WO2011093484A1 - Hydrophilic low-reflection member - Google Patents

Hydrophilic low-reflection member Download PDF

Info

Publication number
WO2011093484A1
WO2011093484A1 PCT/JP2011/051869 JP2011051869W WO2011093484A1 WO 2011093484 A1 WO2011093484 A1 WO 2011093484A1 JP 2011051869 W JP2011051869 W JP 2011051869W WO 2011093484 A1 WO2011093484 A1 WO 2011093484A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
hydrophilic low
film
reflection member
refractive index
Prior art date
Application number
PCT/JP2011/051869
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 杉本
多門 坂本
尚史 高信
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2011093484A1 publication Critical patent/WO2011093484A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Definitions

  • the present invention relates to a hydrophilic low reflection member having a hydrophilic low reflection film formed on a transparent substrate.
  • Low reflection members include substrates such as solar cells or electrophotographic photoreceptors, optical materials such as lenses for optical equipment such as still cameras, video cameras, and liquid crystal projectors, image display surfaces such as cathode ray tubes and liquid crystal display devices, and copying. Widely used in projectors, imaging tubes, LED display elements, lighting, organic EL, windows and showcases, reflectors for automobile headlamps, etc. Used.
  • a low reflection coating for preventing light reflection on the substrate surface that is, an optical thin film (hereinafter referred to as a thin film or film) for low reflection on the substrate surface. )
  • a thin film or film for low reflection on the substrate surface.
  • the solar cell front surface is provided with a solar cell protective member for protecting the solar cell.
  • a solar cell cover glass is required.
  • the solar cell cover glass is required to have high light transmittance and low reflection performance in order to obtain high light receiving efficiency, and a material having both ultraviolet resistance, water resistance, weather resistance and the like is preferred. Therefore, an inorganic material is preferable to an organic material such as a resin, and glass is particularly preferable because it is difficult to deteriorate and can maintain low reflection performance over a long period of time.
  • the low reflection film is used to reduce the light reflectance by coating the surface of the substrate.
  • a multilayer film in which thin films having different refractive indexes and thicknesses are superimposed on a substrate that is, a multi-coat has been favorably used. If the reflective film has a multilayer structure, reflection can be prevented in a wide wavelength range.
  • the refractive index of the substrate is n s
  • the refractive index of the medium is n 0
  • the wavelength of light is ⁇
  • the refractive index of the film having the lowest reflectance (theoretically zero) is obtained when there is a single low-reflection film.
  • the refractive index of the fine particles is different from that of the medium.
  • the refractive index of the medium is required, and in the case of air, it is required to be closer to about 1.
  • Magnesium fluoride thin films are mainly deposited by vapor deposition, but from the viewpoint of cost and workability, instead of the conventional vapor deposition method, an inexpensive and highly productive coating method suitable for large areas is required. Is done.
  • Magnesium fluoride sols include aqueous sols obtained by concentrating a magnesium fluoride gel produced by adding an aqueous fluoride solution to an aqueous magnesium salt solution, and organosols obtained by phase-shifting an aqueous sol into an organic solvent.
  • Patent Document 1 and Patent Document 2 Known and disclosed in Patent Document 1 and Patent Document 2.
  • Patent Document 3 discloses a method for removing by-products by reacting magnesium fluoride produced in an organic solvent with a heat and pressure treatment using an autoclave after reaction.
  • Patent Document 4 discloses a support having an abrasion-resistant coating containing magnesium fluoride and a metal oxide. In addition, it is described that using hydrogen fluoride as a raw material for producing magnesium fluoride is inappropriate.
  • Patent Document 5 the surface of a base material coated with a fluoride such as magnesium fluoride is surface-modified by plasma irradiation or the like to manufacture a hardly-chargeable optical element in which hydrophilicity is introduced. A method is disclosed.
  • Patent Document 6 discloses an optical body that prevents water scuffing by forming a layer having photocatalytic activity such as titanium dioxide immediately below a magnesium fluoride layer in a multilayer antireflection film. . Patent Document 6 describes that magnesium fluoride is non-hydrophilic.
  • CIS thin film solar cells and crystalline silicon can absorb light in a wide wavelength range of 400 nm or more and 2000 nm or less, and can absorb light in a long wavelength range as compared with conventional amorphous silicon systems. It is known that the absorption peak is around 900 nm.
  • Patent Document 1 and Patent Document 2 The method for forming an antireflection film described in Patent Document 1 and Patent Document 2 is synthesis of an organosol in an aqueous system, that is, synthesis using water, and by-product salt washing and concentration are performed by ultrafiltration. Therefore, there are problems in productivity and cost of the low reflection member.
  • Patent Document 4 is excellent in abrasion resistance of the coating film, there is a problem in the storage stability of the mixed solution of magnesium fluoride and a specific metal oxide precursor, which is a coating solution.
  • a low reflection film using magnesium fluoride which is an insulator and is easily charged with static electricity, is easily charged with an insulator, and is hydrophobic and easily contaminated with oil, which is a contaminant.
  • the surface resistance value of the magnesium fluoride film deposited on the surface of the glasses or the lens of the camera is 3.9 ⁇ 10 12 ⁇ ⁇ cm, and the magnesium fluoride film is an insulator.
  • the contact angle of the magnesium fluoride membrane with respect to pure water is 68 °, which is hydrophobic. For this reason, it is obvious that dirt such as sweat and dust is easily attached and easily contaminated.
  • Patent Document 5 describes that the surface of an optical element having a fluoride is easily charged, and thus the transmittance decreases.
  • magnesium fluoride Since not only magnesium fluoride but fluoride is chemically stable, for example, it is difficult to form a chemical bond with a glass substrate even if it is attached to the surface of a glass substrate and heated and fired to form a coating. Adhesive strength with is weak.
  • magnesium fluoride has a Mohs hardness of 6 and is not so hard, and has a problem that the film is inferior in wear resistance and the film is easily peeled off.
  • solar cells Since solar cells are exposed to wind and rain and ultraviolet rays when used outdoors, they require a protective member for the solar cell body, for example, a solar cell cover glass, and are already on the market.
  • the solar cell cover glass in the case of an amorphous silicon type solar cell, the visible light 580 nm is the center, and in the crystal-Si and compound semiconductor type solar cells, the high transmittance is centered on the long wavelength region of 800 nm to 2000 nm. It is necessary to transmit light.
  • the solar cell cover glass it is required to form on the surface a low reflection film for transmitting light in a wide wavelength range of 380 nm or more and 2000 nm or less, corresponding to a long wavelength region as well as conventional visible light. It is becoming.
  • JP 7-69621 A JP-A-2-26824 International Patent Publication No. WO2002 / 18982 Special table 2008-501557 gazette JP 2001-147302 A JP 2005-165014 A
  • the present invention has high light transmittance and low reflectance, strong adhesion strength to the substrate, excellent weather resistance, hydrophilicity, good antifouling property, antistatic function, and large area
  • An object of the present invention is to provide a hydrophilic low-reflection member having a hydrophilic low-reflection film made of a single layer film that is easy to form.
  • An object is to provide a low reflection member.
  • the present invention is a hydrophilic low-reflection member having a transparent substrate and a hydrophilic low-reflection film formed on the transparent substrate, and has low reflection performance as a constituent component of the hydrophilic low-reflection film.
  • hydrophilic magnesium fluoride magnesium hydroxide fluoride fine particles having a hydroxyl group in the molecule were used, and a refractive index adjusting material was used as a binder.
  • a hydrophilic low reflection member obtained by coating a hydrophilic low reflection film having a refractive index of 1.23 or more and 1.41 or less was obtained.
  • magnesium hydroxide fluoride fine particles are bonded as a binder, that is, a binder, to form an amorphous film, or a void can be formed as a microscopic void.
  • a refractive index of 1.41 or less becomes possible.
  • it is 1.38 or less, More preferably, it is 1.35 or less, More preferably, it is 1.30 or less.
  • the present invention is a hydrophilic low-reflection member having a transparent base material and a hydrophilic low-reflection film formed on the transparent base material, wherein the hydrophilic low-reflection film comprises magnesium hydroxide fluoride fine particles and And at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material.
  • It is a hydrophilic low reflection member characterized by being 23 or more and 1.41 or less. Preferably, it is 1.38 or less. More preferably, it is 1.35 or less, More preferably, it is 1.30 or less.
  • tungsten compounds, niobium compounds and tantalum compounds are easy to disperse or dissolve, and preparation of the coating solution is easy, and it is easy to make oxides by coating and baking the coating solution, especially tungsten oxide, niobium oxide and tantalum oxide, Easy to use as a metal oxide in a hydrophilic low reflection film.
  • fine particles are particles having a maximum particle size of 500 nm or less, and the refractive index is a value measured with an ellipsometer by spectroscopic ellipsometry measurement at a wavelength of 637 nm.
  • magnesium hydroxide fluoride fine particles having a particle diameter of 3 nm or more and 100 nm or less are selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material.
  • tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material.
  • the particle size of the magnesium hydroxide fluoride fine particles is 3 nm or more and 100 nm or less. If it is less than 3 nm, voids between particles become small, and as a result, the number of exposed hydroxyl groups tends to be small, and the hydrophilicity may be lowered. On the other hand, if the thickness exceeds 100 nm, the contact points between the particles and between the particles and the substrate become small, and the adhesion of the fine particles to the substrate may be reduced. More preferably, they are 5 nm or more and 60 nm or less, More preferably, they are 8 nm or more and 20 nm or less.
  • the particle diameter is a value obtained by observation with a scanning electron microscope (hereinafter abbreviated as SEM), and is the maximum diameter of the magnesium hydroxide fluoride fine particles, and the total number of magnesium hydroxide fluoride fine particles in the field of view of the SEM. It is preferable that 90% or more of is within the range of the particle diameter.
  • SEM scanning electron microscope
  • the colorless and transparent film was obtained because at least selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide as a refractive index adjusting material for magnesium hydroxide fluoride fine particles.
  • the resulting low reflection film becomes a more amorphous film.
  • the low reflection film is formed on the surface of the transparent substrate. This is probably because the transparency of the low-reflective member increased.
  • the average transmittance and average reflectance are values obtained by measuring the transmittance and reflectance of light in the wavelength range of 380 nm to 2000 nm using a spectrophotometer, and calculating the average transmittance and average reflectance in the wavelength range. is there.
  • the transmittance curve is a curve obtained by continuously plotting measured values of light transmittance with a spectrophotometer in a certain wavelength range.
  • the magnesium hydroxide fluoride contained in the hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of the present invention is a compound having a hydroxyl group. This can be confirmed by X-ray diffraction (XRD) data, and the X-ray diffraction pattern agrees with the data of magnesium hydroxide fluoride (MgF 1.89 (OH) 0.11 ) in JCPDS file 54-1272. Admitted to do. Compared with magnesium fluoride, magnesium hydroxide fluoride is amorphous and has a hydroxyl group. Therefore, when it is contained in the low reflection film, it shows hydrophilicity, and a hydrophilic low reflection film is formed.
  • XRD X-ray diffraction
  • the magnesium hydroxide fluoride is preferably MgF 1.89 (OH) 0.11 .
  • the present invention is the above-described hydrophilic low-reflection member, wherein the difference between the average transmittance of the transparent base material before the formation of the hydrophilic low-reflection film at 380 nm or more and 2000 nm or less is 6% or more. is there.
  • the hydrophilic low reflection film is at least one selected from the group consisting of magnesium hydroxide fluoride, tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide.
  • the hydrophilic low reflection film is at least one selected from the group consisting of magnesium hydroxide fluoride, tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide.
  • silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), titania (TiO 2 ), tin oxide At least one metal oxide selected from the group consisting of indium oxide, zinc oxide, antimony oxide, and lanthanum oxide may be added.
  • silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), and titania (TiO 2 ) are useful for adjusting the hardness of the low reflective film.
  • Tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide have conductivity, but the refractive index adjusting material was selected from tin oxide (SnO 2 ), indium oxide, zinc oxide, or antimony oxide.
  • the surface resistance value of the hydrophilic low reflection member is 1 ⁇ 10 10 ⁇ . It becomes cm or less, and it becomes possible to impart an antistatic function to the hydrophilic low reflection member.
  • the present invention provides at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material, silica, alumina,
  • the molar ratio of the refractive index adjusting material to magnesium hydroxide fluoride in the hydrophilic low reflection film is preferably in the range of 0.5: 10 to 30:10.
  • the contact angle of water on the hydrophilic low reflection film surface is preferably 30 ° or less.
  • the surface resistance value of the hydrophilic low reflection film surface is preferably 1 ⁇ 10 10 ⁇ . cm or less.
  • the present invention provides a surface protection member for a solar cell characterized by using the above hydrophilic low reflection member.
  • the solar cell surface protective member include a solar cell cover glass.
  • the hydrophilic low-reflection film formed on the surface of the hydrophilic low-reflection member of the present invention is obtained by adding magnesium hydroxide fluoride fine particles to the metal (that is, at least selected from tungsten, molybdenum, chromium, vanadium, niobium and tantalum).
  • a coating liquid in which a compound of one or more metals), for example, metal alkoxide is added and magnesium hydroxide fluoride fine particles are dispersed is applied and coated on the surface of the transparent substrate by a sol-gel method, followed by baking.
  • metal alkoxide is precipitated and fired between magnesium hydroxide fluoride and becomes a binder for binding magnesium hydroxide fluoride, and air having a refractive index of 1 is taken into voids between the magnesium hydroxide fluoride. Due to the effect, the film has a refractive index of 1.38 or less.
  • the hydrophilic low-reflective member of the present invention is obtained by coating and coating a transparent substrate surface with a coating solution in which the above metal compound is added to magnesium hydroxide fluoride fine particles and the magnesium hydroxide fluoride fine particles are dispersed. It has the hydrophilic low-reflection film which becomes.
  • the present invention provides a coating liquid obtained by adding at least one metal compound selected from the group consisting of tungsten, molybdenum, chromium, vanadium, niobium and tantalum to magnesium hydroxide fluoride fine particles.
  • a method for producing the above hydrophilic low-reflection member characterized by firing after coating on the surface.
  • the present invention provides magnesium hydroxide fluoride fine particles, at least one metal compound selected from the group consisting of tungsten, molybdenum, chromium, vanadium, niobium and tantalum, and silicon, aluminum, cerium, zirconium, After applying at least one metal compound selected from the group consisting of titanium, tin, indium, zinc, antimony and lanthanum, and applying a coating liquid in which magnesium hydroxide fluoride fine particles are dispersed to the surface of the transparent substrate And providing a method for producing the above hydrophilic low-reflection member, characterized by firing.
  • FIG. 2 is a SEM photograph of the glass substrate surface on which a film is formed in Example 1.
  • FIG. 4 is a SEM photograph of the glass substrate surface on which a film is formed in Example 2. It is the transmittance
  • FIG. 4 is a SEM photograph of the glass substrate surface on which a film is formed in Example 3. It is the transmittance
  • the present invention contains magnesium hydroxide fluoride fine particles and at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material.
  • a hydrophilic low reflection film (single layer film) with low refractive index, high transparency, excellent hydrophilicity and durability is formed on the surface of a transparent substrate by a wet coating method.
  • the low reflective member was able to be obtained. Since it has hydrophilicity, it is excellent in antifouling property and can be easily washed away even when dirt is attached. Further, if the transparent substrate is glass, the magnesium hydroxide fluoride and the glass surface are firmly bonded, and film peeling hardly occurs.
  • At least one metal compound selected from the group consisting of silicon, aluminum, cerium, zirconium, titanium, tin, indium, zinc, antimony and lanthanum is contained in the hydrophilic low reflection film.
  • a hydrophilic low-reflection film having hardness and excellent wear resistance was obtained.
  • the hydrophilic low reflection member of the present invention has both excellent low reflection performance and hydrophilic performance, antistatic performance, and excellent antifouling properties represented by self-cleaning properties.
  • the above properties can be obtained with a single-layer hydrophilic low-reflection film.
  • the hydrophilic low reflection member of the present invention has a wide light transmission performance not only in the visible light region but also in the near infrared region, and is excellent in light transmittance in a wide wavelength region of 380 nm or more and 2000 nm or less. It is useful as a protective member. When a glass substrate is used as the transparent substrate, it is particularly useful as a solar cell cover glass.
  • the present invention is a hydrophilic low-reflection member having a transparent substrate and a hydrophilic low-reflection film formed on the transparent substrate, the hydrophilic low-reflection film comprising magnesium hydroxide fluoride fine particles, It contains at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material, and has a refractive index of 1.23.
  • the hydrophilic low-reflection member is 1.41 or less. Preferably, it is 1.38 or less, More preferably, it is 1.35 or less, More preferably, it is 1.30 or less.
  • the hydrophilic low reflection film Due to the effect of magnesium hydroxide fluoride contained in the hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of the present invention, the hydrophilic low reflection film has a refractive index of 1.23 or more and 1.41 or less. Refractive index. Furthermore, when forming a hydrophilic low-reflection film, magnesium hydroxide fluoride fine particles become amorphous when a metal oxide is bonded as a binder, that is, a binder, or voids that are microvoids are formed. By taking in air having a refractive index of 1, a refractive index of 1.41 or less is possible.
  • the hydrophilic low-reflection film exhibits hydrophilicity
  • the hydrophilic low-reflection member has a hydrophilic low-reflection function having both low reflection and hydrophilicity.
  • Only magnesium hydroxide fluoride fine particles were formed on both sides of a transparent base material, for example, a glass substrate, and the light transmittance was measured. In the ultraviolet to visible range, it was generally 5% or more and 8% or less than the glass substrate. It was confirmed that the film has a high transmittance and exhibits excellent optical properties.
  • the hydrophilic low reflection film exhibits a low refractive index in the visible light region near a wavelength of 550 nm, and brings high light transmittance to the hydrophilic low reflection member.
  • the light transmittance is considerably reduced and is only 2% to 3% higher than that of an untreated glass substrate having no hydrophilic low reflection film.
  • the hydrophilic low reflection member of the present invention is obtained by applying a coating liquid obtained by adding a specific metal oxide raw material compound as a refractive index adjusting material to a dispersion of magnesium hydroxide fluoride fine particles. Then, a hydrophilic low reflection film is formed by a so-called sol-gel method.
  • a specific metal oxide as a refractive index adjusting material to the magnesium hydroxide fluoride fine particles, the light transmittance in the near infrared region of the wavelength of 800 nm or more and 2000 nm or less of the hydrophilic low reflection film was improved.
  • a metal oxide thin film is formed on a surface of an optical member by, for example, applying and baking a dispersion of a metal compound, and is useful as a means for improving the optical characteristics of the optical member. Is not necessarily low.
  • the refractive index of the metal oxide thin film alone is as follows: silica, 1.45, alumina, 1.61, tin oxide, 1.68, zirconium oxide, 1.86, titanium oxide, 2.15, oxidation. Tantalum, 2.3.
  • Metal oxides having a relatively low refractive index such as silica and alumina, are widely used as optical thin films on the surface of optical members.
  • the glass substrate on which the silica film of silica alone is formed shows a slightly higher light transmittance than the glass substrate on which the silica film is not formed, but shows a particularly high light transmittance in the near infrared region with a wavelength of 800 nm or more and 2000 nm or less. Do not mean.
  • a metal oxide having a large refractive index is difficult to use as a low reflection film.
  • a film of zirconium oxide, tantalum oxide or titanium oxide which is a metal oxide having a high refractive index
  • a coating solution in which these metal compounds are dispersed can be fired at a high temperature at 550 ° C.
  • the refractive index of the metal oxide thin film is 1.85 to 2.2.
  • the reflectance of a glass substrate on which these metal oxide thin films are formed is 10% to 20%, which is higher than that of an untreated glass substrate having no film formed on the surface, and can be used as a low reflection film. It is not a thing. When these metal oxide thin films were subjected to X-ray diffraction, metal oxide crystals were observed.
  • the reflectance is higher than that of the untreated glass substrate.
  • a metal oxide composed of TiO 2 and SiO 2 The glass substrate with a metal oxide thin film having a thin film formed on the surface thereof showed lower light transmittance than the glass substrate in the visible region and near infrared region having a wavelength of 380 nm or more and 2000 nm or less.
  • a glass with a metal oxide thin film made of a metal oxide having a higher refractive index than glass such as tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, tin oxide, titanium oxide, zirconium oxide, and tantalum oxide. Since the substrate is inferior in light transmittance in the visible range and near infrared range of wavelengths of 380 nm or more and 2000 nm or less, it is not usually performed to use magnesium hydroxide fluoride and the metal oxide for the metal oxide thin film.
  • the metal oxide thin film at least selected from the group consisting of magnesium hydroxide fluoride, tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide. It has been found that the light transmittance in the near infrared region of the glass substrate with a metal oxide thin film is increased by adding one or more metal oxides.
  • the magnesium hydroxide fluoride fine particles and the metal oxide exist in an amorphous state in the thin film.
  • X-ray diffraction of the fired thin film revealed that the magnesium hydroxide fluoride peak was the main component, and the other metal oxides were in an amorphous state with almost no crystal peak.
  • this amorphous state suppresses an increase in refractive index in the thin film and a decrease in light transmittance in the glass substrate with the thin film.
  • the phenomenon that the thin film becomes amorphous becomes more remarkable as the types of the metal oxides to be contained in the thin film together with the magnesium hydroxide fluoride fine particles are increased.
  • the present invention even a metal oxide that crystallizes if it does not contain magnesium hydroxide fluoride exists in an amorphous state in the presence of magnesium hydroxide fluoride, compared to the case of crystallization. It is considered that the refractive index of the metal oxide has an effect of being kept low. This amorphization of the metal oxide is a characteristic action in the present invention that is considered to be caused by the coexistence of magnesium hydroxide fluoride with the metal oxide. Based on this knowledge, the inventors of the present invention have a hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of the present invention. Magnesium hydroxide is high in a wide wavelength range as a refractive index adjusting material. We have found specific metal oxides that provide transmittance.
  • a film containing a metal oxide having a high refractive index (tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, zirconium oxide titanium oxide, and tantalum oxide) and magnesium hydroxide fluoride unexpectedly. It was found that it can be used as a refractive index adjusting material.
  • the refractive index of magnesium hydroxide fluoride alone is 1.23 or more and 1.41 or less.
  • magnesium hydroxide fluoride fine particles are bonded as a metal oxide binder, and air with a refractive index of 1 is taken in.
  • Lower than 1.38 which is the theoretical value of the refractive index of magnesium fluoride due to the fact that the film has a small void and the structure of the film containing magnesium hydroxide fluoride is different from that of magnesium fluoride. Can be a value.
  • magnesium hydroxide fluoride has a high light transmittance at a wavelength of 550 nm
  • a film with a metal oxide similarly gives a transmission curve having a peak at a wavelength of 550 nm.
  • the peak of maximum transmittance slightly shifts to the longer wavelength side, and the light transmittance in the near infrared region tends to increase accordingly.
  • the film containing magnesium hydroxide fluoride and each metal oxide also has compatibility, and in a specific combination, the optical characteristics of the thin film are merely a simple average value of refractive index. Don't be.
  • the wavelength range cannot be strictly defined, when the refractive index of the metal oxide is low, the peak of the transmittance curve of the thin film is slightly longer than the transmittance peak of magnesium hydroxide fluoride. shift. As the refractive index of the metal oxide increases, the peak further appears on the longer wavelength side.
  • a metal oxide having a low refractive index has a transmittance in the visible region. Since metal oxides with a high refractive index tend to increase the transmittance in the near-infrared region, by combining these appropriately, the metal oxide functions as a refractive index adjusting material, and in a wide wavelength range, It seems to increase the transmission.
  • the metal oxide having a low refractive index is contained more than the metal oxide having a high refractive index. That is, a large amount of silica or alumina having a low refractive index is contained, for example, 0.5 mol or more and 8 mol or less, more preferably 1 mol or more and 6 mol or less, mixed with 10 mol of magnesium hydroxide fluoride. Is possible.
  • a medium refractive index tin oxide, yttrium oxide or the like is contained in an amount of 0.5 mol or more and 7 mol or less, preferably 1 mol or more and 5 mol or less.
  • High refractive index tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide can also be included.
  • tantalum oxide can be contained in an amount of 0.5 mol or more and 6 mol or less, preferably 1 mol or more and 4 mol or less.
  • magnesium hydroxide fluoride it is not always necessary to increase the content of the metal oxide having a low refractive index, and it may be appropriately adjusted so that the refractive index of the thin film can be kept low.
  • yttrium oxide in addition to ceria and lanthanum oxide as rare earth metal oxides, yttrium oxide, samarium oxide, and erbium oxide can be used.
  • the hydrophilic low-reflection film formed on the surface of the hydrophilic low-reflection member of the present invention if the amount of metal oxide added is too large relative to magnesium hydroxide fluoride, the refractive index increases and the low-reflection film is not formed. It is not preferable.
  • the addition amount when the addition amount is too low, magnesium hydroxide fluoride is the main component, and thus the visible light transmittance near 550 nm increases. However, when the amount is 800 nm or more, the transmittance is significantly reduced, which is not preferable.
  • a thin film in which a plurality of metal oxides coexist in magnesium hydroxide fluoride has a specific metal oxide as described above. It is believed to be responsible for increasing the transmission of the film in the wavelength range, and increasing the visible light and near infrared transmission of the film.
  • the thin film composed of several kinds of components is 1 It can be formed by a single coating and baking. This is expected to be applied to improve the transmittance of a wide range of optical members in the ultraviolet, visible and infrared regions, and can be applied to optical members of all wavelengths such as steppers, lasers, organic EL, liquid crystal display elements, LEDs, lighting fixtures, and lenses. Is possible.
  • the metal oxide is bonded to, for example, the oxide in the glass substrate.
  • the wear resistance is remarkably improved.
  • the hydrophilic low-reflection film of the present invention formed using tantalum oxide as a refractive index adjusting material was subjected to Auger analysis while etching, the fluorine content gradually decreased in the depth direction, and the tantalum content was reduced. Gradually increased. Furthermore, oxygen and silicon increased rapidly and tantalum and fluorine disappeared completely at the boundary surface between the hydrophilic low-reflection film and the glass plate as the transparent substrate.
  • the results of Auger analysis suggested that the refractive index continuously changed from the low refractive index to the high refractive index in the depth direction from the surface layer.
  • the refractive index of the surface layer portion of the film is low, and the refractive index increases as it goes deeper in the film, as if multiple layers It is presumed that the effect of laminating the films was obtained, and a film having good low reflection performance was obtained although it was a single layer.
  • This phenomenon is caused by adjusting the refractive index of fine particles of magnesium hydroxide fluoride having a particle diameter of 3 nm or more and 100 nm or less to form a hydrophilic low reflection film on the surface of the transparent substrate in the hydrophilic low reflection member of the present invention.
  • the molar ratio of the metal oxide as a refractive index adjusting material to magnesium hydroxide fluoride is preferably 0.5: 10 to 30:10, particularly preferably 1:10 to 2.5: 10.
  • the refractive index adjusting material is less than 0.5 mol with respect to 10 mol of magnesium hydroxide fluoride, the film is mainly composed of magnesium hydroxide fluoride, and the film strength represented by wear resistance is inferior.
  • there are more refractive index adjustment materials than 30 mol with respect to 10 mol of magnesium hydroxide fluoride since a coating liquid will become unstable and gelatinize in several days, it is unpreferable.
  • the coexistence of magnesium hydroxide fluoride and metal oxide makes it possible to keep the refractive index of the film low, and the molar ratio of the refractive index adjusting material to magnesium hydroxide fluoride is 0.5. : Within the range of 10 to 30:10, the coating solution did not gel, and a hydrophilic low-reflection film with suitable film strength could be formed.
  • the main effect of coexisting metal oxide with magnesium hydroxide fluoride is to increase the transmittance in the near infrared region, which cannot be improved by magnesium hydroxide fluoride alone, from visible light to the near infrared region. It is possible to adjust the refractive index of the film relatively low. In addition, there are the following effects.
  • the refractive index of the film can be adjusted by adding to [1] magnesium hydroxide fluoride, so that the film thickness can be arbitrarily changed.
  • Adjustment of transmittance [3] Increase film strength (increased adhesion strength and friction strength with substrate)
  • magnesium hydroxide fluoride is not an oxide, it is not bonded to a transparent base material such as a glass substrate, so that it is inferior in film strength by itself.
  • a certain amount of a specific metal oxide is added, it is bonded to the base material in a state of being mixed with the magnesium hydroxide fluoride fine particles, and the adhesive strength is increased. is there.
  • a hydroxyl group of magnesium hydroxide fluoride is present on the surface layer after the coating is formed, to exert a hydrophilic effect, maintain hydrophilicity for a long time, and have a self-cleaning function.
  • a conductive metal oxide such as SnO 2 or In 2 O 3 as the metal oxide
  • magnesium hydroxide fluoride organosol production process, and metal oxide will be described.
  • the magnesium hydroxide fluoride used in the present invention is a compound having a hydroxyl group. This can be confirmed by X-ray diffraction data, and it was confirmed that the X-ray diffraction pattern coincided with magnesium hydroxide fluoride (MgF 1.89 (OH) 0.11 ) of JCPDS file 54-1272. Magnesium hydroxide fluoride has amorphous properties and exhibits hydrophilicity as described later.
  • Magnesium hydroxide fluoride of the present invention is formed on a soda lime silicate glass plate alone, the refractive index is very low, the lower limit is 1.26, far from the literature value of 1.38 for magnesium fluoride. It showed a low value. This was estimated to be due to the fact that magnesium fluoride with a refractive index of 1.38 became a porous film containing a large amount of air with a refractive index of 1.0, but the film weight and film thickness were precisely measured. Then, when the density of the coating was determined, it was found that the coating was tightly packed and contained almost no air. This low refractive index is presumed to be due to the fact that magnesium hydroxide fluoride has a crystal structure different from that of conventional magnesium fluoride.
  • the film made only of magnesium hydroxide fluoride formed on the surface of the glass substrate showed a refractive index of 1.26 which is very close to the theoretical value of 1.22. Therefore, even with a single layer film, the reflectance was low in a wide range of visible light, and excellent antireflection characteristics were exhibited. For example, it was 0.05% at a wavelength of 550 nm.
  • a compound obtained by adding adhering water to magnesium fluoride described in Patent Document 1 shows a refractive index of 1.37. Therefore, when compared with the same single layer film, the compound is lower than magnesium hydroxide fluoride of the present invention. The reflection characteristics are inferior. Judging from the analysis results of the X-ray powder diffraction method (X-Ray Diffraction Method, XRD) and the difference in optical properties in refractive index and low reflection performance, magnesium hydroxide fluoride and fluoride described in Patent Document 1 are used. Magnesium compounds are completely different substances.
  • the magnesium hydroxide fluoride film has a lower refractive index than the magnesium fluoride film and is more preferably used as a material for the hydrophilic low reflection film.
  • it has a stable hydroxyl group in the molecule, unlike the one with attached water, so it exhibits excellent hydrophilicity, exhibits antifouling properties, and can be easily washed away even when dirt is attached. The effect that can be expected.
  • the surface be covered with a hydroxyl group.
  • the magnesium hydroxide fluorinated fine particles have a hydroxyl group, the hydroxyl group is exposed on the surface. Further, since the fine particles have a hydroxyl group, the adhesion of the fine particles to the substrate is improved.
  • the fine particles have fewer hydroxyl groups than simple hydroxides but are sufficiently hydrophilic. Furthermore, since the magnesium hydroxide fluorinated magnesium of the present invention is chemically more stable than a simple hydroxide, the low reflection member provided with the hydrophilic film made of the fine particles is excellent in reliability for long-term use. Conceivable.
  • magnesium hydroxide fluorinated magnesium is formed into fine particles by dropping a hydrogen fluoride aqueous solution into a liquid in which the magnesium raw material is dispersed, suspended or dissolved, so that the magnesium compound as the magnesium raw material is fluorinated and given hydroxyl groups. Can be used.
  • the magnesium compound is selected from inorganic compounds of magnesium chloride, magnesium oxide or magnesium carbonate, and is preferably used. Although it is possible to use a magnesium compound selected from magnesium alkoxide and magnesium carboxylate, when these organic compounds are used, the viscosity of the sol in which magnesium hydroxide is dispersed tends to increase. Inorganic compounds are preferred, and magnesium chloride and magnesium carbonate are more preferred for the problem of removing by-products described later.
  • An organic solvent is suitably used as the solvent used as the dispersion medium. Since an aqueous hydrogen fluoride solution is added during the reaction, a protic polar organic solvent highly compatible with water is more preferable.
  • a solvent alcohols, acids and the like can be used.
  • the alcohol is an alcohol having 1 to 10 carbon atoms, preferably an alcohol having 1 to 4 carbon atoms, or a glycol ether having 2 to 20 carbon atoms.
  • Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol, and a glycol having 2 to 20 carbon atoms.
  • ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether or dipropylene glycol monomethyl ether. .
  • methanol, ethanol or isopropanol is preferable as the alcohol
  • diethylene glycol monomethyl ether or diethylene glycol monoethyl ether is preferable as the glycol ether.
  • the size of the magnesium compound particles may be any particle that can form a dispersion or suspension.
  • the average particle size is 0.1 ⁇ m or more and 800 ⁇ m or less, preferably 0.3 ⁇ m. As mentioned above, the thing of 500 micrometers or less is used.
  • the average particle diameter may be measured according to JIS K1150 (1994).
  • the content of the magnesium compound in the dispersion or suspension is 0.01 mol / L (liter) or more and 5 mol / L or less.
  • the content is less than 0.01 mol / L, the production rate of magnesium hydroxide fluoride fine particles tends to be low.
  • the content is higher than 5 mol / L, when an aqueous solution of hydrofluoric acid is added dropwise to a magnesium compound dispersion or suspension, gelation occurs instantaneously, and the viscosity of the mixture increases, causing the magnesium compound and fluorine to be mixed. It is not preferable because the reaction with hydrogen fluoride hardly proceeds uniformly.
  • they are 0.05 mol / L or more and 2 mol / L or less.
  • the concentration of hydrofluoric acid in the hydrofluoric acid aqueous solution is 5% by mass or more and 60% by mass or less.
  • concentration of hydrofluoric acid is less than 5% by mass, the production rate of magnesium hydroxide fluoride fine particles tends to be low.
  • concentration of hydrofluoric acid is more than 60% by mass, colloids may be rapidly formed in the reaction system and gelled, which is not preferable because it inhibits the formation of magnesium hydroxide fluoride fine particles.
  • colloids may be rapidly formed in the reaction system and gelled, which is not preferable because it inhibits the formation of magnesium hydroxide fluoride fine particles.
  • they are 10 mass% or more and 58 mass% or less.
  • a solution containing hydrofluoric acid is prepared by adding hydrofluoric acid to water, lower alcohols such as methanol, ethanol or isopropanol, ketones such as acetone or methyl ethyl ketone, esters such as ethyl acetate or isopropyl acetate, or the like. It can be prepared by adding ethers such as diethyl ether or tetrahydrofuran as a solvent.
  • Magnesium hydroxide fluoride exhibits sufficient hydrophilicity even when the ratio of fluorine atoms to magnesium is increased. Therefore, in order to impart the characteristics of fluorine atoms, the ratio of fluorine atoms is adjusted to be high. It is preferable. Therefore, the mixing ratio of the magnesium compound and hydrogen fluoride can be mixed under the condition that all the magnesium compound is consumed.
  • the number of moles of hydrogen fluoride added to the magnesium compound is 1 to 2 times the number obtained by multiplying the number of moles of Mg by the valence of 2, preferably 1 to 1.5 times, more preferably 1 to 1.2 times.
  • the above range is preferable on the basis of the sum of numerical values obtained by multiplying the number of moles of magnesium and each metal compound by the valence.
  • the pH after the reaction is adjusted to a range of 1 to 4.
  • the reaction temperature of this reaction is usually from ⁇ 20 ° C. to the boiling point of the solvent. Specifically, it is ⁇ 20 ° C. or higher and 80 ° C. or lower. When the reaction temperature is lower than ⁇ 20 ° C., the reaction rate becomes slow and a cooling device is required, which is not preferable. On the other hand, when the reaction temperature exceeds 80 ° C., the boiling point of hydrogen fluoride is low, so that it volatilizes immediately after the addition and is not used effectively, and hydrogen fluoride gas is generated, which is dangerous. Further, the reaction proceeds rapidly immediately after the addition, and the produced colloid is locally aggregated or gelled, which is not preferable. Preferably, they are 0 degreeC or more and 50 degrees C or less.
  • the concentration of the dispersoid in the dispersion is low, the addition rate of hydrogen fluoride is slow, the concentration of hydrogen fluoride to be added is low, the diffusion rate of hydrogen fluoride in the organic solvent is slow, and the reaction A method such as reducing the speed is preferred.
  • the hydrofluoric acid aqueous solution is added rapidly, the reaction advances rapidly, and there is a risk of sudden heat generation and bumping, which is not preferable.
  • the pressure of the reaction system is not particularly limited, but it is convenient to carry out in the vicinity of normal pressure. Specifically, it is 0.05 MPa or more and 1 MPa or less, preferably 0.05 MPa or more and 0.5 MPa or less, and it is sufficient to carry out in an atmospheric pressure state in which pressure adjustment is not performed.
  • step (b) by-products can be removed, or when hydrogen fluoride is excessively added, unreacted hydrogen fluoride can be removed. That is, holding the reaction solution at an elevated temperature, for example, a temperature higher than the reaction temperature and lower than the reflux temperature of the organic solvent for about 30 minutes to 100 hours is a low-boiling byproduct or an unreacted component, for example, It is effective for removing hydrogen chloride, hydrogen fluoride, carbon dioxide gas, etc. appropriately.
  • purging by introducing nitrogen gas while stirring the reaction liquid at room temperature or under heating, or refluxing near the boiling point of the solvent may cause low-boiling by-products or unreacted components such as hydrogen chloride. It is effective for removing hydrogen fluoride, carbon dioxide gas and the like appropriately. In some cases, it may be removed while distillation under reduced pressure.
  • removing low-boiling acid it is preferable to adjust the pH to 1 to 4, preferably 2 to 3.
  • the pH of the organosol at 1 to 4 it will roughen by reacting with the alkali metal, earth metal, boric acid and silanol groups on the glass surface when the glass substrate is applied, and corroding the surface layer. It is possible to increase the adhesive strength of the coating.
  • the remaining acid contributes to the stability of the refractive index adjusting material such as metal alkoxide and magnesium hydroxide fluoride, and particularly acts as an acid catalyst, so that a stable mixed solution can be prepared.
  • the refractive index adjusting material such as metal alkoxide and magnesium hydroxide fluoride
  • the concentration of the liquid containing the magnesium hydroxide fluoride fine particles obtained in the step (b) is adjusted or the solvent is replaced.
  • the solvent may be added to lower the fine particle concentration, such as removal of the organic solvent, for example, distillation, extraction, and the like. Further, depending on the application, the solvent may be converted from a solvent used in the production of the organosol to a different solvent.
  • a step of crushing the organosol may be inserted between step (b) and step (c).
  • those based on impact force and shear force are effective, and gels or sols that are usually obtained as agglomerates of primary particles can be used as primary particle dispersions. Is particularly preferable.
  • OH OH
  • x 0.01 to 0.5
  • the adhesiveness to the base material and the hydrophilicity will be superior to simple magnesium fluoride. If x exceeds 0.5, the refractive index may not be kept low. On the other hand, if it is less than 0.01, the number of hydroxyl groups is small, the hydrophilicity becomes small, and the adhesive strength of the film to the substrate may be lowered, which is not preferable.
  • magnesium hydroxide fluoride registered in JCPDS file 54-1272 that is, MgF 1.89 (OH) 0.11 is preferably used. This compound is formed even when hydrogen fluoride is dripped more than twice the molar amount of the raw material magnesium compound, and MgF 1.89 (OH) 0.11 is synthesized while leaving hydrogen fluoride in the liquid. Is possible. Even if an excessive amount of hydrogen fluoride is added, MgF 1.89 (OH) 0.11 is produced, and it is considered that there is some equilibrium.
  • a material obtained by adding calcium fluoride fine particles to the above magnesium hydroxide fluoride fine particles may be used as a raw material for the hydrophilic low reflection film.
  • Calcium fluoride is prepared by coexisting a precursor material such as an alkoxide compound, a halogenated compound, an oxyhalogenated compound, and an acetic acid compound of calcium with the magnesium raw material when preparing fine particles having magnesium hydroxide fluoride. It can be obtained through reaction with.
  • the amount of calcium fluoride introduced is not particularly limited.
  • hydrophilicity 70 mass% or less is more preferable.
  • the particle size of the magnesium hydroxide fluoride fine particles is 3 nm or more and 100 nm or less, more preferably 5 nm or more and 60 nm or less, and still more preferably 8 nm or more and 20 nm or less.
  • Metal oxide By mixing a metal oxide as a refractive index adjusting material into the organosol prepared as described above, the refractive index in the long wavelength region can be lowered, and as a result, low reflectivity and high transmittance can be realized.
  • a metal oxide having conductivity for example, SnO 2 or In 2 O 3 (ITO) containing Sn
  • ITO In 2 O 3
  • SnO 2 is a semiconductor and exhibits a function as an antistatic film.
  • Sb is added to SnO 2 as a doping agent
  • Al 2 O 3 is doped to ZnO
  • In 2 O 3 is similarly applied. SnO 2 is added.
  • fluorine ions can be an excellent dopant
  • a good antistatic function has been confirmed even in a form in which each of Sn and In 2 O 3 is doped with F ions from several percent to 8%.
  • a combination of both the hydroxyl group of magnesium hydroxide fluoride and the electronic conductivity of the semiconductor has made it possible to realize a long-term stable antistatic function.
  • a metal oxide having conductivity is used as the refractive index adjusting material, an antistatic function is imparted at the same time while maintaining a low refractive index.
  • a metal oxide is preferable, and the metal element of the metal oxide may be any metal compound that can finally form an oxide by drying / firing treatment.
  • Chromium oxide, vanadium oxide, niobium oxide, tantalum oxide provide low reflectivity by the hydrophilic low reflection film of the hydrophilic low reflection base material of the present invention, and the light transmittance of the hydrophilic low reflection base material has a wide wavelength range. Raised in the area.
  • At least one metal oxide selected from titanium, silicon, zirconium, iron, tin, aluminum, indium, tin, zinc, antimony, lanthanum and the like is used for refractive index adjustment. It is preferable to use it. Furthermore, a borate, a phosphate, etc. can also be used. Among these, when a metal alkoxide, a metal chloride, and its hydrolyzate are used as a raw material, since the intensity
  • the metal oxide is produced by a so-called sol-gel method.
  • a sol composed of a metal compound such as the above-described inorganic salt, organometallic complex, organometallic carboxylate, metal alkoxide and hydrolyzate thereof, or a mixture thereof is used as a raw material.
  • These raw materials (hereinafter sometimes referred to as metal compounds) undergo a reaction such as hydrolysis, dehydration, polycondensation, oxidation, and thermal decomposition in a drying / firing process, whereby a metal oxide is formed by a firing treatment.
  • a hydrolyzed product of the metal compound is generated.
  • the water required for hydrolysis is supplied from the water in the hydrofluoric acid aqueous solution used for preparing the organosol. Since the sol of the metal compound and the hydrolysis product can react with the hydroxyl group on the surface of the magnesium hydroxide fluoride fine particles, they have a reinforcing function to bond the particles by polycondensation or to bond the particles to the substrate. . Thereafter, as the condensation reaction proceeds, the adhesive strength and friction strength of the resulting film are improved. After that, by forming a film through a drying / firing process, the magnesium hydroxide fluoride particles can be firmly bonded to the base material by the action of a so-called binder.
  • Examples of the tungsten compound for containing tungsten oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. W (OR) 6 , W (OR) (6-n) X n (wherein R is independently methyl, ethyl, normal propyl, isopropyl, normal butyl, secondary butyl, t- A butyl group, a 2-ethylhexyl group, a methoxyethyl group, a methoxypropyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, or a phenyl group, and X represents a halogen of F, Cl, Br, or I.
  • calcium tungstate that is, CaWO 4
  • iron tungstate that is, FeWO 4
  • manganese tungstate after firing by coexisting an alkoxide or tungsten alkoxide with an inorganic or organic salt such as Ca, Fe, or Mn and an alkoxide.
  • Examples of the molybdenum compound for incorporating molybdenum oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Mo (OR) 6 , Mo (OR) (6-n) Xn , or molybdenum alkoxide coexisting inorganic / organic salt such as Ca, Fe, Mn and alkoxide and calcining calcium molybdate after firing That is, CaMoO 4 , iron molybdate, that is, FeMoO 4 , manganese molybdate, that produces a molybdate compound such as MnMoO 4 , and ammonium paramolybdate as an inorganic salt, that is, (NH 4 ) 10 (H 2 Mo 12 O 42 ) ⁇ 4H 2 O.
  • Molybdic acid MoO 3 , its monohydrate, ie, MoO 3 .H 2 O, or H 2 MoO 4 , dihydrate, ie, MoO 3 .2H 2 O or H 4 MoO 5 , and phosphomolybdenum as a heteropolyacid Acid, ie H 3 [PMo 12 O 40 ] ⁇ nH 2 O, ammonium metamolybdate, ie (NH 4 ) 6 [H 2 Mo 12 O 40 ] aq, potassium salt, ie K 2 MoO 4 , sodium salt, ie Na 2 MoO 4 , ammonium molybdate, tetrabutylammonium salt, ethylenediamine salt, tetramethylammonium salt, or hexa-molybdate.
  • the chromium compound for containing the chromium oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention includes chromium acetate, chromium nitrate, nitric acid hydrate, chromium chloride, chromium chloride hydrate, chromium bromide. , Acetylacetone chromium, benzoyl aceethyl acetone chromium, hexafluoroacetylacetone chromium, chromium naphthenate, chromium phosphate, potassium dichromate, potassium chromate and the like. Furthermore, zinc chromate ZnCrO 4 , strontium chromate, or SrCrO 4 may be mentioned.
  • Examples of the vanadium compound for incorporating the vanadium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
  • the alkoxide represented by VO (OR) 3 as an inorganic salt, vanadium trichloride, ie, VCl 3 , vanadium dichloride oxide, potassium vanadium trichloride, potassium divanadate, potassium pyrovanadate, potassium vanadate, tetraoxovanadium (V) Potassium acid, Potassium metavanadate, Potassium trioxovanadate (V) Potassium vanadate (II), Tetraoxovanadate (III) Iron (II), Sodium metavanadate, Sodium trioxovanadate (V), Sodium vanadate Sodium tetraoxovanadate (V), sodium divanadate, sodium pyrovanadate, lithium metavanadate, lithium trioxovanadate (V)
  • tantalum compound for containing tantalum oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention examples include the following.
  • Examples of the silicon compound for containing silica of the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
  • Alkoxide is preferable, and is an alkoxy compound represented by the general formula, Si (OR) 4 or a hydrolyzate thereof, and in particular, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetranormalpropoxysilane, tetranormalbutoxy Silane, tetratertiarybutoxysilane, etc. or a hydrolyzate thereof.
  • a part of —OR may be substituted with a halogen atom such as a chlorine atom, such as chlorotriethoxysilane, dichlorodinormalbutoxysilane, or trichloronormalbutoxysilane.
  • a halogen atom such as a chlorine atom, such as chlorotriethoxysilane, dichlorodinormalbutoxysilane, or trichloronormalbutoxysilane.
  • Examples of the aluminum compound for containing alumina in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
  • Inorganic salts such as aluminum chloride, polyaluminum chloride, aluminum hydroxide such as boehmite, aluminum sulfate, aluminum nitrate, aluminum formate, aluminum acetate, aluminum oxalate, aluminum citrate and other anhydrides and hydrates, organic carboxylic acids
  • Al salt such as aluminum laurate, aluminum stearate, aluminum naphthenate, aluminum 2-ethylhexanoate or a hydrated salt thereof.
  • Examples of the aluminum alkoxide include an alkoxy compound represented by the general formula Al (OR) 3 , and triethoxyaluminum, triisopropoxyaluminum, trinormalpropoxyaluminum, and trisecondary butylaluminum are particularly preferably used.
  • halogen atoms such as a chlorine atom
  • chlorodiisopropoxy aluminum, chloro disecondary butyl aluminum, dichloro isopropoxy aluminum, and dichloro secondary butyl aluminum can also be used.
  • the aluminum metal complex is represented by the general formula Al (OR) n Y 3-n .
  • OR represents an alkoxide
  • Y represents a ligand.
  • n represents an integer of 0 to 3.
  • the ligand include acetylacetone (hereinafter sometimes abbreviated as acac), ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, trifluoroacetylacetone, hexafluoroacetylacetone, methanesulfonic acid, and trifluoromethanesulfonic acid. It is also possible to use a dimer or trimer obtained by condensation polymerization of aluminum alkoxide and these aluminum metal complexes.
  • Examples of the compound for incorporating cerium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Cerium acetate (III) monohydrate, Cerium (III) promide n hydrate, Cerium carbonate (III) n hydrate, Cerium carbonate (III) octahydrate, Cerium chloride (III), Cerium chloride (III ) Heptahydrate, cerium (III) chloride n hydrate, cerium (III) 2-ethylhexanoate, cerium (III) fluoride, cerium fluoride (IV) n hydrate, cerium hydroxide (IV) Cerium (III) bromide, cerium (III) iodide n-hydrate, cerium (III) nitrate hexahydrate, cerium (III) oxalate nonahydrate, 2,4-pentanedionatocerium (III ) N-hydrate, cerium (III) perchlorate hexahydrate
  • the cerium metal salt is represented by the general formula Ce (OR) n Y 3-n .
  • OR represents an alkoxy group
  • Y represents a ligand or an acid
  • n represents an integer of 0 to 3.
  • chelate complexes such as acetylacetone, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, and trifluoroacetylacetone
  • examples of the acid include 2-ethylhexanoic acid, methanesulfonic acid, and trifluoromethanesulfonic acid.
  • zirconia compound for making a hydrophilic low reflection film of the hydrophilic low reflection member of this invention contain zirconia.
  • Zirconium tetrachloride, i.e. ZrCl 4 zirconium oxychloride, i.e. ZrOCl 2. 8H 2 O, zirconium nitrate, i.e. Zr (NO 3) 4, zirconium oxynitrate, i.e.
  • ZrO (NO 3) 2 4 hydrate zirconium stearate Zr salts such as zirconium naphthenate, zirconium 2-ethylhexanoate, zirconium acetylacetonate, etc., or anhydrous and hydrated salts thereof, or alkoxy compounds represented by the general formula Zr (OR) 4 .
  • zirconium hydroxide sol which is a hydrolyzate thereof are preferably used.
  • (OR) 3 may be partially substituted with halogen, and examples thereof include chlorotriethoxyzirconium, dichlorodinormalbutoxyzirconium, and trichloronormalbutoxyzirconium.
  • titanium compound for containing titania in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention examples include the following.
  • An anhydrous salt such as titanium tetrachloride, ie TiCl 4 , titanium trichloride, ie TiCl 3 , titanyl chloride, ie TiOCl 2 , titanium nitrate, ie Ti (NO 3 ) 4 , titanium oxynitrate, ie TiO (NO 3 ) 2
  • Anhydrous salt such as titanium tetrachloride, ie TiCl 4 , titanium trichloride, ie TiCl 3 , titanyl chloride, ie TiOCl 2 , titanium nitrate, ie Ti (NO 3 ) 4 , titanium oxynitrate, ie TiO (NO 3 ) 2
  • Their hydrated salt titanium 2-ethylhexanoate.
  • Ti alkoxide examples include an alkoxy compound represented by the general formula Ti (OR) 4 , and tetraethoxytitanium, tetranormalpropoxytitanium, tetraisopropoxytitanium, and tetranormalbutoxytitanium are preferably used. In addition, those polycondensation dimer to 10-mer are also used.
  • a part of (OR) 3 may be substituted with a halogen atom such as a chlorine atom.
  • a halogen atom such as a chlorine atom.
  • chlorotriethoxytitanium, dichlorodinormalbutoxytitanium, or trichloronormalbutoxytitanium can be used.
  • the titanium metal complex is represented by the general formula Ti (OR) n Y 4-n .
  • OR represents an alkoxy group
  • Y represents a ligand.
  • n represents an integer of 0 to 3.
  • the ligand include acetylacetone, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, trifluoroacetylacetone, methanesulfonic acid, and trifluoromethanesulfonic acid.
  • examples of the chelate compound containing an alkoxy group include dibutoxy titanium bisacetylacetonate and isopropoxy dititanium bisoctylene glycolate.
  • tin chlorides such as tin dichloride, ie SnCl 2 , tin tetrachloride, ie SnCl 4
  • tin alkoxides such as tetraethoxytin, tetranormalpropoxytin, tetraisopropoxytin, tetranormalbutoxytin, and Sn (OiPr) 3 (acac), Sn (OnBu) 3 Cl, BuSnCl 3 and Bu 2 Sn (acac) 2 .
  • SnO 2 is a semiconductor and imparts an antistatic function to the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention.
  • Examples of the indium compound for incorporating indium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Indium trichloride, indium trichloride tetrahydrate, indium bromide, indium iodide, indium nitrate trihydrate, indium acetate, indium sulfate n-hydrate, indium perchlorate octahydrate, indium phosphate, etc. These inorganic indium salts and indium metal salts are represented by the general formula In (OR) n Y 3-n . In the formula, OR represents an alkoxy group, and Y: represents a ligand or an acid.
  • n represents an integer of 0 to 3.
  • the ligand include acetylacetone, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, and trifluoroacetylacetone
  • examples of the acid include 2-ethylhexanoic acid, methanesulfonic acid, and trifluoromethanesulfonic acid.
  • indium alkoxides such as tetramethoxyindium, tetraethoxyindium, tetranormalpropoxyindium, tetraisopropoxyindium, and tetranormalbutoxyindium, In (OMe) 2 Cl, In (OEt) 2 Cl, In (OiPr) 2 Cl
  • examples thereof include halogenated alkoxides such as In (OnBu) 2 Cl, In (OiPr) 2 Cl, and In (OnBu) 2 Cl.
  • Examples of the zinc compound for containing zinc oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Zinc chloride, zinc bromide, zinc iodide, zinc nitrate trihydrate, zinc acetate dihydrate, zinc sulfate heptahydrate, zinc phosphate, zinc borate, zinc perchlorate hexahydrate, etc.
  • Inorganic zinc compounds zinc stearate, zinc benzoate, zinc phenolsulfonate, zinc salicylate, zinc pyrithione, zinc acetylacetonate hydrate, ethyl zinc acetoacetate hydrate, methyl zinc acetoacetate, propylzinc acetoacetate, tri Examples include zinc fluoroacetylacetonate, zinc 2-ethylhexanoate, zinc methanesulfonate, zinc trifluoromethanesulfonate, tetramethoxyzinc, tetraethoxyzinc, tetranormalpropoxyzinc, tetraisopropoxyzinc or tetranormalbutoxyzinc.
  • antimony compound for containing antimony oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention examples include the following. Antimony (III) acetate, antimony acetate dihydrate, antimony (III) bromide, antimony (III) butoxide, antimony (III) chloride, antimony (IV) tetrachloride, antimony bromide, antimony (III) Examples include ethoxide, antimony (III) fluoride, antimony (V) tetrafluoride, antimony zinc tetratetrachloride, antimony zinc tetranormal propoxyantimony trichloride, zinc antimony tetraisopropoxy trichloride, or zinc zinc tetranormalbutoxy.
  • Examples of the lanthanum compound for containing lanthanum oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
  • Metal compound organosol As described above, an organosol of metal oxide produced by solvent substitution of oxide fine particles obtained by hydrolyzing basic chloride or metal alkoxide can be obtained as a commercial product.
  • organosilica sol is available from Nissan Chemical Industries, Ltd. under the trade name, methanol silica sol, IPA-ST, IPA-ST-UP, IPA-ST-ZL, EG-ST, NPC-ST-30, DMAC-ST, MEK.
  • -Product names, Oscar 1132, Oscar 1232, and Oscar 1332 are commercially available from ST, JGC Catalysts & Chemicals Co., Ltd.
  • Organoalumina sols are commercially available from Kawaken Fine Chemical Co., Ltd. under the trade names of Aluminum Sol-CSA55 and Aluminum Sol-CSA110AD.
  • organic solvent-based antimony oxide sols are commercially available from Nissan Chemical Industries, Ltd. under the trade names Sun Colloid ATL-130 and Sun Colloid AMT-130.
  • a commercially available sol as an aqueous dispersion can be used after solvent substitution.
  • aqueous sols are commercially available from Nissan Chemical Industries, Ltd. under the trade names, Snowtex 40, Snowtex O, Snowtex C, Snowtex N, and from JGC Catalysts & Chemicals, Inc. -30H, Cataloid SI-30, Cataloid SN, Cataloid SA are commercially available from Asahi Denka Kogyo Co., Ltd.
  • alumina sol-520 is commercially available.
  • Alumina Clear Sol, Aluminum Sol-10, Aluminum Sol-20, Aluminum Sol SV-102, and Aluminum Sol-SH5 are commercially available from Fine Chemical Co., Ltd. 1550 and A-2550 are commercially available.
  • Aqueous zirconium oxide sol is commercially available from Nissan Chemical Industries, Ltd. NZS-30A and NZS-30B.
  • Aqueous tin oxide sol is available from Taki Chemical Co., Ltd. -8, Cerames C-10 is commercially available, and water-based titanium oxide sols are commercially available from Taki Chemical Co., Ltd. under the trade names Tynock A-6 and Tynock M-6, and water-based sols composed of tin oxide and antimony oxide are The trade name Cerames F-10 is commercially available from Taki Chemical Co., Ltd.
  • the coating solution applied to the transparent substrate is important for long-term stability and is preferably stored at room temperature for 30 days or more.
  • the above hydrolyzable metal compound is added to the magnesium hydroxide fluoride dispersion (sol)
  • the mixture of only one metal compound cannot reduce the refractive index of the target wavelength, 2-4 It is necessary to add a seed metal compound.
  • the compatibility of the mixed metal compound does not match, there is a possibility of gelation. is there.
  • Patent Document 4 describes a mixed system of magnesium fluoride and an Al-based alkoxide in Example 3, and a mixed system of Zr alkoxide in Example 4, which uses acetylacetone as a complexing agent and passes through a syringe filter.
  • the transparent sol is manufactured by this method.
  • the coating solution for the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention was a mixture of a magnesium hydroxide fluoride sol and at least one metal oxide, and was extremely stable. Further, in the coating solution for the hydrophilic low-reflection film coated on the hydrophilic low-reflection member of the present invention, magnesium hydroxide fluoride has good compatibility with inorganic salts, organic salts, and metal alkoxides. there were.
  • the raw material hydrogen fluoride and by-product acid such as HCl are intentionally left during preparation of the magnesium hydroxide fluoride sol, but the remaining 0.5% or more and 3% or less (in terms of F and HCl) Is considered to be useful as a peptizer for metal compounds such as metal alkoxides, and long-term stability of 30 days or more at room temperature was confirmed even when 4 to 5 types of metal alkoxides were added.
  • HCl is generated as a by-product.
  • Hydrogen fluoride and HCl have a high vapor pressure, and can be easily removed by heating or bubbling, so that HCl can remain in a few percent.
  • transparent substrate an inorganic glass substrate such as a glass plate or a plastic substrate such as a plastic plate can be used.
  • inorganic glass substrates include plate-like materials such as soda lime silicate glass, borosilicate glass, aluminosilicate glass, barium borosilicate glass, and quartz glass, especially those manufactured by the float process. Can do. Furthermore, these glass substrates also use clear glass products, colored glass products such as green and bronze, functional glass products such as UV and IR cut glass, and safety glass products such as tempered glass, semi-tempered glass, and laminated glass. Can be done. Moreover, as ceramics, substrates such as Si 3 N 4 , SiC, sapphire, Si wafer, GaAs, InP, and AlN can be used.
  • plastic substrate examples include polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyimide, and the like.
  • the coating method of the coating solution on the substrate is a wet coating method, which is a spin coater method, a dip-up method, that is, a dip coating method, a spray method, a roller coating method, a flow coating method, a screen printing method, a brush coating, or an inkjet. Law.
  • the film formed by the various methods is dried by heating at 80 ° C. or higher and 150 ° C. or lower for 10 minutes to 6 hours, and then further heated and fired.
  • the heating temperature is determined according to the heat-resistant temperature of the substrate.
  • the inorganic glass substrate can be fired at a high temperature of about 700 ° C. by adjusting the firing time.
  • a film having excellent wear resistance was obtained by baking at 650 ° C. or higher and 700 ° C. or lower for a few minutes, that is, 120 seconds to 180 seconds.
  • the metal oxide has a size equivalent to that of magnesium hydroxide fluoride of 3 nm or more and 100 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 8 nm or more and 20 nm or less. It is preferably present as a binder for binding magnesium halide.
  • the preferable film thickness of the hydrophilic low reflection film on the transparent substrate surface of the hydrophilic low reflection member of the present invention is 20 nm or more and 500 nm or less. If the film thickness is less than 20 nm, the wear resistance is poor and film formation is difficult. On the other hand, if it is thicker than 500 nm, the film thickness becomes non-uniform and it is difficult to form a film. Preferably, they are 50 nm or more and 150 nm or less. In order to obtain a low reflectance with respect to visible light, the thickness is preferably 100 nm or more and 120 nm or less.
  • the contact angle shall be defined from the contact angle between the surface of the coating layer obtained in accordance with JIS R 3257 (1999) and water droplets. It is considered that the higher the wettability, the better the hydrophilic low reflection film, and the contact angle is preferably 30 ° or less. More preferably, it is 20 ° or less. Since it has hydrophilicity, it is excellent in antifouling property and can be easily washed away even when dirt is attached.
  • the hydrophilic low reflection member of the present invention has a surface resistance value of 1 ⁇ 10 10 ⁇ . Since it is cm or less, it is a hydrophilic low reflection member having an antistatic function.
  • hydrophilic low reflection films are formed on one side or both sides of the transparent substrate.
  • a medium having a refractive index close to 1 such as air
  • a high antireflection effect can be obtained by forming this film on both surfaces of the substrate.
  • the hydrophilic low reflection member of the present invention is useful as a surface protection member of a solar cell, for example, a solar cell cover glass.
  • a solar cell cover glass When used as a solar cell cover glass, high light transmittance and low reflectance are required, and since solar cells are constantly exposed to sunlight, they have antifouling properties, water resistance, weather resistance, etc. A material is desired.
  • the hydrophilic low reflection film of the present invention containing magnesium hydroxide fluoride is excellent in antifouling property, water resistance and weather resistance.
  • CIS thin-film solar cells and crystalline silicon which have been developed in recent years, have a wide absorption of wavelengths of 380 nm or more and 2000 nm or less, and light in a longer wavelength range than conventional amorphous silicon systems.
  • the absorption peak is in the vicinity of 900 nm.
  • the hydrophilic low-reflection film of the present invention has high light transmittance in the ultraviolet / visible light wavelength region, 380 nm or more and 800 nm or less, and the near infrared wavelength region, 800 nm or more and 2000 nm or less. It can be suitably used as a surface protection member for solar cells having absorption in a long wavelength region as well as amorphous silicon solar cells.
  • Optical properties were measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. 2.
  • the surface resistance value was measured using an insulation resistance measuring instrument 4329A high resistance meter manufactured by Yokogawa Electric Corporation. 3.
  • the refractive index was measured at 637 nm using a spectroscopic ellipsometer UVISEL-ER manufactured by Horiba, Ltd. 4).
  • the film thickness was measured with a stylus type surface shape measuring instrument (ULVAC, Inc., product number, Dektak V200 Si / SL, the same shall apply hereinafter).
  • the contact angle was measured according to JIS R 3257 (1999) using a pure water contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd.
  • sBu is an abbreviation for sec butoxy group
  • iPr is an abbreviation for isopropoxy group (hereinafter the same).
  • a soda lime silicate glass substrate having a thickness of 3 mm and a size of 100 mm ⁇ 100 mm was dipped in the coating solution, then pulled up at a speed of 4.5 mm / sec, and applied to both surfaces of the glass substrate. Dry at 30 ° C. for 30 minutes.
  • the glass substrate was put into an electric furnace at 750 ° C., held for 150 seconds, and taken out to obtain a coating film having a blue-violet reflection color on the glass substrate surface.
  • a reflective film was obtained. The film thickness was 105 nm as measured by a stylus type surface shape measuring instrument (ULVAC, Inc., product number, Dektak V200 Si / SL, the same applies hereinafter).
  • FIG. 1 shows a scanning electron microscope (SEM) photograph of a glass substrate on which a film is formed.
  • the average transmittance in the wavelength range of 380 nm to 780 nm was measured, the average was 98.1%, which was compared with the average transmittance of 90.4% of an untreated glass substrate (base plate: Blank) on which no film was formed.
  • the transmittance was improved by 7.7%.
  • Example 2 140 ml of the magnesium hydroxide fluoride sol synthesized in Example 1 was collected, and H. as a metal oxide was added thereto.
  • OSCAL1432 35 ml of an ethanol solution prepared so as to be 1.6% by mass in terms of SiO 2 was added and stirred at 60 ° C. for 16 hours. A coating solution was obtained.
  • OEt is an abbreviation for ethoxy group (hereinafter the same).
  • a soda lime silicate glass substrate having a thickness of 3 mm and a size of 100 mm ⁇ 100 mm was immersed in the coating solution, then pulled up at a rate of 5.3 mm / sec, and applied to both surfaces of the glass substrate. It was dried at 100 ° C. for 30 minutes. The glass substrate was taken out by holding it in an electric furnace at 520 ° C. for 1.5 hours for 1 hour to obtain a blue-violet transparent film.
  • the film thickness was 108 nm as measured by the stylus type surface shape measuring instrument.
  • FIG. 2 shows a scanning electron microscope (SEM) photograph of the glass substrate on which the film is formed.
  • FIG. 3 shows a transmittance curve of a glass substrate on which a film is formed. Not only the visible light region but also the near infrared region has excellent transmittance.
  • the film was left indoors for 120 days, and the surface resistance value measured under an environment of 21 ° C. and 22.5% relative humidity was 3.3 ⁇ 10 9 ⁇ ⁇ cm. Excellent hydrophilic performance was obtained. It was confirmed to have.
  • the Auger analysis was performed while etching the hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of this example using tantalum oxide, the fluorine content gradually decreased in the depth direction.
  • the tantalum content gradually increased.
  • oxygen and silicon increased rapidly and tantalum and fluorine disappeared completely at the boundary surface between the hydrophilic low-reflection film and the glass plate as the transparent substrate.
  • Example 3 120 ml of the magnesium hydroxide fluoride sol synthesized in Example 1 was collected. 25 ml of a liquid prepared by adding IPA as a metal oxide to Niobium Isopropoxide Nb (OiPr) 5 by 2.2% by mass in terms of Nb 2 O 5 as a metal oxide In addition, with stirring, 25 ml of an ethanol solution prepared by adjusting Wako Pure Chemical Industries, Ltd. reagent, Al (OsBu) 3 to 2.0 mass% in terms of Al 2 O 3 , was added at 60 ° C. The mixture was stirred for 16 hours to obtain a colorless and transparent coating solution.
  • Adopting a dip method a 100 mm ⁇ 100 mm ⁇ 3 mm soda lime glass substrate is immersed in the coating solution, then pulled up at a speed of 6.0 mm / sec, applied to both surfaces of the glass substrate, and then dried at 100 ° C. for 30 minutes. I let you.
  • the glass substrate was taken out in an electric furnace at 520 ° C. while being heated for 1.5 hours for 1 hour to obtain a coating film having a blue-violet reflection color.
  • the film thickness was 111 nm as measured by a stylus type surface shape measuring instrument.
  • FIG. 4 shows a scanning electron microscope (SEM) photograph of the glass substrate on which the film is formed.
  • FIG. 5 shows a transmittance curve of a glass substrate on which a film is formed. Not only the visible light region but also the near infrared region has excellent transmittance.
  • the transmittance As shown in the light transmittance curve (Example 3) of FIG. 5, when the light transmittance in the wavelength range of 380 nm to 780 nm was measured, the average transmittance was 97.7%, and no coating was formed. Compared with the average transmittance of 90.2% of the glass substrate (base plate: Brank), the transmittance was improved by 7.5%.
  • the film was left indoors for 120 days, and the surface resistance value measured under an environment of 21 ° C. and 22.5% relative humidity was 6.0 ⁇ 10 8 ⁇ ⁇ cm . It was confirmed to have.
  • the hydrophilic low-reflection film of the present invention is excellent in all of the effects of low reflection, hydrophilicity and antifouling, has antistatic performance, and is highly resistant to low dirt. Obviously, it becomes possible to obtain a membrane.
  • a hydrophilic low reflection member having a hydrophilic low reflection film having a durable hydrophilic and low refractive index formed on the surface was obtained.
  • the hydrophilic low-reflection member of the present invention includes optical materials such as lenses, image display surfaces such as cathode ray tubes and liquid crystal display devices, windows and showcases, skylight materials, solar cells, water heaters, lighting devices, etc. It can be used in a wide range of fields where hydrophilicity, antifouling properties, and low reflection antistatic properties are required. Moreover, since it is excellent not only in the ultraviolet to visible wavelength range but also in the near-infrared wavelength range, it is useful as a solar cell surface protective member, particularly a solar cell cover glass.

Abstract

Disclosed is a hydrophilic low-reflection member which comprises a transparent base and a hydrophilic low-reflection film that is formed on the surface of the transparent base. The hydrophilic low-reflection member is characterized in that the hydrophilic low-reflection film contains fine magnesium fluoride hydroxide particles and at least one metal oxide which serves as a refractive index adjusting material and is selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide. The hydrophilic low-reflection member is also characterized by having a refractive index of 1.23-1.41 (inclusive). The hydrophilic low-reflection member has high average transmittance within a wavelength range of 380-2,000 nm (inclusive), comprises the hydrophilic low-reflection film that exhibits high bonding strength to the base, and is provided with excellent weather resistance, good antifouling properties due to hydrophilicity, and an antistatic function.

Description

親水性低反射部材Hydrophilic low reflection member
 本発明は、透明基材上に形成される親水性低反射膜を有する親水性低反射部材に関する。 The present invention relates to a hydrophilic low reflection member having a hydrophilic low reflection film formed on a transparent substrate.
発明の背景Background of the Invention
 低反射部材は太陽電池または電子写真感光体等の基板を始めとして、スチルカメラ、ビデオカメラ、液晶プロジェクタ等の光学機器向けレンズ等の光学材料、陰極線管や液晶表示装置等の画像表示面、複写機、撮像管、LED表示素子、照明、有機EL、窓やショーケース、自動車ヘッドランプのリフレクタ部材等に広く用いられ、透明基材であるガラスおよびプラスチック表面に低反射膜を設けた物が広く用いられる。 Low reflection members include substrates such as solar cells or electrophotographic photoreceptors, optical materials such as lenses for optical equipment such as still cameras, video cameras, and liquid crystal projectors, image display surfaces such as cathode ray tubes and liquid crystal display devices, and copying. Widely used in projectors, imaging tubes, LED display elements, lighting, organic EL, windows and showcases, reflectors for automobile headlamps, etc. Used.
 ガラスおよびプラスチック等の透明基材において、基材表面での光の反射を防ぐための低反射コート、即ち、基材表面に低反射のための光学薄膜(以下、薄膜または膜ということがある。)を被覆することが研究されてきた。例えば、スチルカメラまたはビデオカメラ等では、収差補正のために多群多数のレンズを用いレンズの表面反射を抑制しないと、映像の解像度が低下するばかりか、映像にフレア、ゴーストが発生する原因となる。 In a transparent substrate such as glass and plastic, a low reflection coating for preventing light reflection on the substrate surface, that is, an optical thin film (hereinafter referred to as a thin film or film) for low reflection on the substrate surface. ) Has been studied. For example, in a still camera or a video camera, if multiple lens groups are used to correct aberrations and the surface reflection of the lens is not suppressed, the resolution of the image will decrease, and flare and ghost may occur in the image. Become.
 また、表示装置やショーケース等では、使用される透明基材の表面反射を抑制しないと、反射像の映り込みにより、そのものの視認性が悪くなる。 Also, in a display device, a showcase, etc., unless the surface reflection of the transparent base material used is suppressed, the reflection of the reflected image will deteriorate the visibility itself.
 また、太陽電池用を屋外使用する際、例えば、建物の屋根等に設置する際は、太陽電池は常時暴露されるため、太陽電池前面には、太陽電池を保護するための太陽電池用保護部材、例えば、太陽電池カバーガラスが必要とされる。太陽電池カバーガラスには、高い受光効率を得るために、高い光透過率および低反射性能が要求され、耐紫外線性、耐水性、および耐候性等を併せ持つ材料が好まれる。従って、劣化しにくく長期にわたり低反射性能を維持できることから、樹脂等の有機材料よりも無機系の材料の方が好ましく、特にガラスが好んで用いられる。 In addition, when the solar cell is used outdoors, for example, when it is installed on the roof of a building, etc., the solar cell is always exposed, so the solar cell front surface is provided with a solar cell protective member for protecting the solar cell. For example, a solar cell cover glass is required. The solar cell cover glass is required to have high light transmittance and low reflection performance in order to obtain high light receiving efficiency, and a material having both ultraviolet resistance, water resistance, weather resistance and the like is preferred. Therefore, an inorganic material is preferable to an organic material such as a resin, and glass is particularly preferable because it is difficult to deteriorate and can maintain low reflection performance over a long period of time.
 低反射膜は基材の表面に被覆することで、光の反射率を低減させるものである。 The low reflection film is used to reduce the light reflectance by coating the surface of the substrate.
 従来、光学レンズおよびプリズムには、基体上に屈折率および厚さの異なる薄膜を重ね合わせた多層膜、即ち、マルチコートが好んで用いられてきた。反射膜を多層構造にすれば、広範囲の波長域で反射防止が可能となる。 Conventionally, for optical lenses and prisms, a multilayer film in which thin films having different refractive indexes and thicknesses are superimposed on a substrate, that is, a multi-coat has been favorably used. If the reflective film has a multilayer structure, reflection can be prevented in a wide wavelength range.
 このように、低反射部材表面に被覆された薄膜による光の干渉を利用し低反射効果を得る場合、膜の屈折率と厚みの調整が重要となる。基材の屈折率をns、媒体の屈折率をn0、光の波長をλとすると、低反射膜が1層の場合、最も反射率が低くなる(理論上0になる)膜の屈折率nは、n=(ns×n01/2、膜厚dは、d=m(nλ/4) (m=1,3,5,…)で表される。n0を空気≒1、一般的な基材の屈折率nsを1.4~1.7とすると、理論的にはn=1.18~1.30であり、かなり低い屈折率が求められる。 As described above, when the low reflection effect is obtained by utilizing the interference of light by the thin film coated on the surface of the low reflection member, it is important to adjust the refractive index and thickness of the film. When the refractive index of the substrate is n s , the refractive index of the medium is n 0 , and the wavelength of light is λ, the refractive index of the film having the lowest reflectance (theoretically zero) is obtained when there is a single low-reflection film. The rate n is represented by n = (n s × n 0 ) 1/2 , and the film thickness d is represented by d = m (nλ / 4) (m = 1, 3, 5,...). Assuming that n 0 is air≈1 and the refractive index n s of a general base material is 1.4 to 1.7, theoretically n = 1.18 to 1.30, and a considerably low refractive index is obtained. It is done.
しかしながら、複数の薄膜を真空蒸着等により基材表面に被覆する際、低反射とするためには、各薄膜の厚みの精密制御が必要である。透明基材が大板ガラスであるならば、大板ガラスにマルチコートするには、大型の真空成膜装置が必要であり、技術的に難しいばかりか、装置および低反射部材ともに高価なものとなるという欠点があった。 However, when a plurality of thin films are coated on the surface of the substrate by vacuum deposition or the like, precise control of the thickness of each thin film is necessary to achieve low reflection. If the transparent substrate is a large plate glass, a large vacuum film forming apparatus is required to multi-coat the large plate glass, which is technically difficult and both the apparatus and the low reflection member are expensive. There were drawbacks.
 このため、最近では、低コストで大型の低反射部材を作製できる、単層でありながら低反射性能を有する低反射膜付き低反射部材の開発が望まれている。単層膜による低反射膜においては、理論屈折率になるべく近い膜とすることが好ましい。 Therefore, recently, it has been desired to develop a low-reflection member with a low-reflection film that has a low reflection performance even though it is a single layer, which can produce a large-sized low-reflection member at low cost. In the low reflection film by a single layer film, it is preferable to use a film as close as possible to the theoretical refractive index.
 このような、単層膜として、微粒子による光の乱反射を利用して低反射効果を得る防眩膜があるが、防眩膜に低反射を得るには、微粒子の屈折率は、媒体との界面反射を抑えるために媒体の屈折率、空気の場合は約1により近いことが求められる。 As such a single layer film, there is an antiglare film that obtains a low reflection effect by utilizing diffused reflection of light by fine particles. To obtain low reflection in the antiglare film, the refractive index of the fine particles is different from that of the medium. In order to suppress interface reflection, the refractive index of the medium is required, and in the case of air, it is required to be closer to about 1.
 このような理由により、低反射部材において、無機系材料である低屈折率のフッ化マグネシウム(MgF2、n=1.38)の薄膜をその表面に形成することが行われてきた。フッ化マグネシウムの薄膜は、蒸着法により成膜することが主流であるが、コストや作業性の面から、従来の蒸着法ではなく、大面積に適した安価で生産性のよいコーティング法が要求される。 For these reasons, a thin film of low refractive index magnesium fluoride (MgF 2 , n = 1.38), which is an inorganic material, has been formed on the surface of a low reflection member. Magnesium fluoride thin films are mainly deposited by vapor deposition, but from the viewpoint of cost and workability, instead of the conventional vapor deposition method, an inexpensive and highly productive coating method suitable for large areas is required. Is done.
 この要求を満たすべく、大面積に適した安価な反射防止膜の形成方法として、フッ化マグネシウム微粒子を表面に塗布することにより形成されるコーティング膜が用いられてきた。フッ化マグネシウムのゾルとしては、マグネシウム塩の水溶液にフッ化物の水溶液を添加し生成したフッ化マグネシウムゲルを濃縮して得られる水性ゾルや、水性ゾルを有機溶剤へ転相して得られるオルガノゾルが知られ、特許文献1および特許文献2に開示されている。 In order to satisfy this requirement, a coating film formed by applying magnesium fluoride fine particles on the surface has been used as a method for forming an inexpensive antireflection film suitable for a large area. Magnesium fluoride sols include aqueous sols obtained by concentrating a magnesium fluoride gel produced by adding an aqueous fluoride solution to an aqueous magnesium salt solution, and organosols obtained by phase-shifting an aqueous sol into an organic solvent. Known and disclosed in Patent Document 1 and Patent Document 2.
 また、特許文献3には、有機溶剤中で製造されたフッ化マグネシウムを反応後にオートクレーブ等により加熱加圧処理することで、副生物を除去する方法が開示されている。 Patent Document 3 discloses a method for removing by-products by reacting magnesium fluoride produced in an organic solvent with a heat and pressure treatment using an autoclave after reaction.
 さらに、特許文献4には、フッ化マグネシウムと金属酸化物を含有する耐摩耗性コーティングを有する支持体が開示されている。尚、フッ化マグネシウムの製造原料としてフッ化水素を用いることは、不適であると記載される。 Furthermore, Patent Document 4 discloses a support having an abrasion-resistant coating containing magnesium fluoride and a metal oxide. In addition, it is described that using hydrogen fluoride as a raw material for producing magnesium fluoride is inappropriate.
 また、上記のように、光学用途において用いられる、フッ化マグネシウムによる低反射膜において、特許文献1~4に示すように低屈折率の低反射膜を低反射部材表面に被覆することによる反射防止機能が求められる一方で、帯電性防止のために低反射部材に親水性を付与する方法が求められる。 Further, as described above, in the low reflection film made of magnesium fluoride used in optical applications, as shown in Patent Documents 1 to 4, antireflection by coating the surface of the low reflection member with a low reflection film having a low refractive index. While the function is required, a method for imparting hydrophilicity to the low reflection member is required to prevent charging.
 例えば、特許文献5には、フッ化マグネシウム等のフッ化物により被覆されている基材表面を、プラズマ照射をすること等によって表面改質して、親水性を導入した難帯電性光学素子の製造方法が開示されている。 For example, in Patent Document 5, the surface of a base material coated with a fluoride such as magnesium fluoride is surface-modified by plasma irradiation or the like to manufacture a hardly-chargeable optical element in which hydrophilicity is introduced. A method is disclosed.
 また、特許文献6には、多層系の反射防止膜において、フッ化マグネシウム層の直下に二酸化チタン等の光触媒能を有する層を形成することにより、水ヤケを防止した光学体が開示されている。尚、特許文献6には、フッ化マグネシウムは非親水性であることが記載される。 Patent Document 6 discloses an optical body that prevents water scuffing by forming a layer having photocatalytic activity such as titanium dioxide immediately below a magnesium fluoride layer in a multilayer antireflection film. . Patent Document 6 describes that magnesium fluoride is non-hydrophilic.
 また、CIS薄膜系の太陽電池および結晶性シリコンが400nm以上、2000nm以下の幅広い波長域で光吸収し、従来のアモルファスシリコン系と比較して、長波長域の光を吸収することが可能で、その吸収のピークが900nm付近にあることが知られている。 In addition, CIS thin film solar cells and crystalline silicon can absorb light in a wide wavelength range of 400 nm or more and 2000 nm or less, and can absorb light in a long wavelength range as compared with conventional amorphous silicon systems. It is known that the absorption peak is around 900 nm.
 特許文献1および特許文献2に記載の反射防止膜の形成方法は、オルガノゾルの水系での合成、即ち、水を媒介とする合成であり、副生塩の洗浄・濃縮を限外ろ過で行っており、低反射部材の生産性やコスト面での問題があった。 The method for forming an antireflection film described in Patent Document 1 and Patent Document 2 is synthesis of an organosol in an aqueous system, that is, synthesis using water, and by-product salt washing and concentration are performed by ultrafiltration. Therefore, there are problems in productivity and cost of the low reflection member.
 また、特許文献3に記載の方法では、副生する有機物の除去をオートクレーブで加熱加圧することで行うが、除去が充分でない場合はフッ化マグネシウムによる屈折率の低下が望めなく、完全に除去する必要があるために操作が煩雑となるという問題があった。 In addition, in the method described in Patent Document 3, organic substances produced as a by-product are removed by heating and pressurizing with an autoclave. However, when the removal is not sufficient, the refractive index cannot be lowered by magnesium fluoride, and the organic substances are completely removed. There is a problem that the operation is complicated because it is necessary.
 また、特許文献4に記載の支持体は、コーティング膜の耐摩耗性に優れるものの、塗布液である、フッ化マグネシウムと特定の金属酸化物前駆体混合液の保存安定性に問題があった。 Further, although the support described in Patent Document 4 is excellent in abrasion resistance of the coating film, there is a problem in the storage stability of the mixed solution of magnesium fluoride and a specific metal oxide precursor, which is a coating solution.
 また、特許文献5の難帯電性光学素子の製造方法においては、プラズマ照射等によって、基材の被覆層表面に生じた水酸基(OH基)の寿命が短く、長期の親水性を発現させることが難しく、低反射部材の製造に応用するには、高価な設備が必要であり汎用的ではないという問題があった。 In addition, in the method for producing a hardly-chargeable optical element of Patent Document 5, the lifetime of hydroxyl groups (OH groups) generated on the surface of the coating layer of the base material is short due to plasma irradiation or the like, and long-term hydrophilicity is expressed. Difficult, there is a problem that expensive equipment is required for application to the production of a low reflection member and is not general purpose.
 また、特許文献6に記載される光学体では、表面被覆に低屈折率のフッ化マグネシウムと親水性の酸化チタンを組合せることで、光学体の低反射性と防汚性を両立させるが、表面の被膜が多層膜であり、低反射部材の製造に応用するには、手間がかかり過ぎるという問題があった。 Moreover, in the optical body described in Patent Document 6, by combining the low refractive index magnesium fluoride and the hydrophilic titanium oxide in the surface coating, the low reflectivity and the antifouling property of the optical body are compatible, Since the coating on the surface is a multilayer film, there is a problem that it takes too much time to apply it to the production of a low reflection member.
 以上、特許文献1~5に記載の発明の抱える問題に限らず、フッ化マグネシウムを用いてなる低反射膜には、根本的に以下の(1)~(4)の問題がある。 As described above, not only the problems of the inventions described in Patent Documents 1 to 5, but the low reflection film using magnesium fluoride has the following problems (1) to (4).
(1)表面の汚れが目立ちやすい
薄膜による光の干渉を利用した低反射膜の場合、汗や油等の汚れが付着すると、汚れも薄膜として光を干渉させて反射像に色が付いて見え、より汚れが浮き出て目立つ結果となる。
(1) In the case of a low-reflection film that uses light interference due to a thin film whose surface is easily noticeable, if dirt such as sweat or oil adheres, the dirt also interferes with the light as a thin film and the reflected image appears colored. As a result, the dirt becomes more prominent.
(2)汚れが付着しやすい
微粒子からなる薄膜では、表面に凹凸があるために、一旦付着した汚れを除去することは困難であり、汚れの除去に労力を要する。特に表面を凹凸にして光を散乱させて反射防止効果を得る防眩膜では、汚れが凹部に入り込み除去し難い。
(2) In a thin film made of fine particles to which dirt easily adheres, since the surface has irregularities, it is difficult to remove the dirt once adhered, and labor is required to remove the dirt. In particular, in an antiglare film that has an uneven surface and scatters light to obtain an antireflection effect, dirt enters the recess and is difficult to remove.
(3)絶縁体であり静電気を帯びやすい
フッ化マグネシウムを用いた低反射膜は絶縁体で帯電しやすく、また疎水性で汚染物質である油分等が付着しやすい。
(3) A low reflection film using magnesium fluoride, which is an insulator and is easily charged with static electricity, is easily charged with an insulator, and is hydrophobic and easily contaminated with oil, which is a contaminant.
 (3)について説明すると、眼鏡またはカメラのレンズの表面に蒸着された、フッ化マグネシウム膜の表面抵抗値は3.9×1012Ω・cmであり、フッ化マグネシウム膜は絶縁体である。また、フッ化マグネシウムによる膜の純水に対しての接触角は68°であり、疎水性である。このため汗やホコリ等の汚れが付着しやすく、汚染しやすいことは自明である。例えば、特許文献5に、フッ化物を有する光学素子の表面は帯電しやすく、そのため透過率が低下する旨が記載されている。 As for (3), the surface resistance value of the magnesium fluoride film deposited on the surface of the glasses or the lens of the camera is 3.9 × 10 12 Ω · cm, and the magnesium fluoride film is an insulator. Further, the contact angle of the magnesium fluoride membrane with respect to pure water is 68 °, which is hydrophobic. For this reason, it is obvious that dirt such as sweat and dust is easily attached and easily contaminated. For example, Patent Document 5 describes that the surface of an optical element having a fluoride is easily charged, and thus the transmittance decreases.
(4)フッ化マグネシウムに限らず、フッ化物は化学的に安定であるので、例えば、ガラス基板表面に付着させて加熱焼成して被膜としても、ガラス基板と化学結合を形成し難く、基材との接着強度が弱い。また、フッ化マグネシウムはモース硬度6で硬度が大きくなく、被膜の耐摩耗性に劣り、被膜が剥がれやすいという問題がある。 (4) Since not only magnesium fluoride but fluoride is chemically stable, for example, it is difficult to form a chemical bond with a glass substrate even if it is attached to the surface of a glass substrate and heated and fired to form a coating. Adhesive strength with is weak. In addition, magnesium fluoride has a Mohs hardness of 6 and is not so hard, and has a problem that the film is inferior in wear resistance and the film is easily peeled off.
 太陽電池は、屋外使用する場合、風雨および紫外線に曝されるため、太陽電池本体の保護部材、例えば、太陽電池カバーガラスを必要とし、既に市販されている。 Since solar cells are exposed to wind and rain and ultraviolet rays when used outdoors, they require a protective member for the solar cell body, for example, a solar cell cover glass, and are already on the market.
砂塵、鳥の糞また排ガス等の無機・有機汚染物等が付着し太陽光を遮り、発電効率の低下を招く。よって、上記の(1)~(4)の問題を全て解決するフッ化マグネシウムによる低反射膜はなく、フッ化マグネシウム膜の太陽電池カバーガラスへの使用は好ましくないとされてきた。 Inorganic and organic pollutants such as dust, bird droppings and exhaust gas will adhere and block sunlight, leading to reduced power generation efficiency. Therefore, there is no low reflection film made of magnesium fluoride that solves all of the above problems (1) to (4), and the use of a magnesium fluoride film for a solar cell cover glass has been considered undesirable.
一方、太陽電池カバーガラスにおいて、アモルファスシリコン型太陽電池の場合、可視光580nmを中心に、結晶-Siおよび化合物半導体型太陽電池においては、800nm~2000nmの長波長域を中心に、高透過率で光を透過させる必要がある。太陽電池カバーガラスにおいては、従来の可視光のみならず長波長領域に対応し、380nm以上、2000nm以下の幅広い波長域における光を透過させるための低反射膜を表面に形成することが求められるようになってきている。 On the other hand, in the solar cell cover glass, in the case of an amorphous silicon type solar cell, the visible light 580 nm is the center, and in the crystal-Si and compound semiconductor type solar cells, the high transmittance is centered on the long wavelength region of 800 nm to 2000 nm. It is necessary to transmit light. In the solar cell cover glass, it is required to form on the surface a low reflection film for transmitting light in a wide wavelength range of 380 nm or more and 2000 nm or less, corresponding to a long wavelength region as well as conventional visible light. It is becoming.
特開平7-69621号公報JP 7-69621 A 特開平2-26824号公報JP-A-2-26824 国際特許公開公報WO2002/18982号International Patent Publication No. WO2002 / 18982 特表2008-501557号公報Special table 2008-501557 gazette 特開2001-147302号公報JP 2001-147302 A 特開2005-165014号公報JP 2005-165014 A
 本発明は、高い光透過率および低い反射率を有し、基材との接着強度が強く、耐候性に優れ、親水性で防汚性がよく帯電防止機能を有し、しかも大面積への形成が容易な、単層膜からなる親水性低反射膜を有する親水性低反射部材を提供することを目的とする。 The present invention has high light transmittance and low reflectance, strong adhesion strength to the substrate, excellent weather resistance, hydrophilicity, good antifouling property, antistatic function, and large area An object of the present invention is to provide a hydrophilic low-reflection member having a hydrophilic low-reflection film made of a single layer film that is easy to form.
 また、最近の化合物系半導体および結晶性シリコンを用いた太陽電池に使用するのに好適な、可視光域ばかりでなく、380nm以上、2000nm以下の幅広い波長域での光透過性に優れた親水性低反射部材を提供することを目的とする。 In addition, it is suitable for use in solar cells using recent compound semiconductors and crystalline silicon, and has excellent light transmittance in a wide wavelength range of not less than 380 nm and not more than 2000 nm, as well as in the visible light range. An object is to provide a low reflection member.
 本発明は、透明基材と透明基材上に形成される親水性低反射膜を有する親水性低反射部材であって、当該親水性低反射膜の構成成分として、低反射性能を有するけれども非親水性であるフッ化マグネシウムの代替に、分子中に水酸基を有する水酸化フッ化マグネシウム微粒子を用い、さらに屈折率調整材をバインダーに用いた。 The present invention is a hydrophilic low-reflection member having a transparent substrate and a hydrophilic low-reflection film formed on the transparent substrate, and has low reflection performance as a constituent component of the hydrophilic low-reflection film. Instead of hydrophilic magnesium fluoride, magnesium hydroxide fluoride fine particles having a hydroxyl group in the molecule were used, and a refractive index adjusting material was used as a binder.
本発明において、屈折率1.23以上、1.41以下を有する親水性低反射膜を被覆してなる親水性低反射部材が得られた。親水性低反射膜の形成において、水酸化フッ化マグネシウムの微粒子を金属酸化物が結合材、即ち、バインダーとして結合させ、非晶質の膜ができること、または微小空隙であるボイドができ屈折率1の空気が取り込まれることで、屈折率1.41以下が可能となる。好ましくは1.38以下、より好ましくは1.35以下、さらに好ましくは1.30以下である。 In the present invention, a hydrophilic low reflection member obtained by coating a hydrophilic low reflection film having a refractive index of 1.23 or more and 1.41 or less was obtained. In the formation of a hydrophilic low-reflection film, magnesium hydroxide fluoride fine particles are bonded as a binder, that is, a binder, to form an amorphous film, or a void can be formed as a microscopic void. When the air is taken in, a refractive index of 1.41 or less becomes possible. Preferably it is 1.38 or less, More preferably, it is 1.35 or less, More preferably, it is 1.30 or less.
 即ち、本発明は、透明基材と該透明基材上に形成される親水性低反射膜を有する親水性低反射部材であって、該親水性低反射膜が、水酸化フッ化マグネシウム微粒子と、屈折率調整材としての酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種以上の金属酸化物を含有してなり、屈折率が1.23以上、1.41以下であることを特徴とする親水性低反射部材である。好ましくは、1.38以下である。より好ましくは1.35以下、さらに好ましくは1.30以下である。特に、タングステン化合物、ニオブ化合物およびタンタル化合物は分散または溶解しやすく塗布液の調製が容易であり、塗布液を塗布焼成することによって酸化物としやすく、特に、酸化タングステン、酸化ニオブおよび酸化タンタルが、親水性低反射膜に金属酸化物として含有させやすく使いやすい。 That is, the present invention is a hydrophilic low-reflection member having a transparent base material and a hydrophilic low-reflection film formed on the transparent base material, wherein the hydrophilic low-reflection film comprises magnesium hydroxide fluoride fine particles and And at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material. It is a hydrophilic low reflection member characterized by being 23 or more and 1.41 or less. Preferably, it is 1.38 or less. More preferably, it is 1.35 or less, More preferably, it is 1.30 or less. In particular, tungsten compounds, niobium compounds and tantalum compounds are easy to disperse or dissolve, and preparation of the coating solution is easy, and it is easy to make oxides by coating and baking the coating solution, especially tungsten oxide, niobium oxide and tantalum oxide, Easy to use as a metal oxide in a hydrophilic low reflection film.
尚、本発明において、微粒子とは、その最大粒径が500nm以下の粒子であり、屈折率は、波長637nmにおける分光エリプソメトリー測定により、エリプソメーターで測定した値である。 In the present invention, fine particles are particles having a maximum particle size of 500 nm or less, and the refractive index is a value measured with an ellipsometer by spectroscopic ellipsometry measurement at a wavelength of 637 nm.
また、本発明において、粒径3nm以上、100nm以下の水酸化フッ化マグネシウム微粒子に、屈折率調整材として、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種以上の金属酸化物を用い、透明基材としてのガラス基板表面に塗布焼成して親水性低反射膜とすると、380nm以上、2000nm以下の波長域で、光透過性のよい無色透明の耐久性のある親水性低反射膜を有する親水性低反射部材を得た。 In the present invention, magnesium hydroxide fluoride fine particles having a particle diameter of 3 nm or more and 100 nm or less are selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material. When at least one kind of the metal oxide is used and coated and baked on the surface of the glass substrate as a transparent base material to form a hydrophilic low reflection film, it is colorless with good light transmission in a wavelength range of 380 nm to 2000 nm. A hydrophilic low-reflection member having a transparent and durable hydrophilic low-reflection film was obtained.
本発明において、水酸化フッ化マグネシウム微粒子の粒径は、粒径3nm以上、100nm以下である。3nm未満では、粒子間の空隙が小さくなり、結果として露出される水酸基数が少ないものとなりやすく、親水性が低くなる恐れがある。他方、100nmを超えると、粒子同士および粒子と基材の接触点が小さくなり、微粒子の基材への接着性が低下する恐れがある。より好ましくは5nm以上、60nm以下、さらに好ましくは8nm以上、20nm以下である。尚、粒径は走査型電子顕微鏡(以下、SEMと略する)による観察による値であり、水酸化フッ化マグネシウム微粒子の最大径である、SEMの視野内の水酸化フッ化マグネシウム微粒子の全個数の90%以上が上記粒径の範囲内であることが好ましい。 In the present invention, the particle size of the magnesium hydroxide fluoride fine particles is 3 nm or more and 100 nm or less. If it is less than 3 nm, voids between particles become small, and as a result, the number of exposed hydroxyl groups tends to be small, and the hydrophilicity may be lowered. On the other hand, if the thickness exceeds 100 nm, the contact points between the particles and between the particles and the substrate become small, and the adhesion of the fine particles to the substrate may be reduced. More preferably, they are 5 nm or more and 60 nm or less, More preferably, they are 8 nm or more and 20 nm or less. The particle diameter is a value obtained by observation with a scanning electron microscope (hereinafter abbreviated as SEM), and is the maximum diameter of the magnesium hydroxide fluoride fine particles, and the total number of magnesium hydroxide fluoride fine particles in the field of view of the SEM. It is preferable that 90% or more of is within the range of the particle diameter.
また、無色透明の膜が得られたことは、水酸化フッ化マグネシウム微粒子に屈折率調整材として、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブ、酸化タンタルなる群から選ばれた少なくとも1種以上の金属酸化物を加えたことにより、得られた低反射膜がより非晶質な膜となり、非晶質の膜であることで、低反射膜を透明基材の表面に形成してなる低反射部材の透明性がより高まったことによると思われる。 In addition, the colorless and transparent film was obtained because at least selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide as a refractive index adjusting material for magnesium hydroxide fluoride fine particles. By adding one or more kinds of metal oxides, the resulting low reflection film becomes a more amorphous film. By being an amorphous film, the low reflection film is formed on the surface of the transparent substrate. This is probably because the transparency of the low-reflective member increased.
 平均透過率および平均反射率は、分光光度計を用いて、光の波長域、380nm~2000nmの透過率、反射率を測定し、当該波長域における平均透過率、平均反射率を算出した値である。透過率曲線とは、ある波長域における分光光度計による光透過率の測定値を連続的にプロットした曲線である。 The average transmittance and average reflectance are values obtained by measuring the transmittance and reflectance of light in the wavelength range of 380 nm to 2000 nm using a spectrophotometer, and calculating the average transmittance and average reflectance in the wavelength range. is there. The transmittance curve is a curve obtained by continuously plotting measured values of light transmittance with a spectrophotometer in a certain wavelength range.
本発明の親水性低反射部材の表面に形成される親水性低反射膜に含有させる水酸化フッ化マグネシウムは、水酸基を有する化合物である。これは、X線回折(X-ray diffraction、XRD)のデータにより確認でき、そのX線回折図は、JCPDS file 54-1272における水酸化フッ化マグネシウム(MgF1.89(OH)0.11)のデータと一致することが認められた。フッ化マグネシウムに比較して、水酸化フッ化マグネシウムは非晶質であり、水酸基を有することにより、低反射膜に含有させることで親水性を示し、親水性低反射膜が形成される。 The magnesium hydroxide fluoride contained in the hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of the present invention is a compound having a hydroxyl group. This can be confirmed by X-ray diffraction (XRD) data, and the X-ray diffraction pattern agrees with the data of magnesium hydroxide fluoride (MgF 1.89 (OH) 0.11 ) in JCPDS file 54-1272. Admitted to do. Compared with magnesium fluoride, magnesium hydroxide fluoride is amorphous and has a hydroxyl group. Therefore, when it is contained in the low reflection film, it shows hydrophilicity, and a hydrophilic low reflection film is formed.
 また、本発明は、水酸化フッ化マグネシウムが、MgF2-x(OH)x(x=0.01~0.5)であることを特徴とする上記の親水性低反射部材である。中でも、水酸化フッ化マグネシウムが、MgF1.89(OH)0.11であることが好ましい。 The present invention also provides the above hydrophilic low-reflection member, wherein the magnesium hydroxide fluoride is MgF 2-x (OH) x (x = 0.01 to 0.5). Among these, the magnesium hydroxide fluoride is preferably MgF 1.89 (OH) 0.11 .
さらに、本発明は、380nm以上、2000nm以下における、親水性低反射膜形成以前の透明基材の平均透過率との差が6%以上であることを特徴とする上記の親水性低反射部材である。 Furthermore, the present invention is the above-described hydrophilic low-reflection member, wherein the difference between the average transmittance of the transparent base material before the formation of the hydrophilic low-reflection film at 380 nm or more and 2000 nm or less is 6% or more. is there.
 本発明の親水性低反射部材において、親水性低反射膜に水酸化フッ化マグネシウムと、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種以上の金属酸化物に、さらに屈折率調整材として、シリカ(SiO2)、アルミナ(Al23)、セリア(CeO2)、ジルコニア(ZrO2、)、チタニア(TiO2)、酸化スズ、酸化インジウム、酸化亜鉛、酸化アンチモンおよび酸化ランタンからなる群から選ばれた少なくとも1種以上の金属酸化物を加えてもよい。 In the hydrophilic low reflection member of the present invention, the hydrophilic low reflection film is at least one selected from the group consisting of magnesium hydroxide fluoride, tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide. In addition to the above-mentioned metal oxides, silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), titania (TiO 2 ), tin oxide, At least one metal oxide selected from the group consisting of indium oxide, zinc oxide, antimony oxide, and lanthanum oxide may be added.
特に、シリカ(SiO2)、アルミナ(Al23)、セリア(CeO2)、ジルコニア(ZrO2、)、チタニア(TiO2)は、低反射膜の硬度調整に有用である。酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブ、酸化タンタルは導電性を有するが、屈折率調整材として、酸化スズ(SnO2)、酸化インジウム、酸化亜鉛または酸化アンチモンから選ばれた、高い導電性を有し帯電防止能力がある金属酸化物を本発明の親水性低反射部材に用いると、親水性低反射部材の表面抵抗値が1×1010Ω.cm以下となり、親水性低反射部材に帯電防止機能を付与することが可能となる。 In particular, silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), and titania (TiO 2 ) are useful for adjusting the hardness of the low reflective film. Tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide have conductivity, but the refractive index adjusting material was selected from tin oxide (SnO 2 ), indium oxide, zinc oxide, or antimony oxide. When a metal oxide having high conductivity and antistatic ability is used for the hydrophilic low reflection member of the present invention, the surface resistance value of the hydrophilic low reflection member is 1 × 10 10 Ω. It becomes cm or less, and it becomes possible to impart an antistatic function to the hydrophilic low reflection member.
 また、本発明は、屈折率調整材として、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種以上の金属酸化物に、シリカ、アルミナ、セリア、ジルコニア、チタニア、酸化スズ、酸化インジウム、酸化亜鉛、酸化アンチモンおよび酸化ランタンからなる群から選ばれた少なくとも1種以上の金属酸化物を加えたことを特徴とする上記の親水性低反射部材である。 Further, the present invention provides at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material, silica, alumina, The hydrophilic low-reflective member as described above, wherein at least one metal oxide selected from the group consisting of ceria, zirconia, titania, tin oxide, indium oxide, zinc oxide, antimony oxide and lanthanum oxide is added. It is.
その際、水酸化フッ化マグネシウムと屈折率調整材のモル比が大きく異なれば、ゲル化の懸念がある。本発明の親水性低反射部材において、親水性低反射膜中の水酸化フッ化マグネシウムに対する屈折率調整材のモル比が、好適には0.5:10~30:10の範囲内にある。 At that time, if the molar ratio of magnesium hydroxide fluoride and the refractive index adjusting material is greatly different, there is a concern of gelation. In the hydrophilic low reflection member of the present invention, the molar ratio of the refractive index adjusting material to magnesium hydroxide fluoride in the hydrophilic low reflection film is preferably in the range of 0.5: 10 to 30:10.
さらに、本発明の親水性低反射部材においては、親水性低反射膜表面における水の接触角が好適には30°以下である。 Furthermore, in the hydrophilic low reflection member of the present invention, the contact angle of water on the hydrophilic low reflection film surface is preferably 30 ° or less.
 さらに、本発明親水性低反射部材では、親水性低反射膜表面の表面抵抗値が好適には1×1010Ω.cm以下である。 Furthermore, in the hydrophilic low reflection member of the present invention, the surface resistance value of the hydrophilic low reflection film surface is preferably 1 × 10 10 Ω. cm or less.
 さらに、本発明は、上記の親水性低反射部材を用いたことを特徴とする太陽電池用表面保護部材を提供する。太陽電池用表面保護部材としては、太陽電池カバーガラスが挙げられる。 Furthermore, the present invention provides a surface protection member for a solar cell characterized by using the above hydrophilic low reflection member. Examples of the solar cell surface protective member include a solar cell cover glass.
 本発明の親水性低反射部材の表面に形成された親水性低反射膜は、水酸化フッ化マグネシウム微粒子に、前記金属(即ち、タングステン、モリブデン、クロム、バナジウム、ニオブおよびタンタルから選ばれた少なくとも1種以上の金属)の化合物、例えば、金属アルコキシドを加え、水酸化フッ化マグネシウム微粒子を分散させた塗布液を、透明基材表面にゾルゲル法で塗布被覆した後に焼成し形成する。この焼成で、金属アルコキシドが水酸化フッ化マグネシウム間に析出焼成し、水酸化フッ化マグネシウムを結合させるバインダーとなり、水酸化フッ化マグネシウム間の空隙(ボイド)に屈折率1の空気が取り込まれた効果により、屈折率1.38以下の膜となる。 The hydrophilic low-reflection film formed on the surface of the hydrophilic low-reflection member of the present invention is obtained by adding magnesium hydroxide fluoride fine particles to the metal (that is, at least selected from tungsten, molybdenum, chromium, vanadium, niobium and tantalum). A coating liquid in which a compound of one or more metals), for example, metal alkoxide is added and magnesium hydroxide fluoride fine particles are dispersed is applied and coated on the surface of the transparent substrate by a sol-gel method, followed by baking. In this firing, metal alkoxide is precipitated and fired between magnesium hydroxide fluoride and becomes a binder for binding magnesium hydroxide fluoride, and air having a refractive index of 1 is taken into voids between the magnesium hydroxide fluoride. Due to the effect, the film has a refractive index of 1.38 or less.
 さらに、本発明の親水性低反射部材は、水酸化フッ化マグネシウム微粒子に上記金属の化合物を加えて、水酸化フッ化マグネシウム微粒子を分散させた塗布液を、透明基材表面に塗布被覆してなる親水性低反射膜を有することを特徴とする。 Furthermore, the hydrophilic low-reflective member of the present invention is obtained by coating and coating a transparent substrate surface with a coating solution in which the above metal compound is added to magnesium hydroxide fluoride fine particles and the magnesium hydroxide fluoride fine particles are dispersed. It has the hydrophilic low-reflection film which becomes.
即ち、本発明は、水酸化フッ化マグネシウム微粒子に、タングステン、モリブデン、クロム、バナジウム、ニオブおよびタンタルからなる群から選ばれた少なくとも1種以上の金属の化合物を加えた塗布液を、透明基材表面に塗布後、焼成することを特徴とする上記の親水性低反射部材の製造方法を提供する。 That is, the present invention provides a coating liquid obtained by adding at least one metal compound selected from the group consisting of tungsten, molybdenum, chromium, vanadium, niobium and tantalum to magnesium hydroxide fluoride fine particles. Provided is a method for producing the above hydrophilic low-reflection member, characterized by firing after coating on the surface.
また、本発明は、水酸化フッ化マグネシウム微粒子に、タングステン、モリブデン、クロム、バナジウム、ニオブおよびタンタルからなる群から選ばれた少なくとも1種以上の金属の化合物と、ケイ素、アルミニウム、セリウム、ジルコニウム、チタン、スズ、インジウム、亜鉛、アンチモンおよびランタンからなる群から選ばれた少なくとも1種以上の金属の化合物を加えて、水酸化フッ化マグネシウム微粒子が分散した塗布液を、透明基材表面に塗布後、焼成することを特徴とする上記の親水性低反射部材の製造方法を提供する。 Further, the present invention provides magnesium hydroxide fluoride fine particles, at least one metal compound selected from the group consisting of tungsten, molybdenum, chromium, vanadium, niobium and tantalum, and silicon, aluminum, cerium, zirconium, After applying at least one metal compound selected from the group consisting of titanium, tin, indium, zinc, antimony and lanthanum, and applying a coating liquid in which magnesium hydroxide fluoride fine particles are dispersed to the surface of the transparent substrate And providing a method for producing the above hydrophilic low-reflection member, characterized by firing.
特に、タングステン、ニオブ、タンタル、ケイ素およびアルミニウムの化合物が、分散液および溶液を調製しやすく、使いやすい。 In particular, compounds of tungsten, niobium, tantalum, silicon and aluminum are easy to prepare and use in dispersions and solutions.
実施例1で被膜を形成したガラス基板表面のSEM写真である。2 is a SEM photograph of the glass substrate surface on which a film is formed in Example 1. FIG. 実施例2で被膜を形成したガラス基板表面のSEM写真である。4 is a SEM photograph of the glass substrate surface on which a film is formed in Example 2. 実施例2で被膜を形成したガラス基板の透過率曲線である。It is the transmittance | permeability curve of the glass substrate in which the film was formed in Example 2. FIG. 実施例3で被膜を形成したガラス基板表面のSEM写真である。4 is a SEM photograph of the glass substrate surface on which a film is formed in Example 3. 実施例3で被膜を形成したガラス基板の透過率曲線である。It is the transmittance | permeability curve of the glass substrate in which the film was formed in Example 3. FIG.
詳細な説明Detailed description
 本発明では、水酸化フッ化マグネシウム微粒子と、屈折率調整材としての酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも一種の金属酸化物を含有する低屈折率且つ高透明性で親水性・耐久性に優れた親水性低反射膜(単層膜)を、湿式塗布法で、透明基材表面に形成することにより、優れた性能を持つ親水性低反射部材を得ることができた。親水性を持つことから、防汚性に優れ、汚れが付着した場合も容易に洗い流すことができる。また、透明基材がガラスであるならば、水酸化フッ化マグネウムとガラス表面が強固に結合し、膜剥がれが起こり難い。 The present invention contains magnesium hydroxide fluoride fine particles and at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material. A hydrophilic low reflection film (single layer film) with low refractive index, high transparency, excellent hydrophilicity and durability is formed on the surface of a transparent substrate by a wet coating method. The low reflective member was able to be obtained. Since it has hydrophilicity, it is excellent in antifouling property and can be easily washed away even when dirt is attached. Further, if the transparent substrate is glass, the magnesium hydroxide fluoride and the glass surface are firmly bonded, and film peeling hardly occurs.
また、前記金属に加え、ケイ素、アルミニウム、セリウム、ジルコニウム、チタン、スズ、インジウム、亜鉛、アンチモンおよびランタンからなる群から選ばれた少なくとも1種以上の金属の化合物を親水性低反射膜に含有させることで硬度があり、耐摩耗性に優れた親水性低反射膜が得られた。 Further, in addition to the metal, at least one metal compound selected from the group consisting of silicon, aluminum, cerium, zirconium, titanium, tin, indium, zinc, antimony and lanthanum is contained in the hydrophilic low reflection film. Thus, a hydrophilic low-reflection film having hardness and excellent wear resistance was obtained.
 即ち、本発明の親水性低反射部材は、優れた低反射性能と親水性能を両立させ、帯電防止性能を有し、自浄性に代表される、優れた防汚性を有する。以上の性質は、単層の親水性低反射膜で得られる。 That is, the hydrophilic low reflection member of the present invention has both excellent low reflection performance and hydrophilic performance, antistatic performance, and excellent antifouling properties represented by self-cleaning properties. The above properties can be obtained with a single-layer hydrophilic low-reflection film.
 また、本発明の親水性低反射部材は可視光域のみならず近赤外域までの幅広い光透過性能を有し、380nm以上、2000nm以下の幅広い波長域での光透過性に優れるため、太陽電池用保護部材として有用である。透明基材にガラス基板を用いた場合、太陽電池カバーガラスとして特に有用である。 Further, the hydrophilic low reflection member of the present invention has a wide light transmission performance not only in the visible light region but also in the near infrared region, and is excellent in light transmittance in a wide wavelength region of 380 nm or more and 2000 nm or less. It is useful as a protective member. When a glass substrate is used as the transparent substrate, it is particularly useful as a solar cell cover glass.
 本発明は、透明基材と、該透明基材上に形成される親水性低反射膜を有する親水性低反射部材であって、該親水性低反射膜が、水酸化フッ化マグネシウム微粒子と、屈折率調整材としての酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群より選ばれた少なくとも1種以上の金属酸化物を含有してなり、屈折率が1.23以上、1.41以下であることを特徴とする親水性低反射部材である。好ましくは、1.38以下、さらに好ましくは、1.35以下、さらに好ましくは1.30以下である。 The present invention is a hydrophilic low-reflection member having a transparent substrate and a hydrophilic low-reflection film formed on the transparent substrate, the hydrophilic low-reflection film comprising magnesium hydroxide fluoride fine particles, It contains at least one metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide as a refractive index adjusting material, and has a refractive index of 1.23. As described above, the hydrophilic low-reflection member is 1.41 or less. Preferably, it is 1.38 or less, More preferably, it is 1.35 or less, More preferably, it is 1.30 or less.
 本発明の親水性低反射部材表面に形成される親水性低反射膜に含有される水酸化フッ化マグネシウムの効果により、親水性低反射膜は屈折率1.23以上、1.41以下の低屈折率となる。さらに、親水性低反射膜の形成において、水酸化フッ化マグネシウムの微粒子を金属酸化物が結合材、即ち、バインダーとして結合させた際、非晶質となること、または、微小空隙であるボイドができ屈折率1の空気が取り込まれることで、屈折率1.41以下が可能となる。 Due to the effect of magnesium hydroxide fluoride contained in the hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of the present invention, the hydrophilic low reflection film has a refractive index of 1.23 or more and 1.41 or less. Refractive index. Furthermore, when forming a hydrophilic low-reflection film, magnesium hydroxide fluoride fine particles become amorphous when a metal oxide is bonded as a binder, that is, a binder, or voids that are microvoids are formed. By taking in air having a refractive index of 1, a refractive index of 1.41 or less is possible.
また、水酸化フッ化マグネシウムが水酸基を有することにより、親水性低反射膜は親水性を発現し、親水性低反射部材は、低反射および親水性を合わせ持つ親水性低反射機能を有する。水酸化フッ化マグネシウムの微粒子のみを、透明基材、例えば、ガラス基板両面に成膜し光透過率を測定したところ、紫外から可視域においては、ガラス基板より、概ね5%以上、8%以下の高い透過率を有し、優れた光学特性を示すことが認められた。特に、当該親水性低反射膜は波長550nm付近の可視光域で低屈折率を示し、親水性低反射部材に高い光透過率をもたらす。しかしながら、波長800nm以上、2000nm以下の近赤外域においては、光透過率はかなり低減し、親水性低反射膜を有しない未処理のガラス基板より、2%から3%高いのみであり、幅広い波長域での親水性低反射膜を得るには、膜質を改良する余地があった。 Further, when the magnesium hydroxide fluoride has a hydroxyl group, the hydrophilic low-reflection film exhibits hydrophilicity, and the hydrophilic low-reflection member has a hydrophilic low-reflection function having both low reflection and hydrophilicity. Only magnesium hydroxide fluoride fine particles were formed on both sides of a transparent base material, for example, a glass substrate, and the light transmittance was measured. In the ultraviolet to visible range, it was generally 5% or more and 8% or less than the glass substrate. It was confirmed that the film has a high transmittance and exhibits excellent optical properties. In particular, the hydrophilic low reflection film exhibits a low refractive index in the visible light region near a wavelength of 550 nm, and brings high light transmittance to the hydrophilic low reflection member. However, in the near-infrared region of wavelengths of 800 nm or more and 2000 nm or less, the light transmittance is considerably reduced and is only 2% to 3% higher than that of an untreated glass substrate having no hydrophilic low reflection film. In order to obtain a hydrophilic low reflection film in the region, there is room for improving the film quality.
 これに対して、本発明の親水性低反射部材は、水酸化フッ化マグネシウム微粒子の分散液に特定の金属酸化物の原料化合物を屈折率調整材として加えた塗布液を、透明性基材表面に塗布焼成し、所謂ゾルゲル法で親水性低反射膜を形成したものである。水酸化フッ化マグネシウム微粒子に特定の金属酸化物を屈折率調整材として加えたことで、親水性低反射膜の波長800nm以上、2000nm以下の近赤外域における光透過率を向上させた。 On the other hand, the hydrophilic low reflection member of the present invention is obtained by applying a coating liquid obtained by adding a specific metal oxide raw material compound as a refractive index adjusting material to a dispersion of magnesium hydroxide fluoride fine particles. Then, a hydrophilic low reflection film is formed by a so-called sol-gel method. By adding a specific metal oxide as a refractive index adjusting material to the magnesium hydroxide fluoride fine particles, the light transmittance in the near infrared region of the wavelength of 800 nm or more and 2000 nm or less of the hydrophilic low reflection film was improved.
 以下、詳細を示す。
 一般に、金属酸化物薄膜は、光学部材表面に、例えば金属化合物の分散液を塗布焼成して形成され、光学部材の光学特性を改良する手段として有用であるが、金属酸化物薄膜自体の屈折率は必ずしも低くない。例えば、金属酸化物薄膜の単独での屈折率は、低い順にシリカ、1.45、アルミナ、1.61、酸化スズ、1.68、酸化ジルコニウム、1.86、酸化チタン、2.15、酸化タンタル、2.3である。
Details are shown below.
In general, a metal oxide thin film is formed on a surface of an optical member by, for example, applying and baking a dispersion of a metal compound, and is useful as a means for improving the optical characteristics of the optical member. Is not necessarily low. For example, the refractive index of the metal oxide thin film alone is as follows: silica, 1.45, alumina, 1.61, tin oxide, 1.68, zirconium oxide, 1.86, titanium oxide, 2.15, oxidation. Tantalum, 2.3.
 シリカ、アルミナ等、屈折率の比較的低い金属酸化物は、光学部材表面の光学薄膜として広く使用される。しかしながら、シリカ単独のシリカ膜を形成したガラス基板は、シリカ膜を形成しないガラス基板より、やや高い光透過率を示すが、波長800nm以上、2000nm以下の近赤外域で特に高い光透過率を示すわけではない。 Metal oxides having a relatively low refractive index, such as silica and alumina, are widely used as optical thin films on the surface of optical members. However, the glass substrate on which the silica film of silica alone is formed shows a slightly higher light transmittance than the glass substrate on which the silica film is not formed, but shows a particularly high light transmittance in the near infrared region with a wavelength of 800 nm or more and 2000 nm or less. Do not mean.
 一方、屈折率が大きい金属酸化物の場合は、低反射膜としては用い難い。屈折率が大きい金属酸化物である酸化ジルコニウム、酸化タンタルまたは酸化チタンを、単独でガラス基板に成膜する場合、例えば、これら金属の化合物が分散する塗布液を550℃で高温焼成し得られた金属酸化物薄膜の屈折率は1.85から2.2となる。これら金属酸化物薄膜を成膜したガラス基板の反射率は10%から20%を示し、表面に膜を形成していない未処理のガラス基板の反射率8%より高く、低反射膜として利用できるものではない。尚、これらの金属酸化物薄膜をX線回折したところ、金属酸化物の結晶が認められた。 On the other hand, a metal oxide having a large refractive index is difficult to use as a low reflection film. When a film of zirconium oxide, tantalum oxide or titanium oxide, which is a metal oxide having a high refractive index, is formed alone on a glass substrate, for example, a coating solution in which these metal compounds are dispersed can be fired at a high temperature at 550 ° C. The refractive index of the metal oxide thin film is 1.85 to 2.2. The reflectance of a glass substrate on which these metal oxide thin films are formed is 10% to 20%, which is higher than that of an untreated glass substrate having no film formed on the surface, and can be used as a low reflection film. It is not a thing. When these metal oxide thin films were subjected to X-ray diffraction, metal oxide crystals were observed.
 当該金属酸化物の2種類以上を用いた薄膜をガラス基板表面に形成した光学部材においても、前記未処理のガラス基板よりも反射率が高くなり、例えば、TiO2とSiO2からなる金属酸化物薄膜を表面に形成した金属酸化物薄膜付きガラス基板は、波長380nm以上、2000nm以下の可視域および近赤外域において、ガラス基板よりも低い光透過率を示した。 Even in an optical member in which a thin film using two or more kinds of the metal oxide is formed on the surface of the glass substrate, the reflectance is higher than that of the untreated glass substrate. For example, a metal oxide composed of TiO 2 and SiO 2 The glass substrate with a metal oxide thin film having a thin film formed on the surface thereof showed lower light transmittance than the glass substrate in the visible region and near infrared region having a wavelength of 380 nm or more and 2000 nm or less.
 このように、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブ、酸化スズ、酸化チタン、酸化ジルコニウムおよび酸化タンタル等の、ガラスより屈折率の高い金属酸化物からなる金属酸化物薄膜付きガラス基板は、波長380nm以上、2000nm以下の可視域および近赤外域において光透過性に劣るため、水酸化フッ化マグネシウムと当該金属酸化物を金属酸化物薄膜に用いることは、通常では行わない。 Thus, a glass with a metal oxide thin film made of a metal oxide having a higher refractive index than glass, such as tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, tin oxide, titanium oxide, zirconium oxide, and tantalum oxide. Since the substrate is inferior in light transmittance in the visible range and near infrared range of wavelengths of 380 nm or more and 2000 nm or less, it is not usually performed to use magnesium hydroxide fluoride and the metal oxide for the metal oxide thin film.
しかしながら、本発明者らが鋭意検討したところ、金属酸化物薄膜において、水酸化フッ化マグネシウムに、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種以上の金属酸化物を加えることで、金属酸化物薄膜付きガラス基板の前記近赤外域の光透過率が高くなることが判った。 However, as a result of intensive studies by the present inventors, in the metal oxide thin film, at least selected from the group consisting of magnesium hydroxide fluoride, tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide. It has been found that the light transmittance in the near infrared region of the glass substrate with a metal oxide thin film is increased by adding one or more metal oxides.
 ゾルゲル法により塗布焼成した後の金属酸化物薄膜において、水酸化フッ化マグネシウム微粒子と前記金属酸化物は、薄膜中で非晶質の状態で存在する。焼成後の薄膜をX線回折したところ、水酸化フッ化マグネシウムのピークが主体で、他の金属酸化物は結晶のピークがほとんど認められず非晶質の状態であった。 In the metal oxide thin film after being applied and fired by the sol-gel method, the magnesium hydroxide fluoride fine particles and the metal oxide exist in an amorphous state in the thin film. X-ray diffraction of the fired thin film revealed that the magnesium hydroxide fluoride peak was the main component, and the other metal oxides were in an amorphous state with almost no crystal peak.
 この非晶質の状態が、前記薄膜における屈折率の上昇、および薄膜付きガラス基板における光透過率の低下を抑制しているものと推定される。薄膜が非晶質となる現象は、水酸化フッ化マグネシウム微粒子とともに薄膜に含有させる前記金属酸化物の種類が増えると、より顕著であった。 It is presumed that this amorphous state suppresses an increase in refractive index in the thin film and a decrease in light transmittance in the glass substrate with the thin film. The phenomenon that the thin film becomes amorphous becomes more remarkable as the types of the metal oxides to be contained in the thin film together with the magnesium hydroxide fluoride fine particles are increased.
 即ち、水酸化フッ化マグネシウムと金属化合物を数種類以上適宜用いた薄膜を、ゾルゲル法で透明基材表面に塗布焼成して形成する際に、高温で焼成すると金属酸化物の結晶化が抑制されることにより、金属酸化物の一部は非晶質のまま存在すると推定され、得られた膜の屈折率が上昇せず、より好ましい親水性低反射膜が得られた。 That is, when a thin film using magnesium hydroxide fluoride and a metal compound as appropriate is formed on the surface of a transparent substrate by sol-gel method and formed by baking, the crystallization of the metal oxide is suppressed by baking at a high temperature. Thus, it was estimated that a part of the metal oxide was present in an amorphous state, and the refractive index of the obtained film was not increased, and a more preferable hydrophilic low-reflection film was obtained.
 本発明において、水酸化フッ化マグネシウムを含まないと結晶化してしまう金属酸化物であっても、水酸フッ化マグネシウムの共存下では非晶質で存在するため、結晶化した場合と比較して、当該金属酸化物の屈折率は、低く抑えられる作用があると思われる。この金属酸化物の非晶質化は、水酸化フッ化マグネシウムを金属酸化物と共存させることでもたらされると思われる、本発明における特徴的な作用である。この知見に基づき、本発明者等は、本発明の親水性低反射部材の表面に形成してなる親水性低反射膜において、水酸化フッ化マグネシウムに、屈折率調整材として幅広い波長域において高い透過率を与える特定の金属酸化物を見出した。 In the present invention, even a metal oxide that crystallizes if it does not contain magnesium hydroxide fluoride exists in an amorphous state in the presence of magnesium hydroxide fluoride, compared to the case of crystallization. It is considered that the refractive index of the metal oxide has an effect of being kept low. This amorphization of the metal oxide is a characteristic action in the present invention that is considered to be caused by the coexistence of magnesium hydroxide fluoride with the metal oxide. Based on this knowledge, the inventors of the present invention have a hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of the present invention. Magnesium hydroxide is high in a wide wavelength range as a refractive index adjusting material. We have found specific metal oxides that provide transmittance.
即ち、単体では高屈折率を有する金属酸化物(酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブ、酸化ジルコニウム酸化チタンおよび酸化タンタル)を、意外にも、水酸化フッ化マグネシウムを含む膜の屈折率調整材として使用できることを見出した。 That is, a film containing a metal oxide having a high refractive index (tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, zirconium oxide titanium oxide, and tantalum oxide) and magnesium hydroxide fluoride unexpectedly. It was found that it can be used as a refractive index adjusting material.
 水酸化フッ化マグネシウム単独での屈折率は1.23以上、1.41以下であり、前述のように水酸化フッ化マグネシウム微粒子を金属酸化物がバインダーとして接合し、屈折率1の空気が取り込まれた微小ボイドを有する膜となること、および、水酸化フッ化マグネシウムを含む膜の構造がフッ化マグネシウムのそれとは異なることにより、フッ化マグネシウムの屈折率の理論値である1.38より低い値となることが可能となる。 The refractive index of magnesium hydroxide fluoride alone is 1.23 or more and 1.41 or less. As described above, magnesium hydroxide fluoride fine particles are bonded as a metal oxide binder, and air with a refractive index of 1 is taken in. Lower than 1.38 which is the theoretical value of the refractive index of magnesium fluoride due to the fact that the film has a small void and the structure of the film containing magnesium hydroxide fluoride is different from that of magnesium fluoride. Can be a value.
 また、水酸化フッ化マグネシウムは、波長550nmにおける光透過率が高いので、金属酸化物との膜において、同様に波長550nmをピークとする透過曲線を与えるものと類推されるが、実際に金属酸化物と混合すると、最大透過率のピークはやや長波長側にシフトして、それに伴い近赤外域の光透過率が高くなる傾向にある。 In addition, since magnesium hydroxide fluoride has a high light transmittance at a wavelength of 550 nm, it can be analogized that a film with a metal oxide similarly gives a transmission curve having a peak at a wavelength of 550 nm. When mixed with an object, the peak of maximum transmittance slightly shifts to the longer wavelength side, and the light transmittance in the near infrared region tends to increase accordingly.
 水酸化フッ化マグネシウムの微粒子に、酸化タングステン(WO3、屈折率2.2)、酸化モリブデン(MoO2、MoO3)、酸化クロム(Cr23等、屈折率2.2)、酸化バナジウム(五酸化バナジウム:V25、屈折率2.3)、酸化ニオブ(五酸化ニオブ:Nb25、屈折率2.3)および酸化タンタル(五酸化タンタル:Ta25、屈折率2.2)から選ばれた少なくとも1つを加え、ゾルゲル法により塗布焼成してなる膜は、この傾向が顕著であり、波長800nm以上、2000nm以下の近赤外域において、低反射部材の光透過率が改善された。 Fine particles of magnesium hydroxide fluoride, tungsten oxide (WO 3 , refractive index 2.2), molybdenum oxide (MoO 2 , MoO 3 ), chromium oxide (Cr 2 O 3 etc., refractive index 2.2), vanadium oxide (Vanadium pentoxide: V 2 O 5 , refractive index 2.3), niobium oxide (niobium pentoxide: Nb 2 O 5 , refractive index 2.3) and tantalum oxide (tantalum pentoxide: Ta 2 O 5 , refractive index This tendency is remarkable in the film formed by applying and baking at least one selected from 2.2) by the sol-gel method, and the light transmission of the low reflection member in the near infrared region of wavelengths of 800 nm or more and 2000 nm or less. The rate was improved.
 また、単独の膜の場合には、特に光学部材の長波長側の透過率が高くなかったアルミナ(n=1.61)についても、水酸化フッ化マグネシウムと共存させることで、波長600nm以上、800nm以下の近赤外域において、光学部材に光透過率の改善が認められた。 Further, in the case of a single film, alumina (n = 1.61) whose transmittance on the long wavelength side of the optical member was not particularly high was also allowed to coexist with magnesium hydroxide fluoride, so that the wavelength was 600 nm or more. In the near-infrared region of 800 nm or less, an improvement in light transmittance was observed in the optical member.
 また、酸化ジルコニウム(n=1.68)をガラス基板に成膜した場合、透過率は全波長においてガラス基板よりも低い値であったが、水酸化フッ化マグネシウムと酸化ジルコニウムが共存した膜をガラス基板に成膜した場合は、波長700nm以上、900nm以下において、透過率の改善が認められた。 Further, when zirconium oxide (n = 1.68) was formed on a glass substrate, the transmittance was lower than that of the glass substrate at all wavelengths, but a film in which magnesium hydroxide fluoride and zirconium oxide coexisted was used. When the film was formed on a glass substrate, an improvement in transmittance was observed at wavelengths of 700 nm to 900 nm.
 このように、水酸化フッ化マグネシウムと各金属酸化物を含有する膜については、その相性もあり、特定の組合せにあっては、薄膜の光学特性は、単なる屈折率の単純な平均値にはならない。水酸化フッ化マグネシウムと特定の金属酸化物を共存させた場合、特定の波長範囲の透過率を高める傾向が見られる。当該波長範囲を厳密に規定することはできないが、金属酸化物の屈折率が低い場合は、薄膜の透過率曲線のピークは、水酸化フッ化マグネシウムの透過率のピークよりもやや長波長側にシフトする。そして金属酸化物の屈折率が高くなるに従い、さらに長波長側にピークを示すようになる。 As described above, the film containing magnesium hydroxide fluoride and each metal oxide also has compatibility, and in a specific combination, the optical characteristics of the thin film are merely a simple average value of refractive index. Don't be. When magnesium hydroxide fluoride and a specific metal oxide coexist, there is a tendency to increase the transmittance in a specific wavelength range. Although the wavelength range cannot be strictly defined, when the refractive index of the metal oxide is low, the peak of the transmittance curve of the thin film is slightly longer than the transmittance peak of magnesium hydroxide fluoride. shift. As the refractive index of the metal oxide increases, the peak further appears on the longer wavelength side.
 したがって、この性質を利用して、屈折率の異なる数種の金属酸化物を、薄膜中に水酸化フッ化マグネシウムと共存させた場合、例えば、屈折率の低い金属酸化物は可視領域の透過率を、屈折率の高い金属酸化物は近赤外域の透過率を高める傾向があるので、これらを適宜に組合せることで、金属酸化物が屈折率調整材として働き、幅広い波長域で、薄膜の透過率を増大させると思われる。 Therefore, by utilizing this property, when several kinds of metal oxides having different refractive indexes coexist with magnesium hydroxide fluoride in a thin film, for example, a metal oxide having a low refractive index has a transmittance in the visible region. Since metal oxides with a high refractive index tend to increase the transmittance in the near-infrared region, by combining these appropriately, the metal oxide functions as a refractive index adjusting material, and in a wide wavelength range, It seems to increase the transmission.
 水酸化フッ化マグネシウムとの共存において、屈折率を低く抑えるためには、低い屈折率の金属酸化物を、高い屈折率の金属酸化物より多く含有させる。即ち、低い屈折率のシリカやアルミナ等は多く含有させ、例えば、水酸化フッ化マグネシウム10モルに対して0.5モル以上、8モル以下、より好ましくは、1モル以上、6モル以下、混合可能である。中位の屈折率の酸化スズ、酸化イットリウム等は0.5モル以上、7モル以下、好ましくは1モル以上、5モル以下に含有させる。高い屈折率の酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルも含有可能である。 In order to keep the refractive index low in the coexistence with magnesium hydroxide fluoride, the metal oxide having a low refractive index is contained more than the metal oxide having a high refractive index. That is, a large amount of silica or alumina having a low refractive index is contained, for example, 0.5 mol or more and 8 mol or less, more preferably 1 mol or more and 6 mol or less, mixed with 10 mol of magnesium hydroxide fluoride. Is possible. A medium refractive index tin oxide, yttrium oxide or the like is contained in an amount of 0.5 mol or more and 7 mol or less, preferably 1 mol or more and 5 mol or less. High refractive index tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide can also be included.
 例えば、酸化タンタルでは、0.5モル以上、6モル以下、好ましくは、1モル以上、4モル以下、含有させることが可能である。ここで、水酸化フッ化マグネシウムとの共存においては、必ずしも低い屈折率の金属酸化物の含有を多くする必要はなく、薄膜の屈折率が低く抑えられる範囲になるように適宜調整すればよい。 For example, tantalum oxide can be contained in an amount of 0.5 mol or more and 6 mol or less, preferably 1 mol or more and 4 mol or less. Here, in the coexistence with magnesium hydroxide fluoride, it is not always necessary to increase the content of the metal oxide having a low refractive index, and it may be appropriately adjusted so that the refractive index of the thin film can be kept low.
 また、稀土類金属の酸化物としてのセリア、酸化ランタン以外に、酸化イットリウム、酸化サマリウム、酸化エルビウムが挙げられる。 Moreover, in addition to ceria and lanthanum oxide as rare earth metal oxides, yttrium oxide, samarium oxide, and erbium oxide can be used.
 本発明の親水性低反射部材表面に形成される親水性低反射膜において、水酸化フッ化マグネシウムに対し金属酸化物の添加量が多すぎる場合は屈折率が上昇して低反射膜にならないので好ましくない。一方、添加量が低すぎる場合は、水酸化フッ化マグネシウムが主体となるので、550nm付近の可視光の透過率が増大するが、800nm以上では透過率の低減が著しいため好ましくない。添加量を適宜調整することにより、紫外光、可視光のみならず近赤外域までの幅広い透過率を大幅に増大させることが可能となる。 In the hydrophilic low-reflection film formed on the surface of the hydrophilic low-reflection member of the present invention, if the amount of metal oxide added is too large relative to magnesium hydroxide fluoride, the refractive index increases and the low-reflection film is not formed. It is not preferable. On the other hand, when the addition amount is too low, magnesium hydroxide fluoride is the main component, and thus the visible light transmittance near 550 nm increases. However, when the amount is 800 nm or more, the transmittance is significantly reduced, which is not preferable. By appropriately adjusting the addition amount, it is possible to greatly increase a wide transmittance not only to ultraviolet light and visible light but also to the near infrared region.
 このことは、従来の多成分薄膜の屈折率の概念に反するもので、水酸化フッ化マグネシウムに複数の前記金属酸化物を共存させた薄膜は、上記のように特定の金属酸化物が特定の波長範囲における膜の透過率の増大を担い、膜の可視光および近赤外域の透過率を増大させるものと思われる。 This is contrary to the conventional concept of refractive index of multi-component thin films. A thin film in which a plurality of metal oxides coexist in magnesium hydroxide fluoride has a specific metal oxide as described above. It is believed to be responsible for increasing the transmission of the film in the wavelength range, and increasing the visible light and near infrared transmission of the film.
 蒸着法およびスパッタ法では、数種類の成分からなる薄膜を1回の成膜で基材表面に形成することは難しいが、ゾルゲル法に代表される湿式塗布法では、数種類の成分からなる薄膜を1回の塗布焼成で形成することが可能である。これによって、紫外、可視および赤外域における光学部材の幅広い透過率の改善に応用が期待され、ステッパー、レーザー、有機EL、液晶表示素子、LED、照明器具、レンズ等あらゆる波長の光学部材への応用が可能である。 In the vapor deposition method and the sputtering method, it is difficult to form a thin film composed of several kinds of components on the surface of the substrate by a single film formation, but in the wet coating method represented by the sol-gel method, the thin film composed of several kinds of components is 1 It can be formed by a single coating and baking. This is expected to be applied to improve the transmittance of a wide range of optical members in the ultraviolet, visible and infrared regions, and can be applied to optical members of all wavelengths such as steppers, lasers, organic EL, liquid crystal display elements, LEDs, lighting fixtures, and lenses. Is possible.
 また上記金属酸化物を数種類同時に使用することにより、金属酸化物が、例えばガラス基板中の酸化物と結合するために、薄膜とガラス基板との接着強度の増大、および薄膜の剛性向上,硬度向上により、耐摩耗性が著しく改善されるという効果も奏する。 In addition, by using several kinds of the above metal oxides at the same time, the metal oxide is bonded to, for example, the oxide in the glass substrate. As a result, the wear resistance is remarkably improved.
 また、屈折率調整材として、酸化タンタルを用いて形成した本発明の親水性低反射膜を、エッチングしながら、オージェ分析したところ、深さ方向にフッ素の含有が徐々に減少し、タンタルの含有が徐々に増大していた。さらに親水性低反射膜と透明基材であるガラス板の境界面では、酸素およびケイ素が急増し、タンタルとフッ素が完全に消滅した。 Further, when the hydrophilic low-reflection film of the present invention formed using tantalum oxide as a refractive index adjusting material was subjected to Auger analysis while etching, the fluorine content gradually decreased in the depth direction, and the tantalum content was reduced. Gradually increased. Furthermore, oxygen and silicon increased rapidly and tantalum and fluorine disappeared completely at the boundary surface between the hydrophilic low-reflection film and the glass plate as the transparent substrate.
 このオージェ分析の結果によると、膜厚115nmの単層膜内において、表面には水酸化フッ化マグネシウムが多く、深さ方向に水酸化フッ化マグネシウムの含有量が徐々に減少し、逆に屈折率調整材としての酸化タンタルの含有量が深さ方向に徐々に増大したと思われる。 According to the results of this Auger analysis, in a 115 nm-thick single layer film, the surface is rich in magnesium hydroxide fluoride, and the content of magnesium hydroxide fluoride gradually decreases in the depth direction. It seems that the content of tantalum oxide as a rate adjusting material gradually increased in the depth direction.
 このように、オージェ分析の結果から、表層から深さ方向に、屈折率が低屈折率から高屈折率へと連続的に変化することが示唆された。このように、本発明の親水性低反射部材の表面に形成された親水性低反射膜において、膜の表層部の屈折率が低く、膜の深部に行くほどに屈折率が高くなり、あたかも多層膜を積層したような効果が得られ、一層でありながら、良好な低反射性能を有する膜が得られたものと推察される。 Thus, the results of Auger analysis suggested that the refractive index continuously changed from the low refractive index to the high refractive index in the depth direction from the surface layer. Thus, in the hydrophilic low-reflection film formed on the surface of the hydrophilic low-reflection member of the present invention, the refractive index of the surface layer portion of the film is low, and the refractive index increases as it goes deeper in the film, as if multiple layers It is presumed that the effect of laminating the films was obtained, and a film having good low reflection performance was obtained although it was a single layer.
 この現象は、本発明の親水性低反射部材において、透明基材の表面に親水性低反射膜を形成するのに、粒径3nm以上、100nm以下の水酸化フッ化マグネシウムの微粒子に屈折率調整材として金属酸化物を混合した場合に起こり、金属酸化物として、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた金属酸化物を用いた場合に顕著であり、より低い反射率が得られると思われる。特に、酸化タングステン、酸化クロム、酸化ニオブまたは酸化タンタルを用いた場合に顕著であり、本発明の低反射膜の屈折率調整材として、これらの金属酸化物を用いることが好ましい。 This phenomenon is caused by adjusting the refractive index of fine particles of magnesium hydroxide fluoride having a particle diameter of 3 nm or more and 100 nm or less to form a hydrophilic low reflection film on the surface of the transparent substrate in the hydrophilic low reflection member of the present invention. This occurs when a metal oxide is mixed as a material, and is prominent when a metal oxide selected from the group consisting of tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, and tantalum oxide is used as the metal oxide. It seems that a lower reflectance can be obtained. This is particularly noticeable when tungsten oxide, chromium oxide, niobium oxide or tantalum oxide is used, and these metal oxides are preferably used as the refractive index adjusting material of the low reflection film of the present invention.
 本発明において、水酸化フッ化マグネシウムに対する、屈折率調整材としての金属酸化物モル比は、0.5:10~30:10が好ましく、特に1:10~2.5:10が好ましい。水酸化フッ化マグネシウム10モルに対して、屈折率調整材が0.5モルよりも少ないと、水酸化フッ化マグネシウムが主体の膜となり、耐磨耗性に代表される膜強度が劣り好ましくない。また、水酸化フッ化マグネシウム10モルに対して、屈折率調整材が30モルよりも多いと、塗布液は不安定になり、数日でゲル化してしまうため好ましくない。 In the present invention, the molar ratio of the metal oxide as a refractive index adjusting material to magnesium hydroxide fluoride is preferably 0.5: 10 to 30:10, particularly preferably 1:10 to 2.5: 10. When the refractive index adjusting material is less than 0.5 mol with respect to 10 mol of magnesium hydroxide fluoride, the film is mainly composed of magnesium hydroxide fluoride, and the film strength represented by wear resistance is inferior. . Moreover, when there are more refractive index adjustment materials than 30 mol with respect to 10 mol of magnesium hydroxide fluoride, since a coating liquid will become unstable and gelatinize in several days, it is unpreferable.
 本発明において、水酸化フッ化マグネシウムと金属酸化物が共存させることによって、膜の屈折率が低く抑えることが可能となり、さらに、水酸化フッ化マグネシウムに対する屈折率調整材のモル比を0.5:10~30:10の範囲内とすることで、塗布液がゲル化しなく、好適な膜強度の親水性低反射膜の成膜が可能となった。 In the present invention, the coexistence of magnesium hydroxide fluoride and metal oxide makes it possible to keep the refractive index of the film low, and the molar ratio of the refractive index adjusting material to magnesium hydroxide fluoride is 0.5. : Within the range of 10 to 30:10, the coating solution did not gel, and a hydrophilic low-reflection film with suitable film strength could be formed.
 上記のように、水酸化フッ化マグネシウムに金属酸化物を共存させることによる主な効果は、水酸化フッ化マグネシウムのみでは改善できない近赤外域の透過率を増大させ、可視光から近赤外域まで相対的に膜の屈折率を低く調整することが可能になることである。その他に、以下の効果がある。 As mentioned above, the main effect of coexisting metal oxide with magnesium hydroxide fluoride is to increase the transmittance in the near infrared region, which cannot be improved by magnesium hydroxide fluoride alone, from visible light to the near infrared region. It is possible to adjust the refractive index of the film relatively low. In addition, there are the following effects.
 即ち、金属酸化物の共存効果として
[1]水酸化フッ化マグネシウムに添加して膜の屈折率を調整できるので、膜厚を任意に変化させることができる。(屈折率調整材としての効果)
[2]透過率を変化させる。可視光のみならず、紫外や赤外光の幅広い範囲の波長で透過率を向上させることが可能になる。(透過率の調整)
[3]膜強度を増大させる(基材との接着強度および摩擦強度の増大)
That is, as a coexistence effect of the metal oxide, the refractive index of the film can be adjusted by adding to [1] magnesium hydroxide fluoride, so that the film thickness can be arbitrarily changed. (Effects as a refractive index adjusting material)
[2] Change the transmittance. It becomes possible to improve the transmittance in a wide range of wavelengths of not only visible light but also ultraviolet and infrared light. (Adjustment of transmittance)
[3] Increase film strength (increased adhesion strength and friction strength with substrate)
 水酸化フッ化マグネシウムは酸化物ではないため、ガラス基板等の透明基材に結合しないため、単体では膜強度に劣る。ここで特定の金属酸化物をある一定量添加すると、水酸化フッ化マグネシウム微粒子と混じり合った状態で基材と結合し接着強度が増大し、水酸化フッ化マグネシウム微粒子をバインダーとして結合させる効果がある。 Since magnesium hydroxide fluoride is not an oxide, it is not bonded to a transparent base material such as a glass substrate, so that it is inferior in film strength by itself. Here, when a certain amount of a specific metal oxide is added, it is bonded to the base material in a state of being mixed with the magnesium hydroxide fluoride fine particles, and the adhesive strength is increased. is there.
[4]被膜形成後に水酸化フッ化マグネシウムの水酸基が表層に存在して、親水効果を発現させ、かつ親水性を長期に維持し、自己洗浄機能がある。
[5]金属酸化物として、導電性を有する金属酸化物、例えば、SnO2、In23を共存させることにより、膜形成後に水酸化フッ化マグネシウムの水酸基と導電性金属酸化物の相乗効果で帯電防止効果が維持され、長期にわたり防汚機能が保持される。
[4] A hydroxyl group of magnesium hydroxide fluoride is present on the surface layer after the coating is formed, to exert a hydrophilic effect, maintain hydrophilicity for a long time, and have a self-cleaning function.
[5] By synthesizing a conductive metal oxide such as SnO 2 or In 2 O 3 as the metal oxide, the synergistic effect of the hydroxyl group of magnesium hydroxide fluoride and the conductive metal oxide after film formation Thus, the antistatic effect is maintained and the antifouling function is maintained for a long time.
 以下、水酸化フッ化マグネシウム、オルガノゾルの製造工程、金属酸化物についてそれぞれ説明する。 Hereinafter, magnesium hydroxide fluoride, organosol production process, and metal oxide will be described.
[水酸化フッ化マグネシウム]
 本発明で用いる水酸化フッ化マグネシウムは、水酸基を有する化合物である。これは、X線回折のデータにより確認でき、そのX線回折図は、JCPDS file 54-1272の水酸化フッ化マグネシウム(MgF1.89(OH)0.11)と一致することが認められた。水酸化フッ化マグネシウムはアモルファス性を有し、後述のように親水性を示す。
[Magnesium hydroxide fluoride]
The magnesium hydroxide fluoride used in the present invention is a compound having a hydroxyl group. This can be confirmed by X-ray diffraction data, and it was confirmed that the X-ray diffraction pattern coincided with magnesium hydroxide fluoride (MgF 1.89 (OH) 0.11 ) of JCPDS file 54-1272. Magnesium hydroxide fluoride has amorphous properties and exhibits hydrophilicity as described later.
 このような顕著なアモルファス性は、先行例には記載されていない。特許文献1で示される結晶水を有するフッ化マグネシウム(MgF2・nH2O)のX線解析のスペクトル(特許文献3の図1)も上記参考例1と同様な結晶性のよいピークを示しており、本発明で用いる水酸化フッ化マグネシウムとは大きく異なる。特許文献1に示されるX線解析はJCPD file番号の記載がなく、水酸化フッ化マグネシウムとは異なることが判る。 Such remarkable amorphousness is not described in the preceding examples. The spectrum of X-ray analysis of magnesium fluoride (MgF 2 · nH 2 O) having crystal water shown in Patent Document 1 (FIG. 1 of Patent Document 3) also shows a peak with good crystallinity similar to Reference Example 1 above. And greatly different from the magnesium hydroxide fluoride used in the present invention. The X-ray analysis shown in Patent Document 1 does not have a description of the JCPD file number, and it is understood that it is different from magnesium hydroxide fluoride.
 本発明の水酸化フッ化マグネシウムは、ソーダライムシリケートガラス板に単独で成膜したところ、屈折率が非常に低く、下限1.26であり、フッ化マグネシウムの文献値1.38よりもはるかに低い値を示した。これは屈折率1.38のフッ化マグネシウムが、屈折率1.0の空気を多く含んだ多孔質体からなる膜となったことによると推定されたが、膜重量と膜厚を精密に測定して被膜の密度を求めたところ、被膜は密に充填しており、空気を殆ど含まないことが判明した。この低い屈折率は、水酸化フッ化マグネシウムが従来のフッ化マグネシウムと異なった結晶構造を有することにもよると推察される。 Magnesium hydroxide fluoride of the present invention is formed on a soda lime silicate glass plate alone, the refractive index is very low, the lower limit is 1.26, far from the literature value of 1.38 for magnesium fluoride. It showed a low value. This was estimated to be due to the fact that magnesium fluoride with a refractive index of 1.38 became a porous film containing a large amount of air with a refractive index of 1.0, but the film weight and film thickness were precisely measured. Then, when the density of the coating was determined, it was found that the coating was tightly packed and contained almost no air. This low refractive index is presumed to be due to the fact that magnesium hydroxide fluoride has a crystal structure different from that of conventional magnesium fluoride.
 ガラス基板表面に形成された水酸化フッ化マグネシウムのみからなる膜は、理論値の1.22に極めて近い値である屈折率1.26を示した。それゆえ単層膜でも可視光の幅広い範囲で反射率が低く、優れた反射防止特性を示した。例えば、波長550nmで0.05%であった。 The film made only of magnesium hydroxide fluoride formed on the surface of the glass substrate showed a refractive index of 1.26 which is very close to the theoretical value of 1.22. Therefore, even with a single layer film, the reflectance was low in a wide range of visible light, and excellent antireflection characteristics were exhibited. For example, it was 0.05% at a wavelength of 550 nm.
一方、特許文献1に記載のフッ化マグネシウムに付着水を付加した化合物は、屈折率1.37を示すことから、同じ単層膜で比較した場合は、本発明の水酸化フッ化マグネシウムより低反射特性は劣る。また、X線粉末回折法(X-Ray Diffraction Method、XRD)の分析結果および屈折率および低反射性能における光学特性の相違から判断して、水酸化フッ化マグネシウムと特許文献1に記載のフッ化マグネシウム系化合物は、全く異なった物質といえる。 On the other hand, a compound obtained by adding adhering water to magnesium fluoride described in Patent Document 1 shows a refractive index of 1.37. Therefore, when compared with the same single layer film, the compound is lower than magnesium hydroxide fluoride of the present invention. The reflection characteristics are inferior. Judging from the analysis results of the X-ray powder diffraction method (X-Ray Diffraction Method, XRD) and the difference in optical properties in refractive index and low reflection performance, magnesium hydroxide fluoride and fluoride described in Patent Document 1 are used. Magnesium compounds are completely different substances.
 上記のように、水酸化フッ化マグネシウムの膜は、フッ化マグネシウムの膜より、低い屈折率を有しており、親水性低反射膜の材料としてより好適に使用される。また、付着水が付加しているものとは異なり、分子中に安定した水酸基を有することから、優れた親水性を発現し、防汚性を示すとともに、汚れが付着した場合も容易に洗い流すことができる効果も期待できる。 As described above, the magnesium hydroxide fluoride film has a lower refractive index than the magnesium fluoride film and is more preferably used as a material for the hydrophilic low reflection film. In addition, it has a stable hydroxyl group in the molecule, unlike the one with attached water, so it exhibits excellent hydrophilicity, exhibits antifouling properties, and can be easily washed away even when dirt is attached. The effect that can be expected.
 また、膜表面が親水性を示すためには、一般には表面が水酸基に覆われていることが望まれる。本発明では、水酸化フッ素化マグネシウム微粒子が水酸基を有するので、該水酸基が表面に露出される構造となっている。また、当該微粒子が水酸基を有することで微粒子の基材への付着性が向上する。 Also, in order for the film surface to exhibit hydrophilicity, it is generally desirable that the surface be covered with a hydroxyl group. In the present invention, since the magnesium hydroxide fluorinated fine particles have a hydroxyl group, the hydroxyl group is exposed on the surface. Further, since the fine particles have a hydroxyl group, the adhesion of the fine particles to the substrate is improved.
 該微粒子は単純な水酸化物よりは水酸基が少ないが、親水性は十分にあることが検討の結果、明らかになった。さらに、本発明の水酸化フッ素化マグネシウムは、単純な水酸化物よりも化学的に安定であるため、該微粒子による親水膜を具備した低反射部材は、長期使用の信頼性に優れていると考えられる。 As a result of examination, the fine particles have fewer hydroxyl groups than simple hydroxides but are sufficiently hydrophilic. Furthermore, since the magnesium hydroxide fluorinated magnesium of the present invention is chemically more stable than a simple hydroxide, the low reflection member provided with the hydrophilic film made of the fine particles is excellent in reliability for long-term use. Conceivable.
 本発明において、水酸化フッ素化マグネシウムは、マグネシウム原料を分散・懸濁または溶解した液に、フッ化水素水溶液を滴下することで、マグネシウム原料であるマグネシウム化合物がフッ素化および水酸基を与えられ微粒子化されたものが使用できる。 In the present invention, magnesium hydroxide fluorinated magnesium is formed into fine particles by dropping a hydrogen fluoride aqueous solution into a liquid in which the magnesium raw material is dispersed, suspended or dissolved, so that the magnesium compound as the magnesium raw material is fluorinated and given hydroxyl groups. Can be used.
 前記マグネシウム化合物としては、塩化マグネシウム、酸化マグネシウムまたは炭酸マグネシウムの無機系化合物から選ばれ、好適に使用される。マグネシウムアルコキシド、カルボン酸マグネシウムから選ばれたマグネシウム化合物を用いることも可能であるが、これら有機系化合物を用いた場合は、生成する水酸化マグネシウムの分散したゾルの粘度が増粘する傾向にあるため、無機系化合物の方が好ましく、後述する副生成物の除去の問題で塩化マグネシウム、炭酸マグネシウムを用いることがより好ましい。 The magnesium compound is selected from inorganic compounds of magnesium chloride, magnesium oxide or magnesium carbonate, and is preferably used. Although it is possible to use a magnesium compound selected from magnesium alkoxide and magnesium carboxylate, when these organic compounds are used, the viscosity of the sol in which magnesium hydroxide is dispersed tends to increase. Inorganic compounds are preferred, and magnesium chloride and magnesium carbonate are more preferred for the problem of removing by-products described later.
 分散媒として用いられる溶媒は有機溶媒が好適に用いられる。反応時にフッ化水素水溶液を添加するため、水と相溶性の高いプロトン性極性有機溶媒がより好ましい。かかる溶媒としては、アルコール類、酸等が使用できる。アルコール類としては炭素数が1以上、10以下のアルコール、好ましくは炭素数が1以上、4以下のアルコール、または炭素数2以上、20以下のグリコールエーテル類である。炭素数が1以上、4以下のアルコールとして、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコールまたはtert-ブチルアルコールが挙げられ、炭素数2~20のグリコールエーテル類として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテルまたはジプロピレングリコールモノメチルエーテルが挙げられる。その中でも、アルコール類としては、メタノール、エタノールまたはイソプロパノールが好ましく、グリコールエーテルとしては、ジエチレングリコールモノメチルエーテルまたはジエチレングリコールモノエチルエーテルが好ましい。 An organic solvent is suitably used as the solvent used as the dispersion medium. Since an aqueous hydrogen fluoride solution is added during the reaction, a protic polar organic solvent highly compatible with water is more preferable. As such a solvent, alcohols, acids and the like can be used. The alcohol is an alcohol having 1 to 10 carbon atoms, preferably an alcohol having 1 to 4 carbon atoms, or a glycol ether having 2 to 20 carbon atoms. Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol, and a glycol having 2 to 20 carbon atoms. Examples of ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether or dipropylene glycol monomethyl ether. . Among these, methanol, ethanol or isopropanol is preferable as the alcohol, and diethylene glycol monomethyl ether or diethylene glycol monoethyl ether is preferable as the glycol ether.
[水酸化フッ化マグネシウム微粒子を含有するオルガノゾルの製造工程]
 以下、本発明で用いる水酸化フッ化マグネシウム微粒子を含有するオルガノゾルの製造工程について説明する。本製造工程は、以下の(a)、(b)、(c)の3工程からなる。
 (a)有機溶媒にマグネシウム化合物が分散、懸濁、もしくは溶解してなる液に、フッ化水素酸の水溶液を徐々に滴下し、水酸化フッ化マグネシウム微粒子を徐々に生成させる工程
 (b)副生成物あるいは過剰のフッ化水素を除去する工程
 (c)(b)工程で得られるゾルの溶媒置換あるいは溶媒濃度を調整してオルガノゾルとする工程
[Process for producing organosol containing magnesium hydroxide fluoride fine particles]
Hereinafter, the manufacturing process of the organosol containing the magnesium hydroxide fluoride fine particles used in the present invention will be described. This manufacturing process includes the following three steps (a), (b), and (c).
(A) A step in which an aqueous solution of hydrofluoric acid is gradually added dropwise to a solution obtained by dispersing, suspending, or dissolving a magnesium compound in an organic solvent to gradually produce magnesium hydroxide fluoride fine particles. Step of removing product or excess hydrogen fluoride (c) Step of changing solvent concentration or adjusting solvent concentration of sol obtained in steps (b) to form organosol
 工程(a)において、マグネシウム化合物の粒子の大きさは、分散液または懸濁液を形成できるものであればよく、例えば、平均粒径が0.1μm以上、800μm以下、好ましくは、0.3μm以上、500μm以下のものを使用する。この平均粒径は、JIS K1150(1994年)に準拠して測定すればよい。 In the step (a), the size of the magnesium compound particles may be any particle that can form a dispersion or suspension. For example, the average particle size is 0.1 μm or more and 800 μm or less, preferably 0.3 μm. As mentioned above, the thing of 500 micrometers or less is used. The average particle diameter may be measured according to JIS K1150 (1994).
 また、分散液また懸濁液中のマグネシウム化合物の含有量は、0.01mol/L(リットル)以上、5mol/L以下である。0.01mol/Lより含有量が少ないと、水酸化フッ化マグネシウム微粒子の生成率が低くなりやすい。5mol/Lより含有量が多いと、マグネシウム化合物の分散液または懸濁液に、フッ化水素酸の水溶液を滴下した際、瞬時にゲル化し、混合液の粘度が上昇して、マグネシウム化合物とフッ化水素との反応が均一に進行し難くなり好ましくない。好ましくは、0.05mol/L以上、2mol/L以下である。 Further, the content of the magnesium compound in the dispersion or suspension is 0.01 mol / L (liter) or more and 5 mol / L or less. When the content is less than 0.01 mol / L, the production rate of magnesium hydroxide fluoride fine particles tends to be low. When the content is higher than 5 mol / L, when an aqueous solution of hydrofluoric acid is added dropwise to a magnesium compound dispersion or suspension, gelation occurs instantaneously, and the viscosity of the mixture increases, causing the magnesium compound and fluorine to be mixed. It is not preferable because the reaction with hydrogen fluoride hardly proceeds uniformly. Preferably, they are 0.05 mol / L or more and 2 mol / L or less.
 フッ化水素酸水溶液中のフッ化水素酸の濃度は、5質量%以上、60質量%以下である。フッ化水素酸の濃度が5質量%未満であると、水酸化フッ化マグネシウム微粒子の生成率が低くなる傾向がある。フッ化水素酸の濃度が60質量%より多いと、反応系内に急激にコロイドが生成してゲル化する場合があり、水酸化フッ化マグネシウム微粒子の形成を阻害するため好ましくない。好ましくは10質量%以上、58質量%以下である。 The concentration of hydrofluoric acid in the hydrofluoric acid aqueous solution is 5% by mass or more and 60% by mass or less. When the concentration of hydrofluoric acid is less than 5% by mass, the production rate of magnesium hydroxide fluoride fine particles tends to be low. When the concentration of hydrofluoric acid is more than 60% by mass, colloids may be rapidly formed in the reaction system and gelled, which is not preferable because it inhibits the formation of magnesium hydroxide fluoride fine particles. Preferably they are 10 mass% or more and 58 mass% or less.
 フッ化水素酸を含む溶液は、フッ化水素酸に水、低級アルコール類、例えば、メタノール、エタノールまたはイソプロパノール、ケトン類、例えば、アセトンまたはメチルエチルケトン、エステル類、例えば、酢酸エチルまたは酢酸イソプロピル等、あるいはエーテル類、例えば、ジエチルエーテルまたはテトラヒドロフランを溶媒として添加することにより調製できる。 A solution containing hydrofluoric acid is prepared by adding hydrofluoric acid to water, lower alcohols such as methanol, ethanol or isopropanol, ketones such as acetone or methyl ethyl ketone, esters such as ethyl acetate or isopropyl acetate, or the like. It can be prepared by adding ethers such as diethyl ether or tetrahydrofuran as a solvent.
 水酸化フッ化マグネシウムは、マグネシウムに対するフッ素原子の割合を大きくしても、充分な親水性を発現するので、フッ素原子の特性も付与するためには、フッ素原子の割合が高くなるように調整されることが好ましい。したがって、マグネシウム化合物とフッ化水素との混合割合は、マグネシウム化合物がすべて消費される条件で混合することができる。マグネシウム化合物に添加するフッ化水素のモル数は、Mgのモル数に価数2を掛けた数の1倍~2倍とし、好ましくは、1倍~1.5倍、より好ましくは1倍~1.2倍とする。副原料として、他の金属化合物(例えば後述のカルシウム化合物)を含む場合は、マグネシウムおよび各金属化合物のモル数に価数を乗じて得られた数値の合計を基準に上記の範囲が好ましい。反応後のpHを1~4の範囲に調整する。 Magnesium hydroxide fluoride exhibits sufficient hydrophilicity even when the ratio of fluorine atoms to magnesium is increased. Therefore, in order to impart the characteristics of fluorine atoms, the ratio of fluorine atoms is adjusted to be high. It is preferable. Therefore, the mixing ratio of the magnesium compound and hydrogen fluoride can be mixed under the condition that all the magnesium compound is consumed. The number of moles of hydrogen fluoride added to the magnesium compound is 1 to 2 times the number obtained by multiplying the number of moles of Mg by the valence of 2, preferably 1 to 1.5 times, more preferably 1 to 1.2 times. When another metal compound (for example, a calcium compound described later) is included as an auxiliary material, the above range is preferable on the basis of the sum of numerical values obtained by multiplying the number of moles of magnesium and each metal compound by the valence. The pH after the reaction is adjusted to a range of 1 to 4.
 本反応の反応温度は、通常は、-20℃以上溶媒の沸点以下で行う。具体的には、-20℃以上、80℃以下である。反応温度が-20℃よりも低い場合は反応速度が遅くなる上、冷却装置が必要となり好ましくない。また、反応温度が80℃を超える場合は、フッ化水素の沸点が低いため添加直後に揮発してしまい有効に利用されないばかりか、フッ化水素ガスが発生して危険である。また、添加直後に反応が急激に進行してしまい、生成したコロイドが局部凝集する、またはゲル化してしまい好ましくない。好ましくは、0℃以上、50℃以下である。 The reaction temperature of this reaction is usually from −20 ° C. to the boiling point of the solvent. Specifically, it is −20 ° C. or higher and 80 ° C. or lower. When the reaction temperature is lower than −20 ° C., the reaction rate becomes slow and a cooling device is required, which is not preferable. On the other hand, when the reaction temperature exceeds 80 ° C., the boiling point of hydrogen fluoride is low, so that it volatilizes immediately after the addition and is not used effectively, and hydrogen fluoride gas is generated, which is dangerous. Further, the reaction proceeds rapidly immediately after the addition, and the produced colloid is locally aggregated or gelled, which is not preferable. Preferably, they are 0 degreeC or more and 50 degrees C or less.
 水酸化フッ化マグネシウムのオルガノゾルの生成反応においては、マグネシウム化合物とフッ化水素の反応を徐々に進行させることもオルガノゾルの均一性を高める効果があり好ましい。具体的には、分散液中の分散質の濃度を低く、フッ化水素の添加速度を遅く、添加するフッ化水素の濃度を低く、有機溶媒中でのフッ化水素の拡散速度を遅く、反応速度を低くする等の方法が好ましい。反応を行うにあたり、フッ化水素酸水溶液を急激に添加した場合は反応が急激に進行し、急激な発熱および突沸の危険が伴い好ましくない。 In the formation reaction of the magnesium hydroxide fluoride organosol, it is preferable to gradually advance the reaction between the magnesium compound and hydrogen fluoride because of the effect of increasing the uniformity of the organosol. Specifically, the concentration of the dispersoid in the dispersion is low, the addition rate of hydrogen fluoride is slow, the concentration of hydrogen fluoride to be added is low, the diffusion rate of hydrogen fluoride in the organic solvent is slow, and the reaction A method such as reducing the speed is preferred. In carrying out the reaction, when the hydrofluoric acid aqueous solution is added rapidly, the reaction advances rapidly, and there is a risk of sudden heat generation and bumping, which is not preferable.
 反応系の圧力は特に限定されないが、常圧の近辺で行うのが便利である。具体的には、0.05MPa以上、1MPa以下であり、0.05MPa以上、0.5MPa以下が好ましく、特に圧力調整をしない大気圧状態で行うことで十分である。 The pressure of the reaction system is not particularly limited, but it is convenient to carry out in the vicinity of normal pressure. Specifically, it is 0.05 MPa or more and 1 MPa or less, preferably 0.05 MPa or more and 0.5 MPa or less, and it is sufficient to carry out in an atmospheric pressure state in which pressure adjustment is not performed.
 工程(b)によって、副生成物の除去、あるいはフッ化水素が過剰に添加された場合は未反応のフッ化水素の除去を行うことができる。即ち、高められた温度、例えば、反応温度以上であって有機溶媒の還流温度以下で、30分から100時間程度、反応液を保持することは、低沸点の副生成分または未反応成分、例えば、塩化水素、フッ化水素、炭酸ガス等を適度に除去するのに有効である。 By the step (b), by-products can be removed, or when hydrogen fluoride is excessively added, unreacted hydrogen fluoride can be removed. That is, holding the reaction solution at an elevated temperature, for example, a temperature higher than the reaction temperature and lower than the reflux temperature of the organic solvent for about 30 minutes to 100 hours is a low-boiling byproduct or an unreacted component, for example, It is effective for removing hydrogen chloride, hydrogen fluoride, carbon dioxide gas, etc. appropriately.
 即ち、室温ないし加温下で反応液を攪拌したり、溶媒の沸点付近でリフラックスさせながら窒素ガスを導入してパージすることは、低沸点の副生成物あるいは未反応成分、例えば、塩化水素、フッ化水素、炭酸ガス等を適度に除去するのに有効である。また場合によっては、減圧下で蒸留しながら除去してもよい。低沸点の酸の除去においては、pHが1~4、好ましくは、2~3になるように調整するのが好ましい。オルガノゾルのpHを1~4に保持しておくことで、ガラス基板塗布時にガラス表面のアルカリ金属,土類金属、ホウ酸、シラノール基と反応して、表層を侵食することで粗面化することにより被膜の接着強度を増大させることが可能である。 That is, purging by introducing nitrogen gas while stirring the reaction liquid at room temperature or under heating, or refluxing near the boiling point of the solvent, may cause low-boiling by-products or unreacted components such as hydrogen chloride. It is effective for removing hydrogen fluoride, carbon dioxide gas and the like appropriately. In some cases, it may be removed while distillation under reduced pressure. In removing low-boiling acid, it is preferable to adjust the pH to 1 to 4, preferably 2 to 3. By maintaining the pH of the organosol at 1 to 4, it will roughen by reacting with the alkali metal, earth metal, boric acid and silanol groups on the glass surface when the glass substrate is applied, and corroding the surface layer. It is possible to increase the adhesive strength of the coating.
 また、残存する酸は、金属アルコキシド等の屈折率調整材と、水酸化フッ化マグネシウムとの安定性に寄与し、特に酸触媒として働くため、安定した混合液の調製が可能である。 Further, the remaining acid contributes to the stability of the refractive index adjusting material such as metal alkoxide and magnesium hydroxide fluoride, and particularly acts as an acid catalyst, so that a stable mixed solution can be prepared.
工程(c)では、工程(b)で得られた水酸化フッ化マグネシウム微粒子を含有する液の濃度調整あるいは溶媒置換を行う。微粒子濃度を高めるには有機溶媒の除去、例えば、留去、抽出等、微粒子濃度を下げるには溶媒を添加すればよく、溶媒は元の溶媒と同一でも異なってもよい。さらに、用途によっては、溶媒はオルガノゾル製造の際の溶媒から異なる溶媒に変換してもよい。 In the step (c), the concentration of the liquid containing the magnesium hydroxide fluoride fine particles obtained in the step (b) is adjusted or the solvent is replaced. In order to increase the fine particle concentration, the solvent may be added to lower the fine particle concentration, such as removal of the organic solvent, for example, distillation, extraction, and the like. Further, depending on the application, the solvent may be converted from a solvent used in the production of the organosol to a different solvent.
 工程(b)と工程(c)の間に、オルガノゾルを解砕する工程を入れてもよい。オルガノゾルの解砕には、衝撃力によるもの、剪断力によるものが有効であり、通常一次粒子の凝集体として得られるゲルまたはゾルを一次粒子の分散液とすることができ、光学薄膜としての用途等では特に好ましい。 A step of crushing the organosol may be inserted between step (b) and step (c). For pulverization of organosols, those based on impact force and shear force are effective, and gels or sols that are usually obtained as agglomerates of primary particles can be used as primary particle dispersions. Is particularly preferable.
 また、上記の水酸化フッ素化マグネシウムがMgF2-x(OH)x(x=0.01~0.5)であることが好ましい。OH基を持つことにより、単なるフッ化マグネシウムに比べて、基材への密着性及び親水性に優れることとなる。xが0.5を超えると、屈折率を低く抑えられなくなる可能性がある。他方、0.01未満では、水酸基の数が少なく、親水性が小さくなるとともに、基材への膜の接着強度が低くなる虞があり好ましくない。 The magnesium fluorinated magnesium hydroxide is preferably MgF 2-x (OH) x (x = 0.01 to 0.5). By having an OH group, the adhesiveness to the base material and the hydrophilicity will be superior to simple magnesium fluoride. If x exceeds 0.5, the refractive index may not be kept low. On the other hand, if it is less than 0.01, the number of hydroxyl groups is small, the hydrophilicity becomes small, and the adhesive strength of the film to the substrate may be lowered, which is not preferable.
 その中でも、JCPDS file 54-1272に登録されている水酸化フッ化マグネシウム、即ち、MgF1.89(OH)0.11が好適に用いられる。この化合物は、原料のマグネシウム化合物にフッ化水素を2倍モルよりも多く滴下した場合であっても生成が認められ、液にフッ化水素を残しつつ、MgF1.89(OH)0.11を合成することが可能である。過剰量のフッ化水素を添加してもMgF1.89(OH)0.11が生成することより、何らかの平衡があるものと考えられる。 Among them, magnesium hydroxide fluoride registered in JCPDS file 54-1272, that is, MgF 1.89 (OH) 0.11 is preferably used. This compound is formed even when hydrogen fluoride is dripped more than twice the molar amount of the raw material magnesium compound, and MgF 1.89 (OH) 0.11 is synthesized while leaving hydrogen fluoride in the liquid. Is possible. Even if an excessive amount of hydrogen fluoride is added, MgF 1.89 (OH) 0.11 is produced, and it is considered that there is some equilibrium.
 また、上記水酸化フッ化マグネシウム微粒子にフッ化カルシウム微粒子を加えたものを親水性低反射膜の原料に用いてもよい。フッ化カルシウムは、水酸化フッ化マグネシウムを有する微粒子の調製時に、カルシウムのアルコキシド化合物、ハロゲン化化合物、オキシハロゲン化化合物、酢酸化合物等の前駆体物質を前記マグネシウム原料と共存させ、フッ化水素水溶液との反応を経て得ることができる。 Further, a material obtained by adding calcium fluoride fine particles to the above magnesium hydroxide fluoride fine particles may be used as a raw material for the hydrophilic low reflection film. Calcium fluoride is prepared by coexisting a precursor material such as an alkoxide compound, a halogenated compound, an oxyhalogenated compound, and an acetic acid compound of calcium with the magnesium raw material when preparing fine particles having magnesium hydroxide fluoride. It can be obtained through reaction with.
 フッ化カルシウムの導入量は特に限定されない。フッ化カルシウムの屈折率は、低反射膜材料として使用可能な値ではあるものの水酸化フッ化マグネシウムよりやや高い値である(n=1.4~1.43)。従って、より低屈折率が求められる場合は、導入量は少ないほうが良い。親水性に関しては、70質量%以下がより好ましい。 The amount of calcium fluoride introduced is not particularly limited. Although the refractive index of calcium fluoride is a value that can be used as a low reflection film material, it is slightly higher than magnesium hydroxide fluoride (n = 1.4 to 1.43). Therefore, when a lower refractive index is required, it is better to introduce a smaller amount. Regarding hydrophilicity, 70 mass% or less is more preferable.
 また、前記理由により、前記水酸化フッ化マグネシウム微粒子の粒径は、3nm以上、100nm以下、より好ましくは5nm以上、60nm以下、さらに好ましくは、8nm以上、20nm以下である。 For the above reasons, the particle size of the magnesium hydroxide fluoride fine particles is 3 nm or more and 100 nm or less, more preferably 5 nm or more and 60 nm or less, and still more preferably 8 nm or more and 20 nm or less.
[金属酸化物]
 上記のように調製したオルガノゾルに、屈折率調整材として金属酸化物を混合することにより、長波長領域の屈折率を低くすることができ、結果として低反射性、高透過性を実現できる。
[Metal oxide]
By mixing a metal oxide as a refractive index adjusting material into the organosol prepared as described above, the refractive index in the long wavelength region can be lowered, and as a result, low reflectivity and high transmittance can be realized.
 また、金属酸化物として、導電性を有する金属酸化物(例えばSnO2、またはSnを含有するIn23(ITO)等)を用いることにより、帯電防止機能を付与することができる。ここで、SnO2は半導体であり帯電防止膜としての機能を発現する。ここで、良好な導電性を発現させるには、SnO2にドープ剤として数%のSbを添加したり、ZnOにAl23をドープさせたり、In23に対しては、同様にSnO2を添加したりする。 Further, by using a metal oxide having conductivity (for example, SnO 2 or In 2 O 3 (ITO) containing Sn) as the metal oxide, an antistatic function can be imparted. Here, SnO 2 is a semiconductor and exhibits a function as an antistatic film. Here, in order to develop good conductivity, several percent of Sb is added to SnO 2 as a doping agent, Al 2 O 3 is doped to ZnO, and In 2 O 3 is similarly applied. SnO 2 is added.
 また、フッ素イオンも優れたドープ剤になり得るため、本発明ではSn及びIn23の各々にFイオンを数%から8%ドープさせた形態においても良好な帯電防止機能が確認された。さらに、水酸化フッ化マグネシウムの水酸基と半導体の電子伝導性の両者の組み合わせによって、長期に安定な帯電防止機能を実現させることが可能となった。本発明において、屈折率調整材として導電性を有する金属酸化物を用いれば、低屈折率を保ちながら同時に帯電防止機能が付与される。 In addition, since fluorine ions can be an excellent dopant, in the present invention, a good antistatic function has been confirmed even in a form in which each of Sn and In 2 O 3 is doped with F ions from several percent to 8%. Furthermore, a combination of both the hydroxyl group of magnesium hydroxide fluoride and the electronic conductivity of the semiconductor has made it possible to realize a long-term stable antistatic function. In the present invention, if a metal oxide having conductivity is used as the refractive index adjusting material, an antistatic function is imparted at the same time while maintaining a low refractive index.
 屈折率調整材としては、金属酸化物が好ましく、かかる金属酸化物の金属元素としては、乾燥・焼成処理により最終的に酸化物を形成しうる金属化合物であればよいが、酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブ、酸化タンタルが、本発明の親水性低反射基材の親水性低反射膜により低反射性を与え、親水性低反射基材の光透過率を、広い波長域で上昇させた。 As the refractive index adjusting material, a metal oxide is preferable, and the metal element of the metal oxide may be any metal compound that can finally form an oxide by drying / firing treatment. , Chromium oxide, vanadium oxide, niobium oxide, tantalum oxide provide low reflectivity by the hydrophilic low reflection film of the hydrophilic low reflection base material of the present invention, and the light transmittance of the hydrophilic low reflection base material has a wide wavelength range. Raised in the area.
 以上の金属酸化物の他に、屈折率調整のためには、チタン、ケイ素、ジルコニウム、鉄、スズ、アルミニウム、インジウム、スズ、亜鉛、アンチモン、ランタン等より選ばれる少なくとも一種以上の金属酸化物が用いることが好ましい。さらに、ほう酸塩、リン酸塩等も用いることができる。その中でも、金属アルコキシド、金属塩化物、及びその加水分解物を原料として用いた場合、得られる膜の強度や化学的安定性に優れるため、特に好ましい。 In addition to the above metal oxides, at least one metal oxide selected from titanium, silicon, zirconium, iron, tin, aluminum, indium, tin, zinc, antimony, lanthanum and the like is used for refractive index adjustment. It is preferable to use it. Furthermore, a borate, a phosphate, etc. can also be used. Among these, when a metal alkoxide, a metal chloride, and its hydrolyzate are used as a raw material, since the intensity | strength and chemical stability of the film | membrane obtained are excellent, it is especially preferable.
 金属酸化物は、所謂ゾルゲル法により製造される。ゾルゲル法においては、原料として上記の無機塩、有機金属錯体、有機金属カルボン酸塩、金属アルコキシドおよびその加水分解物等の金属化合物、またはそれらの混合物よりなるゾルを用いる。それらの原料(以後、金属化合物ということもある)を乾燥・焼成工程にて加水分解、脱水、重縮合、酸化、熱分解等の反応を経て焼成処理により金属酸化物が形成される。 The metal oxide is produced by a so-called sol-gel method. In the sol-gel method, a sol composed of a metal compound such as the above-described inorganic salt, organometallic complex, organometallic carboxylate, metal alkoxide and hydrolyzate thereof, or a mixture thereof is used as a raw material. These raw materials (hereinafter sometimes referred to as metal compounds) undergo a reaction such as hydrolysis, dehydration, polycondensation, oxidation, and thermal decomposition in a drying / firing process, whereby a metal oxide is formed by a firing treatment.
 水酸化フッ化マグネシウムの粒子の存在下、上記の金属化合物を含むゾルを基材にコートし、加水分解させると、金属化合物の加水分解生成物が生成する。加水分解時に必要な水は、オルガノゾルの調整時に使用したフッ化水素酸水溶液中の水分より供給される。金属化合物のゾルおよび上記加水分解生成物は、水酸化フッ化マグネシウム微粒子表面の水酸基と反応できるので、重縮合によって粒子間を結合したり、粒子と基材を結合させたりする補強の働きがある。その後、縮合反応が進行することにより、得られる膜の接着強度および摩擦強度が向上する。その後、乾燥・焼成工程を経て被膜形成することにより、水酸化フッ化マグネシウムの粒子を、所謂バインダーの働きで基材に強固に接着させることができる。 When a base material is coated with a sol containing the above metal compound in the presence of magnesium hydroxide fluoride particles and hydrolyzed, a hydrolyzed product of the metal compound is generated. The water required for hydrolysis is supplied from the water in the hydrofluoric acid aqueous solution used for preparing the organosol. Since the sol of the metal compound and the hydrolysis product can react with the hydroxyl group on the surface of the magnesium hydroxide fluoride fine particles, they have a reinforcing function to bond the particles by polycondensation or to bond the particles to the substrate. . Thereafter, as the condensation reaction proceeds, the adhesive strength and friction strength of the resulting film are improved. After that, by forming a film through a drying / firing process, the magnesium hydroxide fluoride particles can be firmly bonded to the base material by the action of a so-called binder.
 以下に、原料となる主な金属化合物について例示する。 The following are examples of main metal compounds that are raw materials.
<タングステン化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化タングステンを含有させるためのタングステン化合物しては、以下のものが挙げられる。
W(OR)6、W(OR)(6-n)n(式中、Rはそれぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、t-ブチル基、2-エチルヘキシル、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基またはフェニル基のいずれかを示し、XはF、Cl、Br、Iのハロゲンを示す。以下、同様である)のアルコキシドやタングステンアルコキシドにCa、Fe、Mn等の無機・有機塩およびアルコキシドを共存させて焼成後にタングステン酸カルシウム、即ちCaWO4、またはタングステン酸鉄、即ちFeWO4、タングステン酸マンガン、即ちMnWO4のタングステン酸化合物を生成するもの、無機塩としてタングステン酸のようなWO3、その一水和物、即ちWO3・H2OあるいはH2WO4、二水和物、即ちWO3・2H2OあるいはH4WO5、リンタングステン酸、即ちH3[PW1240]・nH2O、ケイタングステン酸のヘテロポリ酸、メタタングステン酸アンモニウム、即ち(NH46[H21240]aq、またはパラタングステン酸アンモニウム、即ち(NH410(H21242)・4H2O。
<Tungsten compound>
Examples of the tungsten compound for containing tungsten oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
W (OR) 6 , W (OR) (6-n) X n (wherein R is independently methyl, ethyl, normal propyl, isopropyl, normal butyl, secondary butyl, t- A butyl group, a 2-ethylhexyl group, a methoxyethyl group, a methoxypropyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, or a phenyl group, and X represents a halogen of F, Cl, Br, or I. In the same manner, calcium tungstate, that is, CaWO 4 , or iron tungstate, that is, FeWO 4 , manganese tungstate, after firing by coexisting an alkoxide or tungsten alkoxide with an inorganic or organic salt such as Ca, Fe, or Mn and an alkoxide. That is, a compound that produces a tungstic acid compound of MnWO 4, a tungstic acid as an inorganic salt WO 3 , its monohydrate, ie WO 3 .H 2 O or H 2 WO 4 , dihydrate, ie WO 3 .2H 2 O or H 4 WO 5 , phosphotungstic acid, ie H 3 [PW 12 O 40 ] · nH 2 O, heteropolyacid of silicotungstic acid, ammonium metatungstate, ie (NH 4 ) 6 [H 2 W 12 O 40 ] aq, or ammonium paratungstate, ie (NH 4 ) 10 (H 2 W 12 O 42 ) · 4H 2 O.
<モリブデン化合物>
 本発明の親水性低反射部材に有する親水性低反射膜に酸化モリブデンを含有させるためのモリブデン化合物としては、以下のものが挙げられる。
Mo(OR)6、Mo(OR)(6-n)nで表されるアルコキシド、またはモリブデンアルコキシドにCa、Fe、Mn等の無機・有機塩およびアルコキシドを共存させて焼成後にモリブデン酸カルシウム、即ちCaMoO4、モリブデン酸鉄、即ちFeMoO4、モリブデン酸マンガン、即ちMnMoO4等のモリブデン酸化合物を生成するもの、無機塩としてパラモリブデン酸アンモニウム、即ち(NH410(H2Mo1242)・4H2Oが挙げられる。モリブデン酸、MoO3、その一水和物、即ちMoO3・H2O、またはH2MoO4、二水和物、即ちMoO3・2H2OまたはH4MoO5、ヘテロポリ酸としてはリンモリブデン酸、即ちH3[PMo1240]・nH2O 、メタモリブデン酸アンモニウム、即ち(NH46[H2Mo1240] aq、カリウム塩、即ちK2MoO4、ナトリウム塩、即ちNa2MoO4、モリブデン酸アンモニウム、テトラブチルアンモニウム塩、エチレンジアミン塩、テトラメチルアンモニウム塩、またはヘキサ-モリブデン酸塩。
<Molybdenum compound>
Examples of the molybdenum compound for incorporating molybdenum oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
Mo (OR) 6 , Mo (OR) (6-n) Xn , or molybdenum alkoxide coexisting inorganic / organic salt such as Ca, Fe, Mn and alkoxide and calcining calcium molybdate after firing That is, CaMoO 4 , iron molybdate, that is, FeMoO 4 , manganese molybdate, that produces a molybdate compound such as MnMoO 4 , and ammonium paramolybdate as an inorganic salt, that is, (NH 4 ) 10 (H 2 Mo 12 O 42 ) · 4H 2 O. Molybdic acid, MoO 3 , its monohydrate, ie, MoO 3 .H 2 O, or H 2 MoO 4 , dihydrate, ie, MoO 3 .2H 2 O or H 4 MoO 5 , and phosphomolybdenum as a heteropolyacid Acid, ie H 3 [PMo 12 O 40 ] · nH 2 O, ammonium metamolybdate, ie (NH 4 ) 6 [H 2 Mo 12 O 40 ] aq, potassium salt, ie K 2 MoO 4 , sodium salt, ie Na 2 MoO 4 , ammonium molybdate, tetrabutylammonium salt, ethylenediamine salt, tetramethylammonium salt, or hexa-molybdate.
<クロム化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化クロムを含有させるためのクロム化合物としては、酢酸クロム、硝酸クロム、硝酸水和物、塩化クロム、塩化クロム水和物、臭化クロム、アセチルアセトンクロム、ベンゾイルアセエチルアセトンクロム、ヘキサフルオロアセチルアセトンクロム、ナフテン酸クロム、リン酸クロム、重クロム酸カリ、クロム酸カリ等が挙げられる。さらに、クロム酸亜鉛ZnCrO4、またはクロム酸ストロンチウム、SrCrO4が挙げられる。
<Chromium compounds>
The chromium compound for containing the chromium oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention includes chromium acetate, chromium nitrate, nitric acid hydrate, chromium chloride, chromium chloride hydrate, chromium bromide. , Acetylacetone chromium, benzoyl aceethyl acetone chromium, hexafluoroacetylacetone chromium, chromium naphthenate, chromium phosphate, potassium dichromate, potassium chromate and the like. Furthermore, zinc chromate ZnCrO 4 , strontium chromate, or SrCrO 4 may be mentioned.
<バナジウム化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化バナジウムを含有させるためのバナジウム化合物としては、以下のものが挙げられる。
VO(OR)3の表されるアルコキシド、無機塩として、三塩化バナジウム 、即ちVCl3、二塩化酸化バナジウム、三塩化酸化バナジウム二バナジン酸カリウム、ピロバナジン酸カリウムバナジン酸カリウム、テトラオキソバナジン(V)酸カリウム、メタバナジン酸カリウム、トリオキソバナジン(V)酸カリウムバナジン酸鉄(II)、テトラオキソバナジン(III)酸鉄(II)、 メタバナジン酸ナトリウム、トリオキソバナジン(V)酸ナトリウム、 バナジン酸ナトリウム、テトラオキソバナジン(V)酸ナトリウム、 二バナジン酸ナトリウム、ピロバナジン酸ナトリウム、メタバナジン酸リチウム、トリオキソバナジン(V)酸リチウム、即ちLiVO3、二バナジン酸ルビジウム、ピロバナジン酸ルビジウム、即ちRb427、メタバナジン酸ルビジウム:トリオキソバナジン(V)酸ルビジウム 、即ちRbVO3、またはバナジン酸ルビジウム、例えばテトラオキソバナジン(V)酸ルビジウム、即ちRb3VO4
<Vanadium compounds>
Examples of the vanadium compound for incorporating the vanadium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
The alkoxide represented by VO (OR) 3 , as an inorganic salt, vanadium trichloride, ie, VCl 3 , vanadium dichloride oxide, potassium vanadium trichloride, potassium divanadate, potassium pyrovanadate, potassium vanadate, tetraoxovanadium (V) Potassium acid, Potassium metavanadate, Potassium trioxovanadate (V) Potassium vanadate (II), Tetraoxovanadate (III) Iron (II), Sodium metavanadate, Sodium trioxovanadate (V), Sodium vanadate Sodium tetraoxovanadate (V), sodium divanadate, sodium pyrovanadate, lithium metavanadate, lithium trioxovanadate (V), ie LiVO 3 , rubidium divanadate, rubidium pyrovanadate, ie Rb 4 V 2 O 7 Rubidium metavanadate: rubidium trioxovanadate (V), ie RbVO 3 , or rubidium vanadate, eg rubidium tetraoxovanadate (V), ie Rb 3 VO 4 .
<ニオブ化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化ニオブを含有させるためのニオブ化合物としては、以下のものが挙げられる。
酸化ニオブとしてNb(OR)5、Nb(OR)(5-n)nのアルコキシドやFe、Mnとの混合アルコキシド(Fe,Mn):Nb=1:2、無機塩では五塩化ニオブ。
<Niobium compound>
Examples of the niobium compound for incorporating niobium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
Nb (OR) 5 , Nb (OR) (5-n) Xn alkoxide, mixed alkoxide with Fe and Mn (Fe, Mn): Nb = 1: 2, niobium pentachloride as inorganic salt.
<タンタル化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化タンタルを含有させるためのタンタル化合物としては、以下のものが挙げられる。
Ta(OR)5、Ta(OR)(5-n)nのアルコキシド、Fe、Mnとの混合アルコキシド(Fe、Mn):Ta=1:2のもの。五塩化タンタル、5臭化タンタル、リン酸タンタル、タンタルトリフルオロエトキシド。
<Tantalum compound>
Examples of the tantalum compound for containing tantalum oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
Ta (OR) 5 , Ta (OR) (5-n) Xn alkoxide, Fe, Mn mixed alkoxide (Fe, Mn): Ta = 1: 2. Tantalum pentachloride, tantalum pentabromide, tantalum phosphate, tantalum trifluoroethoxide.
<ケイ素化合物>
 本発明の親水性低反射部材の親水性低反射膜のシリカを含有させるためのケイ素化合物としては、以下のものが挙げられる。
アルコキシドが好ましく、一般式、Si(OR)4で表されるアルコキシ化合物またはそれらの加水分解物であって、特にテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラノルマルプロポキシシラン、テトラノルマルブトキシシラン、テトラターシャリブトキシシラン等またはその加水分解物。また、-ORの一部が、塩素原子等のハロゲン原子で置換したものでもよく、クロロトリエトキシシラン、ジクロロジノルマルブトキシシラン、トリクロロノルマルブトキシシラン。
<Silicon compound>
Examples of the silicon compound for containing silica of the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
Alkoxide is preferable, and is an alkoxy compound represented by the general formula, Si (OR) 4 or a hydrolyzate thereof, and in particular, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetranormalpropoxysilane, tetranormalbutoxy Silane, tetratertiarybutoxysilane, etc. or a hydrolyzate thereof. In addition, a part of —OR may be substituted with a halogen atom such as a chlorine atom, such as chlorotriethoxysilane, dichlorodinormalbutoxysilane, or trichloronormalbutoxysilane.
<アルミニウム化合物>
 本発明の親水性低反射部材の親水性低反射膜にアルミナを含有させるためのアルミニウム化合物としては、以下の物が挙げられる。
 無機塩では塩化アルミニウム、もしくはポリ塩化アルミニウム、ベーマイトのような水酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、蟻酸アルミニウム、酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム等の無水物および水和物、有機カルボン酸塩ではラウリル酸アルミニウム、ステアリン酸アルミニウム、ナフテン酸アルミニウム、2-エチルヘキサン酸アルミニウム等のAl塩またはそれらの含水塩。
<Aluminum compound>
Examples of the aluminum compound for containing alumina in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
Inorganic salts such as aluminum chloride, polyaluminum chloride, aluminum hydroxide such as boehmite, aluminum sulfate, aluminum nitrate, aluminum formate, aluminum acetate, aluminum oxalate, aluminum citrate and other anhydrides and hydrates, organic carboxylic acids As the salt, Al salt such as aluminum laurate, aluminum stearate, aluminum naphthenate, aluminum 2-ethylhexanoate or a hydrated salt thereof.
 アルミニウムアルコキシドは、一般式Al(OR)3で表されるアルコキシ化合物が挙げられ、特にトリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリノルマルプロポキシアルミニウム、トリセカンダリブチルアルミニウムが好適に用いられる。 Examples of the aluminum alkoxide include an alkoxy compound represented by the general formula Al (OR) 3 , and triethoxyaluminum, triisopropoxyaluminum, trinormalpropoxyaluminum, and trisecondary butylaluminum are particularly preferably used.
 また、(OR)3の一部を、塩素原子等のハロゲン原子で置換したもの、例えばクロロジイソプロポキシアルミニウム、クロロジセカンダリブチルアルミニウム、ジクロロイソプロポキシアルミニウム、ジクロロセカンダリブチルアルミニウムを用いることもできる。 Moreover, what substituted a part of (OR) 3 with halogen atoms, such as a chlorine atom, for example, chlorodiisopropoxy aluminum, chloro disecondary butyl aluminum, dichloro isopropoxy aluminum, and dichloro secondary butyl aluminum can also be used.
 アルミニウム金属錯体は、一般式Al(OR)n3-nで表される。式中、ORはアルコキシド、Yは配位子を示す。ここでnは0~3の整数を示す。配位子としてはアセチルアセトン(以下、acacと略すこともある)、アセト酢酸エチル、アセト酢酸メチル、アセト酢酸プロピル、トリフロロアセチルアセトン、ヘキサフロロアセチルアセトン、メタンスルフォン酸、トリフロロメタンスルフォン酸が挙げられる。さらに、アルミニウムアルコキシドとこれらアルミニウム金属錯体の縮重合した2~3量体を用いることも可能である。 The aluminum metal complex is represented by the general formula Al (OR) n Y 3-n . In the formula, OR represents an alkoxide, and Y represents a ligand. Here, n represents an integer of 0 to 3. Examples of the ligand include acetylacetone (hereinafter sometimes abbreviated as acac), ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, trifluoroacetylacetone, hexafluoroacetylacetone, methanesulfonic acid, and trifluoromethanesulfonic acid. It is also possible to use a dimer or trimer obtained by condensation polymerization of aluminum alkoxide and these aluminum metal complexes.
<セリウム化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化セリウムを含有させるための化合物としては、以下の物が挙げられる。
酢酸セリウム(III)1水和物、セリウム(III)プロミドn水和物、炭酸セリウム(III)n水和物、炭酸セリウム(III)8水和物、塩化セリウム(III)、塩化セリウム(III)7水和物、塩化セリウム(III)n水和物、2-エチルヘキサン酸セリウム(III)、フッ化セリウム(III)、フッ化セリウム(IV)n水和物、水酸化セリウム(IV)、臭化セリウム(III)、ヨウ化セリウム(III)n水和物、硝酸セリウム(III)6水和物、シュウ酸セリウム(III)9水和物、2,4-ペンタンジオナトセリウム(III)n水和物、過塩素酸セリウム(III)6水和物、リン酸セリウム(III)n水和物、ケイ化セリウム、ステアリン酸セリウム(III)、硫酸セリウム(III)n水和物、硫酸セリウム(IV)n水和物、硫酸セリウム(III)5水和物、硫酸セリウム(IV)4水和物、硫化セリウム(III)または硝酸第2セリウムアンモニウムが挙げられる。
<Cerium compound>
Examples of the compound for incorporating cerium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
Cerium acetate (III) monohydrate, Cerium (III) promide n hydrate, Cerium carbonate (III) n hydrate, Cerium carbonate (III) octahydrate, Cerium chloride (III), Cerium chloride (III ) Heptahydrate, cerium (III) chloride n hydrate, cerium (III) 2-ethylhexanoate, cerium (III) fluoride, cerium fluoride (IV) n hydrate, cerium hydroxide (IV) Cerium (III) bromide, cerium (III) iodide n-hydrate, cerium (III) nitrate hexahydrate, cerium (III) oxalate nonahydrate, 2,4-pentanedionatocerium (III ) N-hydrate, cerium (III) perchlorate hexahydrate, cerium (III) phosphate n-hydrate, cerium silicide, cerium (III) stearate, cerium (III) sulfate n-hydrate, Cerium sulfate (IV) n hydrate, Cerium sulfate (III) pentahydrate, Cerium sulfate (I V) Tetrahydrate, cerium (III) sulfide or ceric ammonium nitrate.
またセリウム金属塩は、一般式Ce(OR)n3-nで表される。式中、ORはアルコキシ基、Y:は配位子または酸を示す。n:0~3の整数を示す。 The cerium metal salt is represented by the general formula Ce (OR) n Y 3-n . In the formula, OR represents an alkoxy group, and Y: represents a ligand or an acid. n: represents an integer of 0 to 3.
また、アセチルアセトン、アセト酢酸エチル、アセト酢酸メチル、アセト酢酸プロピル、トリフロロアセチルアセトンなどのキレート錯体、酸として2エチルヘキサン酸、メタンスルフォン酸、トリフロロメタンスルフォン酸が挙げられる。 Further, chelate complexes such as acetylacetone, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, and trifluoroacetylacetone, and examples of the acid include 2-ethylhexanoic acid, methanesulfonic acid, and trifluoromethanesulfonic acid.
<ジルコニア化合物>
 本発明の親水性低反射部材の親水性低反射膜にジルコニアを含有させるためのジルコニア化合物としては、以下の物が挙げられる。
 四塩化ジルコニウム、即ちZrCl4、オキシ塩化ジルコニウム、即ちZrOCl2 .8H2O、硝酸ジルコニウム、即ちZr(NO34、オキシ硝酸ジルコニウム、即ちZrO(NO32 4水和物、ステアリン酸ジルコニウム、ナフテン酸ジルコニウム、2-エチルヘキサン酸ジルコニウム、ジルコニウムアセチルアセトナート等のZr塩またはそれらの無水および含水塩、もしくは一般式Zr(OR)4で表されるアルコキシ化合物。
<Zirconia compound>
The following are mentioned as a zirconia compound for making a hydrophilic low reflection film of the hydrophilic low reflection member of this invention contain zirconia.
Zirconium tetrachloride, i.e. ZrCl 4, zirconium oxychloride, i.e. ZrOCl 2. 8H 2 O, zirconium nitrate, i.e. Zr (NO 3) 4, zirconium oxynitrate, i.e. ZrO (NO 3) 2 4 hydrate, zirconium stearate Zr salts such as zirconium naphthenate, zirconium 2-ethylhexanoate, zirconium acetylacetonate, etc., or anhydrous and hydrated salts thereof, or alkoxy compounds represented by the general formula Zr (OR) 4 .
 かかるZrアルコキシドとしては、テトラエトキシジルコニウム、テトラノルマルプロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラノルマルブトキシジルコニウムおよびそれらの加水分解物である水酸化ジルコニウムゾルが好適に用いられる。 As such Zr alkoxide, tetraethoxyzirconium, tetranormalpropoxyzirconium, tetraisopropoxyzirconium, tetranormalbutoxyzirconium, and zirconium hydroxide sol which is a hydrolyzate thereof are preferably used.
 また(OR)3が一部ハロゲンに置換したものでもよく、例えば、クロロトリエトキシジルコニウム、ジクロロジノルマルブトキシジルコニウム、トリクロロノルマルブトキシジルコニウム等が挙げられる。 Further, (OR) 3 may be partially substituted with halogen, and examples thereof include chlorotriethoxyzirconium, dichlorodinormalbutoxyzirconium, and trichloronormalbutoxyzirconium.
<チタン化合物>
 本発明の親水性低反射部材の親水性低反射膜にチタニアを含有させるためのチタン化合物としては、以下の物が挙げられる。
 四塩化チタン、即ちTiCl4、三塩化チタン、即ちTiCl3、チタニルクロライド、即ちTiOCl2、硝酸チタン、即ちTi(NO34、オキシ硝酸チタン、即ちTiO(NO32等の無水塩またはそれらの含水塩、2-エチルヘキサン酸チタン。Tiアルコキシドとしては、一般式Ti(OR)4で表されるアルコキシ化合物が挙げられ、テトラエトキシチタン、テトラノルマルプロポキシチタン、テトライソプロポキシチタン、テトラノルマルブトキシチタンが好適に用いられる。またそれらの縮重合した2~10量体も用いられる。
<Titanium compound>
Examples of the titanium compound for containing titania in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
An anhydrous salt such as titanium tetrachloride, ie TiCl 4 , titanium trichloride, ie TiCl 3 , titanyl chloride, ie TiOCl 2 , titanium nitrate, ie Ti (NO 3 ) 4 , titanium oxynitrate, ie TiO (NO 3 ) 2 Their hydrated salt, titanium 2-ethylhexanoate. Examples of the Ti alkoxide include an alkoxy compound represented by the general formula Ti (OR) 4 , and tetraethoxytitanium, tetranormalpropoxytitanium, tetraisopropoxytitanium, and tetranormalbutoxytitanium are preferably used. In addition, those polycondensation dimer to 10-mer are also used.
 また(OR)3の一部が塩素原子等のハロゲン原子に置換したものでもよく、例えば、クロロトリエトキシチタン、ジクロロジノルマルブトキシチタン、トリクロロノルマルブトキシチタンを用いることも可能である。 Further, a part of (OR) 3 may be substituted with a halogen atom such as a chlorine atom. For example, chlorotriethoxytitanium, dichlorodinormalbutoxytitanium, or trichloronormalbutoxytitanium can be used.
 またチタン金属錯体は、一般式Ti(OR)n4-nで表される。式中、ORはアルコキシ基、Y:は配位子を示す。n:0~3の整数を示す。また配位子としてはアセチルアセトン、アセト酢酸エチル、アセト酢酸メチル、アセト酢酸プロピル、トリフロロアセチルアセトン、メタンスルフォン酸、トリフロロメタンスルフォン酸が挙げられる。 The titanium metal complex is represented by the general formula Ti (OR) n Y 4-n . In the formula, OR represents an alkoxy group, and Y: represents a ligand. n: represents an integer of 0 to 3. Examples of the ligand include acetylacetone, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, trifluoroacetylacetone, methanesulfonic acid, and trifluoromethanesulfonic acid.
 またアルコキシ基を含むキレート化合物として、ジブトキシチタンビスアセチルアセトナート、イソプロポキシジチタンビスオクチレングリコレートが挙げられる。 Further, examples of the chelate compound containing an alkoxy group include dibutoxy titanium bisacetylacetonate and isopropoxy dititanium bisoctylene glycolate.
<スズ化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化スズを含有させるためのスズ化合物としては、以下の物が挙げられる。
 二塩化スズ、即ちSnCl2、四塩化スズ、即ちSnCl4等のスズ塩化物、テトラエトキシスズ、テトラノルマルプロポキシスズ、テトライソプロポキシスズ、テトラノルマルブトキシスズ等のスズアルコキシドの他、Sn(OiPr)3(acac)、Sn(OnBu)3Cl、BuSnCl3およびBu2Sn(acac)2。SnO2は半導体であり、本発明の親水性低反射部材の親水性低反射膜に帯電防止の機能を与える。
<Tin compounds>
Examples of the tin compound for containing tin oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following.
In addition to tin chlorides such as tin dichloride, ie SnCl 2 , tin tetrachloride, ie SnCl 4 , tin alkoxides such as tetraethoxytin, tetranormalpropoxytin, tetraisopropoxytin, tetranormalbutoxytin, and Sn (OiPr) 3 (acac), Sn (OnBu) 3 Cl, BuSnCl 3 and Bu 2 Sn (acac) 2 . SnO 2 is a semiconductor and imparts an antistatic function to the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention.
<インジウム化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化インジウムを含有させるためのインジウム化合物としては、以下の物が挙げられる。三塩化インジウム、三塩化インジウム4水和物、臭化インジウム、ヨウ化インジウム、硝酸インジウム3水和物、酢酸インジウム、硫酸インジウムn水和物、過塩素酸インジウム8水和物、リン酸インジウム等の無機インジウム塩や、またインジウム金属塩は、一般式In(OR)n3-nで表される。式中、ORはアルコキシ基、Y:は配位子や酸を示す。n:0~3の整数を示す。
具体的には、配位子としてアセチルアセトン、アセト酢酸エチル、アセト酢酸メチル、アセト酢酸プロピル、トリフロロアセチルアセトンが挙げられ、酸として2エチルヘキサン酸、メタンスルフォン酸、トリフロロメタンスルフォン酸が挙げられる。
<Indium compound>
Examples of the indium compound for incorporating indium oxide into the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Indium trichloride, indium trichloride tetrahydrate, indium bromide, indium iodide, indium nitrate trihydrate, indium acetate, indium sulfate n-hydrate, indium perchlorate octahydrate, indium phosphate, etc. These inorganic indium salts and indium metal salts are represented by the general formula In (OR) n Y 3-n . In the formula, OR represents an alkoxy group, and Y: represents a ligand or an acid. n: represents an integer of 0 to 3.
Specific examples of the ligand include acetylacetone, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, and trifluoroacetylacetone, and examples of the acid include 2-ethylhexanoic acid, methanesulfonic acid, and trifluoromethanesulfonic acid.
テトラメトキシインジウム、テトラエトキシインジウム、テトラノルマルプロポキシインジウム、テトライソプロポキシインジウム、テトラノルマルブトキシインジウム等のインジウムアルコキシドの他、In(OMe)2Cl、In(OEt)2Cl、In(OiPr)2Cl、In(OnBu)2Cl、In(OiPr)2Cl、In(OnBu)2Clなどのハロゲン化アルコキシドなどが挙げられる。 In addition to indium alkoxides such as tetramethoxyindium, tetraethoxyindium, tetranormalpropoxyindium, tetraisopropoxyindium, and tetranormalbutoxyindium, In (OMe) 2 Cl, In (OEt) 2 Cl, In (OiPr) 2 Cl, Examples thereof include halogenated alkoxides such as In (OnBu) 2 Cl, In (OiPr) 2 Cl, and In (OnBu) 2 Cl.
<亜鉛化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化亜鉛を含有させるための亜鉛化合物としては、以下の物が挙げられる。塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、硝酸亜鉛3水和物、酢酸亜鉛2水和物、硫酸亜鉛7水和物、リン酸亜鉛、ほう酸亜鉛、過塩素酸亜鉛6水和物、等の無機亜鉛化合物、ステアリン酸亜鉛、安息香酸亜鉛、フェノールスルフォン酸亜鉛、サルチル酸亜鉛、ジンクピリチオン、アセチルアセトナート亜鉛水和物、アセト酢酸エチル亜鉛水和物、アセト酢酸メチル亜鉛、アセト酢酸プロピル亜鉛、トリフロロアセチルアセトナート亜鉛、2エチルヘキサン酸亜鉛、メタンスルフォン酸亜鉛、トリフロロメタンスルフォン酸亜鉛、テトラメトキシ亜鉛、テトラエトキシ亜鉛、テトラノルマルプロポキシ亜鉛、テトライソプロポキシ亜鉛またはテトラノルマルブトキシ亜鉛が挙げられる。
<Zinc compound>
Examples of the zinc compound for containing zinc oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Zinc chloride, zinc bromide, zinc iodide, zinc nitrate trihydrate, zinc acetate dihydrate, zinc sulfate heptahydrate, zinc phosphate, zinc borate, zinc perchlorate hexahydrate, etc. Inorganic zinc compounds, zinc stearate, zinc benzoate, zinc phenolsulfonate, zinc salicylate, zinc pyrithione, zinc acetylacetonate hydrate, ethyl zinc acetoacetate hydrate, methyl zinc acetoacetate, propylzinc acetoacetate, tri Examples include zinc fluoroacetylacetonate, zinc 2-ethylhexanoate, zinc methanesulfonate, zinc trifluoromethanesulfonate, tetramethoxyzinc, tetraethoxyzinc, tetranormalpropoxyzinc, tetraisopropoxyzinc or tetranormalbutoxyzinc.
<アンチモン化合物>
本発明の親水性低反射部材の親水性低反射膜に酸化アンチモンを含有させるためのアンチモン化合物としては、以下の物が挙げられる。酢酸アンチモン(III)、酢酸アンチモン2水和物、臭化アンチモン(III)、アンチモン(III)ブトキシド、塩化アンチモン(III)、4塩化アンチモン(V)、5塩化アンチモン臭化アンチモン、アンチモン(III)エトキシド、フッ化アンチモン(III)、4フッ化アンチモン(V)、テトラエトキシ3塩化アンチモン亜鉛、テトラノルマルプロポキシ3塩化アンチモン亜鉛、テトライソプロポキシ3塩化アンチモン亜鉛またはテトラノルマルブトキシアンチモン亜鉛が挙げられる。
<Antimony compound>
Examples of the antimony compound for containing antimony oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Antimony (III) acetate, antimony acetate dihydrate, antimony (III) bromide, antimony (III) butoxide, antimony (III) chloride, antimony (IV) tetrachloride, antimony bromide, antimony (III) Examples include ethoxide, antimony (III) fluoride, antimony (V) tetrafluoride, antimony zinc tetratetrachloride, antimony zinc tetranormal propoxyantimony trichloride, zinc antimony tetraisopropoxy trichloride, or zinc zinc tetranormalbutoxy.
<ランタン化合物>
 本発明の親水性低反射部材の親水性低反射膜に酸化ランタンを含有させるためのランタン化合物としては、以下の物が挙げられる。塩化ランタン、塩化ランタン6水和物、塩化ランタン7水和物、臭化ランタン、臭化ランタン7水和物、ヨウ化ランタン、硝酸ランタン6水和物、酢酸ランタンn水和物、硫酸ランタン9水和物、リン酸ランタンn水和物、過塩素酸ランタン6水和物、シュウ酸ランタン9水和物、2エチルヘキサン酸ランタン、アセチルアセトナートランタン水和物、アセト酢酸エチルランタン水和物、アセト酢酸メチルランタン、トリフロロアセチルアセトナートランタン、メタンスルフォン酸ランタン、トリフロロメタンスルフォン酸ランタン、テトラメトキシランタン、テトラエトキシランタン、テトラノルマルプロポキシランタン、テトライソプロポキシランタンまたはテトラノルマルブトキシランタンが挙げられる。
<Lanthane compound>
Examples of the lanthanum compound for containing lanthanum oxide in the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention include the following. Lanthanum chloride, lanthanum chloride hexahydrate, lanthanum chloride heptahydrate, lanthanum bromide, lanthanum bromide heptahydrate, lanthanum iodide, lanthanum nitrate hexahydrate, lanthanum acetate n-hydrate, lanthanum sulfate 9 Hydrate, Lanthanum phosphate n-hydrate, Lanthanum perchlorate hexahydrate, Lanthanum oxalate 9-hydrate, Lanthanum ethylhexanoate, Acetylacetonate lanthanum hydrate, Ethyl lanthanum acetoacetate hydrate , Methyl lanthanum acetoacetate, trifluoroacetylacetonate lanthanum trifluoromethane, lanthanum methanesulfonate, lanthanum trifluoromethanesulfonate, tetramethoxylanthanum, tetraethoxylanthanum, tetranormalpropoxylantan, tetraisopropoxylantane or tetranormalbutoxylantan .
[金属化合物のオルガノゾル]
 なお、上記のように、塩基性塩化物や金属アルコキシドを加水分解して得られる酸化物微粒子を溶媒置換して製造した金属酸化物のオルガノゾルは市販品として得ることができる。
[Metal compound organosol]
As described above, an organosol of metal oxide produced by solvent substitution of oxide fine particles obtained by hydrolyzing basic chloride or metal alkoxide can be obtained as a commercial product.
 例えば、オルガノシリカゾルは、日産化学工業株式会社より、商品名、メタノールシリカゾル、IPA-ST、IPA-ST-UP、IPA-ST-ZL、EG-ST、NPC-ST-30、DMAC-ST、MEK-ST、日揮触媒化成株式会社より、商品名、オスカル1132、オスカル1232、オスカル1332が市販される。オルガノアルミナゾルは、川研ファインケミカル株式会社より、商品名、アルミゾル-CSA55、アルミゾル-CSA110ADが市販される。さらに、有機溶剤系酸化アンチモンゾルは、日産化学工業株式会社より、商品名、サンコロイドATL-130、サンコロイドAMT-130が市販されている。 For example, organosilica sol is available from Nissan Chemical Industries, Ltd. under the trade name, methanol silica sol, IPA-ST, IPA-ST-UP, IPA-ST-ZL, EG-ST, NPC-ST-30, DMAC-ST, MEK. -Product names, Oscar 1132, Oscar 1232, and Oscar 1332 are commercially available from ST, JGC Catalysts & Chemicals Co., Ltd. Organoalumina sols are commercially available from Kawaken Fine Chemical Co., Ltd. under the trade names of Aluminum Sol-CSA55 and Aluminum Sol-CSA110AD. Further, organic solvent-based antimony oxide sols are commercially available from Nissan Chemical Industries, Ltd. under the trade names Sun Colloid ATL-130 and Sun Colloid AMT-130.
 また、水性分散液として市販されているゾルを溶媒置換して使用することもできる。
 このような水性ゾルは、例えば、日産化学工業株式会社より、商品名、スノーテックス40、スノーテックスO、スノーテックスC、スノーテックスNが市販され、日揮触媒化成株式会社より、商品名、カタロイドS-30H、カタロイドSI-30、カタロイドSN、カタロイドSAが市販され、旭電化工業株式会社より、商品名、アデライトAT-30、アデライトAT-20N、アデライトAT-20A、アデライトAT-20Qが市販され、日本化学工業株式会社より、商品名、シリカドール-30、シリカドール-20A、シリカドール-20Bが市販され、水系酸化ケイ素ゾルは、日産化学工業株式会社より、商品命、アルミナゾル-100、アルミナゾル-200、アルミナゾル-520が市販され、水系アルミナゾルは、川研ファインケミカル株式会社より、商品名、アルミナクリアーゾル、アルミゾル-10、アルミゾル-20、アルミゾルSV-102、アルミゾル-SH5が市販され、水系酸化アンチモンゾルは、日産化学工業株式会社より、商品名、A-1550、A-2550が市販され、水系酸化ジルコニウムゾルは、日産化学工業株式会社より、NZS-30A、NZS-30Bが市販され、水系酸化スズゾルは、多木化学株式会社より、商品名、セラメースS-8、セラメースC-10が市販され、水系酸化チタンゾルは、多木化学株式会社より、商品名、タイノックA-6、タイノックM-6が市販され、酸化スズと酸化アンチモンから成る水系ゾルは、多木化学株式会社より、商品名、セラメースF-10が市販されている。
Alternatively, a commercially available sol as an aqueous dispersion can be used after solvent substitution.
Such aqueous sols are commercially available from Nissan Chemical Industries, Ltd. under the trade names, Snowtex 40, Snowtex O, Snowtex C, Snowtex N, and from JGC Catalysts & Chemicals, Inc. -30H, Cataloid SI-30, Cataloid SN, Cataloid SA are commercially available from Asahi Denka Kogyo Co., Ltd. under the trade names Adelite AT-30, Adelite AT-20N, Adelite AT-20A, Adelite AT-20Q, The trade names “Silica Dole-30”, “Silica Doll-20A”, and “Silica Doll-20B” are commercially available from Nippon Kagaku Kogyo Co., Ltd. 200, alumina sol-520 is commercially available. The trade name, Alumina Clear Sol, Aluminum Sol-10, Aluminum Sol-20, Aluminum Sol SV-102, and Aluminum Sol-SH5 are commercially available from Fine Chemical Co., Ltd. 1550 and A-2550 are commercially available. Aqueous zirconium oxide sol is commercially available from Nissan Chemical Industries, Ltd. NZS-30A and NZS-30B. Aqueous tin oxide sol is available from Taki Chemical Co., Ltd. -8, Cerames C-10 is commercially available, and water-based titanium oxide sols are commercially available from Taki Chemical Co., Ltd. under the trade names Tynock A-6 and Tynock M-6, and water-based sols composed of tin oxide and antimony oxide are The trade name Cerames F-10 is commercially available from Taki Chemical Co., Ltd.
[塗布液]
 透明基材に塗布する塗布液は、長期安定性が重要であり、室温で30日以上保存できることが好ましい。水酸化フッ化マグネシウム分散液(ゾル)に上記の加水分解可能な金属化合物を加える際、1種類のみの金属化合物の混合では目的とする波長の屈折率の低減が図れない場合は、2~4種の金属化合物を加える必要がある。このような混合において、金属化合物が1種類のときは比較的安定な分散液(ゾル)として存在できる場合であっても、混合した金属化合物の相性が合わない場合はゲル化してしまう可能性がある。
[Coating solution]
The coating solution applied to the transparent substrate is important for long-term stability and is preferably stored at room temperature for 30 days or more. When the above hydrolyzable metal compound is added to the magnesium hydroxide fluoride dispersion (sol), if the mixture of only one metal compound cannot reduce the refractive index of the target wavelength, 2-4 It is necessary to add a seed metal compound. In such mixing, even when there is only one kind of metal compound, even if it can exist as a relatively stable dispersion (sol), if the compatibility of the mixed metal compound does not match, there is a possibility of gelation. is there.
 また、分散液(ゾル)中の金属酸化物前駆体、例えば、金属アルコキシドの安定性を比較したとき、アルコキシシラン等のSi系アルコキシドは比較的安定であるが、Al系、Zr系、Ti系、Sn系、Ta系のアルコキシドは不安定であることは当業者には知られている。特許文献4には、実施例3にフッ化マグネシウムとAl系アルコキシドとの混合系、実施例4にZrアルコキシドとの混合系が記載されており、アセチルアセトンを錯化剤とし、シリンジフィルターを通すことにより透明ゾルを製造している。本発明者等が、当該実施例3および実施例4を追試したところ、室温において塗布液は1日しか安定に存在できず、粘度が急上昇してしまい、塗布液としては適さないものであった。 In addition, when comparing the stability of metal oxide precursors in the dispersion (sol), such as metal alkoxides, Si-based alkoxides such as alkoxysilanes are relatively stable, but Al-based, Zr-based, Ti-based It is known to those skilled in the art that Sn-based and Ta-based alkoxides are unstable. Patent Document 4 describes a mixed system of magnesium fluoride and an Al-based alkoxide in Example 3, and a mixed system of Zr alkoxide in Example 4, which uses acetylacetone as a complexing agent and passes through a syringe filter. The transparent sol is manufactured by this method. When the present inventors made additional trials with respect to Example 3 and Example 4, the coating solution could only exist stably for one day at room temperature, and the viscosity increased rapidly, which was not suitable as a coating solution. .
 さらに、特許文献4の実施例を参考に、フッ化マグネシウムに、Siアルコキシド、Alアルコキシド、Zrアルコキシドの3種類のアルコキシドを添加した系で追試を行い、安定性を確認したところ、MgF2に混合した金属酸化物ゾルはMgF2に混合すると速やかに重合が始まり、急激に粘度が上昇して2日後では完全にゲル化してしまい到底実用に耐えうるものではなく塗布液としての安定性に欠けていた。 Furthermore, with reference to the example of Patent Document 4, an additional test was conducted in a system in which three types of alkoxides of Si alkoxide, Al alkoxide, and Zr alkoxide were added to magnesium fluoride. When stability was confirmed, it was mixed with MgF 2 . When the mixed metal oxide sol is mixed with MgF 2 , the polymerization starts rapidly, the viscosity rapidly increases, and after 2 days, it completely gels and is not practically usable and lacks stability as a coating solution. It was.
 本発明の親水性低反射部材の親水性低反射膜のための塗布液は、水酸化フッ化マグネシウムゾルと、少なくとも1種の金属酸化物を混合させたものであり、極めて安定であった。また、本発明の本発明の親水性低反射部材に被覆する親水性低反射膜のための塗布液において、水酸化フッ化マグネシウムは無機塩や、有機塩、金属アルコキシドとの相溶性が良好であった。 The coating solution for the hydrophilic low reflection film of the hydrophilic low reflection member of the present invention was a mixture of a magnesium hydroxide fluoride sol and at least one metal oxide, and was extremely stable. Further, in the coating solution for the hydrophilic low-reflection film coated on the hydrophilic low-reflection member of the present invention, magnesium hydroxide fluoride has good compatibility with inorganic salts, organic salts, and metal alkoxides. there were.
 水酸化フッ化マグネシウムゾルの調製時に原料のフッ化水素や副生成物の酸、例えばHClを意図的に残存させるが、残存する0.5%以上、3%以下(FおよびHCl換算)の酸が金属化合物、たとえば金属アルコキシドの解膠剤として有用であると考えられ、4~5種類の金属アルコキシドを添加しても室温で30日以上の長期安定性が確認された。 The raw material hydrogen fluoride and by-product acid such as HCl are intentionally left during preparation of the magnesium hydroxide fluoride sol, but the remaining 0.5% or more and 3% or less (in terms of F and HCl) Is considered to be useful as a peptizer for metal compounds such as metal alkoxides, and long-term stability of 30 days or more at room temperature was confirmed even when 4 to 5 types of metal alkoxides were added.
 好ましい態様としては、マグネシウム源として塩化マグネシウムを用い、やや過剰量のフッ化水素と直接反応させた場合、副生物としてHClが生成する。フッ化水素およびHClは蒸気圧が高く、加熱かバブリングで容易に除去でき、HClを数%に残存させることが可能となる。 As a preferred embodiment, when magnesium chloride is used as a magnesium source and directly reacted with a slight excess of hydrogen fluoride, HCl is generated as a by-product. Hydrogen fluoride and HCl have a high vapor pressure, and can be easily removed by heating or bubbling, so that HCl can remain in a few percent.
[透明基材]
 透明基材としては、無機質のガラス基材、例えばガラス板、プラスチック製基材、例えばプラスチック板を用いることができる。
[Transparent substrate]
As the transparent substrate, an inorganic glass substrate such as a glass plate or a plastic substrate such as a plastic plate can be used.
無機質のガラス基材の例としては、ソーダライム珪酸塩ガラス、硼珪酸ガラス、アルミノ珪酸ガラス、バリウム硼珪酸ガラス、石英ガラス等の板状のもので特にはフロート法で製造されたものを用いることができる。さらには、これらガラス基材は、クリアガラス品、グリーン、ブロンズ等の着色ガラス品、UV、IRカットガラス等の機能性ガラス品、強化ガラス、半強化ガラス、合せガラス等の安全ガラス品も使用されうる。また、セラミックスとしてはSi34、SiC、サファイヤ、Siウェハー、GaAs、InP、AlN等の基板も使用されうる。 Examples of inorganic glass substrates include plate-like materials such as soda lime silicate glass, borosilicate glass, aluminosilicate glass, barium borosilicate glass, and quartz glass, especially those manufactured by the float process. Can do. Furthermore, these glass substrates also use clear glass products, colored glass products such as green and bronze, functional glass products such as UV and IR cut glass, and safety glass products such as tempered glass, semi-tempered glass, and laminated glass. Can be done. Moreover, as ceramics, substrates such as Si 3 N 4 , SiC, sapphire, Si wafer, GaAs, InP, and AlN can be used.
プラスチック製基材の例としては、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリイミド等が挙げられる。 Examples of the plastic substrate include polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyimide, and the like.
[塗布方法]
 塗布液の基板上への塗布方法は、湿式塗布法であり、スピンコーター法、浸漬引き上げ法、即ち、ディップコーティング法、スプレー法、ローラーコート法、フローコート法、スクリーン印刷法、刷毛塗りまたはインクジェット法が挙げられる。
[Coating method]
The coating method of the coating solution on the substrate is a wet coating method, which is a spin coater method, a dip-up method, that is, a dip coating method, a spray method, a roller coating method, a flow coating method, a screen printing method, a brush coating, or an inkjet. Law.
[親水性低反射膜]
 前記、各種方法により形成された被膜を、80℃以上、150℃以下で10分から6時間乾燥した後、さらに加熱焼成することが好ましい。加熱温度は、基材の耐熱温度に応じて決定される。また、水酸化フッ化マグネシウムの特性を生かす場合は、親水性等の特性が維持できる温度範囲で焼成するのが好ましい。プラスチック製基材の場合、概ね300℃以下で処理することが好ましい。また、無機質のガラス基材においては、焼成時間を調整することにより、700℃程度の高温での焼成も可能である。好ましい態様として、650℃以上、700℃以下で2、3分間、即ち120秒~180秒焼成することにより、耐磨耗性に優れた被膜が得られた。
[Hydrophilic low reflective film]
It is preferable that the film formed by the various methods is dried by heating at 80 ° C. or higher and 150 ° C. or lower for 10 minutes to 6 hours, and then further heated and fired. The heating temperature is determined according to the heat-resistant temperature of the substrate. In addition, when taking advantage of the characteristics of magnesium hydroxide fluoride, it is preferable to fire in a temperature range in which characteristics such as hydrophilicity can be maintained. In the case of a plastic substrate, it is preferable to perform the treatment at about 300 ° C. or less. In addition, the inorganic glass substrate can be fired at a high temperature of about 700 ° C. by adjusting the firing time. As a preferred embodiment, a film having excellent wear resistance was obtained by baking at 650 ° C. or higher and 700 ° C. or lower for a few minutes, that is, 120 seconds to 180 seconds.
 被膜中においては、金属酸化物は、水酸化フッ化マグネシウムと同等のサイズの3nm以上、100nm以下、より好ましくは、5nm以上、60nm以下、さらに好ましくは8nm以上、20nm以下の微粒子または水酸化フッ化マグネシウムを結合させるバインダーとして存在することが好適である。 In the coating, the metal oxide has a size equivalent to that of magnesium hydroxide fluoride of 3 nm or more and 100 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 8 nm or more and 20 nm or less. It is preferably present as a binder for binding magnesium halide.
本発明の親水性低反射部材の透明基体表面における親水性低反射膜の好ましい膜厚は、20nm以上、500nm以下である。膜厚を20nmより薄くすると耐磨耗性に劣る、また成膜し難い。また500nmより厚くすると、膜厚が不均一となり、成膜し難い。好ましくは、50nm以上、150nm以下である。可視光に対し低い反射率を得るためには、100nm以上、120nm以下であることが好ましい。 The preferable film thickness of the hydrophilic low reflection film on the transparent substrate surface of the hydrophilic low reflection member of the present invention is 20 nm or more and 500 nm or less. If the film thickness is less than 20 nm, the wear resistance is poor and film formation is difficult. On the other hand, if it is thicker than 500 nm, the film thickness becomes non-uniform and it is difficult to form a film. Preferably, they are 50 nm or more and 150 nm or less. In order to obtain a low reflectance with respect to visible light, the thickness is preferably 100 nm or more and 120 nm or less.
 接触角は、JIS R 3257(1999)に準拠にして得られる被覆層表面と水滴の接触角から定義されるものとする。親水性低反射膜としては、濡れ性が高いほど良いと考えられ、接触角は30°以下が好ましい。より好ましくは、20°以下である。親水性を持つことから、防汚性に優れ、汚れが付着した場合も容易に洗い流すことができる。 The contact angle shall be defined from the contact angle between the surface of the coating layer obtained in accordance with JIS R 3257 (1999) and water droplets. It is considered that the higher the wettability, the better the hydrophilic low reflection film, and the contact angle is preferably 30 ° or less. More preferably, it is 20 ° or less. Since it has hydrophilicity, it is excellent in antifouling property and can be easily washed away even when dirt is attached.
 また、本発明の親水性低反射部材は、親水性低反射膜表面の表面抵抗値が1×1010Ω.cm以下であるので、帯電防止機能を有する親水性低反射部材である。 The hydrophilic low reflection member of the present invention has a surface resistance value of 1 × 10 10 Ω. Since it is cm or less, it is a hydrophilic low reflection member having an antistatic function.
 これらの親水性低反射膜は、透明基体の片面または両面に形成される。透明基体の両面が空気のような屈折率が1に近い媒体に接して使用される場合は、この膜を基板の両面に成形することにより、高い反射防止効果が得られる。 These hydrophilic low reflection films are formed on one side or both sides of the transparent substrate. When both surfaces of the transparent substrate are used in contact with a medium having a refractive index close to 1 such as air, a high antireflection effect can be obtained by forming this film on both surfaces of the substrate.
[親水性低反射部材]
 本発明の親水性低反射部材は、太陽電池の表面保護部材、例えば、太陽電池カバーガラスとして有用である。太陽電池カバーガラスとして使用する場合においては、高い光透過率および低い反射率が要求されるうえ、太陽電池は太陽光に常時暴露されるため、防汚性、耐水性、および耐候性等を併せ持つ材料が望まれる。前述のように水酸化フッ化マグネシウムを含む本発明の親水性低反射膜は、防汚性、耐水性、耐候性に優れる。
[Hydrophilic low reflection member]
The hydrophilic low reflection member of the present invention is useful as a surface protection member of a solar cell, for example, a solar cell cover glass. When used as a solar cell cover glass, high light transmittance and low reflectance are required, and since solar cells are constantly exposed to sunlight, they have antifouling properties, water resistance, weather resistance, etc. A material is desired. As described above, the hydrophilic low reflection film of the present invention containing magnesium hydroxide fluoride is excellent in antifouling property, water resistance and weather resistance.
 また、近年開発されている、CIS薄膜系の薄膜太陽電池および結晶性シリコンは、波長380nm以上、2000nm以下の幅広い吸収を有しており、従来のアモルファスシリコン系と比較して長波長域の光を吸収することが可能で、その吸収のピークが900nm付近にある。前述のように、本発明の親水性低反射膜は、紫外・可視光波長域、380nm以上、800nm以下、および近赤外波長域、800nm以上、2000nm以下での高い光透過性を有するので、アモルファスシリコン系太陽電池はもちろんのこと、長波長領域に吸収を有する太陽電池の、表面保護部材として好適に用いられる。 In addition, CIS thin-film solar cells and crystalline silicon, which have been developed in recent years, have a wide absorption of wavelengths of 380 nm or more and 2000 nm or less, and light in a longer wavelength range than conventional amorphous silicon systems. The absorption peak is in the vicinity of 900 nm. As described above, the hydrophilic low-reflection film of the present invention has high light transmittance in the ultraviolet / visible light wavelength region, 380 nm or more and 800 nm or less, and the near infrared wavelength region, 800 nm or more and 2000 nm or less. It can be suitably used as a surface protection member for solar cells having absorption in a long wavelength region as well as amorphous silicon solar cells.
 以下、実施例に基づき、本発明の親水性低反射部材について説明する。
 各種低反射膜をソーダライムシリケートガラス基板に被覆成形し、物性評価を行った。
 物性評価方法は以下に示す。
Hereinafter, based on an Example, the hydrophilic low reflection member of this invention is demonstrated.
Various low reflective films were coated on a soda lime silicate glass substrate and evaluated for physical properties.
The physical property evaluation method is shown below.
1.光学特性(透過率、反射率)は、株式会社日立製作所製、分光光度計U-4100を用いて測定した。
2.表面抵抗値は、横河電機株式会社製、絶縁抵抗測定器4329A high resistance meterを用いて測定した。
3.屈折率は、株式会社堀場製作所製 分光エリプソメーター UVISEL-ERにて、637nmの値を測定した。
4.膜厚は、触針式表面形状測定器(株式会社アルバック、品番、Dektak V200 Si/SL、以下同じ)により測定した
5.接触角は、協和界面科学株式会社製、純水接触角測定装置を用いてJIS R 3257(1999)に準拠して測定した。
1. Optical properties (transmittance, reflectance) were measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd.
2. The surface resistance value was measured using an insulation resistance measuring instrument 4329A high resistance meter manufactured by Yokogawa Electric Corporation.
3. The refractive index was measured at 637 nm using a spectroscopic ellipsometer UVISEL-ER manufactured by Horiba, Ltd.
4). The film thickness was measured with a stylus type surface shape measuring instrument (ULVAC, Inc., product number, Dektak V200 Si / SL, the same shall apply hereinafter). The contact angle was measured according to JIS R 3257 (1999) using a pure water contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd.
実施例1
<水酸化フッ化マグネシウムゾルの調製>
 5Lの3口フラスコに、試薬特級グレードの塩化マグネシウム184.6g(1.94mol)を採り、メタノール3905gを加え、室温で3時間攪拌し、無色透明の塩化マグネシウム溶液を得た。55質量%のフッ化水素酸水溶液159.2g(4.38mol)を、上記塩化マグネシウム溶液に、室温で攪拌しつつ、モル比でフッ化水素/Mg=2.26となるように断続的に滴下した。室温で3時間攪拌後、水酸化フッ化マグネシウム微粒子の分散液である無色透明なゾルを得た。乾燥させた後、X線解析により同定したところ、水酸化フッ化マグネシウムが得られていた。
Example 1
<Preparation of magnesium hydroxide fluoride sol>
Into a 5 L three-necked flask, 184.6 g (1.94 mol) of reagent-grade magnesium chloride was added, 3905 g of methanol was added, and the mixture was stirred at room temperature for 3 hours to obtain a colorless and transparent magnesium chloride solution. While stirring 159.2 g (4.38 mol) of a 55% by mass hydrofluoric acid aqueous solution into the above magnesium chloride solution at room temperature, the hydrogen fluoride / Mg = 2.26 molar ratio was intermittently obtained. It was dripped. After stirring at room temperature for 3 hours, a colorless and transparent sol that was a dispersion of magnesium hydroxide fluoride fine particles was obtained. After drying, magnesium hydroxide fluoride was obtained as identified by X-ray analysis.
 次に、当該ゾルに乾燥窒素を2L/minの速度で吹き込みつつバブリングさせながら、約58℃に加温しつつ、副生物であるHClと過剰フッ酸を脱気させ濃縮した。約5時間バブリングするとメタノールとHClおよびフッ酸が385g除去された。イオンクロマトグラフィーで分析した結果、残留酸分はCl-イオンとして3.2質量%、F-イオンとして0.65質量%であった。濃度調製のためイソプロピルアルコール(以下、IPAと略する)を加え、水酸化フッ化マグネシウムの固形分濃度が、3.5質量%となるように調整した。 Next, while bubbling while blowing dry nitrogen into the sol at a rate of 2 L / min, while warming to about 58 ° C., HCl and excess hydrofluoric acid as by-products were degassed and concentrated. Bubbling for about 5 hours removed 385 g of methanol, HCl and hydrofluoric acid. As a result of analysis by ion chromatography, the residual acid content was 3.2% by mass as Cl ions and 0.65% by mass as F ions. To adjust the concentration, isopropyl alcohol (hereinafter abbreviated as IPA) was added, and the solid content concentration of magnesium hydroxide fluoride was adjusted to 3.5% by mass.
<塗布液の調製>
 上記で合成した水酸化フッ化マグネシウムゾルを120ml分取して、これに、金属化合物として和光純薬工業株式会社製試薬、Al(OsBu)3を、Al23換算で2質量%となるように調整したエタノール溶液を、30mlを加え、さらに試薬、W(OiPr)6をWO3換算で2質量%となるように加え、IPAを30ml攪拌しながら加えて、60℃で16時間撹拌して、淡茶色の塗布液を得た。尚、sBuは、secブトキシ基、iPrはイソプロポキシ基の略である(以下、同じ)。
<Preparation of coating solution>
120 ml of the magnesium hydroxide fluoride sol synthesized above is collected, and a Wako Pure Chemical Industries, Ltd. reagent, Al (OsBu) 3, is added as a metal compound to 2% by mass in terms of Al 2 O 3. 30 ml of the ethanol solution prepared as described above was added, and the reagent, W (OiPr) 6 , was added to 2% by mass in terms of WO 3 , and IPA was added with stirring in 30 ml and stirred at 60 ° C. for 16 hours. As a result, a light brown coating solution was obtained. Note that sBu is an abbreviation for sec butoxy group, and iPr is an abbreviation for isopropoxy group (hereinafter the same).
<塗布>
ディップ法を採用し、該塗布液に厚さ3mm、大きさ100mm×100mmのソーダライムシリケートガラス基板を浸漬した後、4.5mm/secの速度で引き上げ、ガラス基板の両面に塗布した後、100℃で30分乾燥させた。該ガラス基板を750℃の電気炉に投入して、150秒間保持して取り出し、ガラス基板表面に反射色が青紫色の被膜を得た。
<Application>
After dipping, a soda lime silicate glass substrate having a thickness of 3 mm and a size of 100 mm × 100 mm was dipped in the coating solution, then pulled up at a speed of 4.5 mm / sec, and applied to both surfaces of the glass substrate. Dry at 30 ° C. for 30 minutes. The glass substrate was put into an electric furnace at 750 ° C., held for 150 seconds, and taken out to obtain a coating film having a blue-violet reflection color on the glass substrate surface.
このようにして、屈折率調整剤の含量が、水酸化フッ化マグネシウム10モルあたり1.7、即ち、水酸化フッ化マグネシウム:(酸化タングステン+アルミナ)=10:1.7である親水性低反射膜が得られた。膜厚は、触針式表面形状測定器(株式会社アルバック、品番、Dektak V200 Si/SL、以下同じ)により測定したところ、105nmであった。 In this way, the content of the refractive index adjusting agent is 1.7 per 10 mol of magnesium hydroxide fluoride, that is, magnesium hydroxide fluoride: (tungsten oxide + alumina) = 10: 1.7. A reflective film was obtained. The film thickness was 105 nm as measured by a stylus type surface shape measuring instrument (ULVAC, Inc., product number, Dektak V200 Si / SL, the same applies hereinafter).
 図1に、被膜を形成したガラス基板の走査型電子顕微鏡(SEM)写真を示す。 FIG. 1 shows a scanning electron microscope (SEM) photograph of a glass substrate on which a film is formed.
 波長380nm~780nmの範囲の平均透過率を測定したところ、平均98.1%であり、被膜を形成していない未処理のガラス基板(素板:Blank)の平均透過率90.4%と比較し、7.7%透過率が向上していた。 When the average transmittance in the wavelength range of 380 nm to 780 nm was measured, the average was 98.1%, which was compared with the average transmittance of 90.4% of an untreated glass substrate (base plate: Blank) on which no film was formed. The transmittance was improved by 7.7%.
 屈折率は、株式会社堀場製作所製分光エリプソメーター UVISEL-ERを用い、190nm~2100nmの範囲で測定すると、波長637nmでn=1.286であった。 The refractive index was n = 1.286 at a wavelength of 637 nm when measured in the range of 190 nm to 2100 nm using a spectroscopic ellipsometer “UVISEL-ER” manufactured by Horiba, Ltd.
 この被膜を、乾燥ネルを用いて300gの荷重で500回摩擦した後の外観検査では若干の擦り傷が認められたが、光学特性にはほとんど変化がなかった。また純水接触角を測定したところ6.5°で優れた親水性を示した。 In the appearance inspection after this coating was rubbed 500 times with a load of 300 g using a dry flannel, slight scratches were observed, but the optical characteristics were hardly changed. Further, when the contact angle with pure water was measured, it showed excellent hydrophilicity at 6.5 °.
 この被膜を45°傾斜の屋外暴露をしたところ、6か月経過でも純粋接触角は12.4°で親水性を示し、またヘイズ値の変化は+0.51%と殆ど汚染は認められず親水性と自浄機能を維持していた。 When this film was exposed outdoors at an inclination of 45 °, the pure contact angle was 12.4 ° even after 6 months, showing hydrophilicity, and the change in haze value was + 0.51%. Maintained sex and self-cleaning function.
また、この被膜を25℃相対湿度50%の環境下で30日放置後の表面抵抗値を測定したところ6.9×108Ω.cmであり、優れた帯電防止性能を有することが確認された。 Further, when the surface resistance value of this film after being left for 30 days in an environment of 25 ° C. and 50% relative humidity was measured, it was 6.9 × 10 8 Ω · cm, and it was confirmed that it had excellent antistatic performance . It was.
実施例2
 実施例1で合成した水酸化フッ化マグネシウムゾルを140ml分取して、これに、金属酸化物としてH.C.スタルク社の半導体および電子産業向け高純度製品AMPERTEC試薬Ta(OEt)5を、Ta25換算で2.4質量%となるように調整したエタノール溶液を30ml、攪拌しながら加え、さらにコロイダルシリカとして、市販の日揮日本触媒株式会社製、商品名、OSCAL1432をSiO2換算で1.6質量%となるように調製したエタノール溶液を35ml加えて、60℃で16時間撹拌して、無色透明の塗布液を得た。OEtはエトキシ基の略である(以下、同じ)。
Example 2
140 ml of the magnesium hydroxide fluoride sol synthesized in Example 1 was collected, and H. as a metal oxide was added thereto. C. Stark's high-purity product AMPERTEC reagent Ta (OEt) 5 for the semiconductor and electronics industries is added with 30 ml of ethanol solution adjusted to 2.4% by mass in terms of Ta 2 O 5 with stirring, and colloidal silica. As a commercially available product of JGC Nippon Shokubai Co., Ltd., trade name, OSCAL1432, 35 ml of an ethanol solution prepared so as to be 1.6% by mass in terms of SiO 2 was added and stirred at 60 ° C. for 16 hours. A coating solution was obtained. OEt is an abbreviation for ethoxy group (hereinafter the same).
 ディップ法を採用し、厚さ3mm、大きさ100mm×100mmソーダライムシリケートガラス基板を、該塗布液に浸漬させた後、5.3mm/secの速度で引き上げ、ガラス基板の両面に塗布した後、100℃で30分乾燥させた。該ガラス基板を520℃の電気炉で、昇温1.5時間、1時間保持して取り出したところ、青紫色透明の被膜を得た。 Adopting a dip method, a soda lime silicate glass substrate having a thickness of 3 mm and a size of 100 mm × 100 mm was immersed in the coating solution, then pulled up at a rate of 5.3 mm / sec, and applied to both surfaces of the glass substrate. It was dried at 100 ° C. for 30 minutes. The glass substrate was taken out by holding it in an electric furnace at 520 ° C. for 1.5 hours for 1 hour to obtain a blue-violet transparent film.
 このようにして、屈折率調整剤の含量が、モル比で、水酸化フッ化マグネシウム:(酸化タンタル+シリカ)=10:1.9の親水性低反射膜が得られた。膜厚は、前記触針式表面形状測定器により測定したところ、108nmであった。 Thus, a hydrophilic low-reflection film having a refractive index adjusting agent content of molar ratio of magnesium hydroxide fluoride: (tantalum oxide + silica) = 10: 1.9 was obtained. The film thickness was 108 nm as measured by the stylus type surface shape measuring instrument.
 図2に、被膜を形成したガラス基板の走査型電子顕微鏡(SEM)写真を示す。 FIG. 2 shows a scanning electron microscope (SEM) photograph of the glass substrate on which the film is formed.
 また、図3に、被膜を形成したガラス基板の透過率曲線を示す。可視光域のみならず、近赤外域も透過率に優れる。 FIG. 3 shows a transmittance curve of a glass substrate on which a film is formed. Not only the visible light region but also the near infrared region has excellent transmittance.
 図3の光透過率曲線(実施例2)に示すように、波長380nm~780nmの範囲の平均透過率を測定したところ、平均98.2%であり、未処理のガラス基板(素板:Blank)の平均透過率90.5%と比較して7.7%大きく、透過率が大きく向上していた。 As shown in the light transmittance curve (Example 2) of FIG. 3, when the average transmittance in the wavelength range of 380 nm to 780 nm was measured, the average was 98.2%, and an untreated glass substrate (base plate: Blank) ) And the average transmittance of 90.5% were 7.7% larger, and the transmittance was greatly improved.
 屈折率は、株式会社堀場製作所製分光エリプソメーターUVISEL-ERを用いて、190nm~2100 nmの範囲で測定すると、波長637nmで、n=1.291であった。 The refractive index, when measured in the range of 190 nm to 2100 nm using a spectroscopic ellipsometer UVISEL-ER manufactured by Horiba, Ltd., was n = 1.291 at a wavelength of 637 nm.
 この被膜を、乾燥ネルにより300g荷重の荷重をかけて1000回摩擦した後の外観検査では、若干の擦り傷が認められたが、光学特性には変化がなかった。また純水接触角を測定したところ、4.8°で超親水性を示した。 In the appearance inspection after the coating was rubbed 1000 times with a load of 300 g using a dry flannel, some scratches were observed, but the optical characteristics were not changed. Moreover, when the pure water contact angle was measured, it showed super hydrophilicity at 4.8 °.
 この被膜を45°傾斜の屋外暴露をしたところ、6か月経過でも純水接触角は10.7°で親水性を示し、またヘイズ値の変化は+0.4%と殆ど汚染は認められず親水性と自浄機能を維持していた。 When this film was exposed outdoors at an inclination of 45 °, the pure water contact angle was 10.7 ° even after 6 months, and it showed hydrophilicity, and the change in haze value was + 0.4% with almost no contamination. Maintained hydrophilicity and self-cleaning function.
 また、この被膜を室内で120日放置し、21℃相対湿度22.5%の環境下での表面抵抗値を測定したところ3.3×109Ω・cmであり、優れた親水性性能を有することが確認された。 The film was left indoors for 120 days, and the surface resistance value measured under an environment of 21 ° C. and 22.5% relative humidity was 3.3 × 10 9 Ω · cm. Excellent hydrophilic performance was obtained. It was confirmed to have.
 酸化タンタルを用いた本実施例の親水性低反射部材の表面に形成してなる親水性低反射膜を、エッチングしながら、オージェ分析したところ、深さ方向にフッ素の含有が徐々に減少し、タンタルの含有が徐々に増大していた。さらに親水性低反射膜と透明基材であるガラス板の境界面では、酸素およびケイ素が急増し、タンタルとフッ素が完全に消滅した。 When the Auger analysis was performed while etching the hydrophilic low reflection film formed on the surface of the hydrophilic low reflection member of this example using tantalum oxide, the fluorine content gradually decreased in the depth direction. The tantalum content gradually increased. Furthermore, oxygen and silicon increased rapidly and tantalum and fluorine disappeared completely at the boundary surface between the hydrophilic low-reflection film and the glass plate as the transparent substrate.
実施例3
 実施例1で合成した水酸化フッ化マグネシウムゾルを120ml分取した。これに金属酸化物として、株式会社高純度化学研究所製試薬、ニオブイソプロポキシドNb(OiPr)5をNb25換算で2.2質量%になるようにIPAを加え調製した液を25ml攪拌しながら加えて、さらに和光純薬工業株式会社製試薬、Al(OsBu)3をAl23換算で、2.0質量%となるように調整したエタノール溶液25mlを加えて、60℃で16時間撹拌して、無色透明の塗布液を得た。
Example 3
120 ml of the magnesium hydroxide fluoride sol synthesized in Example 1 was collected. 25 ml of a liquid prepared by adding IPA as a metal oxide to Niobium Isopropoxide Nb (OiPr) 5 by 2.2% by mass in terms of Nb 2 O 5 as a metal oxide In addition, with stirring, 25 ml of an ethanol solution prepared by adjusting Wako Pure Chemical Industries, Ltd. reagent, Al (OsBu) 3 to 2.0 mass% in terms of Al 2 O 3 , was added at 60 ° C. The mixture was stirred for 16 hours to obtain a colorless and transparent coating solution.
 ディップ法を採用し、100mm×100mm×3mmソーダライムガラス基板を該塗布液に浸漬させた後、6.0mm/secの速度で引き上げ、ガラス基板の両面に塗布した後、100℃で30分乾燥させた。該ガラス基板を520℃の電気炉で、昇温1.5時間、1時間保持して取り出し、反射色が青紫色の被膜を得た。 Adopting a dip method, a 100 mm × 100 mm × 3 mm soda lime glass substrate is immersed in the coating solution, then pulled up at a speed of 6.0 mm / sec, applied to both surfaces of the glass substrate, and then dried at 100 ° C. for 30 minutes. I let you. The glass substrate was taken out in an electric furnace at 520 ° C. while being heated for 1.5 hours for 1 hour to obtain a coating film having a blue-violet reflection color.
このようにして、モル比で、水酸化フッ化マグネシウム:(酸化ニオブ+アルミナ)=10:1.9の親水性低反射膜が得られた。膜厚は、触針式表面形状測定器により測定したところ、111nmであった。 In this manner, a hydrophilic low reflection film having a molar ratio of magnesium hydroxide fluoride: (niobium oxide + alumina) = 10: 1.9 was obtained. The film thickness was 111 nm as measured by a stylus type surface shape measuring instrument.
 図4に、被膜を形成したガラス基板の走査型電子顕微鏡(SEM)写真を示す。 FIG. 4 shows a scanning electron microscope (SEM) photograph of the glass substrate on which the film is formed.
 また、図5に、被膜を形成したガラス基板の透過率曲線を示す。可視光域のみならず、近赤外域も透過率に優れる。 FIG. 5 shows a transmittance curve of a glass substrate on which a film is formed. Not only the visible light region but also the near infrared region has excellent transmittance.
 図5の光透過率曲線(実施例3)に示すように、波長380nm~780nmの範囲の光透過率を測定したところ、平均透過率97.7%であり、被膜を形成していない未処理のガラス基板(素板:BLank)の平均透過率90.2%と比較して、7.5%透過率が向上していた。 As shown in the light transmittance curve (Example 3) of FIG. 5, when the light transmittance in the wavelength range of 380 nm to 780 nm was measured, the average transmittance was 97.7%, and no coating was formed. Compared with the average transmittance of 90.2% of the glass substrate (base plate: Brank), the transmittance was improved by 7.5%.
 屈折率は、株式会社堀場製作所製分光エリプソメーターUVISEL-ERにて測定したところ、波長637mで、n=1.310であった。 The refractive index was measured with a spectroscopic ellipsometer UVISE-ER manufactured by Horiba, Ltd., and the wavelength was 637 m and n = 1.310.
 この被膜を、乾燥ネルにより300gの荷重をかけて1000回摩擦した後の外観検査では、若干の擦り傷が認められたが、光学特性には変化がなかった。また純水接触角を測定したところ4.0°以下で優れた親水性を示した。 In the appearance inspection after the coating was rubbed 1000 times with a load of 300 g using a dry flannel, some scratches were observed, but the optical characteristics were not changed. Moreover, when the pure water contact angle was measured, it showed excellent hydrophilicity at 4.0 ° or less.
 この被膜を45°傾斜の屋外暴露をしたところ、6か月経過でも純粋接触角は9.6°で親水性を示し、またヘイズ値の変化は+0.9%と殆ど汚染は認められず親水性と自浄機能を維持していた。 When this film was exposed outdoors at an inclination of 45 °, the pure contact angle was 9.6 ° even after 6 months, and it was hydrophilic, and the change in haze value was + 0.9%. Maintained sex and self-cleaning function.
 また、この被膜を室内で120日放置し、21℃相対湿度22.5%の環境下での表面抵抗値を測定したところ6.0×108Ω.cmであり、優れた帯電防止性能を有することが確認された。 The film was left indoors for 120 days, and the surface resistance value measured under an environment of 21 ° C. and 22.5% relative humidity was 6.0 × 10 8 Ω · cm . It was confirmed to have.
 実施例1~3によれば、本発明の親水性低反射膜は、低反射・親水性、防汚性のいずれの効果も優れており、帯電防止性能を有し汚れにくく高性能の低反射膜を得ることが可能になることは明白である。 According to Examples 1 to 3, the hydrophilic low-reflection film of the present invention is excellent in all of the effects of low reflection, hydrophilicity and antifouling, has antistatic performance, and is highly resistant to low dirt. Obviously, it becomes possible to obtain a membrane.
 本発明により、表面に耐久性のある親水性かつ低屈折率である親水性低反射膜が形成された親水性低反射部材が得られた。本発明の親水性低反射部材は、レンズ等の光学材料、陰極線管や液晶表示装置等の画像表示面、窓やショーケース、天窓材、太陽電池、温水器、照明器具等の板ガラスや透明プラスチック等の親水性・防汚性・低反射帯電防止の求められる広い分野において利用できる。また、紫外から可視光の波長域ばかりでなく、近赤外波長域の透過性に優れるため、太陽電池表面保護部材、特に太陽電池カバーガラスとして有用である。 According to the present invention, a hydrophilic low reflection member having a hydrophilic low reflection film having a durable hydrophilic and low refractive index formed on the surface was obtained. The hydrophilic low-reflection member of the present invention includes optical materials such as lenses, image display surfaces such as cathode ray tubes and liquid crystal display devices, windows and showcases, skylight materials, solar cells, water heaters, lighting devices, etc. It can be used in a wide range of fields where hydrophilicity, antifouling properties, and low reflection antistatic properties are required. Moreover, since it is excellent not only in the ultraviolet to visible wavelength range but also in the near-infrared wavelength range, it is useful as a solar cell surface protective member, particularly a solar cell cover glass.

Claims (10)

  1. 透明基材およびその表面に形成される親水性低反射膜を有する親水性低反射部材であって、該親水性低反射膜が、水酸化フッ化マグネシウム微粒子と、屈折率調整材としての酸化タングステン、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブおよび酸化タンタルからなる群から選ばれた少なくとも1種以上の金属酸化物を含有してなり、屈折率が1.23以上、1.41以下であることを特徴とする親水性低反射部材。 A hydrophilic low-reflection member having a transparent substrate and a hydrophilic low-reflection film formed on the surface thereof, wherein the hydrophilic low-reflection film comprises magnesium hydroxide fluoride fine particles and tungsten oxide as a refractive index adjusting material. And at least one metal oxide selected from the group consisting of molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide and tantalum oxide, and has a refractive index of 1.23 or more and 1.41 or less. A hydrophilic low reflection member characterized by the above.
  2. 水酸化フッ化マグネシウムが、MgF2-x(OH)x(x=0.01~0.5)であることを特徴とする、請求項1に記載の親水性低反射部材。 The hydrophilic low-reflection member according to claim 1, wherein the magnesium hydroxide fluoride is MgF 2-x (OH) x (x = 0.01 to 0.5).
  3. 親水性低反射膜において、水酸化フッ化マグネシウムに対する屈折率調整材のモル比が、0.5:10~30:10の範囲内にあることを特徴とする、請求項1または請求項2に記載の親水性低反射部材。 3. The hydrophilic low reflection film according to claim 1, wherein the molar ratio of the refractive index adjusting material to the magnesium hydroxide fluoride is in the range of 0.5: 10 to 30:10. The hydrophilic low reflection member as described.
  4. 親水性低反射膜が、屈折率調整材として、さらに、シリカ、アルミナ、セリア、ジルコニア、チタニア、酸化スズ、酸化インジウム、酸化亜鉛、酸化アンチモンおよび酸化ランタンからなる群から選ばれた少なくとも1種以上の金属酸化物を含有することを特徴とする、請求項1乃至請求項3のいずれか1項に記載の親水性低反射部材。 The hydrophilic low-reflective film is at least one selected from the group consisting of silica, alumina, ceria, zirconia, titania, tin oxide, indium oxide, zinc oxide, antimony oxide and lanthanum oxide as a refractive index adjusting material. The hydrophilic low reflection member according to any one of claims 1 to 3, wherein the hydrophilic low reflection member comprises:
  5. 380nm以上、2000nm以下の波長範囲における親水性低反射部材の平均透過率が、同じ波長範囲における透明基材の平均透過率よりも6%以上高いことを特徴とする、請求項1乃至請求項4のいずれか1項に記載の親水性低反射部材。 The average transmittance of the hydrophilic low-reflection member in the wavelength range of 380 nm or more and 2000 nm or less is 6% or more higher than the average transmittance of the transparent substrate in the same wavelength range. The hydrophilic low-reflection member according to any one of the above.
  6. 親水性低反射膜表面における水の接触角が30°以下であることを特徴とする、請求項1乃至請求項5のいずれか1項に記載の親水性低反射部材。 The hydrophilic low reflection member according to any one of claims 1 to 5, wherein a contact angle of water on the surface of the hydrophilic low reflection film is 30 ° or less.
  7. 親水性低反射膜表面の表面抵抗値が1×1010Ω.cm以下であることを特徴とする、請求項1乃至請求項6のいずれか1項に記載の親水性低反射部材。 Wherein a surface resistance value of the hydrophilic low-reflection film surface is not more than 1 × 10 10 Ω. Cm, hydrophilic low-reflection member according to any one of claims 1 to 6.
  8. 請求項1乃至請求項7のいずれか1項に記載の親水性低反射部材を用いたことを特徴とする太陽電池用表面保護部材。 A surface protection member for a solar cell, wherein the hydrophilic low reflection member according to any one of claims 1 to 7 is used.
  9. 水酸化フッ化マグネシウム微粒子と、タングステン、モリブデン、クロム、バナジウム、ニオブおよびタンタルからなる群から選ばれた少なくとも1種以上の金属化合物を含有する塗布液を、透明基材表面に塗布後、焼成することを特徴とする、請求項1乃至請求項8に記載の親水性低反射部材の製造方法。 A coating solution containing magnesium hydroxide fluoride fine particles and at least one metal compound selected from the group consisting of tungsten, molybdenum, chromium, vanadium, niobium and tantalum is applied to the surface of the transparent substrate and then baked. The method for producing a hydrophilic low-reflection member according to any one of claims 1 to 8, wherein
  10. 水酸化フッ化マグネシウム微粒子と、タングステン、モリブデン、クロム、バナジウム、ニオブおよびタンタルからなる群から選ばれた少なくとも1種以上の金属の化合物と、ケイ素、アルミニウム、セリウム、ジルコニウム、チタン、スズ、インジウム、亜鉛、アンチモンおよびランタンからなる群から選ばれた少なくとも1種以上の金属化合物が分散した塗布液を、透明基材表面に塗布後、焼成することを特徴とする、請求項4乃至請求項8に記載の親水性低反射部材の製造方法。 Magnesium hydroxide fluoride fine particles, at least one metal compound selected from the group consisting of tungsten, molybdenum, chromium, vanadium, niobium and tantalum, silicon, aluminum, cerium, zirconium, titanium, tin, indium, The coating liquid in which at least one metal compound selected from the group consisting of zinc, antimony and lanthanum is dispersed is applied to the surface of the transparent substrate and then baked. The manufacturing method of the hydrophilic low-reflection member of description.
PCT/JP2011/051869 2010-02-01 2011-01-31 Hydrophilic low-reflection member WO2011093484A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010020028 2010-02-01
JP2010-020028 2010-02-01
JP2011-013090 2011-01-25
JP2011013090A JP2011175252A (en) 2010-02-01 2011-01-25 Hydrophilic low-reflection member

Publications (1)

Publication Number Publication Date
WO2011093484A1 true WO2011093484A1 (en) 2011-08-04

Family

ID=44319461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051869 WO2011093484A1 (en) 2010-02-01 2011-01-31 Hydrophilic low-reflection member

Country Status (2)

Country Link
JP (1) JP2011175252A (en)
WO (1) WO2011093484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187512A1 (en) * 2018-03-27 2019-10-03 富士フイルム株式会社 Light-transmitting member, image display device, and watch

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262828A (en) * 1985-09-13 1987-03-19 Toray Ind Inc Coated spherical fine particle of epoxy resin
KR102149937B1 (en) 2013-02-22 2020-09-01 삼성전자주식회사 Photoelectronic device and image sensor
JP2016115689A (en) * 2013-04-12 2016-06-23 株式会社クラレ Optical element, design method and condensing solar power generation device
CN104927416B (en) * 2015-06-09 2017-08-29 中国南玻集团股份有限公司 Simaldrate colloidal sol and doping nucleocapsid silicon dioxide microsphere coating liquid and application and preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121841A1 (en) * 2004-06-11 2005-12-22 Zeon Corporation Reflection preventing laminated body and optical member
JP2006098997A (en) * 2004-09-30 2006-04-13 Dainippon Printing Co Ltd Optical laminate and optical element
WO2009107665A1 (en) * 2008-02-25 2009-09-03 セントラル硝子株式会社 Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
JP2010012642A (en) * 2008-07-02 2010-01-21 Central Glass Co Ltd Low reflective member and manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121841A1 (en) * 2004-06-11 2005-12-22 Zeon Corporation Reflection preventing laminated body and optical member
JP2006098997A (en) * 2004-09-30 2006-04-13 Dainippon Printing Co Ltd Optical laminate and optical element
WO2009107665A1 (en) * 2008-02-25 2009-09-03 セントラル硝子株式会社 Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
JP2010012642A (en) * 2008-07-02 2010-01-21 Central Glass Co Ltd Low reflective member and manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187512A1 (en) * 2018-03-27 2019-10-03 富士フイルム株式会社 Light-transmitting member, image display device, and watch
JPWO2019187512A1 (en) * 2018-03-27 2020-12-03 富士フイルム株式会社 Translucent member, image display device and clock

Also Published As

Publication number Publication date
JP2011175252A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
US7575731B2 (en) Fine particles of tin-modified rutile-type titanium dioxide and method of making thereof
WO2009107665A1 (en) Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
EP1447433B1 (en) Coating material composition and article having coating film formed therewith
JP4550753B2 (en) Method for producing surface-treated titanium oxide sol
WO2014061606A1 (en) Antifouling antireflection film, article and method for manufacturing same
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
WO2011027827A1 (en) Article having low-reflection film on surface of base material
WO2011093484A1 (en) Hydrophilic low-reflection member
TW200934732A (en) Modified metal oxide complex sol, coating composition and optical member
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
JP2012148950A (en) Low-reflective film, method for formation thereof, and low-reflective member equipped therewith
JP4289023B2 (en) Thermochromic material and thermochromic film or thermochromic glass using the same
JP6491934B2 (en) Antireflection article manufacturing method and antireflection article
JP2015197540A (en) Anti-reflection article, image display device, and manufacturing method for anti-reflection article
WO2012008427A1 (en) Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith
WO2019216152A1 (en) Surface-treated infrared-absorbing fine particle dispersion and infrared-absorbing transparent substrate
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP5016192B2 (en) Metal oxide particles and uses thereof
JP6910774B2 (en) An optical film, a base material provided with the optical film, and an optical device having the base material.
JP2011028185A (en) Hydrophilic low reflection member
JP2009046609A (en) Coating liquid for forming heat ray and uv ray shielding film, heat ray and uv ray shielding film, and heat ray and uv ray shielding substrate
JP2000335940A (en) Low-reflecting glass article
JP2013121893A (en) Method of producing glass with low reflective film
JP2010107583A (en) Low reflective film
JP2012148951A (en) Coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member produced by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737193

Country of ref document: EP

Kind code of ref document: A1