JP2012148950A - Low-reflective film, method for formation thereof, and low-reflective member equipped therewith - Google Patents

Low-reflective film, method for formation thereof, and low-reflective member equipped therewith Download PDF

Info

Publication number
JP2012148950A
JP2012148950A JP2011150700A JP2011150700A JP2012148950A JP 2012148950 A JP2012148950 A JP 2012148950A JP 2011150700 A JP2011150700 A JP 2011150700A JP 2011150700 A JP2011150700 A JP 2011150700A JP 2012148950 A JP2012148950 A JP 2012148950A
Authority
JP
Japan
Prior art keywords
oxide
low reflection
reflection film
low
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011150700A
Other languages
Japanese (ja)
Inventor
Toshiaki Sugimoto
敏明 杉本
Hisafumi Takanobu
尚史 高信
Ikunari Hara
育成 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2011150700A priority Critical patent/JP2012148950A/en
Priority to PCT/JP2011/065840 priority patent/WO2012008427A1/en
Publication of JP2012148950A publication Critical patent/JP2012148950A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a low-reflective film to be formed on a transparent base material and a method for forming the low-reflective film, specifically to provide a low-reflective film having a low refractive index and low reflectance in the form of a monolayered film and easily forming a large surface area film in a simpler manner, a method for forming the low-reflective film, and a low-reflective member equipped with the low-reflective film.SOLUTION: There are provided the low-reflective film comprising silica microparticles and at least one metal oxide selected from the group consisting of tungsten oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, hafnium oxide, chromium oxide, cerium oxide, molybdenum oxide and lanthanum oxide as a binder in an amount of ≥5 mass% and ≤40 mass% relative to the amount of the silica microparticles and having a refractive index of ≥1.20 and ≤1.40; and a method for producing the low-reflective film.

Description

本発明は、低反射膜およびその形成方法およびそれを用いた低反射部材に関する。具体的には、本発明は低反射膜が透明性基体表面に形成された低反射部材としての、太陽電池用カバーガラス、自動車ガラスまたは照明器具の保護部材等に関し、特に太陽電池用カバーガラスに関する。   The present invention relates to a low reflection film, a method for forming the same, and a low reflection member using the same. Specifically, the present invention relates to a solar cell cover glass, an automobile glass, or a protective member for a lighting fixture as a low reflective member having a low reflective film formed on the surface of a transparent substrate, and particularly to a solar cell cover glass. .

低反射膜は、基体の表面反射を防止し、表面反射による光透過率(以下、単に透過率と言うことがある)の損失をなくして、ガラスや透明プラスチック等の透明性基体の透過率を向上させるために、基体表面に形成されるものである。   The low-reflection film prevents the surface reflection of the substrate, eliminates the loss of light transmittance due to surface reflection (hereinafter sometimes referred to simply as transmittance), and increases the transmittance of a transparent substrate such as glass or transparent plastic. In order to improve, it is formed on the substrate surface.

低反射膜は太陽電池用カバーガラス表面に形成される他、スチルカメラ、ビデオカメラ、液晶プロジェクタ等の光学機器向けレンズ等の表面、陰極線管や液晶表示装置等の画像表示面、または複写機、撮像管、LED表示素子、照明、有機EL、窓やショーケース、自動車ヘッドランプのリフレクタ部材等の表面に形成される。   The low reflection film is formed on the surface of the cover glass for solar cells, the surface of lenses for optical devices such as still cameras, video cameras, and liquid crystal projectors, image display surfaces such as cathode ray tubes and liquid crystal display devices, or copying machines, It is formed on the surface of an imaging tube, an LED display element, illumination, an organic EL, a window or a showcase, a reflector member of an automobile headlamp, or the like.

太陽電池を屋外使用する際、太陽電池は常時暴露されるので、寒暖の差および風雨に耐える、耐熱性、耐水性および耐摩耗性等の耐候性を有することが要求され、好ましくは保護部材としての太陽電池用カバーガラスを必要とする。太陽電池用カバーガラスには、太陽電池に高い受光効率を得、変換効率を低下させないために、透明性および低反射性が要求される。したがって、劣化しにくく長期にわたり性能を維持できることから、基体にはガラス板が使われ、ガラス板の表面に低反射膜を形成した太陽電池用カバーガラスが市販されている。低反射膜を表面に形成することで、基体が透明であれば、表面反射による損失なく、透過率が上昇する。例えば、低反射膜を表面に形成してなる太陽電池用カバーガラスは、低反射膜の屈折率が低いほどに透過率が大きくなり、太陽電池の受光効率がよく、光から電気へのエネルギー変換効率が上がる。   When solar cells are used outdoors, the solar cells are constantly exposed, so that they are required to have weather resistance such as heat resistance, water resistance and wear resistance, which is resistant to differences in temperature and wind and rain, and preferably as a protective member Of solar cell cover glass. The cover glass for a solar cell is required to have transparency and low reflectivity in order to obtain high light receiving efficiency in the solar cell and not to reduce the conversion efficiency. Therefore, since the glass plate is used as the substrate and the low reflection film is formed on the surface of the glass plate, a solar cell cover glass is commercially available because it is hardly deteriorated and can maintain the performance over a long period of time. By forming a low reflection film on the surface, if the substrate is transparent, the transmittance increases without loss due to surface reflection. For example, a solar cell cover glass with a low-reflection film formed on the surface has a higher transmittance as the refractive index of the low-reflection film is lower, and the solar cell has better light reception efficiency and energy conversion from light to electricity. Increases efficiency.

また、スチルカメラ、ビデオカメラ等では、収差補正のため多群複数のレンズを用いるので表面反射を抑制しないと、解像度が低下するばかりか、フレア、ゴーストの原因となる。よって、レンズ表面の低反射コート、言い換えれば、低反射膜の形成が重要である。表示装置やショーケース等では、低反射膜により表面反射を低下させないと、反射像の映り込みにより視認性が悪くなる。   Still cameras, video cameras, and the like use a plurality of lenses in a multi-group for correcting aberrations. If surface reflection is not suppressed, resolution is lowered and flare and ghost are caused. Therefore, it is important to form a low reflection coating on the lens surface, in other words, a low reflection film. In a display device, a showcase, or the like, unless the surface reflection is reduced by the low reflection film, the visibility deteriorates due to reflection of the reflected image.

従来、光学レンズおよびプリズムには、透明基体上に屈折率および厚さの異なる薄膜を重ね合わせた多層膜、即ち、マルチコートが多く用いられてきた。反射膜を多層構造にすれば、広範囲の波長域で反射防止が可能となる。しかしながら、複数の薄膜を真空蒸着等により成膜する際、低反射とするためには、各薄膜の厚みの精密制御が必要である。さらに、大板ガラスにマルチコートするには、大型の真空成膜装置が必要であり、技術的に難しく、高価なものとなる欠点があった。   Conventionally, for optical lenses and prisms, a multilayer film in which thin films having different refractive indexes and thicknesses are superimposed on a transparent substrate, that is, a multi-coat has been often used. If the reflective film has a multilayer structure, reflection can be prevented in a wide wavelength range. However, when forming a plurality of thin films by vacuum deposition or the like, it is necessary to precisely control the thickness of each thin film in order to achieve low reflection. Furthermore, in order to perform multi-coating on a large plate glass, a large-sized vacuum film forming apparatus is required, which is technically difficult and expensive.

このため、最近では、低コストで容易に大面積の低反射部材を作製するに有利な、単層且つ、より低屈折率の低反射膜の開発が望まれている。単層の低反射膜は、多層膜に比べ、基体表面への形成が簡便であり、太陽電池用カバーガラスに使用することで、受光効率向上、光から電気への変換効率向上が図れる。また、自動車ガラス、特にフロントガラスの映り込み防止、照明器具の保護部材、例えば、カバーガラスおよび透明プラスチックに用いての照度向上等に好適に用いられる。   Therefore, recently, development of a single-layer and low-refractive-index low-reflecting film that is advantageous for producing a low-reflection member having a large area easily at low cost has been desired. A single-layer low-reflection film is easier to form on the substrate surface than a multilayer film, and can be used for a solar cell cover glass to improve light receiving efficiency and light-to-electricity conversion efficiency. Further, it is suitably used for preventing reflection of automobile glass, particularly windshields, and for improving illuminance when used for protective members of lighting fixtures such as cover glasses and transparent plastics.

単層の低反射膜において、基体表面に形成された膜内部に、屈折率が1である空気を微小ボイド(空隙)またはメタ細孔として取り込むことで、膜の屈折率を低下させる方法が試みられている。例えば、多孔質シリカ膜、中空性シリカ微粒子を用いたシリカ膜からなる低反射膜を基体表面に形成することが検討されている。   In a single-layer low-reflection film, a method of reducing the refractive index of the film by incorporating air having a refractive index of 1 as microvoids (voids) or metapores into the film formed on the substrate surface is attempted. It has been. For example, it has been studied to form a low reflection film comprising a porous silica film or a silica film using hollow silica fine particles on the substrate surface.

多孔質シリカ膜は、シリカゾルと、界面活性剤または高沸点溶剤等を混合してなる原料液を、基体に塗布した後、ゾルゲル法で成膜してシリカ膜にメソ細孔を形成すること等で得られる。尚、ゾルゲル法とは、ケイ素アルコキシドおよびそれを脱水縮合したコロイダルシリカからなるゾル等を、其体表面に塗布した後にゲル化させ、その後、加熱焼成することで、非晶質、多結晶等の比較的硬質な膜を形成する技術である。   A porous silica film is formed by applying a raw material liquid obtained by mixing a silica sol and a surfactant or a high boiling point solvent to a substrate, and then forming a mesopore in the silica film by forming a film by a sol-gel method. It is obtained with. In addition, the sol-gel method means that a sol composed of silicon alkoxide and colloidal silica obtained by dehydrating and condensing it is gelled after being applied to the surface of the body, and then heated and fired to obtain amorphous, polycrystalline, etc. This is a technique for forming a relatively hard film.

中空シリカ微粒子は、特定のアルキル基を有するアルコキシシラン等を用い、これを凝集縮合させることで、微小ボイドまたはメソ細孔を含有させたシリカ微粒子である。これら中空シリカ微粒子を用いて基体上に形成された膜は、中空シリカ微粒子に由来するボイドまたはメソ細孔を有し、ボイドまたはメソ細孔に含有した空気により低反射膜となる。   The hollow silica fine particles are silica fine particles containing fine voids or mesopores by using an alkoxysilane having a specific alkyl group or the like and aggregating and condensing the same. A film formed on the substrate using these hollow silica fine particles has voids or mesopores derived from the hollow silica fine particles, and becomes a low reflection film by the air contained in the voids or mesopores.

しかしながら、中空シリカ微粒子は、製造工程が複雑であるという問題があった。よって、汎用品である太陽電池用カバーガラス、照明器具の保護部材および自動車ガラス向けとして、採用し難い。   However, the hollow silica fine particles have a problem that the production process is complicated. Therefore, it is difficult to adopt as a cover glass for solar cells, a protective member for lighting equipment, and an automobile glass, which are general-purpose products.

例えば、特許文献1には、シリカとシリカ以外の無機酸化物とからなる多孔質の複合酸化物粒子が、厚さが0.5nm〜20nmである多孔質のシリカ系無機酸化物層で被覆されてなることを特徴とする微粒子が開示される。この微粒子を含有する被膜を基材の表面に形成することで、低屈折率で、樹脂等との密着性、強度、反射防止能等に優れた被膜付きの基材を提供できるとされている。   For example, in Patent Document 1, porous composite oxide particles composed of silica and an inorganic oxide other than silica are coated with a porous silica-based inorganic oxide layer having a thickness of 0.5 nm to 20 nm. Disclosed is a fine particle characterized in that By forming a film containing the fine particles on the surface of the substrate, it is said that a substrate with a film having a low refractive index and excellent adhesion to a resin, strength, antireflection ability, etc. can be provided. .

また、特許文献2には、シリカとAl、B、TiO、ZrO、SnO、Ce、P、Sb、MoO、WOから選ばれるシリカ以外の無機酸化物とからなる平均粒径が5nm〜300nmの範囲にある複合酸化物コロイド粒子が水および/または有機溶媒に分散した複合酸化物ゾルであって、前記コロイド粒子は、前記無機酸化物を構成するシリカ以外の元素の一部が除去されると共に粒子表面がシリカ被膜で被覆されてなり、屈折率が1.36〜1.44の範囲にあることを特徴とする複合酸化物ゾルが開示される。当該複合酸化物ゾルを用いて、低屈折率の塗布膜を形成した低反射用の基材が提供できるとされる。 Patent Document 2 includes silica, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , and WO 3. A composite oxide colloidal sol in which a composite oxide colloidal particle having an average particle size composed of an inorganic oxide other than silica selected in the range of 5 nm to 300 nm is dispersed in water and / or an organic solvent, A composite in which a part of an element other than silica constituting the inorganic oxide is removed and the particle surface is coated with a silica coating, and the refractive index is in the range of 1.36 to 1.44. An oxide sol is disclosed. The composite oxide sol can be used to provide a substrate for low reflection in which a coating film having a low refractive index is formed.

具体的には、無機酸化物の一部が除去されボイドが生成した粒子表面を、シリカ皮膜で被覆した中空シリカ微粒子で、中空シリカ微粒子としての複合酸化物コロイド粒子が水および/または有機溶媒に分散した複合酸化物ゾルである。   Specifically, the surface of the particles from which a part of the inorganic oxide has been removed and voids are formed are hollow silica fine particles coated with a silica film, and the composite oxide colloidal particles as the hollow silica fine particles are converted into water and / or an organic solvent. It is a dispersed complex oxide sol.

しかしながら、特許文献1または特許文献2に記載の複合酸化物ゾルは、その製造において、無機酸化物の一部を除去する工程、コロイド粒子の表面をシリカ被膜する工程を有し、工程が複雑であるという問題があり、太陽電池用カバーガラス、自動車ガラスおよび照明器具の保護部材向けとしては採用し難い。   However, the composite oxide sol described in Patent Document 1 or Patent Document 2 has a process of removing a part of the inorganic oxide and a process of coating the surface of the colloidal particles with silica in its production, and the process is complicated. There is a problem that there is a problem, and it is difficult to employ it as a protective member for solar cell cover glass, automobile glass and lighting equipment.

国際特許公開公報WO00/37359号International Patent Publication No. WO00 / 37359 特開2006−117526号公報JP 2006-117526 A

本発明は、耐熱性、耐摩耗性および防汚性に優れた低反射部材を提供することを目的とする。さらに、単層膜において低屈折率且つ低反射率を有する低反射膜を提供することを目的とする。   An object of this invention is to provide the low reflection member excellent in heat resistance, abrasion resistance, and antifouling property. It is another object of the present invention to provide a low reflection film having a low refractive index and low reflectance in a single layer film.

さらに、本発明は、より簡便な方法で、基材表面に大面積の低反射膜の形成が容易な低反射膜の形成方法を提供することを目的とする。   Furthermore, an object of the present invention is to provide a method for forming a low-reflection film that allows easy formation of a large-area low-reflection film on the surface of a substrate by a simpler method.

さらに、本発明は、太陽電池の受光効率向上、自動車のフロントガラスの映り込み防止、照明器具の保護部材として照度向上等に使用するための、より簡便な方法で大面積の成膜が可能な低反射膜およびその形成方法およびそれを用いた低反射部材を提供することを目的とする。   Furthermore, the present invention can form a film with a large area by a simpler method for use in improving the light receiving efficiency of a solar cell, preventing reflection of an automobile windshield, and improving illuminance as a protective member of a lighting fixture. An object of the present invention is to provide a low reflection film, a method for forming the same, and a low reflection member using the same.

また、シリカ微粒子を含有してなるシリカ膜を形成する際に、シリカ微粒子が球形であると充填し易く、シリカ微粒子の粒度分布を揃えれば、充填密度を高くすることが可能であり、得られたシリカ膜は、最密充填で充填密度70%以上を確保できる。しかしながら、球状シリカ微粒子同士は、バインダーを用いても、狭い接触面積で接合しており、外部から応力を受け微粒子間にせん断力が働けば、脆く容易に破壊されやすく、形成されたシリカ膜が耐摩耗性に劣るという問題があった。   Further, when forming a silica film containing silica fine particles, it is easy to fill the silica fine particles in a spherical shape, and if the particle size distribution of the silica fine particles is uniform, the packing density can be increased and obtained. Further, the silica film can ensure a packing density of 70% or more by close packing. However, even if a binder is used, spherical silica fine particles are bonded together with a narrow contact area. If a shear force acts between the fine particles under external stress, they are brittle and easily broken, and the formed silica film There was a problem of poor wear resistance.

一方、棒状シリカ微粒子は、アスペクト比の大きな嵩高の粒子であり、棒状シリカ微粒子が立体的に絡みあい、3次元のブリッジ構造を形成するため、得られたシリカ膜は、嵩高で空隙率が大きくなる。当該シリカ膜は多孔質で空気層に富み、見かけ屈折率は1.25以下の優れた低反射性能を示すが、摩擦強度は極めて脆く、軽い摩擦程度で簡単に剥離して実用に耐えられるものではないという問題があった。   On the other hand, the rod-like silica fine particles are bulky particles having a large aspect ratio, and the rod-like silica fine particles are three-dimensionally entangled to form a three-dimensional bridge structure. Therefore, the obtained silica film is bulky and has a large porosity. Become. The silica film is porous, rich in air layer, and exhibits an excellent low reflection performance with an apparent refractive index of 1.25 or less, but the friction strength is extremely brittle, and it can be easily peeled off with light friction and can withstand practical use. There was a problem that was not.

さらに、本発明は、上記問題を解決する低反射膜およびその形成方法およびそれを用いた低反射部材を提供することを目的とする。   Furthermore, an object of the present invention is to provide a low reflection film, a method for forming the low reflection film, and a low reflection member using the same, which solve the above problems.

本発明は、上記問題に鑑み、鋭意検討した結果、膜とした際にシリカ微粒子を結合させるバインダーに特定の金属酸化物を使用することで、膜強度が低いことおよび耐候性に乏しく劣化しやすいことを解決し、屈折率の低い低反射膜を得たものである。   As a result of intensive studies in view of the above problems, the present invention uses a specific metal oxide as a binder to which silica fine particles are bound when formed into a film, so that the film strength is low and the weather resistance is poor, and the film tends to deteriorate. Thus, a low reflection film having a low refractive index is obtained.

さらに、本発明は、棒状シリカ微粒子と球状シリカ微粒子という形状の異なるシリカ微粒子を低反射膜中に共存させることで、低反射性能等の光学性能に優れ、摩擦強度に優れた低反射膜を見いだしたものである。   Furthermore, the present invention finds a low reflection film having excellent optical performance such as low reflection performance and excellent friction strength by coexisting silica fine particles having different shapes of rod-like silica particles and spherical silica fine particles in the low reflection film. It is a thing.

特に、本発明において、形状の異なるシリカ微粒子と、シリカ微粒子を接合するバインダーとしての金属酸化物を低反射膜中に共存させて、ガラス板等の透明基体に低反射膜を形成してなる低反射部材の光学特性および摩擦強度を、太陽電池のカバーガラス用途に適したものとした。   In particular, in the present invention, a low-reflection film formed by forming a low-reflection film on a transparent substrate such as a glass plate by coexisting silica fine particles having different shapes and a metal oxide as a binder for joining the silica fine particles in a low-reflection film. The optical characteristics and the friction strength of the reflecting member were suitable for the cover glass application of the solar cell.

本発明において、棒状シリカ微粒子とは、細長い形状のシリカ微粒子をいい、数珠上であっても、湾曲していてもよい。また、球状シリカ微粒子とは、丸い形状のシリカ微粒子をいい完全な球体でなく、歪な楕円体でもよい。シリカ微粒子の最大径のことを、棒状シリカ微粒子においては長径と言い、球状シリカ微粒子においては、粒径と言う。また、棒状シリカ微粒子の最小径を短径という。棒状コロイダルシリカ、球状コロイダルシリカにおいても同様である。微粒子とは、最大径が概ね、100nm以下の粒子を言う。尚、コロイダルシリカとは、酸化ケイ素またはその水和物が凝集したコロイドであり、通常、アルコキシシラン(テトラエトキシシラン等)を原料とし脱水縮合させたもの、もしくはアルカリケイ酸塩より、イオン交換にてアルカリ分を除去しコロイドとしたものが挙げられる。   In the present invention, the rod-like silica fine particles refer to elongated silica fine particles, which may be beaded or curved. In addition, the spherical silica fine particles are round silica fine particles, and may be a perfect ellipsoid or a distorted ellipsoid. The maximum diameter of the silica fine particles is referred to as a long diameter in the case of rod-shaped silica fine particles, and is referred to as a particle diameter in the case of spherical silica fine particles. Further, the minimum diameter of the rod-like silica fine particles is referred to as the short diameter. The same applies to rod-shaped colloidal silica and spherical colloidal silica. The fine particles are particles having a maximum diameter of approximately 100 nm or less. Colloidal silica is a colloid in which silicon oxide or its hydrate is agglomerated, and is usually obtained by dehydration condensation using alkoxysilane (tetraethoxysilane or the like) as a raw material or by ion exchange from alkali silicate. The colloid is obtained by removing the alkali component.

また、バインダーとは、結合させるものの意味であり、金属酸化物がシリカ微粒子の界面において、シリカ微粒子を接合する。   Further, the binder means what is bonded, and the metal oxide joins the silica fine particles at the interface of the silica fine particles.

また、本発明において、低反射膜とは、基体表面の光の反射防止のために基体表面に形成した低屈折率(エリプソメーターで測定した屈折率(nD)=1.40以下)の膜である。   In the present invention, the low reflection film is a film having a low refractive index (refractive index (nD) measured by an ellipsometer (nD) = 1.40 or less) formed on the surface of the substrate to prevent reflection of light on the surface of the substrate. is there.

また、本発明において、屈折率は、エリプソメーターによる分光エリプソメトリー測定で得られた測定値であり、平均透過率および平均反射率は、分光光度計を用いて、光の波長域、380nm〜1200nmの透過率、反射率を測定し、当該波長域における平均透過率、平均反射率を算出した値である。透過率曲線とは、ある波長域における分光光度計による透過率の測定値を連続的にプロットした曲線である。   Further, in the present invention, the refractive index is a measured value obtained by spectroscopic ellipsometry measurement using an ellipsometer, and the average transmittance and average reflectance are measured using a spectrophotometer in the wavelength range of light, 380 nm to 1200 nm. This is a value obtained by measuring the transmittance and the reflectance of the light and calculating the average transmittance and the average reflectance in the wavelength region. The transmittance curve is a curve obtained by continuously plotting measured values of transmittance with a spectrophotometer in a certain wavelength region.

本発明の低反射膜において、シリカ微粒子のバインダーとして、酸化タングステン、酸化ニオブ、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化スズ、酸化アルミニウム、酸化ハフニウム、酸化クロム、酸化モリブデン、酸化セリウムおよび酸化ランタンからなる群から選ばれた少なくとも1種の金属酸化物を用いたことで、加熱焼成、濡れおよび経時等により、強度低下がなく、摩擦強度に優れた低反射膜が基体表面に形成された。   In the low reflection film of the present invention, the binder of silica fine particles is selected from tungsten oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, hafnium oxide, chromium oxide, molybdenum oxide, cerium oxide, and lanthanum oxide. By using at least one metal oxide selected from the group, a low reflective film excellent in frictional strength and free from strength reduction was formed on the substrate surface due to heat firing, wetting and aging.

特に、タングステン化合物、ニオブ化合物、タンタル化合物は、粒子となるとそれ自体が硬く、耐摩耗性等の摩擦強度が向上する。また、低反射膜に含有させることで、光学特性の調整を図ることができる。   In particular, tungsten compounds, niobium compounds, and tantalum compounds are hard when they become particles, and the friction strength such as wear resistance is improved. In addition, the optical characteristics can be adjusted by including the low reflection film.

即ち、本発明は、以下、発明1〜4の低反射膜である。   That is, the present invention is the low reflection film of the inventions 1 to 4 below.

[発明1]
シリカ微粒子と、酸化タングステン、酸化ニオブ、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化スズ、酸化アルミニウム、酸化ハフニウム、酸化クロム、酸化モリブデン、酸化セリウムおよび酸化ランタンからなる群から選ばれた少なくとも1種の金属酸化物からなるバインダーを含有してなり、シリカ微粒子に対する金属酸化物からなるバインダーの含有比が5質量%以上、40質量%以下であり、屈折率1.20以上、1.40以下であることを特徴とする低反射膜。
[Invention 1]
At least one selected from the group consisting of silica fine particles and tungsten oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, hafnium oxide, chromium oxide, molybdenum oxide, cerium oxide, and lanthanum oxide. A binder composed of a metal oxide is contained, and the content ratio of the binder composed of the metal oxide to the silica fine particles is 5% by mass or more and 40% by mass or less, and the refractive index is 1.20 or more and 1.40 or less. A low reflective film characterized by the above.

[発明2]
シリカ微粒子が、走査型電子顕微鏡(Scanning ElectronMicroscope、以下、SEMと略する。)による観察で、長径が5nm以上、100nm以下である棒状シリカ微粒子と、粒径が5nm以上、50nm以下である球状シリカ微粒子が主であることを特徴とする発明1の低反射膜。
[Invention 2]
Silica fine particles are rod-shaped silica fine particles having a major axis of 5 nm or more and 100 nm or less, and spherical silica having a particle size of 5 nm or more and 50 nm or less as observed with a scanning electron microscope (hereinafter abbreviated as SEM). The low reflective film of invention 1 characterized by comprising mainly fine particles.

[発明3]
棒状シリカ微粒子と球状シリカ微粒子の質量比が棒状シリカ微粒子:球状シリカ微粒子=20:80〜80:20であることを特徴とする発明2の低反射膜。
[Invention 3]
The low reflection film according to invention 2, wherein the mass ratio of the rod-like silica particles to the spherical silica particles is rod-like silica particles: spherical silica particles = 20: 80 to 80:20.

[発明4]
金属酸化物が、酸化タングステン、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種の金属酸化物であることを特徴とする発明1〜3の低反射膜。
[Invention 4]
The low reflection film according to any one of inventions 1 to 3, wherein the metal oxide is at least one metal oxide selected from the group consisting of tungsten oxide, niobium oxide and tantalum oxide.

また、本発明の低反射膜を形成する透明基体には、ガラス板、ポリカーボネート板、アクリル板、ポリエチレンテレフタレート等の透明性樹脂板が挙げられる。しかしながら、硬くキズがつきにくく、耐熱性、耐候性に優れることより、ガラス板が好ましい材料である。特に、本発明の低反射膜は、基体としてガラス板を使った場合においても、耐久性の高い低反射部材を与えることができ、太陽電池用カバーガラスに、特に好ましく用いることができる。   The transparent substrate forming the low reflection film of the present invention includes a transparent resin plate such as a glass plate, a polycarbonate plate, an acrylic plate, and polyethylene terephthalate. However, a glass plate is a preferable material because it is hard and hardly scratched and has excellent heat resistance and weather resistance. In particular, the low-reflection film of the present invention can provide a highly durable low-reflection member even when a glass plate is used as the substrate, and can be particularly preferably used for a solar cell cover glass.

発明1〜4の低反射膜を透明基体表面に形成することで、以下、発明5、6の低反射部材が得られた。   By forming the low reflection films of the inventions 1 to 4 on the surface of the transparent substrate, the low reflection members of the inventions 5 and 6 were obtained.

[発明5]
透明基体表面に発明1〜4の低反射膜が形成されてなる低反射部材。
[Invention 5]
A low reflection member in which the low reflection film of Inventions 1 to 4 is formed on the surface of a transparent substrate.

[発明6]
透明基体がガラス板であり、光波長域380nm〜1200nmの平均透過率が95%以上であることを特徴とする発明5の低反射部材。
[Invention 6]
The low reflective member according to invention 5, wherein the transparent substrate is a glass plate, and the average transmittance in the light wavelength range of 380 nm to 1200 nm is 95% or more.

通常、シリカのみからなる低反射膜を有する低反射部材の透過率曲線の最大値を示すピーク位置は500nm付近であるが、表面に形成した低反射膜に金属酸化物を含有させたことで、ピーク位置が500nm以上、900nm以下にシフトし、低反射膜の透明性が増し、太陽電池用カバーガラスとして使用すると、太陽電池の変換効率が上昇し、太陽電池用カバーガラス用として優れた低反射部材が得られた。   Usually, the peak position indicating the maximum value of the transmittance curve of the low reflection member having a low reflection film made only of silica is around 500 nm, but by adding a metal oxide to the low reflection film formed on the surface, When the peak position is shifted to 500 nm or more and 900 nm or less, the transparency of the low reflection film is increased, and the solar cell cover glass is used, the conversion efficiency of the solar cell is increased, and the low reflection is excellent for the solar cell cover glass. A member was obtained.

[発明7]
透過率曲線の最大値のピークが500nm以上、900nm以下の範囲であることを特徴とする発明5または発明6の低反射部材。
[Invention 7]
The low reflection member according to invention 5 or 6, wherein the peak of the maximum value of the transmittance curve is in the range of 500 nm or more and 900 nm or less.

発明5〜7に記載の低反射部材は、特に太陽電池用カバーガラスとして使用するに好適である。   The low reflection member described in the inventions 5 to 7 is particularly suitable for use as a solar cell cover glass.

[発明8]
発明5〜7の低反射部材からなる太陽電池用カバーガラス。
[Invention 8]
The cover glass for solar cells which consists of the low reflection member of the invention 5-7.

また、本発明は、発明1〜4に記載の低反射膜を基体上に形成するための低反射膜の形成方法である。   Moreover, this invention is the formation method of the low reflection film for forming the low reflection film of the invention 1-4 in a base | substrate.

本発明の低反射膜の形成方法においては、低反射膜中にシリカ微粒子を含有させるためには、その前駆体であるコロイダルシリカの分散液を用いることが好ましい。   In the method for forming a low reflection film of the present invention, it is preferable to use a dispersion of colloidal silica, which is a precursor, in order to incorporate silica fine particles in the low reflection film.

また、形状の異なるシリカ微粒子を共存させるために、その前駆体として、形状の異なるコロイダルシリカを有する低反射膜用形成用塗布液を用いることが好ましい。尚、低反射膜形成用塗布液とは、基体表面に塗布して基体に低反射膜を形成するものである。   In order to allow silica fine particles having different shapes to coexist, it is preferable to use a coating solution for forming a low reflection film having colloidal silica having different shapes as a precursor. The low reflection film forming coating solution is a liquid that is applied to the surface of a substrate to form a low reflection film on the substrate.

本発明において、コロイダルシリカおよび特定の金属化合物が分散した液を低反射膜形成用塗布液として基体に塗布後、加熱焼成することで、コロイダルシリカをシリカ微粒子とし、金属化合物を金属酸化物とし、金属酸化物をバインダーとしシリカ微粒子を接合した低反射膜を得た。   In the present invention, a liquid in which colloidal silica and a specific metal compound are dispersed is applied to a substrate as a coating liquid for forming a low reflection film, and then heated and fired, whereby colloidal silica is made into silica fine particles, and the metal compound is made into a metal oxide, A low reflective film in which silica fine particles were bonded using a metal oxide as a binder was obtained.

本発明の低反射膜の形成方法において、基体上にコロイダルシリカの分散液に加え、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデン、セリウムおよびランタンからなる群から選ばれた少なくとも1種の金属化合物の分散液を用いたことで、加熱焼成、濡れまたは経時等による付着強度の低下がなく、摩擦強度に優れた低反射膜が基体表面に形成された。   In the method for forming a low reflection film of the present invention, in addition to the colloidal silica dispersion on the substrate, the material is selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum, cerium and lanthanum. By using the dispersion liquid of at least one kind of metal compound, a low reflection film excellent in frictional strength was formed on the surface of the substrate without any decrease in adhesion strength due to heating, baking, wetting or aging.

特に、タングステン、ニオブおよびタンタル化合物は、粒子となるとそれ自体が硬く、低反射膜に含有させることで、耐摩耗性等の摩擦強度が向上すると思われる。   In particular, tungsten, niobium and tantalum compounds are themselves hard when they become particles, and it is considered that frictional strength such as wear resistance is improved by containing them in a low reflection film.

本発明の低反射膜の形成方法を発明9〜14に示す。   Inventions 9 to 14 show a method for forming a low reflection film of the present invention.

[発明9]
コロイダルシリカを含む分散液に、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデンおよび希土類からなる群から選ばれた少なくとも1種の金属の金属化合物を含む分散液を加えてなる低反射膜形成用塗布液を、基体に塗布し塗膜とした後に加熱焼成し、コロイダルシリカをシリカ微粒子とし、金属化合物を金属酸化物とし硬化させることを特徴とする低反射膜の形成方法。
[Invention 9]
A dispersion containing a metal compound of at least one metal selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum and rare earth is added to the dispersion containing colloidal silica. A coating solution for forming a low reflection film is applied to a substrate to form a coating film, and then heated and fired to form colloidal silica as silica fine particles and a metal compound as a metal oxide to form a low reflection film. Method.

発明9の方法は、例えば、発明1の低反射膜を基体上に形成する方法である。   The method of the invention 9 is, for example, a method of forming the low reflection film of the invention 1 on a substrate.

[発明10]
コロイダルシリカが、SEMによる観察で、長径が5nm以上、100nm以下の棒状コロイダルシリカと、粒径が5nm以上、50nm以下の球状コロイダルシリカがロイダルシリカの全個数の90%以上であり、コロイダルシリカに対する金属化合物の含有が酸化物換算で5質量%以上、40質量%以下であることを特徴とする発明9の方法。
[Invention 10]
Colloidal silica is a rod-shaped colloidal silica having a major axis of 5 nm or more and 100 nm or less, and a spherical colloidal silica having a particle diameter of 5 nm or more and 50 nm or less is 90% or more of the total number of the colloidal silica, as observed by SEM. The method of Invention 9, wherein the compound content is 5% by mass or more and 40% by mass or less in terms of oxide.

発明10の方法は、例えば、発明2の低反射膜を基体上に形成する方法である。   The method of the invention 10 is, for example, a method of forming the low reflection film of the invention 2 on a substrate.

[発明11]
棒状コロイダルシリカと球状コロイダルシリカの質量比が、酸化物換算で棒状コロイダルシリカ:球状コロイダルシリカ=20:80〜80:20であることを特徴とする発明10の方法。
[Invention 11]
The method of Invention 10, wherein the mass ratio of the rod-shaped colloidal silica to the spherical colloidal silica is rod-shaped colloidal silica: spherical colloidal silica = 20: 80 to 80:20 in terms of oxide.

発明11の方法は、例えば、発明3の低反射膜を基体上に形成する方法である。   The method of the invention 11 is, for example, a method of forming the low reflection film of the invention 3 on a substrate.

[発明12]
金属化合物が、タングステン、ニオブおよびタンタルからなら群から選ばれた少なくとも1種の金属の金属化合物であることを特徴とする発明9〜11の方法。
[Invention 12]
The method according to any of inventions 9 to 11, wherein the metal compound is a metal compound of at least one metal selected from the group consisting of tungsten, niobium and tantalum.

発明12の方法は、例えば、発明4の低反射膜を基体上に形成する方法である。   The method of the invention 12 is, for example, a method of forming the low reflection film of the invention 4 on a substrate.

[発明13]
発明9〜12の方法で透明基体表面に屈折率が1.20以上、1.40以下である低反射膜が形成されてなる低反射部材。
[Invention 13]
A low reflection member obtained by forming a low reflection film having a refractive index of 1.20 or more and 1.40 or less on a transparent substrate surface by the method of inventions 9-12.

[発明14]
透明基体がガラス板であり、光波長域380nm〜1200nmの平均透過率が95%以上であることを特徴とする発明13の低反射部材。
[Invention 14]
The low reflection member according to invention 13, wherein the transparent substrate is a glass plate, and the average transmittance in the light wavelength range of 380 nm to 1200 nm is 95% or more.

[発明15]
透過率曲線の最大値のピークが500nm以上、900nm以下の範囲であることを特徴とする発明13または14の低反射部材。
[Invention 15]
The low reflection member according to invention 13 or 14, wherein the maximum peak of the transmittance curve is in the range of 500 nm or more and 900 nm or less.

[発明16]
発明13〜15に記載の低反射部材からなる太陽電池用カバーガラス。
[Invention 16]
The cover glass for solar cells which consists of a low reflection member of invention 13-15.

本発明により、簡便な方法で大面積の成膜が可能な、単層膜としての低反射膜およびその形成方法およびそれを用いた低反射部材が提供された。本発明の低反射膜の形成方法により、低反射膜が透明基体表面に形成された低反射部材は、高い平均透過率を有する。   According to the present invention, a low reflection film as a single layer film capable of forming a large area by a simple method, a method for forming the same, and a low reflection member using the same are provided. The low reflection member in which the low reflection film is formed on the transparent substrate surface by the low reflection film forming method of the present invention has a high average transmittance.

本発明により、単層膜で十分な低反射効果を有する低反射膜が得られ、且つ大面積への成膜が容易な低反射膜の形成方法が得られ、本発明の低反射膜の形成方法により得られた低反射部材は、太陽電池用カバーガラス、自動車用ガラス(特にフロントガラス)または照明器具の保護部材に好適に使用される。   According to the present invention, a low reflection film having a sufficiently low reflection effect with a single layer film can be obtained, and a method for forming a low reflection film that can be easily formed over a large area is obtained. The low reflection member obtained by the method is suitably used for a solar cell cover glass, an automotive glass (particularly a windshield), or a protective member for a lighting fixture.

タングステンアルコキシドを用いた低反射膜付きガラス基板の図面代用SEM写真である。It is a drawing SEM photograph of a glass substrate with a low reflective film using tungsten alkoxide. タングステンアルコキシドを用いた低反射膜付きガラス基板の透過率曲線である。It is the transmittance | permeability curve of the glass substrate with a low reflection film using a tungsten alkoxide. ニオブアルコキシドを用いた低反射膜付きガラス基板の図面代用SEM写真である。It is a drawing SEM photograph of a glass substrate with a low reflection film using niobium alkoxide. ニオブアルコキシドを用いた低反射膜付きガラス基板の透過率曲線である。It is the transmittance | permeability curve of the glass substrate with a low reflection film using niobium alkoxide. タンタルアルコキシドを用いた低反射膜付きガラス基板の図面代用SEM写真である。It is a SEM photograph substituting for a drawing of a glass substrate with a low reflection film using tantalum alkoxide. タンタルアルコキシドを用いた低反射膜付きガラス基板の透過率曲線である。It is a transmittance | permeability curve of the glass substrate with a low reflection film using a tantalum alkoxide.

1.低反射膜
始めに、本発明の低反射膜について説明する。
1. Low Reflective Film First, the low reflective film of the present invention will be described.

本発明は、シリカ微粒子と、酸化タングステン、酸化ニオブ、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化スズ、酸化アルミニウム、酸化ハフニウム、酸化クロム、酸化モリブデン、酸化セリウムおよび酸化ランタンからなる群から選ばれた少なくとも1種の金属酸化物からなるバインダーを含有してなり、シリカ微粒子に対する金属酸化物からなるバインダーの含有比が5質量%以上、40質量%以下であり、屈折率1.20以上、1.40以下であることを特徴とする低反射膜である。屈折率は低いほど好ましく、より好ましくは、1.35以下、さらに、好ましくは1.30以下である。   The present invention is selected from the group consisting of silica fine particles and tungsten oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, hafnium oxide, chromium oxide, molybdenum oxide, cerium oxide and lanthanum oxide. A binder comprising at least one metal oxide is contained, the content ratio of the binder comprising the metal oxide to the silica fine particles is 5% by mass or more and 40% by mass or less, and the refractive index is 1.20 or more. The low reflection film is 40 or less. The refractive index is preferably as low as possible, more preferably 1.35 or less, and still more preferably 1.30 or less.

さらに、本発明は、シリカ微粒子が、SEMによる観察で、長径が5nm以上、100nm以下である棒状シリカ微粒子と、粒径が5nm以上、50nm以下である球状シリカ微粒子が主であることを特徴とする上記の低反射膜である。主とするとは、コロイダルシリカの全個数の90%以上であることを指し、残りは前記範囲を満たさない形状のシリカ微粒子である。   Furthermore, the present invention is characterized in that the silica fine particles are mainly rod-like silica fine particles having a major axis of 5 nm to 100 nm and spherical silica fine particles having a particle size of 5 nm to 50 nm as observed by SEM. This is the low reflection film. “Mainly” means 90% or more of the total number of colloidal silica, and the rest are silica fine particles having a shape not satisfying the above range.

また、本発明は、棒状シリカ微粒子と球状シリカ微粒子の質量比が棒状シリカ微粒子:球状シリカ微粒子=20:80〜80:20であることを特徴とする上記の低反射膜である。   The present invention is also the above low reflection film, wherein the mass ratio of the rod-like silica particles and the spherical silica particles is rod-like silica particles: spherical silica particles = 20: 80 to 80:20.

また、本発明は、金属酸化物が、酸化タングステン、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種の金属酸化物であることを特徴とする上記の低反射膜である。   The present invention is also the above low reflection film, wherein the metal oxide is at least one metal oxide selected from the group consisting of tungsten oxide, niobium oxide and tantalum oxide.

本発明の低反射膜において、低反射膜中の金属酸化物の含有は、棒状シリカ微粒子と球状シリカ微粒子を合わせたシリカの質量(固形分の質量)に対して、5質量%以上、40質量%以下となるようにした。5質量%未満であると、得られる膜が摩擦強度に劣り、また40質量%より多いと、得られる膜の屈折率が高くなり低反射膜にならない。好ましくは、10質量%以上、30質量%以下である。   In the low reflection film of the present invention, the content of the metal oxide in the low reflection film is 5% by mass or more and 40% by mass with respect to the mass of the silica (solid mass) of the rod-like silica fine particles and the spherical silica fine particles. % Or less. If it is less than 5% by mass, the resulting film is inferior in frictional strength, and if it is more than 40% by mass, the refractive index of the resulting film will be high and a low reflection film will not be obtained. Preferably, they are 10 mass% or more and 30 mass% or less.

また、本発明の低反射膜において、シリカ膜中に金属酸化物を含有させることは、透過率曲線の最大値のピークを長波長側にシフトさせる効果がある。また、金属酸化物自体が硬いので耐摩耗性を向上させる効果がある。   Further, in the low reflection film of the present invention, containing a metal oxide in the silica film has an effect of shifting the peak of the maximum value of the transmittance curve to the long wavelength side. Further, since the metal oxide itself is hard, there is an effect of improving the wear resistance.

この際、金属酸化物がシリカ微粒子の空隙を充填しないために、膜中で、金属酸化物が球状シリカ微粒子とほぼ同じ、粒径5nm以下、50nm以上の微粒子として存在する、または金属酸化物がシリカ微粒子の粒界にあって、シリカ微粒子を接着し、低反射膜に強度を与えること、および金属酸化物が高温の環境、水の付着および紫外線の照射により、変化しないことが求められる。   At this time, since the metal oxide does not fill the voids of the silica fine particles, the metal oxide exists in the film as fine particles having substantially the same particle diameter of 5 nm or less and 50 nm or more, or the metal oxide is present. At the grain boundary of the silica fine particles, it is required that the silica fine particles are bonded to give strength to the low reflection film, and that the metal oxide does not change due to a high temperature environment, water adhesion and ultraviolet irradiation.

このような金属酸化物には、酸化タングステン(WO、屈折率1.75)、酸化ニオブ(五酸化ニオブ:Nb、屈折率1.9)、酸化タンタル(五酸化タンタル:Ta、屈折率2.0)、酸化チタン(TiO、屈折率2.2)、酸化ジルコニウム(ジルコニア:ZrO、屈折率1.85)、酸化スズ(SnO、屈折率1.7、酸化アルミニウム(アルミナ:Al、屈折率1.65)、酸化ハフニウム(ハフニア:HfO、屈折率1.90)、酸化クロム(Cr、屈折率2.1)、酸化モリブデン(MoO、MoO、屈折率1.80)、酸化セリウム(セリア:CeO、屈折率1.8)および酸化ランタン(La、屈折率1.75)が挙げられる。 Such metal oxides include tungsten oxide (WO 3 , refractive index 1.75), niobium oxide (niobium pentoxide: Nb 2 O 5 , refractive index 1.9), tantalum oxide (tantalum pentoxide: Ta 2). O 5 , refractive index 2.0), titanium oxide (TiO 2 , refractive index 2.2), zirconium oxide (zirconia: ZrO 2 , refractive index 1.85), tin oxide (SnO 2 , refractive index 1.7), Aluminum oxide (alumina: Al 2 O 3 , refractive index 1.65), hafnium oxide (hafnia: HfO 2 , refractive index 1.90), chromium oxide (Cr 2 O 3 , refractive index 2.1), molybdenum oxide ( MoO 2 , MoO 3 , refractive index 1.80), cerium oxide (ceria: CeO 2 , refractive index 1.8) and lanthanum oxide (La 2 O 3 , refractive index 1.75).

また、本発明の低反射膜は、形状の異なるシリカ微粒子を、金属酸化物がバインダーとして接合し、微小ボイド(間隙)に取り込まれた屈折率1の空気により低屈折率を得るもので、SEMによる観察で、棒状シリカ微粒子の長径が5nm以上、100nm以下であることが好ましい。長径が、5nmより小さい、または100nmより大きいと、膜中に微小なボイドが形成され難い。また、この際、棒状シリカ微粒子のアスペクト比、即ち、長径/短径は2以上、10以下であることが好ましい。長径/短径が2より小さい、10より大きいと、膜中に空気からなる微小なボイドが形成され難い。   The low reflection film of the present invention is obtained by joining silica fine particles having different shapes as a binder with a metal oxide as a binder, and obtaining a low refractive index by air having a refractive index of 1 taken into a minute void (gap). According to observation, it is preferable that the major axis of the rod-like silica fine particles is 5 nm or more and 100 nm or less. If the major axis is smaller than 5 nm or larger than 100 nm, it is difficult to form minute voids in the film. In this case, the aspect ratio of the rod-like silica fine particles, that is, the major axis / minor axis is preferably 2 or more and 10 or less. When the major axis / minor axis is smaller than 2 and larger than 10, it is difficult to form minute voids made of air in the film.

一方、球状シリカ微粒子においては、粒径が5nm以上、50nm以下であることが好ましい。粒径が5nmより小さい、また粒径が50nmより大きいと、膜中に微小なボイドが形成され難い。   On the other hand, the spherical silica fine particles preferably have a particle size of 5 nm or more and 50 nm or less. If the particle size is smaller than 5 nm or larger than 50 nm, it is difficult to form minute voids in the film.

本発明において、棒状シリカ微粒子および球状シリカ微粒子を含む、全シリカ微粒子中で、前記範囲に入る形状のシリカ微粒子が、SEMによる観察で全個数の90%以上必要である。残りは前記範囲を満たさない形状のシリカ微粒子である。10%より多く範囲が外れるものが含まれると微小なボイドの形成に支障がある。   In the present invention, among all the silica particles including rod-like silica particles and spherical silica particles, 90% or more of the total number of silica particles having a shape falling within the above range is necessary when observed by SEM. The rest are silica fine particles having a shape that does not satisfy the above range. If it is included more than 10%, the formation of minute voids is hindered.

また、本発明の低反射膜において、棒状シリカ微粒子と球状シリカ微粒子の質量比は、棒状シリカ微粒子:球状シリカ微粒子=80:20〜20:80である。これ以外の範囲は、ボイドの生成が少なく低反射膜が得られ難く、基体、特にガラス板に対する低反射膜の付着強度に劣る。   In the low reflection film of the present invention, the mass ratio of the rod-like silica fine particles to the spherical silica fine particles is rod-like silica fine particles: spherical silica fine particles = 80: 20 to 20:80. In other ranges, void formation is small and it is difficult to obtain a low reflection film, and the adhesion strength of the low reflection film to a substrate, particularly a glass plate, is poor.

本発明の低反射膜の基体表面における、好ましい膜厚は、20nm以上、500nm以下である。膜厚を20nmより薄くすると耐磨耗性に劣る、また成膜が困難である。また500nmより厚くすると、膜厚が不均一となり、成膜し難い。好ましくは、50nm以上、150nm以下である。可視光に対する低い反射率を得るためには、100nm以上、120nm以下であることが好ましい。   The preferred film thickness on the substrate surface of the low reflection film of the present invention is 20 nm or more and 500 nm or less. If the film thickness is thinner than 20 nm, the wear resistance is inferior and film formation is difficult. On the other hand, if it is thicker than 500 nm, the film thickness becomes non-uniform and it is difficult to form a film. Preferably, they are 50 nm or more and 150 nm or less. In order to obtain a low reflectance with respect to visible light, the thickness is preferably 100 nm or more and 120 nm or less.

また、本発明の低反射膜は、多数の微小ボイドを含む膜となる。詳しくは、異なる形状のシリカ微粒子を金属酸化物がバインダーとして接合させることでボイドが形成され、ボイド内に取り込まれた屈折率1の空気の効果により、通常のシリカ膜に対して低屈折率(1.20以上、1.40以下)の低反射膜が得られた。加えて、低反射膜中に金属酸化物を含むことにより硬質の膜が得られ、基体との密着性よく親水性であり、導電性があり静電気を帯びにくいため、本発明の低反射膜を形成してなる低反射部材は汚れ難い。   The low reflection film of the present invention is a film containing a large number of microvoids. Specifically, voids are formed by joining silica particles of different shapes as a binder with a metal oxide, and due to the effect of air having a refractive index of 1 taken into the voids, a low refractive index ( A low reflection film of 1.20 or more and 1.40 or less) was obtained. In addition, a hard film can be obtained by including a metal oxide in the low reflection film, and it is hydrophilic with good adhesion to the substrate, is conductive, and is not easily charged with static electricity. The formed low reflection member is difficult to get dirty.

具体的には、SEMによる観察で、シリカ微粒子の全個数の90%以上が、長径が5nm以上、100nm以下の棒状シリカ微粒子と、粒径が5nm以上、50nm以下の球状シリカ微粒子であり、タングステン、ニオブまたはタンタルから選ばれる少なくとも1種の金属酸化物を、全てのシリカ微粒子に対し、5質量%以上、40質量%以下の範囲に含む本発明の低反射膜は、防汚性に加え、耐熱性、屋外使用に耐える耐熱性および耐磨耗性等の耐久性に優れる。また、金属酸化物を含むことで、親水性且つ導電性であり静電気を帯び難く、防汚性に優れる。   Specifically, as observed by SEM, 90% or more of the total number of silica fine particles is rod-like silica fine particles having a major axis of 5 nm or more and 100 nm or less, and spherical silica fine particles having a particle diameter of 5 nm or more and 50 nm or less. The low reflection film of the present invention containing at least one metal oxide selected from niobium or tantalum in a range of 5% by mass to 40% by mass with respect to all silica fine particles, in addition to antifouling property, Excellent heat resistance, durability to withstand outdoor use, and wear resistance. Moreover, by including a metal oxide, it is hydrophilic and conductive, is hardly charged with static electricity, and has excellent antifouling properties.

2.低反射膜の形成方法
次いで、上記の低反射膜を与える本発明の低反射膜の形成方法について説明する。
2. Method for Forming Low Reflective Film Next, a method for forming the low reflective film of the present invention that provides the above low reflective film will be described.

即ち、本発明は、コロイダルシリカを含む分散液に、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデン、セリウムおよびランタンからなる群から選ばれた少なくとも1種の金属化合物を含む分散液を加えてなる低反射膜形成用塗布液を、基体に塗布し塗膜とした後に加熱焼成し、コロイダルシリカをシリカ微粒子とし、金属化合物を金属酸化物とし硬化させることを特徴とする低反射膜の形成方法である。   That is, the present invention provides at least one metal compound selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum, cerium and lanthanum in a dispersion containing colloidal silica. A coating solution for forming a low reflection film comprising a dispersion liquid containing a coating material is applied to a substrate to form a coating film, and then heated and fired to colloidal silica as silica fine particles and a metal compound as a metal oxide to be cured. This is a method for forming a low reflection film.

さらに、本発明は、コロイダルシリカが、SEMによる観察で、長径が5nm以上、100nm以下の棒状コロイダルシリカと、粒径が5nm以上、50nm以下の球状コロイダルシリカがコロイダルシリカの全個数の90%以上であり、コロイダルシリカに対する金属化合物の含有が酸化物換算で、5質量%以上、40質量%以下であることを特徴とする上記の方法である。   Further, according to the present invention, the colloidal silica is 90% or more of the total number of the colloidal silica, and the colloidal silica is rod-shaped colloidal silica having a major axis of 5 nm or more and 100 nm or less and spherical colloidal silica having a particle diameter of 5 nm or more and 50 nm or less. In the above method, the metal compound content relative to the colloidal silica is 5% by mass or more and 40% by mass or less in terms of oxide.

また、本発明は、棒状コロイダルシリカと球状コロイダルシリカの質量比が、棒状シリカコロイダルシリカ:球状コロイダルシリカ=20:80〜80:20であることを特徴とする上記の方法である。   Moreover, this invention is said method characterized by the mass ratio of rod-shaped colloidal silica and spherical colloidal silica being rod-shaped silica colloidal silica: spherical colloidal silica = 20: 80-80: 20.

また、本発明は、金属化合物が、タングステン、ニオブおよびタンタルからなら群から選ばれた少なくとも1種の金属の金属化合物であることを特徴とする上記の方法である。   The present invention is also the above method, wherein the metal compound is a metal compound of at least one metal selected from the group consisting of tungsten, niobium and tantalum.

本発明の低反射膜の形成方法において、低反射膜を基体上に形成する際は、コロイダルシリカの分散液と特定の金属化合物が分散した低反射膜形成用塗布液を用いる。   In the method for forming a low reflection film of the present invention, when forming a low reflection film on a substrate, a coating liquid for forming a low reflection film in which a dispersion of colloidal silica and a specific metal compound are dispersed is used.

尚、本発明の低反射膜の形成方法において、低反射膜形成用塗布液中の金属化合物の含有は、棒状コロイダルシリカと球状コロイダリシリカを合わせたコロイダルシリカの質量(固形分の質量、以下、同じ)に対して、酸化物換算で5質量%以上、40質量%以下の範囲となるようにした。好ましくは10質量%以下、30質量%以上の範囲である。5質量%未満であると、得られる膜が耐摩耗性に劣り、また40質量%より多いと、得られる膜の屈折率が高くなり低反射膜になり難い。好ましくは、10質量%以上、30質量%以下である。   In the method for forming a low reflection film of the present invention, the content of the metal compound in the coating solution for forming the low reflection film is the mass of colloidal silica, which is a combination of rod-shaped colloidal silica and spherical colloidal silica (mass of solid content, hereinafter the same). ) In terms of oxide, it is in the range of 5 mass% or more and 40 mass% or less. Preferably it is the range of 10 mass% or less and 30 mass% or more. If it is less than 5% by mass, the resulting film is inferior in abrasion resistance, and if it is more than 40% by mass, the refractive index of the obtained film is high and it is difficult to form a low reflection film. Preferably, they are 10 mass% or more and 30 mass% or less.

本発明の低反射膜の形成方法における膜の形成機構を推察すれば、形状の異なるコロイダルシリカが共存した低反射膜形成用塗布液を基体に塗布被覆したことで、液中でのコロイダルシリカのブラウン運動により、アスペクト比が大きい棒状コロイダルシリカが絡みブリッジ状に接合してなる間隙に、球状シリカ微粒子が捕捉された状態で塗膜が形成され、塗膜を加熱焼成することにより生成した膜中の微小ボイドに屈折率1の空気が間隙に取り込まれた効果により、低屈折率の膜、即ち、低反射膜が形成されたと考えられる。   Assuming the film formation mechanism in the method for forming a low reflection film of the present invention, the coating liquid for forming a low reflection film in which colloidal silica having different shapes coexisted was coated on the substrate, so that the colloidal silica in the liquid was coated. In the film formed by heating and baking the coating film, the coating is formed in a state where the spherical silica particles are trapped in the gap formed by the Brownian motion, in which the rod-shaped colloidal silica having a large aspect ratio is entangled and joined in a bridge shape It is considered that a film having a low refractive index, that is, a low reflection film was formed by the effect that air having a refractive index of 1 was taken into the gaps in the microvoids.

詳しくは、塗膜の乾燥工程で、棒状コロイダルシリカと球状コロイダルシリカの空隙の中に毛細管現象により満たされた溶媒が、両者の接点を強力に接合させる作用をもたらし、さらに溶剤の蒸発につれて、棒状コロイダルシリカの間隙に微細な球状コロイダルシリカがトラップされ、形状の異なるシリカ同士がより多くの接点で隣接するように再配列しながら収縮し乾燥していくと考えられる。このようにして、形状の異なる2種類のコロイダルシリカを用いたことで、棒状コロイダルシリカのみを用いた場合より密な、且つ球状コロイダルシリカのみを用いた場合より粗な空隙率の膜となり、かつ接点が多くより強く接合した摩擦強度に優れた多孔質の膜が形成されると推察される。   Specifically, in the drying process of the coating film, the solvent filled by capillarity in the voids between the rod-shaped colloidal silica and the spherical colloidal silica has the effect of strongly bonding the contact points between them, and as the solvent evaporates, the rod-shaped It is considered that fine spherical colloidal silica is trapped in the gaps between the colloidal silicas, and shrinks and dries while rearranging so that silicas of different shapes are adjacent to each other at more contacts. In this way, by using two types of colloidal silica having different shapes, a denser film than when only rod-shaped colloidal silica is used, and a coarser porosity film than when only spherical colloidal silica is used, and It is presumed that a porous film having many contacts and stronger bonding and excellent in friction strength is formed.

しかしながら、形状の異なる2種類のシリカ微粒子と空気からなる多孔質の膜を透明基体表面に形成すれば、波長500nm〜550nm付近の可視光線に対しては、優れた低反射性を発現するが、太陽電池用カバーガラスに形成し低反射膜とする際に、変換効率を向上させるために、波長380nm〜1200nmの広範囲にわたり、透過率を制御するのは困難であった。そのためには、屈折率調整材として金属化合物をさらに加え、加水分解させた後、縮合させることが好ましい。   However, if a porous film composed of two types of silica fine particles having different shapes and air is formed on the transparent substrate surface, it exhibits excellent low reflectivity with respect to visible light having a wavelength of about 500 nm to 550 nm, When forming a low reflection film on a solar cell cover glass, it was difficult to control the transmittance over a wide range of wavelengths from 380 nm to 1200 nm in order to improve the conversion efficiency. For this purpose, it is preferable to add a metal compound as a refractive index adjusting material, hydrolyze it, and then condense it.

本発明の低反射膜の形成方法において、低反射膜形成用塗布液を、形状の異なるコロイダルシリカを含む分散液中に、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデン、セリウムおよびランタンからなる群から選ばれた少なくとも1種の金属化合物を含む分散液を加え、低反射膜形成用塗布液とした。尚、これら金属の単体は疎水性であり、微粒子にしたとしても塗布液中で分散させることは困難である。これら金属の酸化物または水和物等は、金属単体の微粒子と同様に、一概に塗布液とした際に分散性が悪く、結晶や固形分が析出する等、安定性に劣る傾向があり、液寿命に問題のあることが多い。   In the method for forming a low reflection film of the present invention, the coating liquid for forming the low reflection film is dispersed in a dispersion containing colloidal silica having different shapes, such as tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, A dispersion containing at least one metal compound selected from the group consisting of molybdenum, cerium and lanthanum was added to obtain a coating solution for forming a low reflection film. In addition, the simple substance of these metals is hydrophobic, and even if it makes it fine particle, it is difficult to disperse | distribute it in a coating liquid. These metal oxides or hydrates, like the fine particles of simple metals, generally have poor dispersibility when used as a coating solution and tend to be inferior in stability, such as precipitation of crystals and solids, Often there is a problem with the liquid life.

よって、本発明の低反射膜の形成方法においては、金属化合物は金属アルコキシドが好適に使用される。特に、タングステン、ニオブまたはタンタルのアルコキシドが液安定性に優れ、液寿命に優れた低反射膜形成用塗布液を与える。   Therefore, in the method for forming a low reflection film of the present invention, a metal alkoxide is preferably used as the metal compound. In particular, an alkoxide of tungsten, niobium or tantalum provides a coating solution for forming a low reflection film having excellent liquid stability and excellent liquid life.

また、タングステン化合物においては、珪タングステン酸(SiO・12WO・26HO)を用いてもよく、珪タングステン酸は、水、アルコールに可溶であり、液安定性、液寿命に優れる。 In the tungsten compound, silicotungstic acid (SiO 2 · 12WO 3 · 26H 2 O) may be used, and silicotungstic acid is soluble in water and alcohol and has excellent liquid stability and liquid life.

また、低反射膜の形成において、例えば、テトラエトキシシラン(以下、TEOSと略する)は、塗布液中でコロイダルシリカに対しての含有が5質量%以下でないと、硬化して膜を作ることが困難であるが、例えば、タングステンアルコキシド、ニオブアルコキシドまたはタンタルアルコキシドは、コロイダルシリカに対して任意の割合で含有させることが可能であった。   In the formation of a low reflection film, for example, tetraethoxysilane (hereinafter abbreviated as TEOS) is cured to form a film unless the content of colloidal silica in the coating solution is 5 mass% or less. However, for example, tungsten alkoxide, niobium alkoxide, or tantalum alkoxide can be contained in an arbitrary ratio with respect to colloidal silica.

このように低反射膜形成用塗布液を、基体表面に塗布した後に加熱焼成することで、金属化合物は、酸化タングステン(WO、屈折率1.75)、酸化ニオブ(五酸化ニオブ:Nb、屈折率1.9)、酸化タンタル(五酸化タンタル:Ta、屈折率2.0)、酸化チタン(TiO、屈折率2.2)、酸化ジルコニウム(ジルコニア:ZrO、屈折率1.85)、酸化スズ(SnO、屈折率1.7、酸化アルミニウム(アルミナ:Al、屈折率1.65)、酸化ハフニウム(ハフニア:HfO、屈折率1.90)、酸化クロム(Cr、屈折率2.1)、酸化モリブデン(MoO、MoO、屈折率1.80)、酸化セリウム(セリア:CeO、屈折率1.8)または酸化ランタン(La、屈折率1.75)となり、バインダーとして、シリカ微粒子を接合する。 Thus, the metal compound is made of tungsten oxide (WO 3 , refractive index 1.75), niobium oxide (niobium pentoxide: Nb 2). O 5 , refractive index 1.9), tantalum oxide (tantalum pentoxide: Ta 2 O 5 , refractive index 2.0), titanium oxide (TiO 2 , refractive index 2.2), zirconium oxide (zirconia: ZrO 2 , Refractive index 1.85), tin oxide (SnO 2 , refractive index 1.7, aluminum oxide (alumina: Al 2 O 3 , refractive index 1.65), hafnium oxide (hafnia: HfO 2 , refractive index 1.90) , chromium oxide (Cr 2 O 3, the refractive index 2.1), molybdenum oxide (MoO 2, MoO 3, refractive index 1.80), cerium oxide (ceria: CeO 2, refractive index 1.8) or oxidation Lanta (La 2 O 3, the refractive index 1.75), and as a binder to bond the silica fine particles.

本発明において、金属酸化物を低反射膜に含有させたことが、透過率曲線の最大値のピークを長波長側にシフトさせる効果と、低反射膜が形成された低反射部材の耐摩耗性を向上させる効果をもたらしたと考えられる。低反射膜形成用塗布液中の金属化合物には、膜中で金属酸化物となる際に、シリカ微粒子の粒界におけるバインダーとしてシリカ微粒子を接着し、低反射膜に強度を与えた。尚、金属酸化物には、高温および紫外線で変化しないことが要求される。   In the present invention, the inclusion of the metal oxide in the low reflection film has the effect of shifting the peak of the maximum transmittance curve to the long wavelength side, and the wear resistance of the low reflection member on which the low reflection film is formed. It is thought that it brought about the effect of improving. When the metal compound in the coating liquid for forming the low reflection film becomes a metal oxide in the film, the silica fine particles were adhered as a binder at the grain boundary of the silica fine particles to give strength to the low reflection film. The metal oxide is required not to change at high temperatures and ultraviolet rays.

以上の点を鑑みて、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデン、セリウムおよびランタンからなる群から選ばれた少なくとも1種の金属化合物金属化合物を選定した。特に、タングステン、ニオブおよびタンタルの化合物、例えばタングステン、ニオブおよびタンタルのアルコキシドまたは珪タングステン酸が優れる。低反射膜形成用塗布液へのこれら金属化合物の添加効果により、低反射膜とした際に、ガラス板に対する付着強度が向上する。   In view of the above points, at least one metal compound selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum, cerium, and lanthanum was selected. In particular, tungsten, niobium and tantalum compounds such as tungsten, niobium and tantalum alkoxides or silicotungstic acid are excellent. Due to the effect of adding these metal compounds to the coating solution for forming a low reflection film, the adhesion strength to the glass plate is improved when a low reflection film is formed.

また、本発明の低反射膜の形成方法において、形状の異なる特定のコロイダルシリカと特定の金属化合物を有する低反射膜形成用塗布液を用い、加熱焼成することで、シリカ微粒子をバインダーとしての金属酸化物で接合した低反射膜を得る。この際、微小ボイド(間隙)に取り込まれた屈折率1の空気により低屈折率を得るためには、SEMによる観察で、長径が5nm以上、100nm以下の棒状コロイダルシリカおよび粒径が5nm以上、50nm以下の棒状コロイダルシリカが、コロイダルシリカの全個数の90%以上であることが好ましい。長径が、5nmより小さい、または100nmより大きいと、前述の作用効果がなく、膜中に前述の微小なボイドが形成され難い。棒状コロイダルシリカのアスペクト比、即ち、長径/短径が2より小さい、または10より大きいと前述の作用効果がなく、膜中に前述の微小なボイドが形成され難い。球状コロイダルシリカにおいては、粒径が5nmより小さい、また粒径が50nmより大きいと、膜中に微小なボイドが形成され難い。微小なボイド得るためには、SEMによる観察で前記範囲に入る形状のコロイダルシリカが全個数の90%以上であることが必要である。10%より多く範囲が外れるものが含まれると微小なボイドの形成に支障がある。また、大径側に大きく外れたもの、具体的には5倍以上、外れたもの、即ち、粒径500nm以上のものがあると、膜厚が不均一となり好ましくない。   Further, in the method for forming a low reflection film of the present invention, a low reflection film forming coating solution having a specific colloidal silica having a different shape and a specific metal compound is heated and fired to form a metal having silica fine particles as a binder. A low reflective film bonded with an oxide is obtained. At this time, in order to obtain a low refractive index by air having a refractive index of 1 taken into microvoids (gap), a rod-like colloidal silica having a major axis of 5 nm or more and 100 nm or less and a particle diameter of 5 nm or more are observed by SEM. The rod-shaped colloidal silica of 50 nm or less is preferably 90% or more of the total number of colloidal silica. If the major axis is smaller than 5 nm or larger than 100 nm, the above-mentioned effects are not obtained, and the above-mentioned minute voids are hardly formed in the film. When the aspect ratio of the rod-shaped colloidal silica, that is, the major axis / minor axis is smaller than 2 or larger than 10, the above-mentioned effects are not obtained, and the above-mentioned minute voids are hardly formed in the film. In spherical colloidal silica, if the particle size is smaller than 5 nm or larger than 50 nm, minute voids are hardly formed in the film. In order to obtain minute voids, it is necessary that the colloidal silica having a shape falling within the above range as observed by SEM is 90% or more of the total number. If it is included more than 10%, the formation of minute voids is hindered. Further, if there is a material greatly deviating to the large diameter side, specifically 5 times or more, that is, a material having a particle size of 500 nm or more, the film thickness becomes non-uniform, which is not preferable.

SEMによる観察で、長径が5nm以上、100nm以下、長径/短径=2以上、10以下が棒状コロイダルシリカと、粒径が5nm以上、50nm以下である球状コロイダルシリカが、コロイダルシリカの全個数の90%以上であり、前述の金属化合物を含む分散液からなる低反射膜形成用塗布液を用いることで、ボイドの生成が容易となる。   As observed by SEM, the major axis is 5 nm or more and 100 nm or less, the major axis / minor axis = 2 or more and 10 or less is rod-shaped colloidal silica, and the spherical colloidal silica having a particle size of 5 nm or more and 50 nm or less is the total number of colloidal silica. By using a coating solution for forming a low reflection film that is 90% or more and is made of a dispersion containing the above metal compound, voids can be easily generated.

本発明の低反射膜の形成方法において、このように形状の異なるシリカ微粒子を与えるコロイダルシリカを用いたことで、形状の異なるシリカ微粒子と酸化タングステン、酸化ニオブ、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化スズ、酸化アルミニウム、酸化ハフニウム、酸化クロム、酸化モリブデン、酸化セリウムおよび酸化ランタンからなる群から選ばれた少なくとも1種の金属酸化物を含有してなる屈折率1.20以上、1.40以下の低反射膜が得られた。より好ましくは、金属酸化物として、酸化タングステン、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種の金属酸化物を含有してなる低反射膜である。   In the method for forming a low reflection film of the present invention, by using colloidal silica that gives silica particles having different shapes as described above, silica particles having different shapes and tungsten oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, Refractive index of 1.20 or more and 1.40 or less comprising at least one metal oxide selected from the group consisting of tin oxide, aluminum oxide, hafnium oxide, chromium oxide, molybdenum oxide, cerium oxide and lanthanum oxide A low reflection film was obtained. More preferably, it is a low reflective film comprising at least one metal oxide selected from the group consisting of tungsten oxide, niobium oxide and tantalum oxide as the metal oxide.

また、本発明の低反射膜の形成方法において、ボイドの生成が容易且つガラス板に対する付着強度に優れた低反射膜を与える、低反射膜形成用塗布液中の棒状コロイダルシリカ:球状コロイダルシリカの質量比は、酸化物換算で80:20〜20:80である。これ以外の範囲は、ボイドの生成が少なく低反射膜が得られ難く、基体に対する低反射膜の付着強度に劣る。   Further, in the method for forming a low-reflection film of the present invention, a rod-shaped colloidal silica in a coating solution for forming a low-reflection film that gives a low-reflection film that easily generates voids and has excellent adhesion strength to a glass plate: The mass ratio is 80:20 to 20:80 in terms of oxide. In other ranges, void formation is small and it is difficult to obtain a low reflection film, and the adhesion strength of the low reflection film to the substrate is inferior.

詳しくは、本発明は、SEMによる観察で、コロイダルシリカの全個数の90%以上が、長径が5nm以上、100nm以下、長径/短径が2以上、10以下である棒状コロイダルシリカ、と、粒径が5nm以上、50nm以下の球状コロイダルシリカを含む分散液に、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデン、セリウムおよびランタンからなる群から選ばれた少なくとも1種の金属化合物、例えば、金属アルコキシドを含む分散液を、コロイダルシリカに対する金属化合物の含有が酸化物換算で、5質量%以上、40質量%以下となるように加えた低反射膜塗布液を、基体に塗布し塗膜とした後に加熱焼成し、金属化合物、例えば、金属アルコキシドを金属酸化物とし硬化させることを特徴とする低反射膜の形成方法である。   Specifically, the present invention relates to a rod-shaped colloidal silica having a major axis of 5 nm or more and 100 nm or less, and a major axis / minor axis of 2 or more and 10 or less, as observed by SEM. At least one selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum, cerium and lanthanum in a dispersion containing spherical colloidal silica having a diameter of 5 nm or more and 50 nm or less A low-reflective coating solution obtained by adding a dispersion containing a metal compound such as metal alkoxide so that the content of the metal compound relative to colloidal silica is 5% by mass or more and 40% by mass or less in terms of oxide. After being coated onto a coating film, it is heated and fired to convert a metal compound such as a metal alkoxide into a metal oxide. A method of forming a low-reflection film, which is then cured.

本発明の低反射膜の形成方法において、このようにして、屈折率1.20以上、1.40以下の低反射膜を有してなる低反射膜付き部材、即ち、低反射部材が得られた。   In the method for forming a low reflection film of the present invention, a member with a low reflection film having a low reflection film having a refractive index of 1.20 or more and 1.40 or less, that is, a low reflection member is obtained in this way. It was.

例えば、基体としての、フロート法による厚さ3mmのソーダライムシリケートガラス板の両面に前記低反射膜を形成した場合、形成しない場合に比べ、平均透過率が8%向上した。尚、当該ガラス板の平均透過率は90%程度であり、当該ガラス板に、コロイダルシリカとTEOSからなる従来のシリカコート膜を両面に形成した場合の平均透過率は、92%程度である。   For example, when the low reflection film was formed on both surfaces of a 3 mm thick soda lime silicate glass plate as a substrate by a float method, the average transmittance was improved by 8% compared to the case where it was not formed. The average transmittance of the glass plate is about 90%, and the average transmittance when a conventional silica coat film made of colloidal silica and TEOS is formed on both surfaces of the glass plate is about 92%.

また、前記コロイダルシリカの分散液、金属化合物、例えば、金属アルコキシドの分散液は、液安定性より、コロイダルシリカの分散液においては、メタノール、エタノール、n−プロパノール、i−プロパノール(別名、イソプロピルアルコールまたは2−プロパノール、以下、IPAと略する)等のアルコール系、酢酸エチル等のエステル系溶剤、アセトン等の極性溶剤に代表される有機溶剤が用いられ、金属化合物、特に金属アルコキシドの分散液においては、メタノール、エタノール、n−プロパノールまたはIPA等のアルコールに代表される有機溶剤が好適に用いられ、本発明の低反射膜の製造方法において、好適に用いられる。   In addition, the colloidal silica dispersion and the metal compound, for example, a metal alkoxide dispersion, have liquid stability, so that in the colloidal silica dispersion, methanol, ethanol, n-propanol, i-propanol (also known as isopropyl alcohol). Or an alcohol solvent such as 2-propanol (hereinafter abbreviated as IPA), an ester solvent such as ethyl acetate, or an organic solvent typified by a polar solvent such as acetone, and a dispersion of a metal compound, particularly a metal alkoxide. Is preferably an organic solvent typified by alcohol such as methanol, ethanol, n-propanol or IPA, and is preferably used in the method for producing a low reflection film of the present invention.

通常、コロイダルシリカの分散液に水を加えることで、コロイダルシリカは不安定になり、固形分が析出することが多く、普通は加えることはないが、コロイダルシリカと、タングステン、ニオブおよびタンタルからなる群から選ばれたアルコキシドをともに用いた低反射膜形成用塗布液は、前記アルコキシドの作用により、全重量に対し、水を50質量%まで加えても固形分が析出し難い。また、前記低反射膜形成用塗布液に、水を1質量%以上加えることでガラス板との濡れ性が良くなり、塗布が容易となる。本発明の低反射膜の形成方法に用いる、低反射膜形成用塗布液において、全質量に対し、水の含有を1質量%以上、50質量%以下の間で任意に調製できる。   Usually, when water is added to a dispersion of colloidal silica, the colloidal silica becomes unstable and solid content often precipitates, and although it is not usually added, it is composed of colloidal silica and tungsten, niobium and tantalum. In the coating solution for forming a low reflection film using an alkoxide selected from the group, a solid content hardly precipitates even when water is added up to 50% by mass with respect to the total weight due to the action of the alkoxide. Further, by adding 1% by mass or more of water to the low reflection film forming coating solution, the wettability with the glass plate is improved and the coating is facilitated. In the coating solution for forming a low reflection film used in the method for forming a low reflection film of the present invention, the water content can be arbitrarily adjusted between 1% by mass and 50% by mass with respect to the total mass.

よって、本発明の低反射膜の形成方法において、水の含有が1質量%以上、50質量%以下の低反射膜形成用塗布液を用いることが可能である。好ましくは、1質量%以上、30質量%以下である。さらに、好ましくは、1質量%以上、10質量%以下である。   Therefore, in the method for forming a low reflection film of the present invention, it is possible to use a coating solution for forming a low reflection film having a water content of 1% by mass to 50% by mass. Preferably, they are 1 mass% or more and 30 mass% or less. Furthermore, Preferably, they are 1 mass% or more and 10 mass% or less.

本発明の低反射膜の形成方法による低反射膜は、多数の微小ボイドを含む膜となり、異なる形状シリカ微粒子を、金属酸化物がバインダーとなり接合させることで形成したボイドに取り込まれた屈折率1の空気層の効果により、低屈折率となる。   The low-reflection film according to the method of forming a low-reflection film of the present invention is a film containing a large number of microvoids, and a refractive index of 1 incorporated into voids formed by joining silica particles having different shapes as binders with metal oxides. Due to the effect of the air layer, the refractive index becomes low.

本発明の低反射膜の形成方法において、低反射膜形成用塗布液の基体への塗布方法は、ゾルゲル法により基体への成膜が可能である。   In the method for forming a low reflection film of the present invention, the low reflection film forming coating solution can be applied to a substrate by a sol-gel method.

例えば、蒸着法およびスパッタリング法等の真空中における成膜法では、数種類の組成物を有する混合膜を、基体表面への1回の成膜で得ることは難しいが、ゾルゲル法等の湿式塗布法では基体表面への1回の塗布で形成することが容易であり、紫外、可視および赤外域の幅広い調光膜への応用が期待され、汎用の自動車用ガラス(フロントガラス内側)、照明器具の保護部材、特に太陽電池用カバーガラスの製造に、ゾルゲル法は好適に使用される。   For example, in a film forming method in a vacuum such as a vapor deposition method and a sputtering method, it is difficult to obtain a mixed film having several types of compositions by a single film formation on the surface of a substrate, but a wet coating method such as a sol-gel method. Can be easily formed by a single coating on the substrate surface, and is expected to be applied to a wide range of light control films in the ultraviolet, visible and infrared regions. The sol-gel method is suitably used for the production of a protective member, particularly a solar cell cover glass.

低反射膜形成用塗布液の基体、特に基板上への塗布は、スピーンコーター法、浸漬引き上げ法、即ち、ディップコーティング法、スプレー法、ローラーコート法、フローコート法、スクリーン印刷法、刷毛塗り、インクジェット等の方法により行うことができる。   Application of the coating solution for forming a low reflection film on a substrate, particularly a substrate, is a spine coater method, a dip-up method, that is, a dip coating method, a spray method, a roller coating method, a flow coating method, a screen printing method, a brush coating, It can be performed by a method such as inkjet.

各種塗布方法により基体に塗布形成された被膜は、80℃以上、150℃以下で10分から6時間乾燥した後、さらに加熱焼成することが好ましい。加熱温度は、基材の耐熱温度に応じて決定される。親水性等の特性が維持できる温度範囲で焼成するのが好ましい。プラスチック製透明基体の場合、概ね300℃以下で処理することが好ましい。また、無機質のガラス板においては、焼成時間を調整することにより、750℃程度の高温での焼成も可能である。好ましい態様として、500℃以上、800℃以下で2分〜3分間、即ち、120秒〜180秒間、焼成することにより、耐磨耗性に優れた被膜が得られる。   It is preferable that the coating formed on the substrate by various coating methods is dried at 80 ° C. or higher and 150 ° C. or lower for 10 minutes to 6 hours, and then further heated and fired. The heating temperature is determined according to the heat-resistant temperature of the substrate. Baking is preferably performed in a temperature range in which characteristics such as hydrophilicity can be maintained. In the case of a plastic transparent substrate, it is preferable to treat at approximately 300 ° C. or lower. In addition, the inorganic glass plate can be fired at a high temperature of about 750 ° C. by adjusting the firing time. As a preferred embodiment, a film excellent in wear resistance can be obtained by baking at 500 ° C. or higher and 800 ° C. or lower for 2 to 3 minutes, that is, 120 seconds to 180 seconds.

低反射膜形成用塗布液を調製する際に、タングステン、ニオブ、タンタルの化合物は、特にこれら金属のアルコキシド、珪タングステン酸はコロイダルシリカ任意に混ぜることが可能である。   When preparing a coating solution for forming a low reflection film, tungsten, niobium, and tantalum compounds, in particular, alkoxides of these metals and silicotungstic acid can be arbitrarily mixed with colloidal silica.

特に、本発明の低反射膜の形成方法において、低反射膜形成用塗布液にタングステン、ニオブ、タンタルの化合物を含有させた場合には、即ち、これら金属のアルコキシド、珪タングステン酸を用いた低反射膜形成用塗布液をガラス板に塗布した後、加熱焼成し、低反射膜が形成された低反射部材を得る際の加熱焼成条件は、500℃以上であることが好ましい。上限は、ガラスの変形も考慮して800℃以下であり、800℃以上より高くする必要はない。所望の焼成温度に達してから、2分〜3分間、即ち、120秒〜180秒間、加熱保持することで硬質な低反射膜が得られる。   In particular, in the method for forming a low reflection film according to the present invention, when a coating solution for forming a low reflection film contains a compound of tungsten, niobium, or tantalum, that is, a low-reflection film using an alkoxide or silicotungstic acid of these metals. After applying the coating liquid for forming a reflective film on a glass plate, it is preferably heated and fired to obtain a low reflective member on which a low reflective film is formed. The upper limit is 800 ° C. or lower in consideration of glass deformation, and does not need to be higher than 800 ° C. or higher. After reaching the desired firing temperature, a hard low-reflection film is obtained by heating and holding for 2 to 3 minutes, that is, 120 to 180 seconds.

このように基体にガラス板を用い、前記コロイダルシリカと、タングステン、ニオブまたはタンタルから選ばれた少なくとも1種の金属化合物を組合せた低反射膜形成用塗布液を基体に前記方法で塗布した後、加熱焼成することで、耐摩耗性に優れた低反射部材が得られた。   In this way, after using a glass plate for the substrate, and applying a coating solution for forming a low reflection film, which is a combination of the colloidal silica and at least one metal compound selected from tungsten, niobium or tantalum, to the substrate by the above method, By heat-firing, a low reflection member excellent in wear resistance was obtained.

3.コロイダルシリカを含む分散液
次いで、本発明おける低反射膜形成用塗布液に使用するコロイダルシリカを含む分散液について説明する。
3. Next, a dispersion containing colloidal silica used in the coating solution for forming a low reflection film in the present invention will be described.

本発明の低反膜にシリカ微粒子を含有させるためのコロイダルシリカを生成するためのケイ素化合物としては、以下の物が挙げられる。   The following are mentioned as a silicon compound for producing | generating colloidal silica for making the low anti-film of this invention contain a silica particle.

例えば、ケイ素化合物としては、アルコキシドが好ましく、一般式 Si(OR)、(式中、Rは、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表されるアルコキシ化合物またはそれらの加水分解物または部分加水分解物であって、特にテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラノルマルプロポキシシラン、テトラノルマルブトキシシラン、テトラターシャリブトキシシラン等またはその加水分解物が好ましい。また、アルコキシドの−OR基を、塩素原子等のハロゲン原子で置換したものでもよく、例えば、クロロトリエトキシシラン、ジクロロジノルマルブトキシシラン、トリクロロノルマルブトキシシラン等が用いられる。本発明の低反射膜の製造方法においては、これらケイ素化合物を脱水縮合して、長径が5nm以上、100nm以下、長径/短径=2以上、10以下の棒状コロイダルシリカ、粒径が5nm以上、50nm以下の球状コロイダルシリカに調製したものを原料として用いる。 For example, the silicon compound is preferably an alkoxide, and is represented by the general formula Si (OR) 4 , wherein R is independently a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, or a secondary butyl group. , A methoxyethyl group, an ethoxyethyl group or a phenyl group), or a hydrolyzate or partial hydrolyzate thereof, particularly tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, Tetranormal propoxysilane, tetranormalbutoxysilane, tetratertiarybutoxysilane or the like or a hydrolyzate thereof is preferable. Moreover, what substituted the -OR group of alkoxide by halogen atoms, such as a chlorine atom, may be used, for example, chlorotriethoxysilane, dichloro dinormal butoxy silane, trichloro normal butoxy silane, etc. are used. In the method for producing a low reflection film of the present invention, these silicon compounds are dehydrated and condensed to form a rod-like colloidal silica having a major axis of 5 nm or more and 100 nm or less, a major axis / minor axis of 2 or more and 10 or less, a particle size of 5 nm or more, What was prepared in spherical colloidal silica of 50 nm or less is used as a raw material.

4.金属アルコキシド
次いで、本発明おける低反射膜形成用塗布液に使用する金属化合物としての各種金属アルコキシドについて、順を追って説明する。
4). Metal Alkoxide Next, various metal alkoxides as metal compounds used in the coating solution for forming a low reflection film in the present invention will be described in order.

[タングステンアルコキシド]
本発明において、低反射膜に酸化タングステンを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、タングステンアルコキシドを用いることが好ましい。
[Tungsten alkoxide]
In the present invention, in order to contain tungsten oxide in the low reflection film, it is preferable to use tungsten alkoxide which is excellent in stability without being precipitated in the coating liquid for forming the low reflection film.

このような、タングステンアルコキシドには、W(OR)またはW(OR)6−n(nは1≦n≦5、Rは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基、s―アミル基、2−エチルヘキシル基、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基またはフェニル基であり、Xはハロゲン原子を表す。)等が挙げられる。また、当該タングステンアルコキシドに、Ca、Fe、Mn等の無機・有機塩およびアルコキシドを共存させて焼成して得られたタングステン酸カルシウム、即ちCaWO、タングステン酸鉄、即ちFeWO、タングステン酸マンガン、即ち、MnWO等のタングステン酸化合物が挙げられる。 Such tungsten alkoxide includes W (OR) 6 or W (OR) 6-n X n (n is 1 ≦ n ≦ 5, R is independently a methyl group, an ethyl group, or an n-propyl group. I-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group, s-amyl group, 2-ethylhexyl group, methoxyethyl group, A methoxypropyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, or a phenyl group, and X represents a halogen atom). In addition, calcium tungstate obtained by firing in the presence of inorganic and organic salts such as Ca, Fe, Mn and alkoxide in the tungsten alkoxide, that is, CaWO 4 , iron tungstate, that is, FeWO 4 , manganese tungstate, That is, a tungstic acid compound such as MnWO 4 can be used.

本発明の低反射の製造方法おいて、中でも、W(OR)6−nClを用いることが好ましい。nは1≦n≦5、Rは、それぞれ独立にメチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基またはs―アミル基である。 In the low reflection manufacturing method of the present invention, it is particularly preferable to use W (OR) 6-n Cl n . n is 1 ≦ n ≦ 5, and R is independently methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group or s-amyl group.

中でも、W(OR)Clが好ましい。尚、Rは、それぞれ独立にメチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基またはs―アミル基である。 Among these, W (OR) 5 Cl is preferable. R is independently methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-amyl, i -Amyl group or s-amyl group.

W(OR)Clは、低反射膜形成用塗布液の液安定性に有用であり、メタノール、エタノールまたはIPAに分散した分散液とし、コロイダルシリカを含む分散液と混合して使用することが好ましい。 W (OR) 5 Cl is useful for the liquid stability of the coating solution for forming a low reflection film, and is used as a dispersion dispersed in methanol, ethanol or IPA, and mixed with a dispersion containing colloidal silica. preferable.

W(OR)Clは、IPA溶媒下、下記の反応で合成される。 W (OR) 5 Cl is synthesized by the following reaction in an IPA solvent.

WCl + 5Na(OR) → W(OR)Cl+5NaCl
[ニオブアルコキシド]
本発明において、低反射膜に酸化ニオブを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、ニオブアルコキシドを用いることが好ましい。
WCl 6 + 5Na (OR) → W (OR) 5 Cl + 5NaCl
[Niobium alkoxide]
In the present invention, in order to contain niobium oxide in the low reflection film, it is preferable to use a niobium alkoxide that is excellent in stability without being precipitated in the coating liquid for forming the low reflection film.

このようなニオブアルコキシドとしては、Nb(OR)、Nb(OR)5−n(nは1≦n≦4、Rは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基、s―アミル基、2−エチルヘキシル基、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基またはフェニル基である。Xはハロゲン原子である。)またはFe、Mnとの混合アルコキシド(Fe、Mn):Nb=1:2のものがある。 As such a niobium alkoxide, Nb (OR) 5 , Nb (OR) 5-n X n (n is 1 ≦ n ≦ 4, R is independently a methyl group, an ethyl group, an n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group, s-amyl group, 2-ethylhexyl group, methoxyethyl group, methoxy A propyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group or a phenyl group, X is a halogen atom) or a mixed alkoxide (Fe, Mn) with Fe and Mn: Nb = 1: 2. is there.

本発明において、中でも、Nb(OR)5−nClを用いることが好ましい。nは1≦n≦4、Rは、それぞれ独立にメチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基またはs―アミル基である。 In the present invention, it is particularly preferable to use Nb (OR) 5-n Cl n . n is 1 ≦ n ≦ 4, and R is independently methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group or s-amyl group.

中でも、Nb(OR)Clが好ましい。尚、Rは、それぞれ独立にメチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基またはs―アミル基である。 Among these, Nb (OR) 4 Cl is preferable. R is independently methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-amyl, i -Amyl group or s-amyl group.

Nb(OR)Clは、低反射膜形成用塗布液の液安定性のためには有用であり、メタノール、エタノールまたはIPAに分散した分散液としてコロイダルシリカを含む分散液と混合して使用することが好ましい。 Nb (OR) 4 Cl is useful for the stability of the coating solution for forming a low reflection film, and is used by mixing with a dispersion containing colloidal silica as a dispersion dispersed in methanol, ethanol or IPA. It is preferable.

Nb(OR)Clは、IPA溶媒下、下記の反応で合成される。 Nb (OR) 4 Cl is synthesized by the following reaction in an IPA solvent.

NbCl+4Na(OR) → Nb(OR)Cl+4NaCl
[タンタルアルコキシド]
本発明において、低反射膜に酸化タンタルを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、タンタルアルコキシドを用いることが好ましい。
NbCl 5 + 4Na (OR) → Nb (OR) 4 Cl + 4NaCl
[Tantalum alkoxide]
In the present invention, in order to contain tantalum oxide in the low reflection film, it is preferable to use tantalum alkoxide that is excellent in stability without being precipitated in the coating liquid for forming the low reflection film.

このようなタンタルアルコキシドとしては、Ta(OR)、Ta(OR)5−n(nは1≦n≦4、Rは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基、s―アミル基、2−エチルヘキシル基、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基またはフェニル基であり、Xはハロゲン原子である。)またはFe、Mnとの混合アルコキシド(Fe、Mn):Ta=1:2のものが挙げられる。 As such a tantalum alkoxide, Ta (OR) 5 , Ta (OR) 5- nXn (n is 1 <= n <= 4, R is respectively independently a methyl group, an ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group, s-amyl group, 2-ethylhexyl group, methoxyethyl group, methoxy A propyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, or a phenyl group, and X is a halogen atom.) Or a mixed alkoxide with Fe and Mn (Fe, Mn): Ta = 1: 2 Can be mentioned.

本発明において、中でも、Ta(OR)5−nClを用いることが好ましい。nは1≦n≦4、Rは、それぞれ独立にメチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基またはs―アミル基である。 In the present invention, among others, Ta (OR) is preferably used 5-n Cl n. n is 1 ≦ n ≦ 4, and R is independently methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group or s-amyl group.

中でも、Ta(OR)Clが好ましく、Rは、それぞれ独立にメチル基、エチル基、n−プロピル基、i−プロピル基、n-ブチル基、s-ブチル基、i−ブチル基、t―ブチル基、n―アミル基、i―アミル基またはs―アミル基である。 Of these, Ta (OR) 4 Cl is preferable, and each R is independently a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, an i-butyl group, t- A butyl group, an n-amyl group, an i-amyl group or an s-amyl group;

Ta(OR)Clは、低反射膜形成用塗布液の液安定性のために有用であり、メタノール、エタノールまたはIPAに分散した分散液としてコロイダルシリカを含む分散液と混合して使用することが好ましい。 Ta (OR) 4 Cl is useful for the liquid stability of a coating solution for forming a low reflection film, and is used by mixing with a dispersion containing colloidal silica as a dispersion dispersed in methanol, ethanol or IPA. Is preferred.

Ta(OR)Clは、IPA溶媒下、下記の反応で合成される。 Ta (OR) 4 Cl is synthesized by the following reaction in an IPA solvent.

TaCl+4Na(OR) → Ta(OR)Cl+4NaCl
[チタンアルコキシドおよび錯体]
本発明において、低反射膜に酸化チタンを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、チタンアルコキシドを用いることが好ましい。
TaCl 5 + 4Na (OR) → Ta (OR) 4 Cl + 4NaCl
[Titanium alkoxides and complexes]
In the present invention, in order to contain titanium oxide in the low reflection film, it is preferable to use a titanium alkoxide that is excellent in stability without being precipitated in the coating solution for forming the low reflection film.

このようなチタンアルコキシドとしては、一般式 Ti(OR) (Rは、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表されるアルコキシ化合物またはそれらの加水分解ゾルが挙げられ、テトラエトキシチタン、テトラノルマルプロポキシチタン、テトライソプロポキシチタンまたはテトラノルマルブトキシチタンが好適に用いられる。またそれらの縮重合した2〜10量体も用いられる。 As such a titanium alkoxide, the general formula Ti (OR) 4 (R is independently methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, secondary butyl group, methoxyethyl group, ethoxyethyl) Group or a phenyl group) or a hydrolyzed sol thereof, and tetraethoxytitanium, tetranormalpropoxytitanium, tetraisopropoxytitanium or tetranormalbutoxytitanium is preferably used. Moreover, those polycondensed dimer to dimer are also used.

またチタンアルコキシドの−ORが塩素原子等のハロゲン原子に置換したものでもよく、例えば、クロロトリエトキシチタン、ジクロロジノルマルブトキシチタンまたはトリクロロノルマルブトキシチタン等を用いることも可能である。   Moreover, what substituted -OR of titanium alkoxide by halogen atoms, such as a chlorine atom, may be used, for example, chlorotriethoxy titanium, dichloro dinormal butoxy titanium, or trichloro normal butoxy titanium may be used.

またチタン金属錯体は、一般式 Ti(OR)4−n で表される。式中、ORはアルコキシ基、Y:はキレートを示す。n:0〜3の整数を示す。Rは、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。 The titanium metal complex is represented by the general formula Ti (OR) n Y 4-n . In the formula, OR represents an alkoxy group, and Y: represents a chelate. n: An integer of 0 to 3 is shown. Each R is independently a methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, secondary butyl group, methoxyethyl group, ethoxyethyl group or phenyl group.

[ジルコニウムアルコキシド]
本発明において、低反射膜に酸化ジルコニウムを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、ジルコニウムアルコキシドを用いることが好ましい。
[Zirconium alkoxide]
In the present invention, in order to contain zirconium oxide in the low reflection film, it is preferable to use a zirconium alkoxide that is excellent in stability without being precipitated in the coating solution for forming the low reflection film.

このようなジルコニウムアルコキシドとしては、一般式 Zr(OR)、(Rは、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表されるアルコキシ化合物またはそれらの加水分解ゾルが挙げられる。 Such a zirconium alkoxide has the general formula Zr (OR) 4 , where R is independently methyl, ethyl, normal propyl, isopropyl, normal butyl, secondary butyl, methoxyethyl, ethoxy And an alkoxy compound thereof or a hydrolysis sol thereof.

かかるZrアルコキシドとしては、テトラエトキシジルコニウム、テトラノルマルプロポキシジルコニウム、テトライソプロポキシジルコニウムまたはテトラノルマルブトキシジルコニウムおよびそれらの加水分解物である水酸化ジルコニウムゾル等が好適に用いられる。   As such Zr alkoxide, tetraethoxyzirconium, tetranormalpropoxyzirconium, tetraisopropoxyzirconium, tetranormalbutoxyzirconium, and zirconium hydroxide sol which is a hydrolyzate thereof are preferably used.

またZrアルコキシドの−ORがハロゲンに置換したものでもよく、例えば、クロロトリエトキシジルコニウム、ジクロロジノルマルブトキシジルコニウムまたはトリクロロノルマルブトキシジルコニウム等が挙げられる。   Moreover, what substituted -OR of Zr alkoxide by the halogen may be sufficient, for example, chloro triethoxy zirconium, dichloro di normal butoxy zirconium, or trichloro normal butoxy zirconium etc. are mentioned.

[スズアルコキシド]
本発明において、低反射膜に酸化スズを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、スズアルコキシドを用いることが好ましい。
[Tin alkoxide]
In the present invention, in order to contain tin oxide in the low reflection film, it is preferable to use a tin alkoxide that is excellent in stability without being precipitated in the coating solution for forming the low reflection film.

このようなスズアルコキシドとしては、テトラエトキシスズ、テトラノルマルプロポキシスズ、テトライソプロポキシスズもしくはテトラノルマルブトキシスズ等のスズアルコキシドまたはそれらの加水分解ゾルが挙げられる。SnOは半導体であり、本発明の親水性低反射部材に有する親水性低反射膜に帯電防止の機能を与える。 Examples of such tin alkoxides include tin alkoxides such as tetraethoxytin, tetranormalpropoxytin, tetraisopropoxytin, and tetranormalbutoxytin, or hydrolyzed sols thereof. SnO 2 is a semiconductor, and imparts an antistatic function to the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention.

[アルミニウムアルコキシド]
本発明において、低反射膜に酸化アルミニウムを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、アルミニウムアルコキシドを用いることが好ましい。
[Aluminum alkoxide]
In the present invention, in order to contain aluminum oxide in the low reflection film, it is preferable to use an aluminum alkoxide that is excellent in stability without being precipitated in the coating solution for forming the low reflection film.

このようなアルミニウムアルコキシドは、一般式Al(OR)(Rは、それぞれ独立にメチル基、エチル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表されるアルコキシ化合物またはそれらの加水分解ゾルであって、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリノルマルプロポキシアルミニウムまたはトリセカンダリブチルアルミニウムが挙げられ、好適に用いることができる。 Such an aluminum alkoxide is represented by the general formula Al (OR) 3 (R is each independently a methyl group, an ethyl group, an isopropyl group, a normal butyl group, a secondary butyl group, a methoxyethyl group, an ethoxyethyl group, or a phenyl group. )), Or hydrolyzed sols thereof, such as triethoxyaluminum, triisopropoxyaluminum, trinormalpropoxyaluminum, or trisecondary butylaluminum, which can be suitably used.

また、アルミニウムアルコキシドの−ORを、塩素原子等のハロゲン原子で置換したものでもよく、クロロジイソプロポキシアルミニウム、クロロジセカンダリブチルアルミニウム、ジクロロイソプロポキシアルミニウムまたはジクロロセカンダリブチルアルミニウムが挙げられる。   Moreover, what substituted -OR of aluminum alkoxide by halogen atoms, such as a chlorine atom, may be sufficient, and chloro diisopropoxy aluminum, chloro disecondary butyl aluminum, dichloro isopropoxy aluminum, or dichloro secondary butyl aluminum is mentioned.

アルミニウム金属錯体は、一般式Al(OR)3−n、1≦n≦3で表される。式中、ORはアルコキシド、Y:はキレートを示す。ここでnは0〜3の整数を示す。Rは、それぞれ独立にメチル基、エチル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。また、キレートとしてはアセチルアセトン(以後acacと略すこともある)、アセト酢酸エチル、アセト酢酸メチル、アセト酢酸プロピル、トリフロロアセチルアセトン、ヘキサフロロアセチルアセトン、メタンスルフォン酸またはトリフロロメタンスルフォン酸が挙げられる。さらに、アルミニウムアルコキシドとこれらアルミニウム金属錯体の縮重合した2〜3量体も挙げられる。 The aluminum metal complex is represented by the general formula Al (OR) n Y 3-n , 1 ≦ n ≦ 3. In the formula, OR represents an alkoxide, and Y: represents a chelate. Here, n represents an integer of 0 to 3. R is each independently a methyl group, an ethyl group, an isopropyl group, a normal butyl group, a secondary butyl group, a methoxyethyl group, an ethoxyethyl group, or a phenyl group. Examples of the chelate include acetylacetone (hereinafter sometimes abbreviated as acac), ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, trifluoroacetylacetone, hexafluoroacetylacetone, methanesulfonic acid, or trifluoromethanesulfonic acid. Furthermore, the aluminum alkoxide and the condensation-polymerized 2-3 trimer of these aluminum metal complexes are also mentioned.

[ハフニウムアルコキシド]
本発明において、低反射膜に酸化ハフニウムを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、ハフニウムアルコキシドを用いることが好ましい。
[Hafnium alkoxide]
In the present invention, in order to contain hafnium oxide in the low reflection film, it is preferable to use hafnium alkoxide that is excellent in stability without being precipitated in the coating liquid for forming the low reflection film.

本発明の低反射膜の製造方法において、低反射膜に酸化ハフニウムを含有させるためのハフニウムアルコキシドには、一般式 Hf(OR) (Rは、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表されるアルコキシ化合物またはそれらの加水分解ゾルが挙げられる。 In the method for producing a low reflection film according to the present invention, the hafnium alkoxide for containing hafnium oxide in the low reflection film includes a general formula Hf (OR) 4 (R is each independently a methyl group, an ethyl group, or a normal propyl group). Group, isopropyl group, normal butyl group, secondary butyl group, methoxyethyl group, ethoxyethyl group or phenyl group.) Or a hydrolyzed sol thereof.

かかるハフニウムアルコキシドには、テトラエトキシハフニウム、テトラノルマルプロポキシハフニウム、テトライソプロポキシハフニウムまたはテトラノルマルブトキシハフニウムおよびそれらの加水分解物である水酸化ハフニウムゾル等が好適に用いられる。   As such a hafnium alkoxide, tetraethoxyhafnium, tetranormalpropoxyhafnium, tetraisopropoxyhafnium, tetranormalbutoxyhafnium, and a hafnium hydroxide sol which is a hydrolyzate thereof are preferably used.

またハフニウムアルコキシドの−ORがハロゲンに置換したものでもよく、例えば、クロロトリエトキシハフニウム、ジクロロジノルマルブトキシハフニウムまたはトリクロロノルマルブトキシハフニウムが挙げられる。   In addition, one in which —OR of hafnium alkoxide is substituted with halogen may be used, and examples thereof include chlorotriethoxyhafnium, dichlorodinormalbutoxyhafnium, and trichloronormalbutoxyhafnium.

[クロムアルコキシドおよび錯体]
本発明において、低反射膜に酸化クロムを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、クロムアルコキシドを用いることが好ましい。
[Chromium alkoxides and complexes]
In the present invention, in order to contain chromium oxide in the low reflection film, it is preferable to use a chromium alkoxide that is excellent in stability without being precipitated in the coating solution for forming the low reflection film.

このようなクロムアルコキシドには、一般式Cr(OR)(Rは、それぞれ独立にメチル基、エチル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表されるアルコキシ化合物またはそれらの加水分解ゾルであるトリエトキシクロム、トリイソプロポキシクロム、トリノルマルプロポキシクロムまたはトリセカンダリブチルクロムが挙げられ、好適に用いることができる。 Such a chromium alkoxide includes a general formula Cr (OR) 3 (wherein R is independently a methyl group, an ethyl group, an isopropyl group, a normal butyl group, a secondary butyl group, a methoxyethyl group, an ethoxyethyl group, or a phenyl group). And triethoxypropoxychromium, triisopropoxychromium, trinormalpropoxychrome or trisecondary butylchromium, which are hydrolyzed sols thereof, and can be suitably used.

その他錯体としてクロムアセチルアセトン、無機塩として硝酸クロム、塩化クロム、酢酸クロム、リン酸クロム、有機塩としてオクチル酸クロムまたはナフテン酸クロムも用いられる。   In addition, chromium acetylacetone is used as a complex, chromium nitrate, chromium chloride, chromium acetate, and chromium phosphate are used as inorganic salts, and octylate and naphthenate are used as organic salts.

[モリブデンアルコキシド]
本発明において、低反射膜に酸化モリブデンを含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、モリブデンアルコキシドを用いることが好ましい。
[Molybdenum alkoxide]
In the present invention, in order to contain molybdenum oxide in the low reflection film, it is preferable to use molybdenum alkoxide that is excellent in stability without being precipitated in the coating solution for forming the low reflection film.

モリブデンアルコキシドは、Mo(OR)、Mo(OR)6−n、(1≦n≦5であり、Rは、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、t-ブチル基、2-エチルヘキシル、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基またはフェニル基であり、Xはフッ素原子、塩素原子、臭素原子またはヨウ素原子である。)で表される。当該モリブデンアルコキシドにCa、Fe、Mn等の無機・有機塩およびアルコキシドを共存させて焼成後に得られた、モリブデン酸カルシウム、即ちCaMoO、モリブデン酸鉄、即ちFeMoO、モリブデン酸マンガン、即ちMnMoO等のモリブデン酸化合物を用いてもよい。 Molybdenum alkoxide is Mo (OR) 6 , Mo (OR) 6-n X n , (1 ≦ n ≦ 5, and R is independently methyl group, ethyl group, normal propyl group, isopropyl group, normal Butyl group, secondary butyl group, t-butyl group, 2-ethylhexyl, methoxyethyl group, methoxypropyl group, ethoxymethyl group, ethoxyethyl group, ethoxypropyl group or phenyl group, X is fluorine atom, chlorine atom, bromine It is an atom or an iodine atom.) The molybdenum alkoxides obtained Ca, Fe, after firing coexist inorganic or organic salts and alkoxides of Mn or the like, calcium molybdate, i.e. CaMoO 4, iron molybdate, i.e. FeMoO 4, molybdenum, manganese, i.e. MnMoO 4 A molybdate compound such as the above may be used.

[希土類アルコキシド・錯体]
本発明において、低反射膜に希土類を含有させるためには、低反射膜形成用塗布液中において析出することなく安定性に優れる、希土類アルコキシドを用いることができ、セリウムアルコキシドまたはランタンアルコキシドを用いることができる。
[Rare earth alkoxide complex]
In the present invention, in order to contain a rare earth in the low reflection film, it is possible to use a rare earth alkoxide that is excellent in stability without being precipitated in the coating liquid for forming the low reflection film, and use cerium alkoxide or lanthanum alkoxide. Can do.

希土類アルコキシドは、一般式 M(OR)(Mは希土類元素:La、Y、Ce、Pr、Nd、SmまたはEuを表し、Rは、それぞれ独立にメチル基、エチル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基である。)で表される。セリウムアルコキシドとしては、トリエトキシセリウム、トリイソプロポキシセリウムまたはトリノルマルプロポキシセリウムを挙げることができる。ランタンアルコキシドには、トリエトキシランタンがあり、トリノルマルプロポキシイットリウム、トリエトキシサマリウムも使用される。 The rare earth alkoxide is represented by the general formula M (OR) 3 (M represents a rare earth element: La, Y, Ce, Pr, Nd, Sm or Eu, and R is independently a methyl group, an ethyl group, an isopropyl group, or a normal butyl group. Group, secondary butyl group, methoxyethyl group, ethoxyethyl group or phenyl group). Examples of the cerium alkoxide include triethoxycerium, triisopropoxycerium, and trinormalpropoxycerium. The lanthanum alkoxide includes triethoxy lanthanum, and tri-propoxy yttrium and triethoxy samarium are also used.

その他、セリウムまたはランタンの錯体としてアセチルアセトン塩、希土類の無機塩として硝酸塩、塩化物、酢酸塩、リン酸塩、有機塩としてオクチル酸塩、ナフテン酸塩も用いられる。   In addition, acetylacetone salts as cerium or lanthanum complexes, nitrates, chlorides, acetates and phosphates as rare earth inorganic salts, octylates and naphthenates as organic salts are also used.

[シリカゾル]
ケイ素または金属の塩化物あるいはアルコキシドを加水分解して得られる酸化物を溶媒置換して製造したシリカおよび金属のゾルが市販されており、本発明の低反射膜の製造方法において、シリカ微粒子の原料に用いることができる。
[Silica sol]
Silica and metal sols produced by solvent substitution of oxides obtained by hydrolyzing silicon or metal chlorides or alkoxides are commercially available. In the method for producing a low reflection film of the present invention, silica fine particles are used as raw materials. Can be used.

例えば、オルガノシリカゾルは、日揮触媒化成株式会社より、商品名、オスカル1132、オスカル1232、オスカル1332、オスカル1432またはオスカル1632が、日産化学工業株式会社より、商品名、メタノールシリカゾル、IPA−ST、IPA−ST−UP、IPA−ST−ZL、EG−ST、NPC−ST−30、DMAC−ST、MEK−ST、市販される。オルガノアルミナゾルは、川研ファインケミカル株式会社より、商品名、アルミゾル−CSA55、アルミゾル−CSA110ADが市販される。   For example, organosilica sol is trade name, Oscar 1132, Oscar 1232, Oscar 1332, Oscar 1432 or Oscar 1632 from JGC Catalysts & Chemicals Co., Ltd., trade name, methanol silica sol, IPA-ST, IPA from Nissan Chemical Industries, Ltd. -ST-UP, IPA-ST-ZL, EG-ST, NPC-ST-30, DMAC-ST, MEK-ST, commercially available. As the organoalumina sol, trade names, Aluminum Sol-CSA55 and Aluminum Sol-CSA110AD are commercially available from Kawaken Fine Chemical Co., Ltd.

さらに、有機溶剤系酸化アンチモンゾルは、日産化学工業株式会社より、商品名、サンコロイドATL−130、サンコロイドAMT−130が市販される。   Furthermore, as the organic solvent-based antimony oxide sol, trade names, Sun Colloid ATL-130 and Sun Colloid AMT-130 are commercially available from Nissan Chemical Industries, Ltd.

また、水性分散液として市販されているゾルを溶媒置換して使用することもできる。   Alternatively, a commercially available sol as an aqueous dispersion can be used after solvent substitution.

このような水性ゾルは、例えば、日産化学工業株式会社より、商品名、スノーテックス40、スノーテックスO、スノーテックスCまたはスノーテックスNが市販され、日揮触媒化成株式会社より、商品名、カタロイドS−30H、カタロイドSI−30、カタロイドSNまたはカタロイドSAが市販され、旭電化工業株式会社より、商品名、アデライトAT−30、アデライトAT−20N、アデライトAT−20AまたはアデライトAT−20Qが市販され、日本化学工業株式会社より、商品名、シリカドール−30、シリカドール−20Aまたはシリカドール−20Bが市販され、水系酸化ケイ素ゾルは、日産化学工業株式会社より、商品名、アルミナゾル−100、アルミナゾル−200またはアルミナゾル−520が市販され、水系アルミナゾルは、川研ファインケミカル株式会社より、商品名、アルミナクリアーゾル、アルミゾル−10、アルミゾル−20、アルミゾル−SV−102またはアルミゾル−SH5が市販され、水系酸化アンチモンゾルは、日産化学工業株式会社より、商品名、A−1550、A−2550が市販され、水系酸化ジルコニウムゾルは、日産化学工業株式会社より、NZS−30A、NZS−30Bが市販され、水系酸化スズゾルは、多木化学株式会社より、商品名、セラメースS−8、セラメースC−10が市販され、水系酸化チタンゾルは、多木化学株式会社より、商品名、タイノックA−6、タイノックM−6が市販され、酸化スズと酸化アンチモンから成る水系ゾルは、多木化学株式会社より、商品名、セラメースF−10が市販される。   Such an aqueous sol is commercially available from Nissan Chemical Industries, Ltd. under the trade name, Snowtex 40, Snowtex O, Snowtex C or Snowtex N, and from JGC Catalysts & Chemicals Co., Ltd. -30H, Cataloid SI-30, Cataloid SN or Cataloid SA are commercially available from Asahi Denka Kogyo Co., Ltd. under the trade name, Adelite AT-30, Adelite AT-20N, Adelite AT-20A or Adelite AT-20Q, Product names, silica dol-30, silica doll-20A or silica doll-20B are commercially available from Nippon Chemical Industry Co., Ltd., and water-based silicon oxide sols are trade names, alumina sol-100, alumina sol- 200 or alumina sol-520 is commercially available, water Alumina sol is commercially available from Kawaken Fine Chemical Co., Ltd. under the trade name, alumina clear sol, aluminum sol-10, aluminum sol-20, aluminum sol-SV-102, or aluminum sol-SH5. , Trade names, A-1550 and A-2550 are commercially available. Aqueous zirconium oxide sol is commercially available from Nissan Chemical Industries, Ltd. NZS-30A and NZS-30B are commercially available. Aqueous tin oxide sol is available from Taki Chemical Co., Ltd. Trade names, Cerames S-8 and Cerames C-10 are commercially available, and water-based titanium oxide sols are commercially available from Taki Chemical Co., Ltd. under the trade names, Tynock A-6, Tynock M-6, tin oxide and antimony oxide. The water-based sol consisting of is commercially available from Taki Chemical Co., Ltd. under the trade name Cerames F-10. It is.

5.低反射膜形成用塗布液の安定性
透明基板に塗布する低反射膜形成用塗布液は、長期安定性が必要であり、室温で30日以上、保存できることが好ましい。低反射膜形成用塗布液に、上記の加水分解可能な金属アルコキシドを混合する際、1種類のみの金属アルコキシドの混合で、低反射膜に、目的とする波長の屈折率の低減が図れない場合は、2〜4種の金属化合物を混合させる必要がある。このような混合において、金属化合物が1種類の場合は比較的安定なゾルとして存在できる場合であっても、混合した金属化合物の相溶性が合わない場合はゲル化、凝集、沈殿してしまい均一な塗膜を得ることが困難となる場合がある。
5. Stability of Low Reflective Film Forming Coating Liquid The low reflective film forming coating liquid applied to a transparent substrate needs long-term stability and is preferably stored at room temperature for 30 days or longer. When mixing the above hydrolyzable metal alkoxide with the coating solution for forming a low reflection film, it is not possible to reduce the refractive index of the target wavelength in the low reflection film by mixing only one type of metal alkoxide. It is necessary to mix 2-4 types of metal compounds. In such mixing, even if there is only one kind of metal compound, it can exist as a relatively stable sol, but if the mixed metal compound does not match, gelation, aggregation and precipitation will occur uniformly. It may be difficult to obtain a simple coating film.

一般的にコロイドの安定性は、ゼータ電位が重要であり、液中に分散したコロイド粒子は、多くの場合、それ自体のイオン性、双極子特性等により正または負に帯電しており、これらのコロイド粒子は、表面電荷を中和する量の反対符号の電荷で囲まれ、固定層と拡散層から成る電気二重層を形成している。   In general, the zeta potential is important for the stability of the colloid, and the colloidal particles dispersed in the liquid are often charged positively or negatively due to their own ionicity, dipole characteristics, etc. These colloidal particles are surrounded by charges of the opposite sign in an amount that neutralizes the surface charge, and form an electric double layer composed of a fixed layer and a diffusion layer.

ゼータ電位とは、溶液中の微粒子の周りに形成する電気二重層中の、液体流動が起こり始める「すべり面」の電位として定義される。ゼータ電位がゼロに近づくと、コロイド粒子の相互の反発力は弱まりやがて凝集してしまう。ゼータ電位は界面の性質を評価する上で重要な値である。特にコロイドの分散・凝集性、相互作用等の安定性を制御する上での重要な指標となる。コロイド粒子の凝集や分散の制御は、金属アルコキシドを複数混合して使用する場合、コロイドの安定性、ポットライフに考慮して、使用する金属アルコキシドを慎重に選択する必要がある。   The zeta potential is defined as the “slip surface” potential at which liquid flow starts to occur in the electric double layer formed around the fine particles in the solution. As the zeta potential approaches zero, the repulsive forces of the colloidal particles weaken and eventually aggregate. The zeta potential is an important value in evaluating the properties of the interface. In particular, it is an important index for controlling the stability of colloidal dispersion / aggregation and interaction. In controlling the aggregation and dispersion of colloidal particles, when a plurality of metal alkoxides are mixed and used, it is necessary to carefully select the metal alkoxide to be used in consideration of colloidal stability and pot life.

コロイド粒子は表面積をなるべく小さくした方が安定する。表面積が大きいと、コロイド粒子は凝集しようとする傾向がある。金属アルコキシドは、溶液中で極めて小さい微粒子として存在し、コロイダルシリカの様な比較的大きいコロイド粒子の周囲を取り巻くようにすることで、コロイド粒子がより分散し、安定化すると推定される。   Colloidal particles are more stable when the surface area is made as small as possible. When the surface area is large, the colloidal particles tend to aggregate. It is presumed that the metal alkoxide exists as very small fine particles in the solution, and the colloidal particles are more dispersed and stabilized by surrounding the relatively large colloidal particles such as colloidal silica.

一方、コロイド粒子は帯電しており、粒子間には静電的な反発が働く。ゼータ電位が、コロイドの分散・凝集性、相互作用等、安定性の指標となる。ゼータ電位がゼロに近づくとコロイド粒子の凝集する傾向が静電的反発に打ち勝つため、コロイド粒子の凝集が起こる。逆にゼータ電位の絶対値を大きくするような添加剤をコロイド粒子表面に吸着させることや、pH制御で安定なコロイドを得ることが可能となる。   On the other hand, colloidal particles are charged, and electrostatic repulsion works between the particles. The zeta potential is an indicator of stability such as colloidal dispersion / aggregation and interaction. As the zeta potential approaches zero, the tendency of the colloidal particles to aggregate overcomes the electrostatic repulsion, causing the colloidal particles to aggregate. Conversely, an additive that increases the absolute value of the zeta potential can be adsorbed on the surface of the colloidal particles, and a stable colloid can be obtained by pH control.

また、ゾル中の金属酸化物前駆体、例えば、金属アルコキシドの安定性を比較したとき、アルコキシシラン等のSi系アルコキシドは加水分解が遅く、経時によるゲル化および固形分の析出なく比較的安定であるが、Al系、Zr系、Ti系、Sn、遷移金属、希土類系のアルコキシドは不安定であることが、当業者には知られている。   In addition, when comparing the stability of metal oxide precursors in sols, such as metal alkoxides, Si-based alkoxides such as alkoxysilanes are slow to hydrolyze and are relatively stable without gelation and solids precipitation over time. However, it is known to those skilled in the art that Al, Zr, Ti, Sn, transition metal, and rare earth alkoxides are unstable.

本発明の低反射膜の形成方法に使用する低反射膜形成用塗布液は、棒状および球状の形状の異なるコロイダルシリカと、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデンまたは希土類(ランタン、セリウム)から選ばれた少なくとも1種の金属アルコキシドまたはその加水分解物が混合したものであり、特に、前記コロイダルシリカと、タングステン、ニオブまたはタンタルから選ばれた少なくとも1種の金属アルコキシドの組合せにおいて長期に安定であることを見出したものである。   The coating solution for forming a low reflection film used in the method for forming a low reflection film of the present invention includes colloidal silica having different rod-like and spherical shapes, tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, It is a mixture of at least one metal alkoxide selected from molybdenum or rare earth (lanthanum, cerium) or a hydrolyzate thereof, and in particular, at least one selected from the colloidal silica and tungsten, niobium or tantalum. It has been found that the combination of metal alkoxides is stable for a long time.

6.低反射部材
シリカのみからなるシリカコート膜を表面に形成してなる低反射部材は、波長500nmにおける透過率が高い。異なる形状のシリカ微粒子を、金属酸化物をバインダーとし接合させた本発明の低反射膜を表面に形成した低反射部材においても、波長500nmをピークとする透過率曲線を与えるものと類推された。しかしながら、実際には、最大透過率のピークはやや長波長側、500nm〜900nmの範囲内にシフトして、それに伴い長波長領域の透過率が高くなる傾向がある。このことは、本発明の低反射膜が形成された低反射部材の平均透過率が高くなる要因である。
6). Low Reflective Member A low reflective member formed on the surface of a silica coat film made only of silica has a high transmittance at a wavelength of 500 nm. The low reflection member formed on the surface of the low reflection film of the present invention in which silica fine particles having different shapes are bonded to each other using a metal oxide as a binder is presumed to give a transmittance curve having a peak at a wavelength of 500 nm. However, in practice, the peak of maximum transmittance slightly shifts in the range of 500 nm to 900 nm on the long wavelength side, and accordingly, the transmittance in the long wavelength region tends to increase. This is a factor that increases the average transmittance of the low reflection member on which the low reflection film of the present invention is formed.

シリカ微粒子の全個数の90%以上が、長径が5nm以上、100nm以下、長径/短径=2以上、10以下である棒状シリカ微粒子と、粒径が5nm以上、50nm以下である球状シリカ微粒子を含む分散液に、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデン、セリウムおよびランタンからなる群より選ばれた少なくとも1種の金属化合物を含む分散液を混合させてなる低反射膜形成用塗布液を透明基体に塗布した後に加熱焼成して、低反射膜を形成してなる低反射は、この傾向が顕著であり、500nm以上、1200nm以下の波長域において、透過率が改善された。これは前記金属アルコキシドの焼成によって生じた金属酸化物の含有効果による。   90% or more of the total number of silica fine particles includes rod-like silica fine particles having a major axis of 5 nm to 100 nm and a major axis / minor axis = 2 to 10 and spherical silica particles having a particle diameter of 5 nm to 50 nm. A dispersion liquid containing at least one metal compound selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum, cerium, and lanthanum is mixed with the dispersion liquid. This tendency is conspicuous in the low reflection formed by applying the low reflection film-forming coating liquid on the transparent substrate and then baking by heating to form a low reflection film. In the wavelength region of 500 nm or more and 1200 nm or less, the transmittance Improved. This is due to the inclusion effect of the metal oxide generated by firing the metal alkoxide.

シリカ微粒子と各金属酸化物、即ち、酸化タングステン(WO、屈折率1.75)、酸化ニオブ(五酸化ニオブ:Nb、屈折率1.9)、酸化タンタル(五酸化タンタル:Ta、屈折率2.0)、酸化チタン(TiO、屈折率2.2)、酸化ジルコニウム(ジルコニア:ZrO、屈折率1.85)、酸化スズ(SnO、屈折率1.7、酸化アルミニウム(アルミナ:Al、屈折率1.65)、酸化ハフニウム(ハフニア:HfO、屈折率1.90)、酸化クロム(Cr、屈折率2.1)、酸化モリブデン(Mo0、Mo0、屈折率1.80)、酸化セリウム(セリア:CeO、屈折率1.8)または酸化ランタン(La、屈折率1.75)については、それぞれの相性もあり、組合せにおいて、単なる屈折率の単純な平均値にはならない。シリカ微粒子と金属酸化物が共存する場合、その組合せによって特定の波長範囲の透過率を高める傾向が見られる。当該波長の範囲を厳密に規定することはできないが、金属酸化物の屈折率が低い場合は、シリカ単独の透過率曲線の最大値を示すピークよりも、やや長波長側にシフトする。そして金属酸化物の屈折率が高くなるに従い、さらに長波長側に最大値のピークを示すようになる。 Silica fine particles and metal oxides, that is, tungsten oxide (WO 3 , refractive index 1.75), niobium oxide (niobium pentoxide: Nb 2 O 5 , refractive index 1.9), tantalum oxide (tantalum pentoxide: Ta 2 O 5 , refractive index 2.0), titanium oxide (TiO 2 , refractive index 2.2), zirconium oxide (zirconia: ZrO 2 , refractive index 1.85), tin oxide (SnO 2 , refractive index 1.7). Aluminum oxide (alumina: Al 2 O 3 , refractive index 1.65), hafnium oxide (hafnia: HfO 2 , refractive index 1.90), chromium oxide (Cr 2 O 3 , refractive index 2.1), molybdenum oxide (MO0 2, MO0 3, refractive index 1.80), cerium oxide: for (ceria CeO 2, refractive index 1.8) or lanthanum oxide (La 2 O 3, the refractive index 1.75), respectively In combination, it does not become a simple average value of refractive index.When silica fine particles and metal oxide coexist, the combination tends to increase the transmittance in a specific wavelength range. Although the range cannot be strictly defined, when the refractive index of the metal oxide is low, the shift is slightly longer than the peak indicating the maximum value of the transmittance curve of silica alone. As the refractive index increases, the peak of the maximum value is further shown on the longer wavelength side.

従って、この性質を利用して、屈折率の異なる数種の金属酸化物をシリカ微粒子と混合した場合、例えば、屈折率の比較的低い金属酸化物は可視領域の透過性を、それより屈折率の高い金属酸化物はさらに長い波長領域の透過性を高める傾向にあるので、これらを適宜組合せることにより、金属酸化物が屈折率調整材として働き、幅広い波長で透過率を増大させると思われる。   Therefore, using this property, when several kinds of metal oxides having different refractive indexes are mixed with silica fine particles, for example, a metal oxide having a relatively low refractive index has a higher transmittance in the visible region. Higher metal oxides tend to increase the transmittance in a longer wavelength region, so by combining them appropriately, the metal oxides will act as a refractive index adjuster and will increase the transmittance over a wide range of wavelengths. .

本発明の低反射膜を形成するための基体としての透明基板には、無機質のガラス基材、以外に有機質のプラスチック製基材等を用いることが出来る。無機質のガラス基材の例としては、ソーダライムシリケートガラス、硼珪酸ガラス、アルミノ珪酸ガラス、バリウム硼珪酸ガラスまたは石英ガラス等の板状のものを用いることができる。さらには、これらガラス基材は、クリアガラス品、グリーン、ブロンズ等の着色ガラス品、UV、IRカットガラス等の機能性ガラス品、強化ガラス、半強化ガラス、合せガラス等の安全ガラス品も使用されうる。また、セラミックスとしてはSi、SiC、サファイヤ、Siウェハー、GaAs、InPまたはAlN等の基板にも使用される。 For the transparent substrate as the substrate for forming the low reflection film of the present invention, an organic plastic substrate or the like can be used in addition to the inorganic glass substrate. As an example of the inorganic glass substrate, a plate-like material such as soda lime silicate glass, borosilicate glass, aluminosilicate glass, barium borosilicate glass or quartz glass can be used. Furthermore, these glass substrates also use clear glass products, colored glass products such as green and bronze, functional glass products such as UV and IR cut glass, and safety glass products such as tempered glass, semi-tempered glass, and laminated glass. Can be done. As the ceramic Si 3 N 4, SiC, sapphire, Si wafers, GaAs, also used in the substrate, such as InP or AlN.

プラスチック製基材の例としては、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)またはポリイミド等が挙げられる。   Examples of the plastic substrate include polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), triacetyl cellulose (TAC), and polyimide.

本発明の低反射膜は、単層膜においても極めて低い反射率を示すため、透明基体の片面または両面に形成した場合、高い平均透過率の低反射部材が得られた。   Since the low reflection film of the present invention exhibits an extremely low reflectance even in a single layer film, a low reflection member having a high average transmittance was obtained when formed on one or both surfaces of a transparent substrate.

本発明の低反射部材は、太陽電池用カバーガラスとして有用である。太陽電池用カバーガラスとして使用する場合においては、高い平均透過率および低い平均反射率が要求されるうえ、太陽電池は太陽光に常時暴露されるため、防汚性、耐水性および耐候性等を併せ持つ材料が望まれる。前述のように本発明の形状の異なる前記コロイダルシリカと、タングステン、タンタルまたはニオブから選ばれた少なくとも1種の金属化合物を用いた本発明の低反射部材としての低反射膜付ガラス板は、防汚性、耐熱性または耐摩耗性等の、耐候性に優れる。   The low reflection member of the present invention is useful as a cover glass for solar cells. When used as a cover glass for solar cells, high average transmittance and low average reflectance are required, and since solar cells are constantly exposed to sunlight, antifouling properties, water resistance, weather resistance, etc. The material which it has together is desired. As described above, the glass plate with a low reflection film as the low reflection member of the present invention using the colloidal silica having a different shape according to the present invention and at least one metal compound selected from tungsten, tantalum, or niobium is provided. Excellent weather resistance such as dirtiness, heat resistance or wear resistance.

また、近年開発されている、CIS薄膜系の薄膜太陽電池および結晶性シリコンは、波長400nm以上、1200nm以下の幅広い吸収を有しており、従来のアモルファスシリコン系と比較して長波長域の光を吸収することが可能で、その吸収のピークが900nm付近にある。前述のように、本発明の低反射膜の形成方法による低反射膜は、紫外・可視光波長域、300nm以上、800nm以下、および近赤外波長域、800nm以上、1200nm以下での高い光透過性を有するので、アモルファスシリコン系太陽電池はもちろんのこと、長波長域に吸収を有する太陽電池用のカバーガラスとして好適に用いられる。   In addition, CIS thin film solar cells and crystalline silicon, which have been developed in recent years, have wide absorption at wavelengths of 400 nm or more and 1200 nm or less, and light in a longer wavelength range than conventional amorphous silicon systems. The absorption peak is in the vicinity of 900 nm. As described above, the low reflection film according to the method of forming a low reflection film of the present invention has high light transmission in the ultraviolet / visible wavelength range, 300 nm to 800 nm, and the near infrared wavelength range, 800 nm to 1200 nm. Therefore, it is suitably used as a cover glass for solar cells having absorption in a long wavelength region as well as amorphous silicon solar cells.

実施例に基づき、本発明の低反射膜およびその形成方法およびそれを用いた低反射部材を示すが、本発明は、以下の実施例に限定されるものではない。   Although the low reflective film of this invention, its formation method, and the low reflective member using the same are shown based on an Example, this invention is not limited to a following example.

最初に基体上に低反射膜を形成するための低反射膜形成用塗布液について説明する。   First, a coating solution for forming a low reflection film for forming a low reflection film on a substrate will be described.

[タングステンアルコキシドを用いた低反射膜形成用塗布液]
形状の異なる2種類のコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)とタングステンアルコキシドを用いた低反射膜形成用塗布液であって、コロイダルシリカに対するタングステンアルコキシドの含有が酸化物換算で14質量%である低反射膜形成用塗布液(実施例1)、コロイダルシリカに対するタングステンアルコキシドの含有が酸化物換算で40質量%である低反射膜形成用塗布液(実施例2)およびコロイダルシリカに対するタングステンアルコキシドの含有が酸化物換算で50質量%である低反射膜形成用塗布液(比較例1)を用意した。
[Coating solution for forming low reflection film using tungsten alkoxide]
A coating solution for forming a low reflection film using two types of colloidal silica (rod-shaped colloidal silica + spherical colloidal silica) and tungsten alkoxide having different shapes, and the tungsten alkoxide content relative to the colloidal silica is 14% by mass in terms of oxide. A coating solution for forming a low reflection film (Example 1), a coating solution for forming a low reflection film (Example 2) in which the content of tungsten alkoxide in colloidal silica is 40% by mass in terms of oxide, and tungsten alkoxide in colloidal silica. A coating solution for low reflection film formation (Comparative Example 1) containing 50% by mass in terms of oxide was prepared.

次いで、棒状コロイダルシリカとタングステンアルコキシドを用い、棒状コロイダルシリカに対するタングステンアルコキシドの含有が20質量%の低反射膜形成用塗布液(実施例3)を用意した。   Next, using a rod-shaped colloidal silica and tungsten alkoxide, a coating solution for forming a low reflection film (Example 3) having a tungsten alkoxide content of 20 mass% with respect to the rod-shaped colloidal silica was prepared.

次いで、球状コロイダルシリカとタングステンアルコキシドを用い、球状コロイダルシリカに対するタングステンアルコキシドの含有が20質量%の低反射膜形成用塗布液(実施例4)を用意した。   Next, using a spherical colloidal silica and tungsten alkoxide, a coating solution for forming a low reflection film (Example 4) having a tungsten alkoxide content of 20 mass% with respect to the spherical colloidal silica was prepared.

[ニオブアルコキシドを用いた低反射膜形成用塗布液]
形状の異なる2種類のコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)とニオブアルコキシドを用いた低反射膜形成用塗布液であって、コロイダルシリカに対するニオブアルコキシドの含有が酸化物換算で25質量%である低反射膜形成用塗布液(実施例5)、コロイダルシリカに対するニオブアルコキシドの含有が酸化物換算で40質量%である低反射膜形成用塗布液(実施例6)およびコロイダルシリカに対するニオブアルコキシドの含有が酸化物換算で50質量%である低反射膜形成用塗布液(比較例2)を用意した。
[Coating solution for forming low reflection film using niobium alkoxide]
A coating solution for forming a low-reflection film using two types of colloidal silica (rod-shaped colloidal silica + spherical colloidal silica) and niobium alkoxide having different shapes, and the niobium alkoxide content relative to the colloidal silica is 25% by mass in terms of oxide. A coating solution for forming a low reflection film (Example 5), a coating solution for forming a low reflection film having a niobium alkoxide content of 40 mass% in terms of oxide (Example 6), and a niobium alkoxide for colloidal silica. A coating solution for forming a low reflection film (Comparative Example 2) containing 50% by mass in terms of oxide was prepared.

次いで、棒状コロイダルシリカとニオブアルコキシドを用い、棒状コロイダルシリカに対するニオブアルコキシドの含有が20質量%の低反射膜形成用塗布液(実施例7)を用意した。   Next, using a rod-shaped colloidal silica and niobium alkoxide, a coating solution for forming a low reflection film (Example 7) having a niobium alkoxide content of 20 mass% with respect to the rod-shaped colloidal silica was prepared.

次いで、球状コロイダルシリカとニオブアルコキシドを用い、球状コロイダルシリカに対するニオブアルコキシドの含有が20質量%の低反射膜形成用塗布液(実施例8)を用意した。   Next, using a spherical colloidal silica and niobium alkoxide, a coating solution for forming a low reflection film (Example 8) having a niobium alkoxide content of 20 mass% with respect to the spherical colloidal silica was prepared.

[タンタルアルコキシドを用いた低反射膜形成用塗布液の調製]
形状の異なる2種類のコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)とタンタルアルコキシドを用いた低反射膜形成用塗布液であって、コロイダルシリカに対するタンタルアルコキシドの含有が酸化物換算で20質量%である低反射膜形成用塗布液(実施例9)、コロイダルシリカに対するタンタルアルコキシドの含有が酸化物換算で40質量%である低反射膜形成用塗布液(実施例10)およびコロイダルシリカに対するタンタルアルコキシドの含有が酸化物換算で50質量%である低反射膜形成用塗布液(比較例3)を用意した。
[Preparation of coating solution for forming low reflection film using tantalum alkoxide]
A coating solution for forming a low reflection film using two types of colloidal silica (rod-shaped colloidal silica + spherical colloidal silica) and tantalum alkoxide having different shapes, and the content of tantalum alkoxide with respect to colloidal silica is 20% by mass in terms of oxide. A coating solution for forming a low reflection film (Example 9), a coating solution for forming a low reflection film (Example 10) in which the content of tantalum alkoxide with respect to colloidal silica is 40% by mass in terms of oxide, and tantalum alkoxide with respect to colloidal silica. A coating liquid for forming a low reflection film (Comparative Example 3) containing 50% by mass in terms of oxide was prepared.

次いで、棒状コロイダルシリカとタンタルアルコキシドを用い、棒状コロイダルシリカに対するタンタルアルコキシドの含有が20質量%の低反射膜形成用塗布液(実施例11)を用意した。   Next, using a rod-shaped colloidal silica and tantalum alkoxide, a coating solution for forming a low reflection film (Example 11) having a tantalum alkoxide content of 20 mass% with respect to the rod-shaped colloidal silica was prepared.

次いで、球状コロイダルシリカとタンタルアルコキシドを用い、球状コロイダルシリカに対するタングステンアルコキシドの含有が20質量%の低反射膜形成用塗布液(実施例12)を用意した。   Next, using a spherical colloidal silica and tantalum alkoxide, a coating solution for forming a low reflection film (Example 12) having a tungsten alkoxide content of 20 mass% with respect to the spherical colloidal silica was prepared.

[比較例の塗布液]
次いで、2種類のコロイダルシリカのみを用い、金属アルコキシドを用いない塗布液(比較例4)を用意した。また、2種類のコロイダルシリカとTEOSを用いた塗布液(比較例5)を用意した。また、タングステンアルコキシドのみ(比較例6)、ニオブアルコキシドのみ(比較例7)またはタンタルアルコキシド(比較例8)のみからなる塗布液を用意した。
[Coating liquid of comparative example]
Next, a coating solution (Comparative Example 4) using only two types of colloidal silica and not using a metal alkoxide was prepared. Moreover, the coating liquid (Comparative Example 5) using two types of colloidal silica and TEOS was prepared. Also, a coating solution consisting of only tungsten alkoxide (Comparative Example 6), only niobium alkoxide (Comparative Example 7) or tantalum alkoxide (Comparative Example 8) was prepared.

実施例1〜12による低反射膜形成用塗布液および比較例1〜8の塗布液をガラス基板に被覆し低反射膜を成形し、得られた低反射膜付きガラス基板の物性評価を行った。尚、ガラス基板には、フロート法によるソーダライムシリケートガラスを用いた。   The glass substrate was coated with the coating solution for forming a low reflection film according to Examples 1 to 12 and the coating solution of Comparative Examples 1 to 8 to form a low reflection film, and physical properties of the obtained glass substrate with a low reflection film were evaluated. . In addition, soda-lime silicate glass by the float process was used for the glass substrate.

以上、実施例1〜12の低反射膜形成用塗布液および比較例1〜8の塗布液の組成について、表1に纏める。

Figure 2012148950
The compositions of the low reflection film forming coating solutions of Examples 1 to 12 and the coating solutions of Comparative Examples 1 to 8 are summarized in Table 1.
Figure 2012148950

次いで、実施例1〜12の低反射膜形成用塗布液および比較例1〜8の塗布液を、厚み3mm、大きさ100mm×100mmの無色透明なガラス基板に塗布し低反射膜付きガラス基板を得た。得られた低反射膜付きガラス基板の物性評価方法を表2に示す。

Figure 2012148950
Subsequently, the coating liquid for forming a low reflection film of Examples 1 to 12 and the coating liquid of Comparative Examples 1 to 8 were applied to a colorless and transparent glass substrate having a thickness of 3 mm and a size of 100 mm × 100 mm to obtain a glass substrate with a low reflection film. Obtained. Table 2 shows a method for evaluating physical properties of the obtained glass substrate with a low reflection film.
Figure 2012148950

以下、本発明の実施例1〜12、比較例1〜5について詳細に説明する。   Hereinafter, Examples 1 to 12 and Comparative Examples 1 to 5 of the present invention will be described in detail.

[実施例1〜4、比較例1(タングステンアルコキシドを用いた例)]
以下、実施例1〜4、比較例2にタングステンアルコキシドを用いた例を示す。
[Examples 1 to 4, Comparative Example 1 (example using tungsten alkoxide)]
Hereinafter, Examples 1 to 4 and Comparative Example 2 using tungsten alkoxide are shown.

実施例1
<コロイダルシリカ分散液の調製>
容量1000mlの3口フラスコに、棒状コロイダルシリカのイソプロパノール(以下、IPAと略する)分散液(日産化学工業株式会社製、品番、IPA−ST、固形分濃度30.3質量%、長径10nm〜20nm)16.34gを量り入れ、エタノール231.21gを撹拌しながら加えた。次いで、球状コロイダルシリカの分散液(日揮触媒化成株式会社製、品番、OSCAL1432、固形分濃度20.2質量%、粒径5nm〜10nm)12.28gに、エタノール111.50gを撹拌しながら加えたものを混合して、コロイダルシリカ分散液、371.3gを得た。
Example 1
<Preparation of colloidal silica dispersion>
In a three-necked flask with a volume of 1000 ml, a rod-shaped colloidal silica isopropanol (hereinafter abbreviated as IPA) dispersion (manufactured by Nissan Chemical Industries, Ltd., product number, IPA-ST, solid content concentration 30.3 mass%, major axis 10 to 20 nm). ) 16.34 g was weighed in and 231.21 g of ethanol was added with stirring. Subsequently, 111.50 g of ethanol was added to 12.28 g of a spherical colloidal silica dispersion (manufactured by JGC Catalysts & Chemicals, product number, OSCAL1432, solid concentration 20.2 mass%, particle size 5 nm to 10 nm) with stirring. Those were mixed to obtain 371.3 g of a colloidal silica dispersion.

棒状コロイダルシリカと球状コロイダルシリカの混合比は質量比で67:33であった。   The mixing ratio of the rod-shaped colloidal silica and the spherical colloidal silica was 67:33 by mass ratio.

<タングステンアルコキシド分散液の調製>
窒素気流下で、六塩化タングステン(WCl)5.86gを、容量300mlの3口フラスコに採取し、5℃に氷冷したIPAを79.5g加えた。これに金属ナトリウム(和光純薬工業株式会社製)、1.70gを加え、次に75℃下に24時間、窒素雰囲気中で還流を行い、室温(約20℃)まで冷却した。次いで、加圧ろ過を行い、タングステンアルコキシド(W(OCH(CHCl)と副生成物のNaClを濾別した。濾液中のタングステンの濃度はWO換算で4.22質量%であった。このようにして、タングステンアルコキシド(W(OCH(CHCl)の分散液を約70g得た。
<Preparation of tungsten alkoxide dispersion>
Under a nitrogen stream, 5.86 g of tungsten hexachloride (WCl 6 ) was collected in a 300 ml three-necked flask, and 79.5 g of IPA cooled to 5 ° C. was added. To this was added 1.70 g of metallic sodium (manufactured by Wako Pure Chemical Industries, Ltd.), then refluxed in a nitrogen atmosphere at 75 ° C. for 24 hours, and cooled to room temperature (about 20 ° C.). Subsequently, pressure filtration was performed, and tungsten alkoxide (W (OCH 2 (CH 3 ) 2 ) 5 Cl) and NaCl as a by-product were separated by filtration. The concentration of tungsten in the filtrate was 4.22% by mass in terms of WO 3 . In this way, about 70 g of a dispersion of tungsten alkoxide (W (OCH 2 (CH 3 ) 2 ) 5 Cl) was obtained.

<低反射膜形成用塗布液の調製>
前記コロイダルシリカ分散液179.8gに、窒素雰囲気中で室温下、撹拌しながら、上記で合成したタングステンアルコキシド分散液、13.9gを3時間かけて徐々に滴下し、淡茶褐色の透明な液を得た。混合後、さらに窒素雰囲気下、70℃下に6時間還流して、コロイダルシリカとタングステンアルコキシドを酸化物換算の質量比でSiO:WO=86:14、即ち、タングステンアルコキシドが酸化物換算で14質量%になるように調製し、固形分濃度2.2質量%の低反射膜形成用塗布液とした。
<Preparation of coating solution for forming low reflection film>
While stirring at room temperature in a nitrogen atmosphere at room temperature in 179.8 g of the colloidal silica dispersion, 13.9 g of the tungsten alkoxide dispersion synthesized above was gradually added dropwise over 3 hours to give a pale brown transparent liquid. Obtained. After mixing, the mixture is further refluxed at 70 ° C. for 6 hours under a nitrogen atmosphere, and the colloidal silica and tungsten alkoxide in terms of mass ratio in terms of oxide are SiO 2 : WO 3 = 86: 14, that is, tungsten alkoxide in terms of oxide. A coating solution for forming a low reflection film having a solid concentration of 2.2% by mass was prepared to 14% by mass.

<低反射膜付きガラス基板の作製>
厚み3mm、大きさ100mm×100mmのガラス基板の表面をアルミナ粒子で湿式研磨し、蒸留水、次いでIPAで洗浄後、100℃に加熱して乾燥させた。表面の状態を確認するために、純水の接触角を測定したところ、接触角5°以下の強い親水性を示し、清浄であった。
<Production of glass substrate with low reflection film>
The surface of a glass substrate having a thickness of 3 mm and a size of 100 mm × 100 mm was wet-polished with alumina particles, washed with distilled water and then with IPA, and then heated to 100 ° C. and dried. When the contact angle of pure water was measured in order to confirm the surface state, it showed a strong hydrophilic property with a contact angle of 5 ° or less and was clean.

次いで、ガラス基板の表面に、ディップ法による低反射膜の形成を行った。   Next, a low reflection film was formed on the surface of the glass substrate by a dip method.

前記低反射膜形成用塗布液に、洗浄したガラス基板を浸漬し、上向きに、速度3.4mm/secで引き上げ、低反射膜形成用塗布液をガラス基板の両面に塗布した。50℃下に30分間乾燥させ、さらに110℃で60分乾燥させた。これを750℃に加熱した焼成炉に投入して、150秒間保持した後に取り出し、室温下で急冷し、淡青色の反射色を有する低反射膜を両面に成膜してなる低反射膜付きガラス基板を得た。   The washed glass substrate was dipped in the low reflection film forming coating solution and pulled upward at a speed of 3.4 mm / sec to apply the low reflection film forming coating solution to both surfaces of the glass substrate. It was dried at 50 ° C. for 30 minutes and further dried at 110 ° C. for 60 minutes. This is put into a baking furnace heated to 750 ° C., held for 150 seconds, taken out, rapidly cooled at room temperature, and formed with a low reflection film having a light blue reflection color on both sides, and a glass with a low reflection film A substrate was obtained.

図1に、タングステンアルコキシドを用いた低反射膜付きガラス基板表面の図面代用SEM写真を示す。   FIG. 1 shows a drawing-substitute SEM photograph of the surface of a glass substrate with a low reflection film using tungsten alkoxide.

前記低反射膜形成用塗布液を用いてガラス基板上に形成した低反射膜のSEMによる拡大写真である。整然と並ぶ粒子はシリカ微粒子であり、シリカ微粒子はバインダーの役割を果たすタングステン酸化物により接合され、微小ボイドを含むポーラスな膜でありながら、硬質の膜であった。   It is an enlarged photograph by SEM of the low reflection film formed on the glass substrate using the coating liquid for low reflection film formation. The ordered particles are silica fine particles, and the silica fine particles are bonded by tungsten oxide serving as a binder and are a porous film containing a microvoid and a hard film.

<低反射膜付きガラス基板の評価>
図2に、タングステンアルコキシドを用いて得られた低反射膜付きガラス基板の透過率曲線を示す。
<Evaluation of glass substrate with low reflection film>
FIG. 2 shows a transmittance curve of a glass substrate with a low reflection film obtained using tungsten alkoxide.

前記低反射膜形成用塗布液を用いてゾルゲル法により、ガラス基板表面に低反射膜を形成した。1の透過率曲線が、塗布槽からの引き上げ速度3mm/secで前記ガラス基板に塗付した低反射膜付きガラス基板の透過率曲線、同様に、2の透過率曲線が引き上げ速度5mm/secでの低反射膜付きガラス基板の透過率曲線、3の透過率曲線が引き上げ速度7mm/secでの低反射膜付きガラス基板の透過率曲線である。引き上げ速度が速くなるにつれて、膜厚が厚くなり、透過率の最大値のピークは長波長側に移動する。リファレンスの低反射膜を有さないガラス基板の透過率曲線(Rで表す)に比べると、全波長域において、透過率が向上している。   A low reflection film was formed on the surface of the glass substrate by the sol-gel method using the coating liquid for forming the low reflection film. A transmittance curve of 1 is a transmittance curve of a glass substrate with a low reflection film applied to the glass substrate at a lifting speed of 3 mm / sec from the coating tank, and similarly, a transmittance curve of 2 is a lifting speed of 5 mm / sec. The transmittance curve of the glass substrate with a low reflection film is a transmittance curve of the glass substrate with a low reflection film at a pulling rate of 7 mm / sec. As the pulling speed increases, the film thickness increases, and the peak of the maximum transmittance shifts to the long wavelength side. Compared to the transmittance curve (represented by R) of a glass substrate that does not have a reference low-reflection film, the transmittance is improved in the entire wavelength region.

表2の物性評価方法に従い、物性値の測定をしたところ、前述の引き上げ速度3.4mm/secの条件で、低反射膜を両面に形成してなる低反射膜付きガラス基板の平均透過率は98.0%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が7.5%向上した。   When the physical property values were measured in accordance with the physical property evaluation methods shown in Table 2, the average transmittance of the glass substrate with a low reflection film formed by forming the low reflection film on both surfaces under the above-described pulling speed of 3.4 mm / sec was The average transmittance was 98.0%, and the average transmittance was improved by 7.5% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflection film.

次いで、膜厚を触針式表面形状測定器で測定したところ、108nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.298であり、低反射膜付きガラス基板として満足のいく性能が得られていた。   Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 108 nm. Further, when the refractive index n was measured by an ellipsometer, n = 1.298, and satisfactory performance was obtained as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、97.4%であり、試験前に比べ、0.6%低下した。また純水の接触角を測定したところ6.5°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and a haze was seen, but the film was not peeled off and the average transmittance was measured to be 97.4%, which was 0.6% lower than that before the test. Moreover, when the contact angle of the pure water was measured, it was 6.5 °, indicating strong hydrophilicity.

また、この低反射膜付きガラス基板の、室温(25℃)、相対湿度50%下で30日間経過後の表面抵抗値を測定したところ、9.0exp10Ω.cmであり、優れた帯電防止性能を保持していることを確認した。 Moreover, when the surface resistance value of this low reflective film-coated glass substrate after 30 days at room temperature (25 ° C.) and 50% relative humidity was measured, it was 9.0 exp10 8 Ω. cm, and it was confirmed that excellent antistatic performance was maintained.

実施例2
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を、実施例1と同様に、調製した。次いで、当該コロイダルシリカ分散液に、実施例1で調整したタングステンアルコキシド分散液を、コロイダルシリカの質量に対して、タングステンアルコキシドが酸化物換算で40質量%含有される様に加え、即ち、SiO:WO=60:40になるように加え、固形分濃度1.9質量%の低反射膜形成用塗布液を調製した。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 2
A colloidal silica dispersion containing colloidal silica having different shapes was prepared in the same manner as in Example 1. Next, the tungsten alkoxide dispersion prepared in Example 1 is added to the colloidal silica dispersion so that 40% by mass of tungsten alkoxide in terms of oxide is contained with respect to the mass of the colloidal silica, that is, SiO 2. : WO 3 = 60: 40 was added, and a coating solution for forming a low reflection film having a solid content concentration of 1.9% by mass was prepared. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.4mm/secの条件で、実施例1と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は97.3%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.8%向上した。 次いで、膜厚を触針式表面形状測定器で測定したところ、105nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.279であり、低反射膜付きガラス基板として満足の行く性能が得られていた。   When the physical property values were measured according to the physical property evaluation methods in Table 2, a low reflective film-coated glass substrate was formed on both surfaces in the same manner as in Example 1 under the condition of a pulling speed of 3.4 mm / sec. The average transmittance was 97.3%, and the average transmittance was improved by 6.8% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Subsequently, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 105 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.279, and satisfactory performance was obtained as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、96.6%であり、試験前に比べ、0.7%低下した。また純水の接触角を測定したところ12°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and a haze was seen, but the film was not peeled off, and the average transmittance was measured to be 96.6%, which was 0.7% lower than before the test. Moreover, when the contact angle of the pure water was measured, it was 12 °, indicating strong hydrophilicity.

また、この低反射膜付きガラス基板の、室温(25℃)、相対湿度50%下で30日間経過後の表面抵抗値を測定したところ、5.2exp10Ω.cmであり、優れた帯電防止性能を保持していることを確認した。 In addition, when the surface resistance value of this low reflective film-coated glass substrate after 30 days was measured at room temperature (25 ° C.) and a relative humidity of 50%, it was 5.2 exp10 8 Ω. cm, and it was confirmed that excellent antistatic performance was maintained.

比較例1
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を、実施例1と同様に調製した。次いで、当該コロイダルシリカ分散液に、実施例1で調整したタングステンアルコキシド分散液を、コロイダルシリカの質量に対して、タングステンアルコキシドが酸化物換算で50質量%含有される様に加え、即ち、SiO:WO=50:50になるように加え、固形分濃度1.9質量%の低反射膜形成用塗布液を調製した。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して膜付きガラス基板を得た。
Comparative Example 1
A colloidal silica dispersion containing colloidal silica having different shapes was prepared in the same manner as in Example 1. Next, the tungsten alkoxide dispersion prepared in Example 1 is added to the colloidal silica dispersion so that 50% by mass of tungsten alkoxide in terms of oxide is contained with respect to the mass of the colloidal silica, that is, SiO 2. : WO 3 = 50: 50 and a coating solution for forming a low reflection film having a solid content concentration of 1.9% by mass was prepared. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.4mm/sec条件で、実施例1と同様に膜を両面に形成してなる、膜付き基板の平均透過率は、膜を設ける前のガラス基板より1.6%向上し、92.1%であり、低反射膜付きガラス基板としての所望の性能は得られなかった。   When the physical property values were measured in accordance with the physical property evaluation methods in Table 2, the average transmittance of the film-coated substrate formed on both surfaces in the same manner as in Example 1 under the condition of a pulling rate of 3.4 mm / sec, The glass substrate was improved 1.6% from the glass substrate before the film was provided, and was 92.1%, and the desired performance as a glass substrate with a low reflection film was not obtained.

次いで、膜厚を触針式表面形状測定器で測定したところ、122nmであった。また、膜の屈折率をエリプソメーターで測定したところ、n=1.362であった。屈折率は、所望より高い値であった。   Subsequently, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 122 nm. Further, the refractive index of the film was measured with an ellipsometer, and n = 1.362. The refractive index was higher than desired.

これは、コロイダルシリカに対するタングステン化合物の含有が、酸化物換算で5質量%以上、40質量%以下の好ましい含有範囲より外れた結果である。   This is a result of the content of the tungsten compound with respect to the colloidal silica deviating from the preferable content range of 5% by mass or more and 40% by mass or less in terms of oxide.

実施例3
実施例1で用いた棒状コロイダルシリカのIPA分散液(日産化学工業株式会社製、品番、IPA−ST、固形分濃度30.3質量%、長径10nm〜20nm)をエタノールで薄めた後、タングステンアルコキシドが酸化物換算での質量比でSiO:WO=80:20、即ち、タングステンアルコキシドが酸化物換算で20質量%になるように調製し、固形分濃度2.0質量%の低反射膜形成用塗布液とした。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 3
After diluting the rod-shaped colloidal silica IPA dispersion used in Example 1 (manufactured by Nissan Chemical Industries, Ltd., product number, IPA-ST, solid content concentration 30.3% by mass, major axis 10 nm to 20 nm) with ethanol, tungsten alkoxide Is a mass ratio in terms of oxide, SiO 2 : WO 3 = 80: 20, that is, a tungsten alkoxide is prepared so as to be 20% by mass in terms of oxide, and a low reflection film having a solid content concentration of 2.0% by mass A forming coating solution was obtained. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.4mm/sec条件で、実施例1と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は97.5%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が7.0%向上した。 次いで、膜厚を触針式表面形状測定器で測定したところ、112nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.292であり、低反射膜付き基板として所望の性能が得られていた。   When the physical property values were measured in accordance with the physical property evaluation methods in Table 2, a low reflective film-coated glass substrate formed by forming low reflective films on both sides in the same manner as in Example 1 under the pulling rate of 3.4 mm / sec. The average transmittance was 97.5%, and the average transmittance was improved by 7.0% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 112 nm. Further, when the refractive index n was measured with an ellipsometer, n = 1.292, and the desired performance was obtained as a substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、部分的に剥離があり、実施例1および実施例2の低反射膜付きガラス基板の摩擦強度と比較し劣っていた。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The frictional strength of the low reflective film is that the appearance after 3000 reciprocating frictions in the flannel cloth abrasion test is cloudy and partially peeled, and the frictional strength of the glass substrate with the low reflective film of Example 1 and Example 2 It was inferior compared.

これは、特定の粒径の形状の異なるコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)を使わず、棒状コロイダルシリカのみを使ったため、摩擦強度に劣る膜が成膜された結果である。   This is a result of forming a film having inferior frictional strength because the colloidal silica (rod-like colloidal silica + spherical colloidal silica) having a different specific particle size shape is not used but only the rod-like colloidal silica is used.

実施例4
実施例1で用いた球状コロイダルシリカのIPA分散液(日揮触媒化成株式会社製、品番、OSCAL1432、固形分濃度20.2質量%、粒径5nm〜10nm)をエタノールで薄めた後、タングステンアルコキシドが酸化物換算での質量比でSiO:WO=80:20、即ち、タングステンアルコキシドが酸化物換算で20質量%になるように調製し、固形分濃度2.0質量%の低反射膜形成用塗布液とした。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 4
After diluting the IPA dispersion of spherical colloidal silica used in Example 1 (manufactured by JGC Catalysts and Chemicals, product number, OSCAL1432, solid concentration 20.2 mass%, particle size 5 nm to 10 nm) with ethanol, tungsten alkoxide was obtained. SiO 2 : WO 3 = 80: 20 by mass ratio in terms of oxide, that is, a tungsten alkoxide is prepared so as to be 20% by mass in terms of oxide, and a low reflective film having a solid content concentration of 2.0% by mass is formed. A coating solution was obtained. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例1と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は96.9%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.4%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、109nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.303であり、低反射膜としての所望の性能が得られていた。   When the physical property values were measured according to the physical property evaluation methods in Table 2, a low reflective film-coated glass substrate was formed on both surfaces in the same manner as in Example 1 under the condition of a pulling rate of 3.0 mm / sec. The average transmittance was 96.9%, and the average transmittance was improved by 6.4% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 109 nm. Further, when the refractive index n was measured with an ellipsometer, n = 1.303, and the desired performance as a low reflection film was obtained.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、部分的に剥離があり、実施例1および実施例2の低反射膜付きガラス基板の摩擦強度と比較し劣っていた。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The frictional strength of the low reflective film is that the appearance after 3000 reciprocating frictions in the flannel cloth abrasion test is cloudy and partially peeled, and the frictional strength of the glass substrate with the low reflective film of Example 1 and Example 2 It was inferior compared.

これは、特定の粒径の形状の異なるコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)を使わず、球状コロイダルシリカのみを使ったため、摩擦強度に劣る膜が成膜された結果である。   This is a result of forming a film having inferior frictional strength because only the spherical colloidal silica was used without using colloidal silica (rod-like colloidal silica + spherical colloidal silica) having a specific particle size.

[実施例5〜8、比較例2(ニオブアルコキシドを用いた例)]
以下、実施例5〜8、比較例2にニオブアルコキシドを用いた例を示す。
[Examples 5 to 8, Comparative Example 2 (example using niobium alkoxide)]
Examples where niobium alkoxide is used are shown in Examples 5 to 8 and Comparative Example 2 below.

実施例5
<コロイダルシリカ分散液の調製>
容量1000mlの3口フラスコに、棒状コロイダルシリカのIPA分散液(日産化学工業株式会社製IPA−ST−UP、固形分濃度15.2質量%、長径40nm〜100nm)31.58gを量り入れ、IPA、186.6gを撹拌しながら加えた。次いで、球状コロイダルシリカ(日揮触媒化成株式会社製、品番、OSCAL1632、固形分濃度20.5質量%、粒径8nm〜15nm)23.41gに、IPA、194.8gを撹拌しながら加えたものを混合して、コロイダルシリカ分散液436gを得た。
Example 5
<Preparation of colloidal silica dispersion>
IPA dispersion of rod-shaped colloidal silica (IPA-ST-UP manufactured by Nissan Chemical Industries, Ltd., solid content concentration 15.2% by mass, major axis 40 nm to 100 nm) was weighed into a 1000 ml three-necked flask, and IPA 186.6 g was added with stirring. Next, IPA, 194.8 g added to 23.41 g of spherical colloidal silica (manufactured by JGC Catalysts and Chemicals, product number, OSCAL1632, solid concentration 20.5 mass%, particle size 8 nm to 15 nm) with stirring. By mixing, 436 g of colloidal silica dispersion was obtained.

棒状コロイダルシリカと球状コロイダルシリカの混合比は質量比で50:50であった。   The mixing ratio of the rod-shaped colloidal silica and the spherical colloidal silica was 50:50 by mass ratio.

<ニオブアルコキシド分散液の調製>
窒素気流下で、五塩化ニオブ(NbCl)9.76gを、容量500mlの3口フラスコに採取し、5℃に氷冷したIPAを205g加えた。これに金属ナトリウム(和光純薬工業株式会社製)3.32gを加え、ニオブアルコキシド(Nb(OCH(CHCl)と副生成物のNaClの混合したスラリーを218g得た。
<Preparation of niobium alkoxide dispersion>
Under a nitrogen stream, 9.76 g of niobium pentachloride (NbCl 5 ) was collected in a 500 ml three-necked flask, and 205 g of IPA cooled to 5 ° C. was added. To this was added 3.32 g of metallic sodium (manufactured by Wako Pure Chemical Industries, Ltd.) to obtain 218 g of a slurry in which niobium alkoxide (Nb (OCH 2 (CH 3 ) 2 ) 4 Cl) and by-product NaCl were mixed.

次に75℃で24時間、窒素雰囲気中で還流を行い、室温(約20℃)まで冷却した。次いで、加圧ろ過を行い、ニオブアルコキシド(Nb(OCH(CHCl)と副生成物のNaClを濾別した。濾液中のニオブの濃度はNb換算で2.3質量%であった。この濾液を、二オブアルコキシド(Nb(OCH(CHCl)の分散液とし用いた。 Next, the mixture was refluxed in a nitrogen atmosphere at 75 ° C. for 24 hours and cooled to room temperature (about 20 ° C.). Then, pressure filtration was performed, and niobium alkoxide (Nb (OCH 2 (CH 3 ) 2 ) 4 Cl) and NaCl as a by-product were separated by filtration. The concentration of niobium in the filtrate was 2.3% by mass in terms of Nb 2 O 5 . This filtrate was used as a dispersion of niobium alkoxide (Nb (OCH 2 (CH 3 ) 2 ) 4 Cl).

<低反射膜形成用塗布液の調製>
前記コロイダルシリカ分散液に、窒素雰囲気中で室温下、撹拌しながら、上記で合成したニオブアルコキシド分散液、139.74gを、3時間かけて徐々に滴下し、乳白色の透明な液を得た。混合後、さらに窒素雰囲気下、70下に8時間還流して、コロイダルシリカとニオブアルコキシドを、酸化物換算の質量比でSiO:Nb=3:1、即ちニオブアルコキシドが酸化物換算で25質量%になるように調製し、これを低反射膜形成用塗布液とした。
<Preparation of coating solution for forming low reflection film>
While stirring at room temperature in a nitrogen atmosphere at room temperature, the niobium alkoxide dispersion synthesized above, 139.74 g, was gradually added dropwise to the colloidal silica dispersion over 3 hours to obtain a milky white transparent liquid. After mixing, the mixture is further refluxed under 70 in a nitrogen atmosphere for 8 hours, so that colloidal silica and niobium alkoxide are in a mass ratio of oxide equivalent to SiO 2 : Nb 2 O 5 = 3: 1, ie niobium alkoxide is equivalent to oxide. To 25 mass%, and this was used as a coating solution for forming a low reflection film.

<低反射膜付きガラス基板の作製>
厚み3mm、大きさ100mm×100mmのガラス基板の表面をアルミナ粒子で湿式研磨し、蒸留水、次いでIPAで洗浄後、100℃に加熱して乾燥させた。表面の状態をみるために、純水の接触角を測定したところ、接触角5°以下の強い親水性を示し、清浄であった。
<Production of glass substrate with low reflection film>
The surface of a glass substrate having a thickness of 3 mm and a size of 100 mm × 100 mm was wet-polished with alumina particles, washed with distilled water and then with IPA, and then heated to 100 ° C. and dried. When the contact angle of pure water was measured in order to check the surface condition, it showed a strong hydrophilic property with a contact angle of 5 ° or less and was clean.

前記低反射膜形成用塗布液に洗浄したガラス基板を浸漬し、ディップ法により、上向きに速度3.0mm/secで引き上げ、低反射膜形成用塗布液をガラス基板の両面に塗布した。50℃下に30分間乾燥させ、さらに110℃で60分乾燥させた。これを750℃に加熱した焼成炉に投入して、150秒間保持した後で取り出し、室温下で急冷し、淡青色の反射色を有する低反射膜を両面に成膜してなる低反射膜付きガラス基板を得た。   The washed glass substrate was immersed in the low reflection film forming coating solution, and pulled upward at a speed of 3.0 mm / sec by a dipping method to apply the low reflection film forming coating solution to both surfaces of the glass substrate. It was dried at 50 ° C. for 30 minutes and further dried at 110 ° C. for 60 minutes. This is put into a baking furnace heated to 750 ° C., held for 150 seconds, taken out, rapidly cooled at room temperature, and a low reflection film having a light blue reflection color is formed on both sides. A glass substrate was obtained.

図3に、ニオブアルコキシドを用いた低反射膜付きガラス基板表面の図面代用SEM写真を示す。   FIG. 3 shows a drawing-substitute SEM photograph of the surface of the glass substrate with a low reflection film using niobium alkoxide.

前記低反射膜形成用塗布液を用いてガラス基板上に形成した低反射膜のSEMによる拡大写真である。整然と並ぶ粒子はシリカであり、シリカ微粒子はバインダーの役割を果たすニオブ酸化物により接合され、微小ボイドを含むポーラスな膜でありながら、硬質の膜となった。   It is an enlarged photograph by SEM of the low reflection film formed on the glass substrate using the coating liquid for low reflection film formation. The ordered particles were silica, and the silica fine particles were joined by niobium oxide serving as a binder, and became a hard film while being a porous film containing microvoids.

<低反射膜付きガラス基板の評価>
図4に、ニオブアルコキシドを用いた低反射膜付きガラス基板の透過率曲線を示す。
<Evaluation of glass substrate with low reflection film>
FIG. 4 shows a transmittance curve of a glass substrate with a low reflection film using niobium alkoxide.

前記低反射膜形成用塗布液を用いてゾルゲル法により、ガラス基板表面に低反射膜を形成した。1の透過率曲線が塗布槽からの引き上げ速度3mm/secで前記ガラス基板に塗付した低反射膜付きガラス基板の透過率曲線、同様に、2の透過率曲線が引き上げ速度5mm/secでの低反射膜付きガラス基板の透過率曲線、3の透過率曲線が引き上げ速度7mm/secでの低反射膜付きガラス基板の透過率曲線である。引き上げ速度が速くなるにつれて、膜厚が厚くなり、透過率の最大値のピークは長波長側に移動する。リファレンスの低反射膜を有さないガラス基板の透過率曲線(Rで表す)に比べると、全波長域において、透過率が向上している。   A low reflection film was formed on the surface of the glass substrate by the sol-gel method using the coating liquid for forming the low reflection film. A transmittance curve of 1 is a transmittance curve of a glass substrate with a low reflection film applied to the glass substrate at a lifting speed of 3 mm / sec from the coating tank. Similarly, a transmittance curve of 2 is a lifting speed of 5 mm / sec. The transmittance curve of the glass substrate with a low reflection film is a transmittance curve of the glass substrate with a low reflection film at a pulling rate of 7 mm / sec. As the pulling speed increases, the film thickness increases, and the peak of the maximum transmittance shifts to the long wavelength side. Compared to the transmittance curve (represented by R) of a glass substrate that does not have a reference low-reflection film, the transmittance is improved in the entire wavelength region.

次いで、表2の物性評価方法に従い、引き上げ速度3.0mm/secの条件で、実施例5と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率を測定したところ、平均透過率は、98.2%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が7.7%向上していた。 次いで、膜厚を触針式表面形状測定器で測定したところ、113nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.275であり、低反射膜付きガラス基板として満足の行く性能であった。   Subsequently, according to the physical property evaluation method of Table 2, the average transmittance of the glass substrate with a low reflection film formed by forming a low reflection film on both surfaces in the same manner as in Example 5 under the condition of a lifting speed of 3.0 mm / sec. As a result, the average transmittance was 98.2%, and the average transmittance was improved by 7.7% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflection film. . Then, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 113 nm. Further, when the refractive index n was measured with an ellipsometer, n = 1.275, which was satisfactory as a glass substrate with a low reflection film.

この被膜の摩擦強度をネル布の摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回往復摩擦し低反射膜の摩擦強度を評価した。外観は、ややヘイズはあるが色調は変わらず、平均透過率は97.7%であり、試験前に比べ、0.5%わずかに低下した。純水接触角を測定したところ、6.5°で、強い親水性を示した。 The friction strength of this coating film was rubbed back and forth 3000 times with a load of 15 g / cm 2 on the surface of the glass substrate with a low reflection film using a flannel cloth wear tester, and the friction of the low reflection film. The strength was evaluated. The appearance had a slight haze, but the color tone did not change, and the average transmittance was 97.7%, which was slightly decreased by 0.5% compared to before the test. When the pure water contact angle was measured, it showed a strong hydrophilic property at 6.5 °.

また、この低反射膜付きガラス基板の、25℃、相対湿度50%で30日間経過後の表面抵抗値を測定したところ、6.7exp10Ω.cmであり、優れた帯電防止性能を保持していることを確認した。 Further, when the surface resistance value of this low reflective film-coated glass substrate after 30 days at 25 ° C. and 50% relative humidity was measured, it was 6.7 exp10 8 Ω. cm, and it was confirmed that excellent antistatic performance was maintained.

実施例6
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を、実施例5と同様に、調製した。次いで、当該コロイダルシリカ分散液に、実施例1で調整したニオブアルコキシド分散液を、コロイダルシリカの質量に対して、ニオブアルコキシドが酸化物換算で40質量%含有される様に加え、即ち、Nb:WO=60:40になるように加え、固形分濃度1.9質量%の低反射膜形成用塗布液を調製した。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 6
A colloidal silica dispersion containing colloidal silica having different shapes was prepared in the same manner as in Example 5. Next, the niobium alkoxide dispersion prepared in Example 1 is added to the colloidal silica dispersion so that the niobium alkoxide is contained in an amount of 40% by mass in terms of oxide with respect to the mass of the colloidal silica, that is, Nb 2 A coating solution for forming a low reflection film having a solid content concentration of 1.9% by mass was prepared so that O 5 : WO 3 = 60: 40. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例5と同様に低反射膜を両面に形成してなる低反射膜付きガラス基板の平均透過率は98.0%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が7.5%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、108nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.281であり、低反射膜ガラス基板として満足のいく性能であった。   When the physical property values were measured in accordance with the physical property evaluation methods shown in Table 2, a low reflective film-coated glass substrate formed by forming low reflective films on both sides in the same manner as in Example 5 under the condition of a pulling speed of 3.0 mm / sec. The average transmittance was 98.0%, and the average transmittance was improved by 7.5% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 108 nm. Further, when the refractive index n was measured with an ellipsometer, n = 1.281, which was a satisfactory performance as a low reflective film glass substrate.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、97.1%であり、試験前に比べ、0.9%低下した。また純水の接触角を測定したところ18°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and a haze was seen, but the film was not peeled off, and the average transmittance was measured to be 97.1%, which was 0.9% lower than before the test. Moreover, when the contact angle of the pure water was measured, it was 18 °, indicating strong hydrophilicity.

また、この低反射膜付きガラス基板の、室温(25℃)、相対湿度50%下で30日間経過後の表面抵抗値を測定したところ、11.2exp10Ω.cmであり、優れた帯電防止性能を保持していることを確認した。 Further, when the surface resistance value of this low reflective film-coated glass substrate after 30 days at room temperature (25 ° C.) and 50% relative humidity was measured, it was 11.2 exp10 8 Ω. cm, and it was confirmed that excellent antistatic performance was maintained.

比較例2
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を、実施例5と同様に調製した。次いで、当該コロイダルシリカの分散液に、実施例5で調整したニオブアルコキシドの分散液を、コロイダルシリカの質量に対して、二オブアルコキシドが酸化物換算で50質量%になるように加え、即ち、SiO:Nb=50:50になるように加え、固形分濃度2.0質量%の低反射膜形成用塗布液を調製した。当該低反射膜形成用塗布液を、実施例3と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Comparative Example 2
A colloidal silica dispersion containing colloidal silica having different shapes was prepared in the same manner as in Example 5. Next, the niobium alkoxide dispersion prepared in Example 5 is added to the colloidal silica dispersion so that the niobium alkoxide is 50% by mass in terms of oxide with respect to the mass of the colloidal silica. A coating solution for forming a low reflection film having a solid content concentration of 2.0% by mass was prepared so that SiO 2 : Nb 2 0 5 = 50: 50. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 3 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例5と同様に膜を両面に形成してなる、膜付き基板の平均透過率は、膜を設ける前のガラス基板より、−0.9%低下し、89.6%であり、低反射膜付きガラス基板と言えるものではなかった。   When the physical property values were measured in accordance with the physical property evaluation methods in Table 2, the average transmittance of the film-coated substrate formed on both surfaces in the same manner as in Example 5 under the condition of a pulling speed of 3.0 mm / sec is The glass substrate was -0.9% lower than the glass substrate before the film was provided, and was 89.6%, which was not a glass substrate with a low reflection film.

次いで、膜厚を触針式表面形状測定器で測定したところ、115nmであった。また、膜の屈折率をエリプソメーターで測定したところ、n=1.353であり、屈折率は、所望より高い値であった。   Subsequently, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 115 nm. Further, when the refractive index of the film was measured with an ellipsometer, n = 1.353, and the refractive index was higher than desired.

これは、コロイダルシリカに対する二オブアルコキシドの含有が、酸化物換算で5質量%以上、40質量%以下の好ましい含有範囲より外れた結果である。   This is a result of the content of niobium alkoxide with respect to colloidal silica deviating from the preferable content range of 5% by mass or more and 40% by mass or less in terms of oxide.

実施例7
実施例5で用いた棒状コロイダルシリカのIPA分散液(日産化学工業株式会社製IPA−ST−UP、固形分濃度15.2質量%、長径40nm〜100nm)をIPAで薄めた後、ニオブアルコキシドが酸化物換算での質量比でSiO:Nb=80:20、即ち、ニオブアルコキシドが酸化物換算で20質量%になるように調製し、固形分濃度2.0質量%の低反射膜形成用塗布液とした。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 7
After diluting the IPA dispersion of rod-shaped colloidal silica used in Example 5 (IPA-ST-UP manufactured by Nissan Chemical Industries, Ltd., solid content concentration 15.2 mass%, major axis 40 nm to 100 nm) with IPA, niobium alkoxide SiO 2 : Nb 2 O 5 = 80: 20 by mass ratio in terms of oxide, that is, niobium alkoxide is prepared to be 20% by mass in terms of oxide, and low reflection with a solid content concentration of 2.0% by mass A coating solution for film formation was obtained. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例5と同様に膜を両面に形成してなる、低反射膜を両面に形成してなる低反射膜付きガラス基板の平均透過率は97.2%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.7%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、102nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.296であり、低反射膜付きガラス基板として満足の行く性能であった。   When the physical property values were measured according to the physical property evaluation methods shown in Table 2, a low reflection film was formed on both surfaces under the condition of a pulling speed of 3.0 mm / sec. The average transmittance of the low reflective film-coated glass substrate is 97.2%, and the average transmittance of the glass substrate without the low reflective film is 96.7%, which is 6.7%. % Improved. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 102 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.296, which was satisfactory as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、部分的に剥離があり、実施例5および実施例6の低反射膜付き基板の摩擦強度と比較し劣っていた。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The frictional strength of the low reflective film is cloudy and partially peeled after 3000 reciprocating frictions according to the flannel abrasion test, and compared with the frictional strength of the substrates with the low reflective film of Example 5 and Example 6. It was inferior.

これは、球状コロイダルシリカを使わず、棒状コロイダルシリカのみを使ったため、摩擦強度に劣る膜が成膜された結果である。   This is a result of forming a film having inferior frictional strength because only spherical colloidal silica was used without using spherical colloidal silica.

実施例8
実施例5で用いた球状コロイダルシリカのIPA分散液(日揮触媒化成株式会社製、品番、OSCAL1632、固形分濃度20.5質量%、粒径8nm〜15nm)をIPAで薄めた後、ニオブアルコキシドが酸化物換算での質量比でSiO:Nb=80
:20、即ち、ニオブアルコキシドが酸化物換算で20質量%になるように調製し、固形分濃度2.0質量%の低反射膜形成用塗布液とした。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 8
After diluting the IPA dispersion of spherical colloidal silica used in Example 5 (manufactured by JGC Catalysts and Chemicals, product number, OSCAL1632, solid concentration 20.5 mass%, particle size 8 nm to 15 nm) with IPA, niobium alkoxide SiO 2 : Nb 2 O 5 = 80 in terms of mass ratio in terms of oxide
: 20, that is, niobium alkoxide was prepared so as to be 20% by mass in terms of oxide, and a coating solution for forming a low reflection film having a solid content concentration of 2.0% by mass was obtained. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例5と同様に膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は97.6%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が7.1%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、117nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.284であり、低反射膜付きガラス基板として満足のいく性能であった。   When the physical property values were measured according to the physical property evaluation methods in Table 2, the average of the glass substrates with low reflection films formed on both surfaces in the same manner as in Example 5 under the condition of a pulling speed of 3.0 mm / sec. The transmittance was 97.6%, and the average transmittance was improved by 7.1% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Subsequently, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 117 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.284, which was a satisfactory performance as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、部分的に剥離があり、実施例5および実施例6の低反射膜付きガラス基板の摩擦強度と比較し劣っていた。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The frictional strength of the low reflective film is that the appearance after 3000 reciprocating frictions in the flannel cloth abrasion test is cloudy and partially peeled. It was inferior compared.

これは、特定の粒径の形状の異なるコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)を使わず、球状コロイダルシリカのみを使ったため、摩擦強度に劣る膜が成膜された結果である。   This is a result of forming a film having inferior frictional strength because only the spherical colloidal silica was used without using colloidal silica (rod-like colloidal silica + spherical colloidal silica) having a specific particle size.

[実施例9〜12、比較例3(タンタルアルコキシドを用いた例)]
以下、実施例9〜12、比較例3にタングステンアルコキシドを用いた例を示す。
[Examples 9 to 12, Comparative Example 3 (example using tantalum alkoxide)]
Examples where tungsten alkoxide is used in Examples 9 to 12 and Comparative Example 3 are shown below.

実施例9
<コロイダルシリカ分散液の調製>
容量1000mlの3口フラスコに、棒状コロイダルシリカのIPA分散液(日産化学工業株式会社製、品番、IPA-ST−UP、固形分濃度15.2質量%、長径40nm〜100nm)14.28gを量り入れ、IPA106.14gを撹拌しながら加えた。次いで、球状コロイダルシリカ(日産化学工業株式会社製、商品名、メタノールシリカゾル、固形分濃度30.2質量%、粒径10nm〜20nm)16.75gに、IPA264.2gを撹拌しながら加えたものを混合して、約401gのコロイダルシリカ分散液、401gを得た。
Example 9
<Preparation of colloidal silica dispersion>
14.28 g of a rod-shaped colloidal silica IPA dispersion (manufactured by Nissan Chemical Industries, product number, IPA-ST-UP, solid content concentration 15.2 mass%, major axis 40 nm to 100 nm) is weighed into a three-neck flask with a capacity of 1000 ml. And IPA 106.14 g was added with stirring. Next, IPA264.2g was added to spherical colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name, methanol silica sol, solid content concentration 30.2 mass%, particle size 10 nm to 20 nm) with stirring. By mixing, 401 g of colloidal silica dispersion, 401 g, was obtained.

このようにして、コロイダルシリカ分散液において、酸化物(SiO)換算で棒状コロイダルシリカと球状コロイダルシリカの酸化物換算の質量比が、棒状コロイダルシリカ:球状コロイダルシリカ=30:70になるように調製した。固形分濃度は1.8質量%である。 Thus, in the colloidal silica dispersion, the mass ratio in terms of oxide between the rod-shaped colloidal silica and the spherical colloidal silica in terms of oxide (SiO 2 ) is rod-shaped colloidal silica: spherical colloidal silica = 30: 70. Prepared. The solid content concentration is 1.8% by mass.

<タンタルアルコキシド分散液の調製>
窒素気流下で、五塩化タンタル8.20gを、容量500mlの3口フラスコに採取し、5℃に氷冷したメタノールを255.10g加えた。これに28質量%濃度のナトリウムメトキシド(和光純薬工業株式会社製)、17.66gを加え、タンタルアルコキシド(Ta(OCH(CHCl)と副生成物のNaClの混合スラリー、281gを得た。
<Preparation of tantalum alkoxide dispersion>
Under a nitrogen stream, 8.20 g of tantalum pentachloride was collected in a 500 ml three-necked flask, and 255.10 g of methanol cooled on ice at 5 ° C. was added. To this was added 28% by mass sodium methoxide (Wako Pure Chemical Industries, Ltd.) and 17.66 g, and tantalum alkoxide (Ta (OCH 2 (CH 3 ) 2 ) 4 Cl) and by-product NaCl were mixed. 281 g of slurry was obtained.

次に65℃下に16時間、窒素雰囲気中で還流を行い、室温(約22℃)まで冷却後、窒素を流しつつ、加圧ろ過でタンタルアルコキシド(Ta(OCH(CHCl)と副生成物のNaClを濾別した。濾液中のタンタルの濃度はTa換算で1.8質量%であった。 Next, the mixture is refluxed at 65 ° C. for 16 hours in a nitrogen atmosphere, cooled to room temperature (about 22 ° C.), and then tantalum alkoxide (Ta (OCH 2 (CH 3 ) 2 ) 4 by pressure filtration while flowing nitrogen. Cl) and by-product NaCl were filtered off. The concentration of tantalum in the filtrate was 1.8% by mass in terms of Ta 2 O 5 .

<低反射膜形成用塗布液の調製>
前記コロイダルシリカ分散液401gに、窒素雰囲気中で室温下、撹拌しながら、上記で合成したタンタルアルコキシド分散液100.3gを、室温で2時間かけて徐々に滴下し、微乳白色の透明な液を得た。混合後、さらに窒素気流下、60℃下に8時間かけて還流して、コロイダルシリカとタンタルアルコキシドを、酸化物換算の質量比でSiO:Ta=80:20、即ち、タンタルアルコキシドが酸化物換算で20質量%になるように調製し、低反射膜形成用塗布液とした。
<Preparation of coating solution for forming low reflection film>
While stirring at room temperature in a nitrogen atmosphere at room temperature in 401 g of the colloidal silica dispersion, 100.3 g of the tantalum alkoxide dispersion synthesized above was gradually added dropwise over 2 hours at room temperature to give a slightly milky white transparent liquid. Obtained. After mixing, the mixture is further refluxed at 60 ° C. for 8 hours under a nitrogen stream, so that the colloidal silica and the tantalum alkoxide are in a mass ratio of oxide equivalent to SiO 2 : Ta 2 O 5 = 80: 20, that is, tantalum alkoxide. Was prepared so as to be 20% by mass in terms of oxide and used as a coating solution for forming a low reflection film.

<低反射膜付きガラス基板の作製>
厚み3mm、大きさ100mm×100mmのガラス基板の表面をアルミナ粒子で湿式研磨し、蒸留水、次いでIPAで洗浄後、100℃に加熱して乾燥させた。表面の状態をみるために、純水の接触角を測定したところ、接触角5°以下の強い親水性を示し、清浄であった。
<Production of glass substrate with low reflection film>
The surface of a glass substrate having a thickness of 3 mm and a size of 100 mm × 100 mm was wet-polished with alumina particles, washed with distilled water and then with IPA, and then heated to 100 ° C. and dried. When the contact angle of pure water was measured in order to check the surface condition, it showed a strong hydrophilic property with a contact angle of 5 ° or less and was clean.

前記低反射膜形成用塗布液に洗浄したガラス基板を浸漬し、ディップ法により、引き上げ速度4.0mm/secで両面に被覆した。50℃下に30分間乾燥させ、さらに110℃で60分乾燥させた。これを750℃に加熱した焼成炉に投入して、150秒間保持した後で取り出し、室温下で急冷し、淡青色の反射色を有する低反射膜を両面に成膜してなる低反射膜付きガラス基板を得た。   The washed glass substrate was immersed in the low reflection film forming coating solution and coated on both sides by a dipping method at a lifting speed of 4.0 mm / sec. It was dried at 50 ° C. for 30 minutes and further dried at 110 ° C. for 60 minutes. This is put into a baking furnace heated to 750 ° C., held for 150 seconds, taken out, rapidly cooled at room temperature, and a low reflection film having a light blue reflection color is formed on both sides. A glass substrate was obtained.

図5に、タンタルアルコキシドを用いた低反射膜付きガラス基板表面の図面代用SEM写真を示す。   FIG. 5 shows a drawing-substitute SEM photograph of the surface of the glass substrate with a low reflection film using tantalum alkoxide.

前記低反射膜形成用塗布液を用いてガラス基板上に形成した低反射膜のSEM鏡による拡大写真である。整然と並ぶ粒子はシリカであり、シリカ微粒子はバインダーの役割を果たすタンタル酸化物により接合され、微小ボイドを含むポーラスな膜でありながら、硬質の膜であった。   It is an enlarged photograph by the SEM mirror of the low reflection film formed on the glass substrate using the said coating liquid for low reflection film formation. The ordered particles are silica, and the silica fine particles are bonded by tantalum oxide serving as a binder, and are a porous film containing a microvoid and a hard film.

<低反射膜付きガラス基板の評価>
図6に、タンタルアルコキシドを用いた低反射膜付きガラス基板の透過率曲線を示す。
<Evaluation of glass substrate with low reflection film>
FIG. 6 shows a transmittance curve of a glass substrate with a low reflection film using tantalum alkoxide.

前記低反射膜形成用塗布液を用いてゾルゲル法により、ガラス基板上に低反射膜を形成した。1の透過率曲線が、塗布槽からの引き上げ速度3mm/secで前記ガラス基板に塗付した低反射膜付きガラス基板の透過率曲線、同様に、2の透過率曲線が引き上げ速度5mm/secでの低反射膜付きガラス基板の透過率曲線、3の透過率曲線が引き上げ速度7mm/secでの低反射膜付きガラス基板の透過率曲線である。引き上げ速度が速くなるにつれて、膜厚が厚くなり、透過率の最大値のピークは長波長側に移動する。リファレンスの低反射膜を有さないガラス基板の透過率曲線(Rで表す)に比べると、全波長域において、透過率が向上している。   A low reflection film was formed on a glass substrate by the sol-gel method using the low reflection film forming coating solution. A transmittance curve of 1 is a transmittance curve of a glass substrate with a low reflection film applied to the glass substrate at a lifting speed of 3 mm / sec from the coating tank, and similarly, a transmittance curve of 2 is a lifting speed of 5 mm / sec. The transmittance curve of the glass substrate with a low reflection film is a transmittance curve of the glass substrate with a low reflection film at a pulling rate of 7 mm / sec. As the pulling speed increases, the film thickness increases, and the peak of the maximum transmittance shifts to the long wavelength side. Compared to the transmittance curve (represented by R) of a glass substrate that does not have a reference low-reflection film, the transmittance is improved in the entire wavelength region.

前述の引き上げ速度4.0mm/secにおける低反射膜付きガラス基板の平均透過率を測定したところ、平均透過率は97.9%であり、低反射膜を設けていないガラス基板の平均透過率90.5%と比較して、7.4%平均透過率が向上していた。次いで、膜厚を触針式表面形状測定器で測定したところ、121nmであった。また、屈折率nをエリプソメーターで測定したところ、屈折率はn=1.260であり、低反射膜付きガラス基板として満足のいくものであった。   When the average transmittance of the glass substrate with a low reflection film at the above-described pulling speed of 4.0 mm / sec was measured, the average transmittance was 97.9%, and the average transmittance of the glass substrate without the low reflection film was 90%. Compared to .5%, the average transmittance was improved by 7.4%. Next, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 121 nm. Further, when the refractive index n was measured with an ellipsometer, the refractive index was n = 1.260, which was satisfactory as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜つきガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観はややヘイズが見えたが、色調は変化なく、平均透過率を測定したところ、97.5%であり、試験前に比べ、0.4%低下した。また純水の接触角を測定したところ、8.0°であり、強い親水性を示した。 Next, the friction strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. Although the appearance was somewhat haze, the color tone was unchanged, and the average transmittance was measured to be 97.5%, which was 0.4% lower than before the test. Moreover, when the contact angle of the pure water was measured, it was 8.0 ° and showed strong hydrophilicity.

また、この低反射膜付きガラス基板の、25℃、相対湿度50%で30日間経過後の表面抵抗値を測定したところ、9.0exp10Ω.cmであり、優れた帯電防止性能を保持していることを確認した。 Further, when the surface resistance value of this low reflective film-coated glass substrate after 30 days at 25 ° C. and 50% relative humidity was measured, it was 9.0 exp10 8 Ω. cm, and it was confirmed that excellent antistatic performance was maintained.

実施例10
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を、実施例9と同様に調製した。次いで、当該コロイダルシリカ分散液に、実施例1で調整したタンタルアルコキシド分散液を、コロイダルシリカの質量に対して、タンタルアルコキシドが酸化物換算で40質量%含有される様に加え、即ち、Ta:WO=60:40になるように加え、固形分濃度1.9質量%の低反射膜形成用塗布液を調製した。当該低反射膜形成用塗布液を、実施例9と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 10
A colloidal silica dispersion containing colloidal silica having different shapes was prepared in the same manner as in Example 9. Next, the tantalum alkoxide dispersion prepared in Example 1 is added to the colloidal silica dispersion so that 40% by mass of tantalum alkoxide is contained in terms of oxide with respect to the mass of colloidal silica, that is, Ta 2 A coating solution for forming a low reflection film having a solid content concentration of 1.9% by mass was prepared so that O 5 : WO 3 = 60: 40. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 9, and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.4mm/secの条件で、実施例9と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は97.1%であり、低反射膜を設けていないガラス基板の平均透過率90.5%と比較して、平均透過率が6.6%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、109nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.279であり、低反射膜付きガラス基板として満足のいく性能であった。   When the physical property values were measured in accordance with the physical property evaluation methods shown in Table 2, a low reflective film-coated glass substrate was formed on both surfaces in the same manner as in Example 9 under the condition of a pulling speed of 3.4 mm / sec. The average transmittance was 97.1%, and the average transmittance was improved by 6.6% compared to the average transmittance 90.5% of the glass substrate not provided with the low reflective film. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 109 nm. Further, when the refractive index n was measured with an ellipsometer, n = 1.279, which was a satisfactory performance as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、96.5%であり、試験前に比べ、0.6%低下した。また純水の接触角を測定したところ19.3°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and a haze was seen, but the film was not peeled off, and the average transmittance was measured to be 96.5%, which was 0.6% lower than that before the test. Further, when the contact angle of pure water was measured, it was 19.3 ° and showed strong hydrophilicity.

また、この低反射膜付きガラス基板の、室温(25℃)、相対湿度50%下で30日間経過後の表面抵抗値を測定したところ、3.6exp10Ω.cmであり、優れた帯電防止性能を保持していることを確認した。 Further, when the surface resistance value of this low reflective film-coated glass substrate after 30 days was measured at room temperature (25 ° C.) and a relative humidity of 50%, it was 3.6 exp10 8 Ω. cm, and it was confirmed that excellent antistatic performance was maintained.

比較例3
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を、実施例9と同様に調製した。次いで、当該コロイダルシリカ分散液に、実施例5で調整したタンタルアルコキシド分散液を、コロイダルシリカの質量に対して、タンタルアルコキシドが酸化物換算で50質量%含有されるように加え、即ち、SiO:Ta=50:50になるように加え、固形分濃度1.7質量%の低反射膜形成用塗布液を調製した。当該低反射膜形成用塗布液を、実施例9と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Comparative Example 3
A colloidal silica dispersion containing colloidal silica having different shapes was prepared in the same manner as in Example 9. Next, the tantalum alkoxide dispersion prepared in Example 5 is added to the colloidal silica dispersion so that the tantalum alkoxide is contained in an amount of 50% by mass in terms of oxide with respect to the mass of the colloidal silica, that is, SiO 2. : Ta 2 O 5 = 50: 50, and a coating solution for forming a low reflection film having a solid content concentration of 1.7% by mass was prepared. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 9, and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例9と同様に膜を両面に形成してなる、膜付き基板の平均透過率は、膜を設ける前のガラス基板より、2.7%向上し、93.3%であり、低反射膜付きガラス基板としての所望の性能は得られなかった。   When the physical property values were measured in accordance with the physical property evaluation methods in Table 2, the average transmittance of the film-coated substrate formed on both surfaces in the same manner as in Example 9 under the condition of a pulling rate of 3.0 mm / sec is The glass substrate was 2.7% higher than the glass substrate before the film was formed, and it was 93.3%, and the desired performance as a glass substrate with a low reflection film could not be obtained.

次いで、膜厚を触針式表面形状測定器で測定したところ、107nmであった。また、膜の屈折率をエリプソメーターで測定したところ、n=1.310であり、屈折率は、所望より高い値であった。   Next, the film thickness was measured with a stylus type surface shape measuring instrument to be 107 nm. Moreover, when the refractive index of the film was measured with an ellipsometer, it was n = 1.310, and the refractive index was higher than desired.

これは、コロイダルシリカに対するタンタル化合物の含有が、酸化物換算で5質量%以上、40質量%以下の好ましい含有範囲より外れた結果である。   This is a result of the content of the tantalum compound with respect to the colloidal silica deviating from the preferable content range of 5% by mass to 40% by mass in terms of oxide.

実施例11
実施例9で用いた棒状コロイダルシリカのIPA分散液(日産化学工業株式会社製IPA−ST−UP、固形分濃度15.2質量%、長径40nm〜100nm)をIPAで薄めた後、タンタルアルコキシドが酸化物換算での質量比でSiO:Ta=80:20、即ち、タンタルアルコキシドが酸化物換算で20質量%になるように調製し、固形分濃度2.0質量%の低反射膜形成用塗布液とした。当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 11
After diluting the IPA dispersion of rod-shaped colloidal silica used in Example 9 (IPA-ST-UP, manufactured by Nissan Chemical Industries, Ltd., solid concentration 15.2% by mass, major axis 40 nm to 100 nm) with IPA, tantalum alkoxide was obtained. SiO 2 : Ta 2 O 5 = 80: 20 in terms of mass in terms of oxide, that is, tantalum alkoxide is prepared to be 20% by mass in terms of oxide, and low reflection with a solid content concentration of 2.0% by mass A coating solution for film formation was obtained. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 1 and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例9と同様に膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は96.9%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.5%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、115nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.294であり、低反射膜付きガラス基板として満足のいく性能であった。   When the physical property values were measured according to the physical property evaluation methods in Table 2, the average of the glass substrates with low reflection films formed on both surfaces in the same manner as in Example 9 under the condition of a pulling rate of 3.0 mm / sec. The transmittance was 96.9%, and the average transmittance was improved by 6.5% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Subsequently, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 115 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.294, which was a satisfactory performance as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、部分的に剥離があり、実施例9および実施例10の低反射膜付きガラス基板の摩擦強度と比較し劣っていた。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The frictional strength of the low-reflection film is that the appearance after 3000 reciprocating frictions in the flannel cloth abrasion test is cloudy and partially peeled. It was inferior compared.

これは、特定の粒径の形状の異なるコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)を使わず、棒状コロイダルシリカのみを使ったため、摩擦強度に劣る膜が成膜された結果である。   This is a result of forming a film having inferior frictional strength because the colloidal silica (rod-like colloidal silica + spherical colloidal silica) having a different specific particle size shape is not used but only the rod-like colloidal silica is used.

実施例12
実施例9で用いた球状コロイダルシリカのIPA分散液(日産化学工業株式会社製、商品名、メタノールシリカゾル、固形分濃度30.2質量%、粒径10nm〜20nm)をIPAで薄めた後、タンタルアルコキシドが酸化物換算での質量比でSiO:Nb=80:20、即ち、タンタルアルコキシドが酸化物換算で20質量%になるように調製し、固形分濃度2.0質量%の低反射膜形成用塗布液とした。当該低反射膜形成用塗布液を、実施例9と同様の手順で、ガラス基板に塗布し加熱焼成して低反射膜付きガラス基板を得た。
Example 12
The IPA dispersion of spherical colloidal silica used in Example 9 (manufactured by Nissan Chemical Industries, Ltd., trade name, methanol silica sol, solid content concentration 30.2 mass%, particle size 10 nm to 20 nm) was diluted with IPA, and then tantalum. The alkoxide was prepared in such a way that the oxide ratio in terms of mass ratio was SiO 2 : Nb 2 O 5 = 80: 20, that is, the tantalum alkoxide was 20 mass% in terms of oxide, and the solid content concentration was 2.0 mass%. A coating solution for forming a low reflection film was obtained. The low reflection film forming coating solution was applied to a glass substrate in the same procedure as in Example 9, and heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例9と同様に膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は97.0%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.5%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、113nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.307であり、低反射膜付きガラス基板として満足のいく性能であった。   When the physical property values were measured according to the physical property evaluation methods in Table 2, the average of the glass substrates with low reflection films formed on both surfaces in the same manner as in Example 9 under the condition of a pulling rate of 3.0 mm / sec. The transmittance was 97.0%, and the average transmittance was improved by 6.5% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Then, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 113 nm. Further, when the refractive index n was measured with an ellipsometer, n = 1.307, which was a satisfactory performance as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、部分的に剥離があり、実施例5および実施例6の低反射膜付きガラス基板と比較し摩擦強度に劣っていた。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The frictional strength of the low reflective film is that the appearance after 3000 reciprocating frictions in the flannel cloth abrasion test is cloudy and partly peeled off, and compared to the glass substrates with the low reflective film of Examples 5 and 6. It was inferior in strength.

これは、特定の粒径の形状の異なるコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)を使わず、球状コロイダルシリカのみを使ったため、摩擦強度に劣る膜が成膜された結果である。   This is a result of forming a film having inferior frictional strength because only the spherical colloidal silica was used without using colloidal silica (rod-like colloidal silica + spherical colloidal silica) having a specific particle size.

比較例4
実施例1と同様にして、形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を調製し、ガラス基板に実施例1と同様の手順で塗布後、加熱焼成し低反射膜付きガラス基板を得た。実施例1〜12と異なり、低反射膜には金属酸化物が含有されない。
Comparative Example 4
In the same manner as in Example 1, a colloidal silica dispersion containing colloidal silica having a different shape was prepared, applied to a glass substrate in the same procedure as in Example 1, and then heated and fired to obtain a glass substrate with a low reflection film. . Unlike Examples 1-12, a metal oxide is not contained in a low reflection film.

次いで、実施例1と同様に低反射膜付きガラス基板の評価を行った。   Subsequently, the glass substrate with a low reflection film was evaluated in the same manner as in Example 1.

前記物性評価方法に従い、物性値の測定をしたところ、平均透過率は、低反射膜を設ける前のガラス基板より、7.6%向上し、97.4%であった。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、ヘイズは試験前に比べ、5.7%増大し、部分的に剥離があり摩擦強度に劣っていた。   When the physical property values were measured according to the physical property evaluation method, the average transmittance was 97.4%, which was 7.6% higher than the glass substrate before the low reflective film was provided. The frictional strength of the low reflective film is cloudy in appearance after 3000 reciprocating rubs according to the nell cloth abrasion test, haze is increased by 5.7% compared to before the test, and there is partial peeling and inferior frictional strength. It was.

比較例4の低反射膜付きガラス基板は、膜強度に劣り、耐久性に乏しく、実用に耐えるものではなかった。   The glass substrate with a low reflection film of Comparative Example 4 was inferior in film strength, poor in durability, and could not withstand practical use.

比較例5
実施例1と同様にして、形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液を調製し、TEOSをコロイダルシリカに対する質量比で20質量%となるように加えた。ガラス基板に実施例1と同様の手順で塗布後、加熱焼成し低反射膜付きガラス基板を得た。実施例1〜12と異なり、低反射膜には金属酸化物が含有されない。
Comparative Example 5
In the same manner as in Example 1, a colloidal silica dispersion containing colloidal silica having a different shape was prepared, and TEOS was added so that the mass ratio with respect to the colloidal silica was 20% by mass. After coating on a glass substrate in the same procedure as in Example 1, it was heated and fired to obtain a glass substrate with a low reflection film. Unlike Examples 1-12, a metal oxide is not contained in a low reflection film.

次いで、実施例1と同様に低反射膜付きガラス基板の評価を行った。   Subsequently, the glass substrate with a low reflection film was evaluated in the same manner as in Example 1.

前記物性評価方法に従い、物性値の測定をしたところ、平均透過率は、低反射膜を設ける前のガラス基板より、4.1%向上しており、94.6%であった。低反射膜の摩擦強度は、ネル布摩耗試験による3000回往復摩擦後の外観は曇りがあり、ヘイズは試験前に比べ、5.7%増大し、部分的に剥離があり摩擦強度に劣っていた。   When the physical property values were measured according to the physical property evaluation method, the average transmittance was 94.6%, which was 4.1% higher than that of the glass substrate before the low reflective film was provided. The frictional strength of the low reflective film is cloudy in appearance after 3000 reciprocating rubs according to the nell cloth abrasion test, haze is increased by 5.7% compared to before the test, and there is partial peeling and inferior frictional strength. It was.

比較例6
実施例1で調製したタングステンアルコキシド溶液のみをガラス基板に塗布し、実施例1と同様に加熱焼成して成膜し、酸化タングステン膜付きガラス基板を得た。ヘイズが46.8%の白濁したすりガラス状の基板となった。
Comparative Example 6
Only the tungsten alkoxide solution prepared in Example 1 was applied to a glass substrate and heated and fired in the same manner as in Example 1 to form a film, thereby obtaining a glass substrate with a tungsten oxide film. A cloudy ground glass substrate having a haze of 46.8% was obtained.

比較例7
実施例5で調製したニオブアルコキシド溶液のみをガラス基板に塗布し、実施例5と同様に加熱焼成して成膜し、酸化ニオブ膜付きガラス基板を得たエリプソメーターで測定したところ、膜の屈折率は1.90であり、平均透過率は、低反射膜を成膜していないガラス基板と比較し低下した。
Comparative Example 7
When only the niobium alkoxide solution prepared in Example 5 was applied to a glass substrate and heated and fired in the same manner as in Example 5 to form a film and measured with an ellipsometer to obtain a glass substrate with a niobium oxide film, the film was refracted. The rate was 1.90, and the average transmittance was lower than that of a glass substrate on which a low reflective film was not formed.

比較例8
実施例9で調製したタンタルアルコキシド溶液のみをガラス基板に塗布し、実施例9と同様に加熱焼成して成膜し、酸化タンタル膜付きガラス基板を得た。膜の屈折率は1.86であり、平均透過率は低反射膜を成膜していないガラス基板と比較し低下した。
Comparative Example 8
Only the tantalum alkoxide solution prepared in Example 9 was applied to a glass substrate and heated and fired in the same manner as in Example 9 to form a film, thereby obtaining a glass substrate with a tantalum oxide film. The refractive index of the film was 1.86, and the average transmittance was lower than that of the glass substrate on which the low reflection film was not formed.

(結果)
評価結果を表3に示す。

Figure 2012148950
(result)
The evaluation results are shown in Table 3.
Figure 2012148950

本発明の低反射膜が形成された低反射膜付きガラス基板は、親水性、防汚性に優れており、帯電防止性能を有し汚れにくい。特に、表3に示す様に、実施例1、2、実施例5、6および実施例9、10の低反射膜付き基板は、高い平均透過率を示し、ネル磨耗試験による膜強度試験の結果、平均透過率が劣化することなく、秀でた耐久性を示した。   The glass substrate with a low reflection film on which the low reflection film of the present invention is formed is excellent in hydrophilicity and antifouling properties, has antistatic properties, and is hardly contaminated. In particular, as shown in Table 3, the substrates with low reflective films of Examples 1, 2, 5 and 6 and Examples 9 and 10 showed high average transmittance, and the results of film strength tests by flannel abrasion tests. It showed excellent durability without deteriorating the average transmittance.

尚、図1、図3、図5のSEM写真の倍率は同じである。   The magnifications of the SEM photographs in FIGS. 1, 3, and 5 are the same.

[塗布液に対する水の添加]
前記実施例1、5、9の低反射膜形成用塗布液、形状の異なるコロイダルシリカのみの比較例4の塗布液、形状の異なるコロイダルシリカの分散液にTEOSを加えた比較例5の塗布液に水を添加した塗布液に水を添加し、経時による固形分の析出を観察した。
[Addition of water to coating solution]
The coating liquid for forming a low reflection film of Examples 1, 5, and 9, the coating liquid of Comparative Example 4 containing only colloidal silica having a different shape, and the coating liquid of Comparative Example 5 in which TEOS was added to a dispersion of colloidal silica having a different shape. Water was added to the coating solution to which water was added, and precipitation of solid content over time was observed.

具体的には、実施例1、5、9、比較例4、5の低反射膜形成用塗布液に、純水を10.0質量%を加え、室温(20℃)にて保管し、目視にて白濁および固形分の析出の有無を観察した。   Specifically, 10.0% by mass of pure water was added to the coating solutions for forming a low reflection film of Examples 1, 5, 9 and Comparative Examples 4, 5, and stored at room temperature (20 ° C.). The presence or absence of white turbidity and solid content was observed.

形状の異なる2種類のコロイダルシリカ(棒状コロイダルシリカ+球状コロイダルシリカ)に好ましい比率でタングステンアルコキシドを加えた実施例1の低反射膜形成用塗布液、ニオブアルコキシドを加えた実施例5の低反射膜形成用塗布液、タンタルアルコキシドを加えた実施例9の低反射膜形成用塗布液は、形状の異なる2種類のコロイダルシリカのみの比較例4の塗布液は純水を10.0質量%添加し、90日経過しても変化はみられなかった。   The low-reflective film-forming coating liquid of Example 1 in which tungsten alkoxide is added to two types of colloidal silicas (rod-shaped colloidal silica + spherical colloidal silica) in different ratios, and the niobium alkoxide is added in the low-reflective film of Example 5 The coating solution for forming a low reflection film of Example 9 to which tantalum alkoxide was added as a forming coating solution was added 10.0% by mass of pure water to the coating solution of Comparative Example 4 containing only two types of colloidal silica having different shapes. No change was observed after 90 days.

比較して、形状の異なる2種類のコロイダルシリカの分散液にTEOSを加えた比較例5の塗布液は、純水を10%添加し、1週間経過したところ、ゲル化して塗布液として使用不可能であった。   In comparison, the coating solution of Comparative Example 5 in which TEOS was added to two types of colloidal silica dispersions having different shapes was added with 10% pure water, and after 1 week, it gelled and was not used as a coating solution. It was possible.

次いで、純水を10.0質量%加え、90日経過した実施例1、5、9で調製した低反射膜形成用塗布液(各々、実施例13、14、15とする)を用い、実施例1、5、9と同様にして、ガラス基板に塗布成膜し、得られた低反射膜付きガラス基板の物性評価を行った。   Next, 10.0% by mass of pure water was added, and the coating solution for forming a low reflection film prepared in Examples 1, 5 and 9 after 90 days (respectively, Examples 13, 14, and 15) was used. In the same manner as in Examples 1, 5, and 9, coating and film formation were performed on a glass substrate, and physical properties of the obtained glass substrate with a low reflection film were evaluated.

実施例13
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液にタングステンアルコキシド分散液を加えた低反射膜形成用塗布液を、実施例1と同様に調製し、次いで、純水を、液の総重量に対し10.0質量%加え、室温下(20℃)、90日間静置した。静置後の当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布後、加熱焼成して低反射膜付きガラス基板を得た。
Example 13
A coating solution for forming a low reflection film in which a tungsten alkoxide dispersion is added to a colloidal silica dispersion containing colloidal silica having different shapes is prepared in the same manner as in Example 1, and then pure water is added to the total weight of the liquid. 10.0 mass% was added and it left still for 90 days under room temperature (20 degreeC). The coating solution for forming a low reflection film after standing was applied to a glass substrate in the same procedure as in Example 1, and then heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.4mm/secの条件で、実施例1と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は97.7%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が7.2%向上した。 次いで、膜厚を触針式表面形状測定器で測定したところ、112nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.285であり、低反射膜付きガラス基板として満足の行く性能が得られていた。   When the physical property values were measured according to the physical property evaluation methods in Table 2, a low reflective film-coated glass substrate was formed on both surfaces in the same manner as in Example 1 under the condition of a pulling speed of 3.4 mm / sec. The average transmittance was 97.7%, and the average transmittance was improved by 7.2% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 112 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.285, and satisfactory performance was obtained as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、96.8%であり、試験前に比べ、0.9%低下した。また純水の接触角を測定したところ15.2°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and a haze was seen, but the film was not peeled off, and the average transmittance was measured to be 96.8%, which was 0.9% lower than that before the test. Further, when the contact angle of pure water was measured, it was 15.2 °, indicating strong hydrophilicity.

実施例14
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液にニオブアルコキシド分散液を加えた低反射膜形成用塗布液を、実施例5と同様に調製し、次いで、純水を、液の総重量に対し10.0質量%加え、室温下(20℃)、90日間静置した。静置後の当該低反射膜形成用塗布液を、実施例1と同様の手順で、ガラス基板に塗布後、加熱焼成して低反射膜付きガラス基板を得た。
Example 14
A coating solution for forming a low reflection film obtained by adding a niobium alkoxide dispersion liquid to a colloidal silica dispersion liquid containing colloidal silica having different shapes was prepared in the same manner as in Example 5, and then pure water was added to the total weight of the liquid. 10.0 mass% was added and it left still for 90 days under room temperature (20 degreeC). The coating solution for forming a low reflection film after standing was applied to a glass substrate in the same procedure as in Example 1, and then heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.0mm/secの条件で、実施例5と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は96.8%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.3%向上した。次いで、膜厚を触針式表面形状測定器で測定したところ、108nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.277であり、低反射膜付きガラス基板として満足の行く性能が得られていた。   When the physical property values were measured according to the physical property evaluation methods shown in Table 2, a low reflective film-coated glass substrate was formed on both surfaces in the same manner as in Example 5 under the condition of a pulling rate of 3.0 mm / sec. The average transmittance was 96.8%, and the average transmittance was improved by 6.3% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Next, the film thickness was measured with a stylus type surface shape measuring instrument and found to be 108 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.277, and satisfactory performance was obtained as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、96.1%であり、試験前に比べ、0.7%低下した。また純水の接触角を測定したところ13.6°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and a haze was seen, but the film was not peeled off and the average transmittance was measured to be 96.1%, which was 0.7% lower than before the test. Further, when the contact angle of pure water was measured, it was 13.6 °, indicating strong hydrophilicity.

実施例15
形状の異なるコロイダルシリカを含有するコロイダルシリカ分散液にタンタルアルコキシド分散液を加えた低反射膜形成用塗布液を、実施例9と同様に調製し、次いで、純水を、液の総重量に対し10.0質量%加え、室温下(20℃)、90日間静置した。静置後の当該低反射膜形成用塗布液を、実施例9と同様の手順で、ガラス基板に塗布後、加熱焼成して低反射膜付きガラス基板を得た。
Example 15
A coating solution for forming a low reflection film obtained by adding a tantalum alkoxide dispersion liquid to a colloidal silica dispersion liquid containing colloidal silica having different shapes was prepared in the same manner as in Example 9, and then pure water was added to the total weight of the liquid. 10.0 mass% was added and it left still for 90 days under room temperature (20 degreeC). The low reflection film forming coating solution after standing was applied to a glass substrate in the same procedure as in Example 9, and then heated and fired to obtain a glass substrate with a low reflection film.

表2の物性評価方法に従い、物性値の測定をしたところ、引き上げ速度3.4mm/secの条件で、実施例1と同様に低反射膜を両面に形成してなる、低反射膜付きガラス基板の平均透過率は96.6%であり、低反射膜を設けていないガラス基板の平均透過率、90.5%と比較して、平均透過率が6.1%向上した。 次いで、膜厚を触針式表面形状測定器で測定したところ、115nmであった。また、屈折率nをエリプソメーターで測定したところ、n=1.264であり、低反射膜付きガラス基板として満足の行く性能が得られていた。   When the physical property values were measured according to the physical property evaluation methods in Table 2, a low reflective film-coated glass substrate was formed on both surfaces in the same manner as in Example 1 under the condition of a pulling speed of 3.4 mm / sec. The average transmittance was 96.6%, and the average transmittance was improved by 6.1% compared to the average transmittance of 90.5% for the glass substrate not provided with the low reflective film. Subsequently, when the film thickness was measured with a stylus type surface shape measuring instrument, it was 115 nm. Further, when the refractive index n was measured with an ellipsometer, it was n = 1.264, and satisfactory performance was obtained as a glass substrate with a low reflection film.

次いで、この被膜の摩擦強度を摩耗試験機により、パットに取り付けたネル布を用いて、低反射膜付きガラス基板の表面を15g/cmの荷重で3000回、往復摩擦し、低反射膜の摩擦強度を評価した。外観は、やや擦り傷がありヘイズが見えたが、膜は剥離しておらず、平均透過率を測定したところ、95.8%であり、試験前に比べ、0.8%低下した。また純水の接触角を測定したところ14.4°であり、強い親水性を示した。 Next, the frictional strength of this coating was rubbed back and forth 3000 times with a load of 15 g / cm 2 using a flannel cloth attached to the pad by a wear tester. The friction strength was evaluated. The appearance was slightly scratched and haze was visible, but the film was not peeled off and the average transmittance was measured to be 95.8%, which was 0.8% lower than before the test. Further, when the contact angle of pure water was measured, it was 14.4 ° and showed strong hydrophilicity.

結果を纏めて表4に示す。純水を加えていない実施例1、5、9の低反射膜形成用塗布液により低反射膜を両面に形成してなる低反射膜付きガラス基板に対し、純水を10.0質量%加え、且つ90日経過後の実施例13、14、15の低反射膜形成用塗布液により低反射膜を両面に形成してなる低反射膜付きガラス基板の物性評価の結果は、実施例1、5、9の低反射膜付き基板に劣らない結果であった。

Figure 2012148950
The results are summarized in Table 4. 10.0% by mass of pure water was added to a glass substrate with a low reflection film formed on both surfaces with the low reflection film forming coating liquids of Examples 1, 5, and 9 in which pure water was not added. In addition, the results of physical property evaluation of the glass substrate with a low reflection film formed by forming the low reflection film on both surfaces with the coating liquid for forming the low reflection film of Examples 13, 14, and 15 after 90 days have passed are as follows. No. 9 was a result not inferior to the substrate with a low reflection film.
Figure 2012148950

水を加えることにより、低反射膜形成用塗布液の粘度の調整が容易であり、対応できる
塗布方法の選択肢が増す。また、火気に対する安全性等も増す傾向がある。
By adding water, it is easy to adjust the viscosity of the coating solution for forming a low reflection film, and the choice of coating methods that can be handled increases. In addition, the safety against fire tends to increase.

本発明の低反射膜の形成方法により、表面に耐久性のある親水性かつ低屈折率である低反射膜が形成された低反射部材が得られた。本発明の低反射部材は、太陽電池用カバーガラス、レンズ等の光学材料、陰極線管や液晶表示装置等の画像表示面、窓やショーケース、天窓材、温水器、照明器具等の板ガラスや透明プラスチック等の親水性・防汚性・低反射帯電防止の求められる広い分野において利用できる。また、紫外から可視光におよび波長域ばかりでなく、近赤外波長域の透過性に優れるため、特に太陽電池用カバーガラスとして特に有用である。   By the method for forming a low reflection film of the present invention, a low reflection member having a durable low hydrophilic film having a low refractive index formed on the surface was obtained. The low reflection member of the present invention is a cover glass for solar cells, an optical material such as a lens, an image display surface such as a cathode ray tube or a liquid crystal display device, a glass plate or transparent glass such as a window or a showcase, a skylight material, a water heater or a lighting fixture. It can be used in a wide range of fields that require hydrophilicity, antifouling properties, and low reflection antistatic properties such as plastics. Moreover, since it is excellent in the transmittance | permeability not only in an ultraviolet to visible light and a wavelength range but a near-infrared wavelength range, it is especially useful especially as a cover glass for solar cells.

具体的には、本発明の低反射膜を表面に形成された低反射部材には、フロントガラスの映り込み防止、照明器具の保護部材として高い平均透過率による照度向上の効果があり、特に、太陽電池用カバーガラスに用いた際は、光学特性の調整が可能で、低反射膜形成の効果による平均透過率向上による受光効率向上、引いては発電効率の向上に格別の効果が見られ、太陽電池用カバーガラスとして極めて好適に用いられる。   Specifically, the low reflection member formed on the surface of the low reflection film of the present invention has an effect of improving the illuminance due to high average transmittance as a protection member for the luminaire, preventing reflection of the windshield, When used for solar cell cover glass, the optical characteristics can be adjusted, the light reception efficiency is improved by improving the average transmittance due to the effect of forming a low reflection film, and in particular, the power generation efficiency is improved. It is used very suitably as a cover glass for solar cells.

また、本発明の低反射膜を形成してなる低反射部材は、基体がガラス板であっても、低反射膜の強度が劣化することなく耐久性に優れ、太陽電池用カバーガラスとして使用するに最適である。   In addition, the low reflection member formed with the low reflection film of the present invention is excellent in durability without deterioration of the strength of the low reflection film even when the substrate is a glass plate, and is used as a cover glass for solar cells. Ideal for.

Claims (16)

シリカ微粒子と、酸化タングステン、酸化ニオブ、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化スズ、酸化アルミニウム、酸化ハフニウム、酸化クロム、酸化モリブデン、酸化セリウムおよび酸化ランタンからなる群から選ばれた少なくとも1種の金属酸化物からなるバインダーを含有してなり、シリカ微粒子に対する金属酸化物からなるバインダーの含有比が5質量%以上、40質量%以下であり、屈折率1.20以上、1.40以下であることを特徴とする低反射膜。 At least one selected from the group consisting of silica fine particles and tungsten oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, hafnium oxide, chromium oxide, molybdenum oxide, cerium oxide, and lanthanum oxide. A binder composed of a metal oxide is contained, and the content ratio of the binder composed of the metal oxide to the silica fine particles is 5% by mass or more and 40% by mass or less, and the refractive index is 1.20 or more and 1.40 or less. A low reflective film characterized by the above. シリカ微粒子が、走査型電子顕微鏡による観察で、長径が5nm以上、100nm以下である棒状シリカ微粒子と、粒径が5nm以上、50nm以下である球状シリカ微粒子が主であることを特徴とする請求項1に記載の低反射膜。 The silica fine particles are mainly rod-like silica fine particles having a major axis of 5 nm to 100 nm and spherical silica fine particles having a particle size of 5 nm to 50 nm as observed with a scanning electron microscope. 2. The low reflection film according to 1. 棒状シリカ微粒子と球状シリカ微粒子の質量比が棒状シリカ微粒子:球状シリカ微粒子=20:80〜80:20であることを特徴とする請求項2に記載の低反射膜。 3. The low reflection film according to claim 2, wherein the mass ratio of the rod-like silica particles and the spherical silica particles is rod-like silica particles: spherical silica particles = 20: 80 to 80:20. 金属酸化物が、酸化タングステン、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種の金属酸化物であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の低反射膜。 4. The low oxide according to claim 1, wherein the metal oxide is at least one metal oxide selected from the group consisting of tungsten oxide, niobium oxide, and tantalum oxide. 5. Reflective film. 透明基体表面に請求項1乃至請求項4のいずれか1項に記載の低反射膜が形成されてなる低反射部材。 A low-reflection member, wherein the low-reflection film according to any one of claims 1 to 4 is formed on a transparent substrate surface. 透明基体がガラス板であり、光波長域380nm〜1200nmの平均透過率が95%以上であることを特徴とする請求項5に記載の低反射部材。 6. The low reflection member according to claim 5, wherein the transparent substrate is a glass plate, and an average transmittance in a light wavelength range of 380 nm to 1200 nm is 95% or more. 光透過率曲線の最大値のピークが500nm以上、900nm以下の範囲であることを特徴とする請求項5または請求項6に記載の低反射部材。 The peak of the maximum value of a light transmittance curve is 500 nm or more and 900 nm or less, The low reflection member of Claim 5 or Claim 6 characterized by the above-mentioned. 請求項5乃至請求項7に記載の低反射部材からなる太陽電池用カバーガラス。 A solar cell cover glass comprising the low reflection member according to claim 5. コロイダルシリカを含む分散液に、タングステン、ニオブ、タンタル、チタン、ジルコニウム、スズ、アルミニウム、ハフニウム、クロム、モリブデンおよび希土類からなる群から選ばれた少なくとも1種の金属の金属化合物を含む分散液を加えてなる低反射膜形成用塗布液を、基体に塗布し塗膜とした後に加熱焼成し、コロイダルシリカをシリカ微粒子とし、金属化合物を金属酸化物とし硬化させることを特徴とする低反射膜の形成方法。 A dispersion containing a metal compound of at least one metal selected from the group consisting of tungsten, niobium, tantalum, titanium, zirconium, tin, aluminum, hafnium, chromium, molybdenum and rare earth is added to the dispersion containing colloidal silica. A coating solution for forming a low reflection film is applied to a substrate to form a coating film, and then heated and fired to form colloidal silica as silica fine particles and a metal compound as a metal oxide to form a low reflection film. Method. コロイダルシリカが、走査型電子顕微鏡による観察で、長径が5nm以上、100nm以下の棒状コロイダルシリカと、粒径が5nm以上、50nm以下の球状コロイダルシリカが全個数の90%以上であり、コロイダルシリカに対する金属化合物の含有が酸化物換算で、5質量%以上、40質量%以下であることを特徴とする請求項9に記載の方法。 Colloidal silica is 90% or more of the total number of rod-shaped colloidal silica having a major axis of 5 nm or more and 100 nm or less and spherical colloidal silica having a particle diameter of 5 nm or more and 50 nm or less as observed by a scanning electron microscope. The method according to claim 9, wherein the content of the metal compound is 5% by mass or more and 40% by mass or less in terms of oxide. 棒状コロイダルシリカと球状コロイダルシリカの質量比が、棒状シリカコロイダルシリカ:球状コロイダルシリカ=20:80〜80:20であることを特徴とする請求項10に記載の方法。 The method according to claim 10, wherein the mass ratio of the rod-shaped colloidal silica to the spherical colloidal silica is rod-shaped silica colloidal silica: spherical colloidal silica = 20: 80 to 80:20. 金属化合物が、タングステン、ニオブおよびタンタルからなら群から選ばれた少なくとも1種の金属の金属化合物であることを特徴とする請求項9乃至請求項11のいずれか1項に記載の方法。 The method according to claim 9, wherein the metal compound is a metal compound of at least one metal selected from the group consisting of tungsten, niobium and tantalum. 請求項9乃至請求項12のいずれか1項に記載の方法で透明基体表面に屈折率が1.20以上、1.40以下である低反射膜が形成されてなる低反射部材。 A low reflection member in which a low reflection film having a refractive index of 1.20 or more and 1.40 or less is formed on the transparent substrate surface by the method according to any one of claims 9 to 12. 透明基体がガラス板であり、波長域380nm〜1200nmの平均透過率が95%以上であることを特徴とする請求項13に記載の低反射部材。 The low reflection member according to claim 13, wherein the transparent substrate is a glass plate, and an average transmittance in a wavelength range of 380 nm to 1200 nm is 95% or more. 光透過率曲線の最大値のピークが500nm以上、900nm以下の範囲であることを特徴とする請求項13または請求項14に記載の低反射部材。 The peak of the maximum value of a light transmittance curve is 500 nm or more and 900 nm or less, The low reflection member of Claim 13 or Claim 14 characterized by the above-mentioned. 請求項13乃至請求項15のいずれか1項に記載の低反射部材からなる太陽電池用カバーガラス。 The cover glass for solar cells which consists of a low reflection member of any one of Claim 13 thru | or 15.
JP2011150700A 2010-07-12 2011-07-07 Low-reflective film, method for formation thereof, and low-reflective member equipped therewith Withdrawn JP2012148950A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011150700A JP2012148950A (en) 2010-07-12 2011-07-07 Low-reflective film, method for formation thereof, and low-reflective member equipped therewith
PCT/JP2011/065840 WO2012008427A1 (en) 2010-07-12 2011-07-12 Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010158258 2010-07-12
JP2010158258 2010-07-12
JP2010291719 2010-12-28
JP2010291719 2010-12-28
JP2011150700A JP2012148950A (en) 2010-07-12 2011-07-07 Low-reflective film, method for formation thereof, and low-reflective member equipped therewith

Publications (1)

Publication Number Publication Date
JP2012148950A true JP2012148950A (en) 2012-08-09

Family

ID=46791611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150700A Withdrawn JP2012148950A (en) 2010-07-12 2011-07-07 Low-reflective film, method for formation thereof, and low-reflective member equipped therewith

Country Status (1)

Country Link
JP (1) JP2012148950A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045405A1 (en) 2013-09-30 2015-04-02 日本板硝子株式会社 Method for producing glass sheet
JP2015106140A (en) * 2013-12-03 2015-06-08 三菱マテリアル株式会社 Composition for forming low refractive index film with infrared blocking capability, method of forming low refractive index film using the same, and low refractive index film
WO2015093029A1 (en) 2013-12-17 2015-06-25 日本板硝子株式会社 Glass sheet manufacturing method and glass sheet
WO2016121404A1 (en) * 2015-01-29 2016-08-04 日本板硝子株式会社 Glass plate provided with low-reflection coating, method for manufacturing substrate provided with low-reflection coating, and coating liquid for forming low-reflection coating for substrate provided with low-reflection coating
JP2018535913A (en) * 2015-10-30 2018-12-06 エージーシー グラス ユーロップAgc Glass Europe Coated glass sheet
JP2019209592A (en) * 2018-06-05 2019-12-12 リソテック ジャパン株式会社 Composite material
CN114916228A (en) * 2020-12-10 2022-08-16 Lt金属株式会社 Metal oxide sintered body containing molybdenum oxide as main component and sputtering target comprising same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10150696B2 (en) 2013-09-30 2018-12-11 Nippon Sheet Glass Company, Limited Method for producing glass sheet
WO2015045405A1 (en) 2013-09-30 2015-04-02 日本板硝子株式会社 Method for producing glass sheet
JP2015106140A (en) * 2013-12-03 2015-06-08 三菱マテリアル株式会社 Composition for forming low refractive index film with infrared blocking capability, method of forming low refractive index film using the same, and low refractive index film
WO2015093029A1 (en) 2013-12-17 2015-06-25 日本板硝子株式会社 Glass sheet manufacturing method and glass sheet
WO2016121404A1 (en) * 2015-01-29 2016-08-04 日本板硝子株式会社 Glass plate provided with low-reflection coating, method for manufacturing substrate provided with low-reflection coating, and coating liquid for forming low-reflection coating for substrate provided with low-reflection coating
JPWO2016121404A1 (en) * 2015-01-29 2017-12-28 日本板硝子株式会社 GLASS PLATE WITH LOW-REFLECTION COATING, METHOD FOR PRODUCING SUBSTRATE WITH LOW-REFLECTION COATING, AND COATING SOLUTION FOR FORMING LOW-REFLECTION COATING OF SUBSTRATE WITH LOW-REFLECTION COATING
US10329430B2 (en) 2015-01-29 2019-06-25 Nippon Sheet Glass Company, Limited Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
JP2018535913A (en) * 2015-10-30 2018-12-06 エージーシー グラス ユーロップAgc Glass Europe Coated glass sheet
US10851015B2 (en) 2015-10-30 2020-12-01 Agc Glass Europe Coated glass sheet
JP7011584B2 (en) 2015-10-30 2022-01-26 エージーシー グラス ユーロップ Covered glass sheet
JP2019209592A (en) * 2018-06-05 2019-12-12 リソテック ジャパン株式会社 Composite material
JP7214374B2 (en) 2018-06-05 2023-01-30 リソテック ジャパン株式会社 Composite material
CN114916228A (en) * 2020-12-10 2022-08-16 Lt金属株式会社 Metal oxide sintered body containing molybdenum oxide as main component and sputtering target comprising same
CN114916228B (en) * 2020-12-10 2023-08-15 Lt金属株式会社 Metal oxide sintered body containing molybdenum oxide as main component and sputtering target material containing same

Similar Documents

Publication Publication Date Title
JP2012148950A (en) Low-reflective film, method for formation thereof, and low-reflective member equipped therewith
JP5849970B2 (en) Article having a low-reflection film
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
EP1447433B1 (en) Coating material composition and article having coating film formed therewith
JP4841782B2 (en) Low reflective film and solar panel
TWI497107B (en) Antireflective lumps
TW201606357A (en) Substrate with anti-glare film and article thereof
WO2014061606A1 (en) Antifouling antireflection film, article and method for manufacturing same
JP2001278637A (en) Low reflection glass article
WO2012008427A1 (en) Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith
JP2017021155A (en) Transparent screen with light scattering coating film and coating liquid for forming light scattering coating film
JP2017186205A (en) Article having low reflective film
TW201606356A (en) Anti-glare-layer substrate and article
JP2012148952A (en) Coating solution for formation of low-reflective film, method for preparation thereof, and low-reflective member produced by using the same
JP2005243319A (en) Lighting device
WO2011093484A1 (en) Hydrophilic low-reflection member
JP2012150425A (en) Coating liquid for forming low reflective film, preparation method for the same and low reflective member using the same
JP5989808B2 (en) Manufacturing method of glass plate with low reflection coating and coating liquid used therefor
WO2016002223A1 (en) Glass plate having low-reflection coating
JP2012148951A (en) Coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member produced by using the same
JP2004352524A (en) Low reflective article and manufacturing method therefor
JP2013121893A (en) Method of producing glass with low reflective film
KR101691550B1 (en) Monolayer hydrophobic coating composition improved anti-reflection efficiency for solar cell
WO2014042129A1 (en) Product having low-reflection film
JP2015161791A (en) Base material with anti-reflection film, and article

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007