとすると、エアギャップ磁束密度は約1.15Tになる。また、そこから永久磁石長Wを300mmに変えると、エアギャップ磁束密度は約1.6Tになる。さらに、そこから永久磁石厚さHを40mmに変えると、エアギャップ磁束密度は約1.8Tになる。これらのエアギャップ磁束密度は、希土類永久磁石の残留磁束密度の約1.15Tと同程度かそれを超えるものであり、従来のモータにおけるエアギャップ磁束密度(例えば、特許文献3の段落0027及び図9によれば、永久磁石の残留磁束密度が1.1〜15Tのとき、エアギャップ磁束密度の最大値が約0.7T)より可成り大きい。また、ギャップ長Gの12mmは鉄道への応用に適うものである。   As a numerical example, the holding force Hc of the permanent magnet 11 is 915 kA / m, the JFE50JN800 is used for the yoke, the gap length G is 12 mm, the magnetic pole length L is 160 mm, the pole pitch τ is 240 mm, and the permanent magnet When the length W is 160 mm, the permanent magnet thickness H is 30 mm, and the depth D is 200 mm, the air gap magnetic flux density is about 1.15T. Further, when the permanent magnet length W is changed to 300 mm from there, the air gap magnetic flux density becomes about 1.6T. Further, when the permanent magnet thickness H is changed from that to 40 mm, the air gap magnetic flux density becomes about 1.8T. These air gap magnetic flux densities are about the same as or exceeding the residual magnetic flux density of the rare earth permanent magnet of about 1.15 T, and the air gap magnetic flux density in a conventional motor (for example, paragraphs 0027 and FIG. 9 shows that when the residual magnetic flux density of the permanent magnet is 1.1 to 15T, the maximum value of the air gap magnetic flux density is considerably larger than about 0.7T). A gap length G of 12 mm is suitable for railway applications.

さらに、固定子70の継鉄幅Jを100mmとし、固定子70の各コイルの断面の縦Eを60mmで横Fを30mmとし、各相コイルの巻数を60回として、電流30Aを流すと、最大推力が1極当たりで1680Nという大きなものになるうえ、吸引力も質量117kgの磁石体40の自重をはるかに超える30989N(3160kg重)になるので、磁石体40を列車に搭載したリニアモータカーを無理なく実現することができる。   Furthermore, when the yoke width J of the stator 70 is 100 mm, the longitudinal E of the cross section of each coil of the stator 70 is 60 mm, the lateral F is 30 mm, the number of turns of each phase coil is 60 times, and a current 30A is passed, The maximum thrust is as large as 1680N per pole, and the attractive force is 30989N (3160kg weight), which far exceeds the weight of the magnet body 40 with a mass of 117kg. Therefore, it is impossible to use a linear motor car with the magnet body 40 mounted on the train. Can be realized.

[その他]
上記実施例では、磁極用継鉄部の開角と短絡用継鉄部の開角とが同じで永久磁石と継鉄部との隣接配置が一直線状になっていたが、永久磁石と継鉄部との隣接配置は、曲線状でも良く、例えば磁極用継鉄部の開角と短絡用継鉄部の開角とに差をつけることで容易に曲げることができる。
上記実施例では、永久磁石と継鉄部の連なりばかりかN磁極とS磁極の連なりも一直線状になっていたが、それらの連なりは、両方とも曲線状になっていても良く、片方だけ直線状で他方が曲線状でも良い。例えば、永久磁石と継鉄部の連なりが直線状であって、N磁極とS磁極の連なりが螺旋状になっているような場合、軸回転しながら昇降する広告表示筒の駆動などに好適である。
[Others]
In the above embodiment, the opening angle of the magnetic pole yoke portion and the opening angle of the short-circuiting yoke portion are the same, and the adjacent arrangement of the permanent magnet and the yoke portion is in a straight line. The adjacent arrangement with the portion may be curved, and can be easily bent by making a difference between the opening angle of the magnetic pole yoke portion and the opening angle of the short-circuiting yoke portion, for example.
In the above embodiment, not only the series of the permanent magnet and the yoke part but also the series of the N magnetic pole and the S magnetic pole are in a straight line shape, but both of them may be curved, and only one of them is a straight line. And the other may be curved. For example, when the connection between the permanent magnet and the yoke portion is linear and the connection between the N magnetic pole and the S magnetic pole is spiral, it is suitable for driving an advertising display cylinder that moves up and down while rotating the shaft. is there.

本発明の磁石体は、鉄道用リニアモータの高性能化に寄与することを主目的に開発されたものであるが、適用がリニアモータに限定されるものでなく、同じく鉄道分野で使用されている磁気トレッドルや、上述したような他分野で用いられる昇降部材の駆動など、他の物にも適用することができる。   The magnet body of the present invention was developed mainly for the purpose of contributing to high performance of railway linear motors, but its application is not limited to linear motors and is also used in the railway field. The present invention can also be applied to other things such as a magnetic treadle that is used and driving of a lifting member used in other fields as described above.

なお、磁気トレッドルは(吉村寛・吉越三郎著「信号」17版P.490〜491参照)、磁気インパルス発生器とも呼ばれ、主磁極とこれと逆方向の磁束を生ずる副磁石(いずれも永久磁石)およびその合成された磁束の圏内にある有極リレーから成っており、平常は主磁極によって有極リレーが一定方向に動作しているが、列車の車軸が入るとそのフランジ(輪縁)で主磁極の分路を作り、リレーに分岐する主磁極の磁束は弱められ、反対方向の副磁極の磁束によって有極リレーは転極し電気接点を開閉するものである。車軸が動作範囲を離れると、主磁極,副磁極の磁束は動作関係も復旧するので、有極リレーの接点も現状に戻り復旧するようになっている。   The magnetic treadle (see Hiroshi Yoshimura and Saburo Yoshikoshi, “Signal” 17th edition, pages 490 to 491) is also called a magnetic impulse generator, which is a secondary magnet that generates a magnetic flux in the opposite direction to the main pole (both permanent Magnet) and a polarized relay in the range of the synthesized magnetic flux. Normally, the polarized relay operates in a certain direction by the main pole, but when the train axle enters, its flange (ring) Thus, the main magnetic pole is shunted, the magnetic flux of the main magnetic pole branched to the relay is weakened, and the polarized relay is reversed by the magnetic flux of the sub magnetic pole in the opposite direction to open and close the electrical contact. When the axle moves away from the operating range, the magnetic relation between the main magnetic pole and the sub magnetic pole is restored, so that the contacts of the polarized relay are restored to the current state and restored.

列車の走行するレールの脇に磁気トレッドルを設置しておくことで、列車の去来を検知することが可能となる。磁気トレッドルは、上述したように列車の車軸(車輪)が通過する際に磁界が変化するのを利用してリレーを作動させるものなので、本願発明の磁石体を組み込むことにより、磁界の変化量が大きくなることから、レールとの距離を大きくできるとともに、検出量が大きいので検出し易くなる。   By installing a magnetic treadle on the side of the rail that the train travels, it is possible to detect the departure of the train. Since the magnetic treadle operates the relay by utilizing the change of the magnetic field when the train axle (wheel) passes as described above, the amount of change in the magnetic field can be reduced by incorporating the magnet body of the present invention. Since it becomes large, the distance from the rail can be increased, and the detection amount is large, so that detection is easy.

10…回転子(無端可動子,磁石体)、
11…永久磁石、12…短絡用継鉄部(ヨーク)、
13…磁極用継鉄部(ヨーク)、20…回転子(無端可動子,磁石体)、
30…磁石体、31…保持部材、32…近接点、
40…磁石体、41…端部材、50…磁石体、60…磁石体、
61…端部材、62…閉路ユニット、63…迂回用継鉄部(ヨーク)、
64…迂回中間部、65…迂回端部、66…直接短絡部、70…固定子、
θ,φ…開角、L,M…磁極長、W…永久磁石長
10: Rotor (endless mover, magnet body),
11 ... Permanent magnet, 12 ... Short circuit yoke (yoke),
13 ... yoke part for magnetic pole (yoke), 20 ... rotor (endless mover, magnet body),
30 ... Magnet body, 31 ... Holding member, 32 ... Proximity point,
40 ... magnet body, 41 ... end member, 50 ... magnet body, 60 ... magnet body,
61 ... End member, 62 ... Closing unit, 63 ... Detour yoke (yoke),
64 ... Detour intermediate section, 65 ... Detour end section, 66 ... Direct short circuit section, 70 ... Stator,
θ, φ ... open angle, L, M ... magnetic pole length, W ... permanent magnet length

Claims (5)

厚み方向に磁化された平板状の第1永久磁石と、強磁性体からなる第1磁極用継鉄部と、厚み方向に磁化された平板状の第2永久磁石と、強磁性体からなる短絡用継鉄部と、厚み方向に磁化された平板状の第3永久磁石と、強磁性体からなる第2磁極用継鉄部と、厚み方向に磁化された平板状の第4永久磁石とが、その順で一線状に隣接配置されており、前記第1永久磁石と前記第2永久磁石とが一端部を近接させ他端部を離隔させてN極面同士を斜めに向き合わせており、両N極面の間に装填された状態で前記第1磁極用継鉄部が外部へ磁束を出すN磁極になっており、前記第3永久磁石と前記第4永久磁石とが一端部を近接させ他端部を離隔させてS極面同士を斜めに向き合わせており、両S極面の間に装填された状態で前記第2磁極用継鉄部が外部へ磁束を出すS磁極になっており、前記短絡用継鉄部が前記第2永久磁石のS極面と前記第3永久磁石のN極面との間に装填された状態で磁束を内部に収めるようになっている磁石体において、前記第1永久磁石と前記第2永久磁石との開角および前記第3永久磁石と前記第4永久磁石との開角が何れも鋭角になっていることを特徴とする磁石体。   A flat plate-shaped first permanent magnet magnetized in the thickness direction, a first magnetic pole yoke made of a ferromagnetic material, a flat plate-shaped second permanent magnet magnetized in the thickness direction, and a short circuit made of a ferromagnetic material. A yoke part, a plate-shaped third permanent magnet magnetized in the thickness direction, a second magnetic pole yoke part made of a ferromagnetic material, and a plate-shaped fourth permanent magnet magnetized in the thickness direction. In this order, the first permanent magnet and the second permanent magnet are arranged adjacent to each other in a line, and the N pole faces are obliquely facing each other with one end portion approached and the other end portion separated. The first magnetic pole yoke portion is an N magnetic pole that emits a magnetic flux to the outside in a state of being loaded between both N pole surfaces, and the third permanent magnet and the fourth permanent magnet are close to one end. And the other end portions are separated from each other so that the S pole faces face each other obliquely, and the second pole is mounted between the two S pole faces. The iron part is an S magnetic pole that emits a magnetic flux to the outside, and the short-circuiting yoke part is loaded between the S pole face of the second permanent magnet and the N pole face of the third permanent magnet. In the magnet body configured to contain the magnetic flux, the opening angle between the first permanent magnet and the second permanent magnet and the opening angle between the third permanent magnet and the fourth permanent magnet are both acute angles. A magnet body characterized by being formed. 厚み方向に磁化された平板状の第1永久磁石と、強磁性体からなる第1磁極用継鉄部と、厚み方向に磁化された平板状の第2永久磁石と、強磁性体からなる短絡用継鉄部と、厚み方向に磁化された平板状の第3永久磁石と、強磁性体からなる第2磁極用継鉄部と、厚み方向に磁化された平板状の第4永久磁石とが、その順で一線状に隣接配置されており、前記第1永久磁石と前記第2永久磁石とが一端部を近接させ他端部を離隔させてN極面同士を斜めに向き合わせており、両N極面の間に装填された状態で前記第1磁極用継鉄部が外部へ磁束を出すN磁極になっており、前記第3永久磁石と前記第4永久磁石とが一端部を近接させ他端部を離隔させてS極面同士を斜めに向き合わせており、両S極面の間に装填された状態で前記第2磁極用継鉄部が外部へ磁束を出すS磁極になっており、前記短絡用継鉄部が前記第2永久磁石のS極面と前記第3永久磁石のN極面との間に装填された状態で磁束を内部に収めるようになっている磁石体において、前記第1永久磁石に係る近接側の端部から離隔側の端部に至る長さと前記第2永久磁石に係る近接側の端部から離隔側の端部に至る長さとの合計長が、前記第1磁極用継鉄部の前記N磁極について前記第1永久磁石の離隔側の端部と前記第2永久磁石の離隔側の端部とに亘る磁極長の1.42倍以上になっており、且つ、前記第3永久磁石に係る近接側の端部から離隔側の端部に至る長さと前記第4永久磁石に係る近接側の端部から離隔側の端部に至る長さとの合計長が、前記第2磁極用継鉄部の前記S磁極について前記第3永久磁石の離隔側の端部と前記第4永久磁石の離隔側の端部とに亘る磁極長の1.42倍以上になっている、ことを特徴とする磁石体。   A flat plate-shaped first permanent magnet magnetized in the thickness direction, a first magnetic pole yoke made of a ferromagnetic material, a flat plate-shaped second permanent magnet magnetized in the thickness direction, and a short circuit made of a ferromagnetic material. A yoke part, a plate-shaped third permanent magnet magnetized in the thickness direction, a second magnetic pole yoke part made of a ferromagnetic material, and a plate-shaped fourth permanent magnet magnetized in the thickness direction. In this order, the first permanent magnet and the second permanent magnet are arranged adjacent to each other in a line, and the N pole faces are obliquely facing each other with one end portion approached and the other end portion separated. The first magnetic pole yoke portion is an N magnetic pole that emits a magnetic flux to the outside in a state of being loaded between both N pole surfaces, and the third permanent magnet and the fourth permanent magnet are close to one end. And the other end portions are separated from each other so that the S pole faces face each other obliquely, and the second pole is mounted between the two S pole faces. The iron part is an S magnetic pole that emits a magnetic flux to the outside, and the short-circuiting yoke part is loaded between the S pole face of the second permanent magnet and the N pole face of the third permanent magnet. In the magnet body configured to contain the magnetic flux, the length from the end portion on the near side to the end portion on the separation side related to the first permanent magnet and the distance from the end portion on the near side related to the second permanent magnet are separated. The total length of the first magnetic pole yoke portion and the second permanent magnet remote end portion with respect to the N magnetic pole of the first magnetic pole yoke portion And the length from the proximal end to the remote end of the third permanent magnet and the proximal end of the fourth permanent magnet The total length of the third permanent magnet with respect to the S magnetic pole of the second magnetic pole yoke portion is the total length from the portion to the end on the remote side. Magnet body, characterized spaced side end portion and the fourth is equal to or greater than 1.42 times the pole length over the separation end of the permanent magnet, that. 前記第1永久磁石および前記第4永久磁石のうち何れか一方または双方に代えて非磁性体からなる端部材が設けられ、前記第2永久磁石および前記第3永久磁石のうち前記端部材に近接しているものと前記端部材との開角が直角の半分未満になっていることを特徴とする請求項1記載の磁石体。   An end member made of a nonmagnetic material is provided instead of one or both of the first permanent magnet and the fourth permanent magnet, and the end member is close to the end member of the second permanent magnet and the third permanent magnet. 2. The magnet body according to claim 1, wherein an opening angle between the end member and the end member is less than half of a right angle. 前記第1永久磁石および前記第4永久磁石のうち何れか一方または双方に代えて非磁性体からなる端部材が設けられ、前記第2永久磁石および前記第3永久磁石のうち前記端部材に近接している方の永久磁石に係る近接側の端部から離隔側の端部に至る長さが、前記第1磁極用継鉄部および前記第2磁極用継鉄部のうち何れか前記端部材に隣接しているものの磁極について前記永久磁石の離隔側の端部と前記端部材の離隔側の端部とに亘る磁極長の1.42倍以上になっている、ことを特徴とする請求項2記載の磁石体。   An end member made of a nonmagnetic material is provided instead of one or both of the first permanent magnet and the fourth permanent magnet, and the end member is close to the end member of the second permanent magnet and the third permanent magnet. The length from the proximal end to the remote end of the permanent magnet is longer than either the first magnetic pole yoke portion or the second magnetic pole yoke portion. The magnetic pole length of the magnetic pole adjacent to the magnetic pole is 1.42 times or more the length of the magnetic pole extending between the end on the remote side of the permanent magnet and the end on the remote side of the end member. 2. The magnet body according to 2. 強磁性体からなる迂回中間部と迂回端部とを連ねた迂回用継鉄部が設けられ、前記迂回端部は、前記第1永久磁石および前記第4永久磁石のうち何れか一方または双方に対して一線状の隣接配置を延長する形で隣接配置されていて、その隣接している永久磁石から来た磁束を内部に収めて前記迂回中間部へ導くようになっており、前記迂回中間部は、前記N磁極および前記S磁極と異なる所に配置されていて、前記迂回端部から来た磁束を内部に収めて前記N磁極および前記S磁極を迂回させるようになっている、ことを特徴とする請求項1又は請求項2に記載された磁石体。   A bypass yoke portion is provided in which a bypass intermediate portion made of a ferromagnetic material and a bypass end portion are connected, and the bypass end portion is provided on one or both of the first permanent magnet and the fourth permanent magnet. The one-line adjacent arrangement is extended adjacently, and the magnetic flux coming from the adjacent permanent magnet is contained inside and guided to the detour intermediate section, and the detour intermediate section Is arranged at a location different from the N magnetic pole and the S magnetic pole, and the magnetic flux coming from the detour end portion is accommodated inside to bypass the N magnetic pole and the S magnetic pole. The magnet body according to claim 1 or 2.
JP2011008317A 2011-01-18 2011-01-18 Magnet body Active JP5812320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008317A JP5812320B2 (en) 2011-01-18 2011-01-18 Magnet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008317A JP5812320B2 (en) 2011-01-18 2011-01-18 Magnet body

Publications (2)

Publication Number Publication Date
JP2012151989A true JP2012151989A (en) 2012-08-09
JP5812320B2 JP5812320B2 (en) 2015-11-11

Family

ID=46793720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008317A Active JP5812320B2 (en) 2011-01-18 2011-01-18 Magnet body

Country Status (1)

Country Link
JP (1) JP5812320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781085B1 (en) * 2013-08-09 2017-09-22 가부시키가이샤 나리타 Magnetic rotating device, electric motor, and electric motor generator
EP3324526A1 (en) * 2016-11-21 2018-05-23 Panasonic Intellectual Property Management Co., Ltd. Magnetic field generating member and motor including same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614521A (en) * 1992-06-25 1994-01-21 Hitachi Metals Ltd Magnetic circuit
JPH10127037A (en) * 1996-10-24 1998-05-15 Hitachi Metals Ltd Movable coil linear motor
JP2006014457A (en) * 2004-06-24 2006-01-12 Fanuc Ltd Synchronous motor
JP2006514525A (en) * 2003-02-21 2006-04-27 レクスロート インドラマート ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Internal permanent magnet synchronous machine
JP2006304570A (en) * 2005-04-25 2006-11-02 Tietech Co Ltd Linear motor
KR100969682B1 (en) * 2009-09-18 2010-07-14 방덕제 Direct-drive electric machine
US20100259112A1 (en) * 2009-04-13 2010-10-14 Korea Electrotechnology Research Institute Structure for linear and rotary electric machines
JP2010279121A (en) * 2009-05-27 2010-12-09 Hitachi Automotive Systems Ltd Electromagnetic suspension device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614521A (en) * 1992-06-25 1994-01-21 Hitachi Metals Ltd Magnetic circuit
JPH10127037A (en) * 1996-10-24 1998-05-15 Hitachi Metals Ltd Movable coil linear motor
JP2006514525A (en) * 2003-02-21 2006-04-27 レクスロート インドラマート ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Internal permanent magnet synchronous machine
JP2006014457A (en) * 2004-06-24 2006-01-12 Fanuc Ltd Synchronous motor
JP2006304570A (en) * 2005-04-25 2006-11-02 Tietech Co Ltd Linear motor
US20100259112A1 (en) * 2009-04-13 2010-10-14 Korea Electrotechnology Research Institute Structure for linear and rotary electric machines
JP2010279121A (en) * 2009-05-27 2010-12-09 Hitachi Automotive Systems Ltd Electromagnetic suspension device
KR100969682B1 (en) * 2009-09-18 2010-07-14 방덕제 Direct-drive electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781085B1 (en) * 2013-08-09 2017-09-22 가부시키가이샤 나리타 Magnetic rotating device, electric motor, and electric motor generator
US10148159B2 (en) 2013-08-09 2018-12-04 Narita Co., Ltd. Magnetic rotating apparatus, electric motor, and motor generator
EP3324526A1 (en) * 2016-11-21 2018-05-23 Panasonic Intellectual Property Management Co., Ltd. Magnetic field generating member and motor including same
JP2018085791A (en) * 2016-11-21 2018-05-31 パナソニックIpマネジメント株式会社 Magnetic field generation member and motor including the same

Also Published As

Publication number Publication date
JP5812320B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP4938355B2 (en) Linear motor
JP5015316B2 (en) Reluctance motor
JP2000037070A (en) Linear motor
US6753627B2 (en) Linear motor
JP2010141978A (en) Thrust generation mechanism
JP4574297B2 (en) Rotating electrical machine rotor
JP6016833B2 (en) Electric machine
CN105075081A (en) Linear motor
JP2002238241A (en) Linear motor
JP5812320B2 (en) Magnet body
JP2004297977A (en) Linear motor
WO2013047610A1 (en) Actuator
KR100996135B1 (en) Silent, Fast, Precise and High Force Density Flux Reversal motor For Linear or Rotary Motion System
JP6345355B1 (en) Linear motor
JP3817967B2 (en) Linear motor
JPS62126856A (en) Linear motor
JP4106571B2 (en) Linear motor
JP2001008432A (en) Linear motor
JP2001008391A (en) Dynamo-electric machine
JP2002078315A (en) Linear motor
JP2007209175A (en) Three-phase linear motor
JP4604517B2 (en) Planar motor
JPH0614521A (en) Magnetic circuit
JP2011217499A (en) Linear motor
JP2024006584A (en) linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150909

R150 Certificate of patent or registration of utility model

Ref document number: 5812320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250