JP2012145090A - Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel - Google Patents
Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel Download PDFInfo
- Publication number
- JP2012145090A JP2012145090A JP2011014566A JP2011014566A JP2012145090A JP 2012145090 A JP2012145090 A JP 2012145090A JP 2011014566 A JP2011014566 A JP 2011014566A JP 2011014566 A JP2011014566 A JP 2011014566A JP 2012145090 A JP2012145090 A JP 2012145090A
- Authority
- JP
- Japan
- Prior art keywords
- artificial
- water
- waterway
- water channel
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
本発明は、基本構造として、周囲の地表面よりも上に設けた人工水路に自然勾配によらない任意の勾配を設け、且つ、下掛け水車を人工水路に直接設けて一体化する為に、人工水路の一部に支点部と軸受けを設けて、そこを介して下掛け水車を設置して両者を一体化し、その下掛け水車に発電機を接続して発電する、人工水路式水車発電機による発電方法と海水干満式水車発電機による発電方法と人工水路式水車発電機と海水干満式水車発電機と下掛け水車発電機用の人工水路と人工水路式灌漑用水車に関するものである。
尚、人工水路とは従来の土木工事等により、地形に合わせて地面を掘り下げて傾斜(勾配)を作り流れを作り出す水路ではなく、それ以外の、例えば管状のものや雨どい状の半円管状等のような人工構造物を斜面上(又は斜面の半地下)に設け、又はその人工構造物に自然勾配によらない任意の勾配を設けて流れを作り出し、下掛け水車(2)による発電用又は灌漑用として使用する為の水路を言うものとする。又、単に自然勾配による流れの端から流れ落ちる段差のある地形等で、その流れを受ける為の短距離のものではなく、少なくとも発電機を連結した下掛け水車(人が持ち運び出来るミニ水車でなく通常の従来型の水車)を十分な間隔をもって複数連ねて、発電用又は灌漑用として利用するものを言うものとする。又自然勾配とは、自然界の流れにおける勾配の他、土木工事で地形に合わせて地面を掘り流れを作り出す従来型の水路の流れの勾配を言うものとする。又、下掛け水車とは水路の流れを利用する本来の下掛け水車の他に、上掛け水車を除く水路に設置した胸掛け水車や中掛け水車や前掛け水車や流し掛け水車等の水車の底面部を、水路を流れる水が上流から下流へと流れるもの、又は水車の後方部から底面部へと水路の下流に向かって流れ下る水の圧力を動力源とする水車をいうものとする。In the present invention, as a basic structure, an artificial canal provided above the surrounding ground surface is provided with an arbitrary gradient not depending on a natural gradient, and an underwater turbine is directly provided on the artificial canal for integration. An artificial waterway type turbine generator that provides a fulcrum and a bearing on a part of an artificial waterway, installs a lower water turbine through the fulcrum, integrates both, and connects the generator to the lower waterwheel to generate electricity. The present invention relates to a power generation method by a seawater tidal water turbine generator, an artificial waterway turbine power generator, a seawater tidal water turbine generator, an artificial waterway for an underwater turbine power generator, and an artificial waterway irrigation water turbine.
The artificial waterway is not a waterway that creates a flow by creating a slope (gradient) by digging the ground according to the topography by conventional civil engineering work, etc. Other than that, for example, a tubular one or a gutter-like semicircular tubular An artificial structure such as the above is installed on the slope (or the semi-underground of the slope), or the artificial structure is provided with an arbitrary gradient that does not depend on the natural gradient to create a flow, and is used for power generation by the underwater turbine (2) Or it shall be a waterway for use in irrigation. Also, it is not just a short distance to receive the flow, such as terrain with a step that flows down from the end of the flow due to the natural gradient, but at least an underwater turbine connected with a generator (usually not a mini waterwheel that can be carried by people) The conventional type of water turbines) are connected in series with sufficient intervals and used for power generation or irrigation. The natural gradient means a gradient of a conventional water channel that creates a flow by digging the ground according to the topography in civil engineering work in addition to the gradient in the flow of the natural world. In addition to the original under water wheel that uses the flow of the water channel, the under water wheel is the bottom surface of a water wheel such as a chest water wheel, a middle water wheel, a front water wheel, or a floating water wheel installed in a water channel other than the upper water wheel. This means that the water flowing through the water channel flows from the upstream to the downstream, or the water turbine that uses the pressure of the water flowing down from the rear part to the bottom surface of the water wheel toward the downstream of the water channel as a power source.
従来、小水力発電として、自然の流れによる水路や土木工事にて地形に合わせて人為的に設けた傾き(勾配)による水路に、下掛け水車を設置して行う発電や、導水先の水圧管路内の落差を利用した反動水車や衝動水車等による発電があった Conventionally, as small hydroelectric power generation, power generation performed by installing an underwater turbine on a waterway with natural flow or a waterway with an inclination (gradient) artificially provided according to the topography in civil engineering work, or a hydraulic pipe at the destination There was power generation by reaction water wheel or impulse water wheel using the head of the road
その為には、次のような課題があった。
(イ) 従来型の水路は、地形と云う自然の制約がある為に適地の問題があった。
(ロ) 従来の水路は、発電に関して「地形と云う自然の束縛」によりその概念から離れて自然を無視して水路の勾配や流量、流速等を自由に設計出来なかった。
(ハ) 従来の水路は、地形の束縛や制約があるので、谷を跨ぎ山や丘を超えて水路を自由に走らせ、そこに下掛け水車を設置して発電すると云う発想には至らなかった。
(ニ) 下掛け水車への評価は、上記理由と近代以前の水車とのイメ−ジの為に低く、発電用として多くは期待出来ないとして活用されてこなかった。又、自然勾配を利用するとの発想から抜け出せないので、パワフルな水流を得られなかった。その為、小水力とのイメージから抜け出て大規模発電施設の建設には至らなかった。
(ホ) 従来の水路は、自然の状態かそれに近く大雨等の災害時に破壊や障害物の混入や発電量の激変等の影響を受け易く、風力等も含めて系統の不安定要因であった。
(ヘ) 水圧管による発電も、その施設一ケ所のみであることと、適地の問題があった。(ト) そもそも水の無い所で水車は役に立たないので、大平原や砂漠や都市の空間やビルの屋上や島や山や丘等の水資源の乏しい場所に水路を設け水車発電を行うとの発想には至らなかった。又、自然条件の厳しい地での水車発電は無理があった。
(チ) 日本の水力発電は全体の約10%であるが、地球温暖化の中、有り余るクリ−ンエネルギ−源である水資源を十二分に活かしきれているとは云えず、中でも下掛け水車への評価は低くベ−ス供給源になることは想定さえもされなかった。その為、更に下掛け水車を利用、活用した新たな発電方法や施設は開発されなかった。
(リ) 環境問題の深刻化と化石燃料の代替エネルギ−需要の中で風力発電の技術革新が進む中、その技術を水力発電に活用出来ないのは勿体無い。取り分け同様の回転軸を動力伝達軸とする下掛け水車への活用は、従来型の自然勾配によるものでは多くは期待出来なかった。又、水資源の争奪も激化する中、古くから灌漑用でもあった下掛け水車がすたれ、発電用、灌漑用としても軽視されてきた。
本発明は、環境問題深刻化の中、以上の問題点を解決する為、特に近代以前の水車とのイメージで低評価の下掛け水車を発電用、灌漑用に大いに活かす為になされたものである。For that purpose, there were the following problems.
(B) The conventional waterway has a problem of suitable land due to the natural restriction of topography.
(B) With regard to power generation, the conventional canal could not be designed freely by ignoring nature because of the “constraint of nature called terrain” and ignoring nature.
(C) Because conventional waterways have terrain constraints and restrictions, the idea of running power freely across the valley and over the mountains and hills, and installing a water turbine underneath was not reached. .
(D) The evaluation of underwater turbines has been low because of the above reasons and the image of pre-modern water turbines, and it has not been used because many cannot be expected for power generation. Moreover, since it was not possible to escape from the idea of using a natural gradient, a powerful water flow could not be obtained. For this reason, it was not possible to get out of the image of small hydropower and build a large-scale power generation facility.
(E) Conventional waterways were susceptible to damage, mixed with obstacles, and sudden changes in power generation during natural disasters or near heavy disasters, and were unstable factors in the system including wind power. .
(F) Power generation using hydraulic pipes was limited to one facility, and there was a problem with the right location. (G) In the first place, a water turbine is useless in a place where there is no water, so it is said that water will be generated by setting up a water channel in places with poor water resources such as large plains, deserts, urban spaces, building rooftops, islands, mountains and hills. I did not come up with an idea. In addition, water turbine power generation was difficult in areas with severe natural conditions.
(H) Although Japan's hydroelectric power generation accounts for about 10% of the total, it cannot be said that water resources, which are an excess of clean energy sources, have been fully utilized during global warming. The evaluation of water turbines was low and was not even assumed to be a base source. For this reason, no new power generation method or facility that uses or uses underwater turbines has been developed.
(L) While the environmental problems are becoming more serious and technological innovation of wind power generation is progressing in the demand for alternative energy for fossil fuels, it is unavoidable that the technology cannot be used for hydropower generation. In many cases, it could not be expected to use it for the underwater turbine that uses the same rotating shaft as the power transmission shaft because of the conventional natural gradient. In addition, as competition for water resources has intensified, underwater turbines that have been used for irrigation for a long time have been passed down and have been neglected for power generation and irrigation.
The present invention was made in order to solve the above-mentioned problems amid serious environmental problems, and to make the most of the low-rated underwater turbine for power generation and irrigation, particularly in the image of a pre-modern turbine. is there.
(ヌ)水路を、従来の土木工事で地面を掘り下げて勾配を形成するものではなく、図16の様に管状の人工水路(1)にし(又は開放型や様々な形状の人工水路にして)周囲の地面よりも上の位置に(効率よく発電施設等ができるように配置して)設ける。
(ル)人工水路(1)に下掛け水車(2)を設ける為の開口部(17)と水車用の支点部(19)と軸受け(18)を設けて、人工水路(1)と下掛け水車(2)を一体化する。又は人工水路(1)に設けた発電機(3)を介して下掛け水車(2)を設けて一体化する。又は水路(4)に水車用の支点部(19)と軸受け(18)を設けて全体を一体化する。
(オ)人工水路(1)又は水路(4)に設けた下掛け水車(2)に発電機(3)を連結する。
(ワ)橋梁又はやぐら(13)又は支持部材(12)等と組合せて人工水路(1)の底面部と地表面との間に生じる空間を支え、自然勾配によらない任意の勾配を設ける。
(カ)流れ込み式又は海水の干満の利用又はポンプでの揚水等により又は古来からの水汲み用の水車により、水源より取水した水を人工水路(1)又は水路(4)に流し込みその水により、発電や水汲み桶を設けた灌漑用として下掛け水車(2)を活用する。
(ヨ)谷を跨ぎ山や丘を超えて人工水路(1)を自由に走らせて水路上で発電する為に、又は、段差のある地形や崖地や岩場等の地形でも流れを作り出してその落差を利用して発電する為に、人工水路(1)を、橋粱又はやぐら(13)又は支持部材(12)等で支えてその上を走らせる。又は橋梁又はやぐら(13)と人工水路(1)を一体化する。そして、発電機(3)を連結した下掛け水車(2)を人工水路(1)上に縦一列に複数、時に何十基、何百基と連ねて十分な流量、流速を人工的に得て発電する。
(タ)砂漠や丘や島や都市空間の水の無い所では溜池や貯水槽等の人工的水源を設け、ポンプで揚水した水を人工水路(1)に流入させて循環型にして下掛け水車による発電を行う。その人工水路(1)を建物や人工構造物等に設置し発電する。又、筏や船舶等の甲板に橋梁又はやぐら(13)と人工水路(1)又、水車用の開口部(17)を設け、それらや側面部にも複数の下掛け水車発電機を設けて流れにより発電する。
(レ)ダム又は堰又は段差のある流れ(25)の落差を利用活用して、そこから導水した水で新たな流れを作り出し人工水路(1)又は水路(4)上で下掛け水車発電機により発電する。その為に導水した水を出来れば上部貯水池(26)を介して人工水路(1)又は水路(4)に流し込む。場合によっては図46のように地を掘り下げて又は土を盛り上げ又は自然の斜面を削って整地された斜面を作り、水路を効率よく例えば並列又は横並び又は放射状に配置して大規模な発電施設とし、又は従来、水路に不向きであった地形では人工水路(1)を橋梁又はやぐら(13)等と組み合わせて図8や図9のように大規模な発電施設を作り、その人工的流れにより水車発電する。
(ソ)海の干満差を利用し、海に通じる段差のある区域を設けて最上部に海水を取水し溜めて人工水路又は水路に送水し(又は人工水路又は水路の端を海に通じさせて)下掛け水車発電機で発電し、最下部の海水用の溜め池等の排水門を介して排水する。
(ツ)流量や流速が十分にありながら自然条件が厳しく、ダム以外に発電施設の建設が困難であった上流部から低地に管路等で導水し下部貯水池(7)に溜めて、そこを介して図8や図9のような大規模且つ、多数の人工水路(1)又は水路(4)を効率よく例えば並列に何十、何百と設け、その流れにより下掛け水車発電機で発電する。
(ネ)人工水路(1)は、時に橋梁又はやぐら(13)上の空間を走るので自然条件が厳しい地、取り分け風の強い地で横風による人工水路(1)への影響を避けて、場合によっては人工水路(1)以外の周囲に設けた支点部(19)や軸受け(18)やタワー(16)等を介して下掛け水車発電機を人工水路(1)に設置し、自然の束縛から解き放たれて、丘を超え谷を跨いで自由に人工水路(1)を走らせて発電する。
本発明は、以上を特徴とする人工水路式水車発電機による発電方法と海水干満式水車発電機による発電方法と人工水路式水車発電機と海水干満式水車発電機と下掛け水車発電機用の人工水路と、人工水路式灌漑用水車である。(Nu) The waterway is not formed by digging the ground by conventional civil engineering work to form a gradient, but is made into a tubular artificial waterway (1) as shown in FIG. 16 (or an open type or various shapes of artificial waterways). It is provided at a position above the surrounding ground (arranged so that a power generation facility can be made efficiently).
(L) An opening (17) for providing the underwater water turbine (2) in the artificial water channel (1), a fulcrum (19) for the water wheel, and a bearing (18) are provided, and the artificial water channel (1) and the lower Integrate the water wheel (2). Alternatively, the lower water turbine (2) is provided and integrated through the generator (3) provided in the artificial water channel (1). Or the fulcrum part (19) and bearing (18) for water turbines are provided in a waterway (4), and the whole is integrated.
(E) The generator (3) is connected to the underwater turbine (2) provided in the artificial channel (1) or the channel (4).
(W) In combination with a bridge or tower (13) or a support member (12), etc., a space formed between the bottom surface of the artificial waterway (1) and the ground surface is supported, and an arbitrary gradient not depending on the natural gradient is provided.
(F) The water drawn from the water source is poured into the artificial waterway (1) or the waterway (4) by using the inflow type or by using the tidal water of the seawater or by pumping water from an ancient pump or by the water wheel for pumping water from the ancient times. The underwater turbine (2) will be used for irrigation with power generation and water pumps.
(Yo) In order to generate electricity on the waterway by running the artificial waterway (1) freely across the mountains and hills across the valley, or creating a flow even on topography with steps, cliffs and rocky terrain, etc. In order to generate electricity using the head, the artificial waterway (1) is supported by a bridge or a tower (13) or a support member (12) or the like and run on it. Alternatively, the bridge or tower (13) and the artificial waterway (1) are integrated. Then, a plurality of underwater turbines (2) connected to the generator (3) are vertically arranged on the artificial water channel (1), sometimes tens or hundreds in series, and a sufficient flow rate and flow velocity are artificially obtained to generate electricity. To do.
(T) In deserts, hills, islands, and places where there is no water in urban spaces, artificial water sources such as ponds and water storage tanks are installed, and the water pumped up is made to flow into the artificial waterway (1) and circulate. Power generation by water turbine. The artificial water channel (1) is installed in a building or an artificial structure to generate electricity. In addition, bridges or towers (13) and artificial waterways (1) are provided on the decks of dredgings and ships, etc., and openings (17) for water turbines are provided, and a plurality of underwater turbine generators are also provided on these and side parts. To generate electricity.
(Le) Utilizing the head of a dam or weir or a stepped flow (25), create a new flow with the water introduced from it, and drop it on the artificial waterway (1) or waterway (4) To generate electricity. For this purpose, if water is introduced, it flows into the artificial waterway (1) or waterway (4) through the upper reservoir (26). In some cases, as shown in Fig. 46, the ground is digged up or the soil is raised or the natural slope is cut to create a leveled slope, and the waterways are efficiently arranged, for example, in parallel or side-by-side or radially to form a large-scale power generation facility. Or, in the terrain that was not suitable for waterways in the past, the artificial waterway (1) is combined with a bridge or tower (13) to create a large-scale power generation facility as shown in FIGS. Generate electricity.
(Seo) Using the tidal range of the sea, set up an area with a step leading to the sea, take seawater at the top, store it, and send it to the artificial waterway or waterway (or let the end of the artificial waterway or waterway go to the sea B) Generate electricity with the underwater turbine generator and drain it through a drainage gate such as a bottom reservoir for seawater.
(Iv) Natural flow conditions and flow conditions are sufficient, but natural conditions are severe, and it was difficult to construct power generation facilities other than dams. 8 and 9, a large number of artificial waterways (1) or waterways (4) are efficiently provided, for example, tens or hundreds in parallel, and the flow is generated by the underwater turbine generator. To do.
(E) The artificial waterway (1) sometimes runs through the space on the bridge or tower (13), so avoiding the influence of the crosswind on the artificial waterway (1) in areas with severe natural conditions, especially in windy areas Depending on the nature of the artificial waterway (1), the underwater turbine generator can be installed in the artificial waterway (1) via a fulcrum (19), bearing (18), tower (16), etc. It is released from and runs through the artificial waterway (1) freely across the hill and across the valley to generate electricity.
The present invention provides a power generation method using an artificial waterway turbine generator, a power generation method using a seawater tidal turbine generator, an artificial waterway turbine generator, a seawater tidal turbine generator, and an underwater turbine generator characterized by the above. An artificial waterway and an artificial waterway type irrigation turbine.
(ナ)人工水路(1)と下掛け水車(2)と発電機(3)を一体化し、且つ、橋梁又はやぐら(13)と組み合わせることで地形と云う自然の束縛から解放されるので水車発電に関して、水路の勾配や流量や流速や経路等の設計が幅を持たせて出来るようになる。
(ラ)水路を人工水路(1)式にすることと、上記(ナ)の結果、地面を掘り下げて水路を作るのではなく、逆に地表面の上で任意の勾配を作り出してそこに下掛け水車発電機を設置できるので、図3や図8のように凹凸面や岩場や崖地や段差のある地形等でも人工水路(1)を走らせて、その場(人工水路上)で発電可能になる。
(ム)人工水路(1)に支点部(19)や軸受け(18)を設けることで、人工水路(1)と下掛け水車発電機が一体化され、更に橋梁又はやぐら(13)と組み合わせることで、図8、図9のような岩場や崖地や段差のある地形でも人工的落差と流れを作り出してそれによる大規模な下掛け水車(2)による発電施設の建設も可能になる。
(ウ))従来の水路は、水車発電に関して適地の問題があったが前記(ナ)〜(ム)のようにすることで自然勾配によらない任意の勾配が作れるので、谷を跨ぎ山や丘を越えて発電の為の人工水路(1)を自由に走らせ、今まで不可能であった地形や地上空間を含むその途中途中でも発電が可能になり、適地の問題も解消される。
(イ)下掛け水車への低評価は地形に束縛された自然勾配でのものだったが、人工水路(1)と下掛け水車(2)と発電機(3)を一体化し橋梁又はやぐら(13)等と組み合わせることで、流量、流速、勾配等を任意に設計して自由な流れを作り出して発電することが可能になる。その結果、従来の自然勾配による下掛け水車発電とは比べ物にならないパワフルな発電が可能になる。
(ノ)前記ムとエの結果、低評価であった下掛け水車発電が、ダムのおこぼれ水等で大変貌し巨大な発電施設に生まれ変わることも可能になる。例えば、図9を例にとると、人工水路(1)一本につき10基の下掛け水車発電機を、水平方向に20m毎に2m下る間に一基ずつ設けた場合、約、高さ20m、幅200mのやぐらとなる。そして、人工水路(1)の間隔を10m毎に並列に長さ1kmにわたって設けた場合で100本の人工水路(1)となり、全体で1,000基の下掛け水車発電機群の巨大な発電施設が橋梁又はやぐら(13)の上に誕生する。しかも、風力発電は、風力エネルギ−の約50%しか変換出来ないが水力はそのようなことはなく、更に水平方向に20m毎に2m下る(10m毎に1m下る)勾配は、流れとしては、かなりの急流であり従来の自然勾配の水車発電とは比較にならない発電量が期待できる。人工水路上の水車発電機の発電量は安定しており、風力発電機は風任せと、単純な比較は出来ないが、仮に直径60m〜80mの風力発電機の一日当たりの平均発電量と、水路の幅1.2m水深1m、水車の直径6m〜8mのものとの比較で、仮に5分の一なら200基、4分の一なら250基、3分の一なら333基の風力発電機群に相当することになる。(幅200m、長さ1kmの狭い空間にである)そして、人工水路式水車発電機はパワフルで安定しているのでベ−ス供給源の可能性も秘めている。更に、(アスワンダムは水量が有り余るとの説もあるがこの際、どの程度の水量が利用可能かは別として)もし、アスワンダム(ハイダム)や山峡ダムならその落差は約10倍以上なので図9とは比較にならない巨大な発電施設も可能となる。又、世界中に可能性のある場所は導水すればダムに限らず多々あると思われ、このような発電方法や施設でCO2ゼロのクリ−ンエネルギ−を、半永久的に生み出す可能性を秘めている。
(オ)風力発電の進歩で培われた発電機の技術を、自然勾配の下掛け水車発電では十分に活かせなかったが、人工水路(1)にして下掛け水車(2)と発電機(3)と橋梁又はやぐら(13)と一体化する事でパワーアップし、その技術を十二分に活かすことができる。
(ク)流れ込み式の人工水路(1)にすれば、例えばチベットやピレネ−やアルプス等の高地で取水し、仮りに1000m下るとして、水平方向に20m毎に1mずつ下り、その間隔で一基ずつ下掛け水車(2)を設置するとした場合1000基の規模となる。流れとしては細い一筋の流れであるが発電用としては十分な急流であり且つCO2排出0である。更に、並列にすれば2000基3000基―、となる。例えば図3や図25や図26や図49を大規模にしたもののようにこの地上に、規模の差はあれ条件に合う地形は多数存在すると思われる。このような発電方法や施設は従来のままでは不可能であったが、前記のように人工水路(1)と下掛け水車発電機と橋梁等を一体化することで可能となり、温暖化の中で安定したクリ−ンエネルギ−源となりうる。
(ヤ)人工水路(1)の流量は小さくてすむので橋梁又はやぐら(13)との組み合わせで循環型にした場合でも、揚水に要する電力は小さくて済むので太陽光発電や風力発電を蓄電してポンプの動力源にすれば安定した発電施設となり、問題化している系統の安定に役立ち、都市部での電力需要のピ−ク時に工場等で自家発電すれば遠隔地にある揚水発電所からの送電を抑えることに役立ち、更に停電時にも役立つ。
(マ)人工水路(1)を管状にすることで、台風や大雨等の自然災害時に水路への障害物等の混入や、大雨による水量の増加や発電量の激変からも守られ易くなる。
(ケ)今、日本ではダム発電は見直しの方向にあり、地球温暖化の中、新たなクリ−ンエネルギ−源の出現が望まれており、国策でもあるが、このような下掛け水車発電機の新たな利用法と施設によりそれに応えることが可能となる。
(フ)人工水路(1)と下掛け水車発電機と橋梁又はやぐら(13)と電動ポンプの組み合わせで、図4のように発電しながら送水した場合、仮に揚水に要する電力と下掛け水車発電機の発電量が水平地で+−ゼロとすると、殆んど自力で水をどこまでも送ることも可能になる。更にこの方法なら、平地はもちろんのこと高地を目指して引力に逆らって送水可能となり、例えば丘の向こうの水の無い地に送水して灌漑用とすることも出来る。又、山を超えて送水する場合も、全体として登りの消費電力はマイナスでも下りでプラスになるので計算上は標高が同じなら自力『電力』での送水も可能になるので、湿潤な地の水を山の反対側の乾燥地帯や砂漠や荒地等に供給可能となる。又、この方式は岩場等の水路建設困難な地域や砂漠の中をも突き切って水路を通すことも出来るので不毛の地に緑をもたらす可能性も秘めている。
(コ)管状の人工水路(1)は灼熱の太陽光線をさえぎり風に舞う塵あくたを遮断して水路を守りやすいので荒野や砂漠のような過酷な条件の地にでも水路を走らせることも可能であり、図23のように水車に水汲み用の桶(11)を設けることで、水の必要な地を潤すことが可能になり、干ばつ対策、更には新たな地の開墾も可能になる。
又、図32のように、蛇行する下流に発電しながら人工水路を走らせその一部を図60の様に取水することで空間に新たな灌漑用の水の道を作り出すことも出来る。
(エ)従来型の水路では、十分なパワ−が得られなかったが勾配が十分な斜面を構築し、そこに下掛け水車発電機と一体化した水路(4)を設けることで人工水路(1)と同じようなパワフルな流れが得られる。且つ水路(4)を並列に多数設けることで、条件がよければ図45のような大規模施設も可能になる。(Na) Since the artificial waterway (1), the underwater turbine (2) and the generator (3) are integrated and combined with the bridge or tower (13), it is freed from the natural restraint of terrain, so the turbine power generation With regard to, the design of the gradient, flow rate, flow velocity, route, etc. of the waterway can be widened.
(La) As a result of (1) and making the waterway into an artificial waterway (1), the waterway is not created by digging down the ground, but instead creating an arbitrary gradient on the ground surface Since a water turbine generator can be installed, the artificial waterway (1) can be run on uneven surfaces, rocky terrain, terrain with bumps, etc. as shown in Figs. 3 and 8, and power can be generated on the spot (on the artificial waterway). become.
(M) By providing the fulcrum (19) and the bearing (18) in the artificial water channel (1), the artificial water channel (1) and the underwater turbine generator are integrated, and further combined with a bridge or tower (13). Thus, it is possible to construct a power generation facility using a large underwater turbine (2) by creating an artificial head and a flow even on rocky areas, cliffs and stepped terrain as shown in FIGS.
(C) The conventional waterway has a problem of suitable land for water turbine power generation, but any gradient that does not depend on the natural gradient can be created by doing as in (na) to (m) above. The artificial waterway (1) for power generation can be freely run across the hill, and power generation is possible in the middle including the topography and ground space, which has been impossible until now, and the problem of suitable land is solved.
(B) Although the low evaluation for the underwater turbine was based on a natural slope confined to the topography, the artificial waterway (1), the underwater turbine (2) and the generator (3) were integrated into a bridge or tower ( By combining with 13) etc., it is possible to generate power by creating a free flow by arbitrarily designing the flow rate, flow velocity, gradient, etc. As a result, powerful power generation that cannot be compared with conventional underwater turbine power generation using a natural gradient is possible.
(B) As a result of Mu and D, the underwater turbine power generation, which has been evaluated low, can be transformed into a huge power generation facility due to drowning water from the dam. For example, taking FIG. 9 as an example, if one underwater turbine generator is provided for each artificial water channel (1), with a height of 20 m. A tower with a width of 200m. And, when the interval of the artificial water channel (1) is provided in parallel for every 10 m over a length of 1 km, it becomes 100 artificial water channels (1), and the total generation of 1,000 underwater turbine generator groups as a whole The facility is born on a bridge or tower (13). Moreover, wind power generation can convert only about 50% of wind energy, but hydraulic power is not such, and the gradient that falls 2m every 20m in the horizontal direction (down 1m every 10m) is a flow. The amount of power generation is quite rapid and can be expected to be incomparable with conventional turbines with natural gradients. The power generation amount of the water turbine generator on the artificial waterway is stable, and it is not possible to make a simple comparison with the wind power generator, but the average power generation per day of a wind power generator with a diameter of 60 to 80 m Compared with a waterway width of 1.2 m, a depth of 1 m, and a turbine wheel diameter of 6 m to 8 m, there are 200 wind turbines for one fifth, 250 for one quarter, and 333 wind generators for one third. It will correspond to a group. (It is in a narrow space with a width of 200m and a length of 1km) And the artificial waterway turbine generator is powerful and stable, so it has the potential of a base supply source. Furthermore, there is a theory that the Aswan dam has a lot of water, but at this time, the amount of water that can be used is different. A huge power generation facility that is not comparable to 9 is also possible. In addition, there are many potential places around the world, not limited to dams, if water is introduced, and there is a possibility of generating semi-permanent clean energy with zero CO2 by using such power generation methods and facilities. Yes.
(E) Although the generator technology cultivated through the advancement of wind power generation could not be fully utilized in the underwater turbine power generation with a natural gradient, the artificial waterway (1) and the underwater turbine (2) and the generator (3 ) And the bridge or yagura (13), the power can be improved and the technology can be fully utilized.
(H) In the case of the flow-in type artificial waterway (1), for example, water is taken up at a high altitude such as Tibet, Pyrenees, Alps, etc. When the lower water turbine (2) is installed one by one, the scale becomes 1000 units. Although the flow is a thin stream, it is a rapid stream sufficient for power generation and CO2 emission is zero. Furthermore, if it is paralleled, it becomes 2000 groups 3000 groups. For example, it seems that there are many terrains on the ground that meet the conditions regardless of the scale, such as those in FIGS. 3, 25, 26, and 49. Such power generation methods and facilities were impossible in the past, but as described above, it becomes possible by integrating the artificial waterway (1), the underwater turbine generator and the bridge, etc. And can be a stable clean energy source.
(Y) Since the flow rate of the artificial waterway (1) can be small, even when it is combined with a bridge or tower (13), the power required for pumping can be reduced, so solar power and wind power can be stored. If it is used as a power source for the pump, it will become a stable power generation facility, which will help to stabilize the problem system, and if it generates electricity in the factory at the time of peaking demand for electricity in urban areas, it will be from a remote pumped storage power plant It helps to reduce power transmission, and also helps during power outages.
(M) By making the artificial waterway (1) tubular, it is easy to protect against obstacles and the like in the waterway during natural disasters such as typhoons and heavy rain, and from an increase in the amount of water caused by heavy rain and a drastic change in power generation.
(K) Now, dam power generation is in the direction of review in Japan, and the emergence of a new clean energy source is desired in the midst of global warming. It is possible to respond to it by new usage and facilities.
(F) When water is supplied while generating electricity as shown in Fig. 4 by combining an artificial waterway (1), an underwater turbine generator, a bridge or tower (13) and an electric pump, the electric power required for pumping and underwater turbine power generation If the power generation amount of the machine is + -zero on horizontal ground, it will be possible to send water almost anywhere on its own. Furthermore, with this method, it is possible to supply water against the attraction of highlands as well as flat land. For example, water can be supplied to a land with no water over the hill for irrigation. Also, even when water is transferred over the mountain, the power consumption for climbing as a whole is negative, but it is positive for downhill. Water can be supplied to dry areas, deserts and wasteland on the other side of the mountain. In addition, this method has the potential to bring greenery to barren land because it can pass through waterways that pass through areas such as rocky places where it is difficult to construct waterways and deserts.
(G) Tubular artificial waterway (1) blocks the burning sun rays and shields the dust from flying in the wind, making it easy to protect the waterway so that it can be run even in harsh conditions such as wilderness and desert As shown in Fig. 23, it is possible to moisten the land where water is needed by providing a water pump (11) in the water wheel, and it is possible to drought countermeasures and to open a new land. become.
Further, as shown in FIG. 32, a new irrigation water path can be created in the space by running the artificial water channel while generating power downstream of meandering and taking a part of it as shown in FIG.
(D) In the conventional water channel, sufficient power was not obtained, but a slope with sufficient slope was constructed, and an artificial water channel (4) integrated with the underwater turbine generator was provided there. A powerful flow similar to 1) is obtained. In addition, by providing a large number of water channels (4) in parallel, a large-scale facility as shown in FIG.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
図1は、本発明の第1実施態様を示す斜視図、図2は同じく側面図である。 管状の人工水路(1)の天井部に、下掛け水車(2)を設置する為の開口部(17)と水車用の支点部(19)と軸受け(18)を設けてそのスペ−スに発電機(3)を連結した下掛け水車(2)を設置し、下掛け水車発電機と人工水路(1)を一体化してある。『尚、支点部(19)とは、軸受け(18)を介して下掛け水車(2)を支える為の土台部分を云うものとする。』又、支点部(19)を設けず軸受け(18)のみを介して下掛け水車を設けてもよい。下掛け水車(2)と発電機(3)は、動力伝達軸を介して連結されている。又、この例では図2の如く取水源の川に設けた取水口から水を取り込む流れ込み式であり凹凸のある地形の地表面よりも上に、自然勾配によらない任意の勾配にて人工水路(1)が設けてあり支台(20)で安定させ更に底面部に生じる空間を支持部材(12)で支えてある。人工水路(1)には、発電機(3)を連結した下掛け水車(2)が縦一列に複数設けてある。尚、変電設備や系統連携保護装置、送電設備等を設けてあることは言うまでもないが図面上では省略してある。その他の設備も以下の例で共通するのでまとめて後記することとする。このように人工水路(1)式にして下掛け水車発電機と一体化することで、地表面よりも上に下掛け水車と水路を走らせることが出来るので、従来は水路建設が困難であった地に、自然勾配によらないパワフルな流れを作り出してその人工水路(1)上で下掛け水車(2)による発電が出来るようになる。流れ込み式なのでCO2排出0である。 FIG. 1 is a perspective view showing a first embodiment of the present invention, and FIG. 2 is a side view of the same. On the ceiling of the tubular artificial water channel (1), an opening (17) for installing the underwater turbine (2), a fulcrum (19) for the water turbine, and a bearing (18) are provided, and its space is provided. The underwater turbine (2) to which the generator (3) is connected is installed, and the underwater turbine generator and the artificial water channel (1) are integrated. “Note that the fulcrum part (19) means a base part for supporting the lower water turbine (2) via the bearing (18). Further, the lower water turbine may be provided only through the bearing (18) without providing the fulcrum part (19). The underwater turbine (2) and the generator (3) are connected via a power transmission shaft. Further, in this example, as shown in FIG. 2, it is a flow-in type in which water is taken in from a water intake provided in the river of the water intake source, and an artificial water channel with an arbitrary gradient not depending on the natural gradient above the uneven ground surface. (1) is provided, and the space which is stabilized by the abutment (20) and further generated in the bottom surface is supported by the support member (12). The artificial waterway (1) is provided with a plurality of lower water turbines (2) connected to a generator (3) in a vertical row. Needless to say, substation equipment, system linkage protection devices, power transmission equipment, and the like are provided, but they are omitted in the drawing. Other equipment is also common in the following examples and will be described later. By constructing the artificial waterway (1) in this way and integrating it with the underwater turbine generator, it is possible to run the underwater waterwheel and the waterway above the ground surface. A powerful flow that does not depend on the natural gradient is created on the ground, and power can be generated by the lower water turbine (2) on the artificial waterway (1). Since it is a flow-in type, CO2 emissions are zero.
図3は、本発明の第2実施態様を示す部分側面図である。橋梁又はやぐら(13)の上に、発電機(3)を連結した下掛け水車(2)を設置した人工水路(1)が設けてある。その他の点は全て第1実施態様と同じである。このような方法を用いることで、人工水路(1)と下掛け水車(2)と発電機(3)と橋梁又はやぐら(13)が一体化するので、従来は水路での下掛け水車発電など考えられなかった場所でも、図のように下掛け水車(2)による発電が可能になる。尚、場所によっては支持部材(12)を代用してもよい。 FIG. 3 is a partial side view showing a second embodiment of the present invention. On the bridge or tower (13), an artificial waterway (1) is provided in which an underwater turbine (2) connected with a generator (3) is installed. All other points are the same as in the first embodiment. By using such a method, the artificial waterway (1), the underwater turbine (2), the generator (3), and the bridge or tower (13) are integrated. Even in places that were unthinkable, power can be generated by the underwater turbine (2) as shown in the figure. In addition, you may substitute a support member (12) depending on a place.
図4は、本発明の第3実施態様を示す側面図によるパタ−ン図、図5は同じく斜視図である。発電機(3)を連結した下掛け水車(2)を縦一列に複数設けた人工水路(1)を、橋梁又はやぐら(13)の上に設置してある。人工水路(1)は、自然勾配によらない任意の勾配を設けてある。橋梁又はやぐら(13)の上にポンプと上部タンク(23)が設けてあり、その下部に貯水槽(24)が設けてある。 川や人口的水源より取り込んだ水をポンプで揚水して上部タンクを介して人工水路(1)に流入させて下掛け水車(2)の回転により発電する方法である。 こうすることで、図5や図32のように上流で揚水した水を発電しながら内陸部等の水の無い地に、丘を越え谷を跨ぎ延々と送水することも可能になる。又、人工水路(1)の流れは細くて済むので電動ポンプの消費電力も小さく済み且つ自然勾配では得られないパワ−が得られるので揚水地点より排水地点が下流になるほど位置エネルギ−も増し加わり電力を余らせることが容易になる。又、平地において図4のように送水目的のみに使用するとして、揚水の消費電力と下掛け水車発電機の発電量が仮にプラスマイナス0とすると、自前の電力のみで延々と送水可能ということになるので例えば砂漠の真ん中にでも送水可能になる。又、引力に逆らって送水可能なので例えば山の反対側の標高が同じ地に送水する場合、全体で発電量と消費電力も+−0なので自前の電力で送水可能と云うことになり、この発電方法で、湿潤な地の水源からの水で、例えば山を越えて砂漠地帯を潤し緑化することも可能になる。 FIG. 4 is a side view showing a third embodiment of the present invention, and FIG. 5 is a perspective view of the same. An artificial waterway (1) provided with a plurality of underwater turbines (2) connected to a generator (3) in a vertical row is installed on a bridge or tower (13). The artificial water channel (1) is provided with an arbitrary gradient that does not depend on the natural gradient. A pump and an upper tank (23) are provided on the bridge or tower (13), and a water tank (24) is provided at the lower part thereof. In this method, water taken in from a river or artificial water source is pumped up and pumped into an artificial waterway (1) through an upper tank, and power is generated by rotation of a lower water turbine (2). By doing so, it is also possible to send water over the valley and across the valley to a place where there is no water, such as inland, while generating the water pumped upstream as shown in FIGS. 5 and 32. In addition, since the flow of the artificial water channel (1) can be narrow, the power consumption of the electric pump can be reduced and power that cannot be obtained by natural gradient can be obtained, so that the potential energy increases as the drainage point becomes downstream from the pumping point. It becomes easy to surplus power. In addition, assuming that the power consumption of the pumped water and the amount of power generated by the lower water turbine generator are plus or minus 0 on the flat ground as shown in FIG. So, for example, water can be sent even in the middle of the desert. In addition, since water can be sent against the attractive force, for example, when water is sent to the same altitude on the opposite side of the mountain, the total amount of power generation and power consumption is + -0, so water can be sent with its own power. The method also makes it possible to moisten and green the desert area with water from a wet source, for example over a mountain.
図6は、本発明の第4実施態様を示す側面図によるパタ−ン図である。
橋梁又はやぐら(13)の上に、発電機(3)を連結した下掛け水車(2)を縦一列に複数設けた人工水路(1)を設置し、最上部にポンプと上部タンク(23)、一番下に水源用の貯水槽(24)を設けて互いに連通させて循環型にして発電する方法である。
これの使用法は、電動ポンプで揚水した水を上部タンク(23)を介して人工水路(1)に流し込み、貯水槽(24)を介して再び上部タンクに揚水して半永久的に流れを作って下掛け水車発電機で発電する。こうすることで、水の無い所でも発電が可能になる。又、近年風力発電等が増えるにつれて系統の安定が問題となりつつあるが太陽光発電等の電力を蓄電して揚水の動力源にして、電力需要のピ−ク時に工場等でこれにより自家発電すれば遠隔地の揚水発電所から送電する代わりとなり、停電時にも強い味方となる。FIG. 6 is a pattern diagram according to a side view showing a fourth embodiment of the present invention.
On the bridge or tower (13), an artificial waterway (1) with a plurality of underwater turbines (2) connected to a generator (3) in a vertical row is installed, with the pump and upper tank (23) at the top. In this method, a water source storage tank (24) is provided at the bottom and communicated with each other to generate a circulation type.
The usage of this is to pour the water pumped up by the electric pump into the artificial water channel (1) through the upper tank (23) and pump it back into the upper tank through the water tank (24) to make a semi-permanent flow. Then generate electricity with the underwater turbine generator. In this way, it is possible to generate electricity even in places where there is no water. In addition, system stability is becoming a problem as wind power generation increases in recent years, but electric power such as solar power generation is stored and used as a power source for pumping water. For example, it is an alternative to transmitting power from a remote pumped storage power plant, and is a strong ally even during a power outage.
図7は、本発明の第5実施態様を示す斜視図である。 ダム又は堰又は段差のある流れ(25)の上流部(それらダム等の内側又は上段部の水域)から(又は段差のある流れの途中から)の取水口を設けてそこに通じる上部貯水池(26)を設け、そこから自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を複数、並列又は横並びに設ける。人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を縦一列に複数設け、流れ出た水を下流に流す排水路を設ける。第5実施態様の図7は水路建設の為に掘り下げられて整地された斜面に従来型の水路(4)が設けてあるが、それが厳しい凹凸面や岩場や段差のある地形等では人工水路(1)を用いる。水車発電機は図1と同様のものである。以上の構造からなる発電方法である。このように水路(4)を並列又は横並びに設けることは単なる並列、横並びではなくその意義は極めて大きい。なぜなら、こうする事で図8、図9のように狭い空間に極めて多数の水車発電機が設置可能になるからである。過小評価の下掛け水車発電機ゆえに並列や横並びになどとは発想だにされぬのも当然であるが、それは図8、図9のような発想が無かったゆえであり図8、図9が明らかになる瞬間に、その重みが増し並列又は横並びにすればするほど巨大な発電施設の誕生につながることになる。 これの使用法は、取水した水を上部貯水池(26)を介して人工水路(1)又は水路(4)に流し込み下掛け水車発電機で発電する。尚、高台の団地等の雨水用のため池等の施設もダムの範ちゅうに入るものとし、その施設を用いて図7のような発電施設を設けてもよい。その際、団地内の公園の地下等を利用して予備の水槽を複数設けて連通させ、雨水を貯めておけば十分に水車発電用のダムの役割を果たし、雨が降る度に水は補充されるので殆ど途切れることなく下掛け水車発電機の稼動も可能となり新しいクリ−ンエネルギ−源となる。 FIG. 7 is a perspective view showing a fifth embodiment of the present invention. Upper reservoir (26) provided with a water intake from the upstream part of the dam or weir or stepped flow (25) (inside or above the dam, etc.) (or from the middle of the stepped flow) ), And from there, a plurality of artificial water channels (1) having an arbitrary gradient not depending on a natural gradient or water channels (4) having an arbitrary gradient are provided in parallel or side by side. A plurality of underwater water turbines (2) each having an artificial water channel (1) or a water channel (4) connected to a generator (3) are provided in a vertical row, and a drainage channel is provided for flowing the discharged water downstream. In FIG. 7 of the fifth embodiment, a conventional water channel (4) is provided on a slope that has been dug down for the construction of a water channel, but it is an artificial water channel on a rough surface, a rocky surface, or a stepped land. (1) is used. The turbine generator is the same as in FIG. This is a power generation method having the above structure. Thus, providing the water channel (4) in parallel or side by side is not simply parallel or side by side, but its significance is extremely large. This is because a large number of turbine generators can be installed in a narrow space as shown in FIGS. It is natural that the underwater turbine generator is underestimated, so the idea of parallel or side by side is not taken as an idea, but this is because there was no idea as shown in FIGS. At the moment when it becomes clear, the weight increases and the more parallel or side by side, the more power generation facilities will be born. In this method, the taken water is poured into the artificial water channel (1) or the water channel (4) through the upper reservoir (26) and is generated by the lower water turbine generator. It should be noted that facilities such as ponds for rainwater such as upland housing estates also fall within the category of dams, and power generation facilities as shown in FIG. 7 may be provided using such facilities. At that time, multiple reserve water tanks will be established and communicated using the basement of the park in the housing complex, and if rainwater is stored, it will fully function as a dam for turbine generation, and water will be replenished every time it rains As a result, it is possible to operate the underwater turbine generator with almost no interruption, thus providing a new clean energy source.
図8、図9は、本発明の第6実施態様を示す斜視図である。 第5実施態様と比較すると、橋梁又はやぐら(13)の上に、発電機(3)を連結した下掛け水車(2)を設けた人工水路(1)を設置した点とバイパス水路(6)を設けた点が異なっておりその他の点は第5実施態様と同じである。地形によっては、図8のように取水口からバイパス水路(6)を経由して上部貯水池(26)まで導水し、又は図9のようにバイパス水路(6)を兼ねた上部貯水池(26)を設けて人工水路(1)に通じさせる。そして図のように凹凸の斜面に橋梁又はやぐら(13)を構築して自然勾配によらない任意の勾配を設け、その上に図1等の発電気(3)を連結した下掛け水車(2)を設けた人工水路(1)を並列又は横並びに複数設置する。更にそこから流れ落ちた水の排水路を設けて下流に排水させる。以上の構造から成る発電方法である。 このような方法を用いることによって、従来は考えられなかった図のような崖地や岩場や急斜面や段差のある地形や凹凸の激しい地形でも水路を設け且つ、勾配や流量、流速等が自由に設計可能になるので、従来は軽んじられて来た下掛け水車発電でも威力を十分に発揮出来るようになる。そして、発明の効果(ノ)にも記載したように図9の場合の、落差20mの例では約1、000基の下掛け水車群であるが、例えばアスワンダムや山峡ダムなら約10倍以上の落差なので1000基とは比較にならない巨大な発電施設も可能となり、CO2ゼロの半永久的で新たなエネルギイ源としても期待できる。又、風力等に比べ安定しているので電力のベ−ス供給源にも成りうる。尚、場合によっては橋梁又はやぐら(13)の代わりに支持部材(12)を用いてもよい。又、各人工水路(1)の入り口に流量調整弁を設けてもよい。 8 and 9 are perspective views showing a sixth embodiment of the present invention. Compared to the fifth embodiment, on the bridge or tower (13), an artificial waterway (1) provided with an underwater turbine (2) connected to a generator (3) and a bypass waterway (6) The other points are the same as in the fifth embodiment. Depending on the terrain, water is introduced from the intake through the bypass channel (6) to the upper reservoir (26) as shown in FIG. 8, or the upper reservoir (26) also serving as the bypass channel (6) as shown in FIG. Provide and communicate with artificial waterway (1). Then, as shown in the figure, a bridge or tower (13) is constructed on the uneven slope, and an arbitrary slope not depending on the natural slope is provided, and an underwater turbine (2) connected with the generator (3) shown in FIG. A plurality of artificial waterways (1) provided with a) are installed side by side or side by side. Furthermore, a drainage channel for water that has flowed down from there is provided and drained downstream. This power generation method has the above structure. By using such a method, water channels can be provided even on cliffs, rocky places, steep slopes, stepped terrain, and uneven terrain as shown in the figure, which could not be considered before, and the gradient, flow rate, flow velocity, etc. can be freely set. Since it becomes possible to design, it will be able to fully demonstrate its power even in underwater turbine power generation that has been neglected in the past. And, as described in the effect (b) of the invention, in the case of FIG. 9, in the example of a head of 20 m, it is a group of about 1,000 water turbines. As a result, a huge power generation facility that cannot be compared with 1000 units is possible, and it can be expected as a semipermanent new energy source with zero CO2. In addition, since it is more stable than wind power or the like, it can also serve as a power supply source. In some cases, the support member (12) may be used instead of the bridge or the tower (13). Moreover, you may provide a flow regulating valve at the entrance of each artificial water channel (1).
図10は、本発明の第7実施態様を示す斜視図である。 取水源に取水口と防塵施設、沈砂池と上部貯水池(26)を設け、それに通じる送水管(5)又は送水路を低地へと走らせ且つその排水口を上部貯水池(26)又は取水口(源)よりも低位に設けて下部貯水池(7)に流入させる。又は直接人工水路(1){又は水路(4)}に流入させる。下部貯水池(7)に、並列又は横並びに人工水路(1){又は水路(4)}を複数設ける。自然勾配によらない任意の勾配を設けた人工水路(1)に発電気(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路(1)が橋梁又はやぐら(13)の上に設置してある。場合によっては支持部材(12)を用いてもよい。以上の構造からなる発電方法である。この方法によって例えば、近隣の水源の無い地に送水して発電することが可能になり都市近郊で発電することで送電ロスも無くせる。又、送水管(5)の場合、近くに丘があれば図10や図49のように取水源との水位差で水を押し上げられるのでCO2ゼロの発電施設が都市の近隣に数多く建設可能になる。又、豊富な水源の上流部から送水管(5)や送水路で好条件の地の大型の下部貯水池(7)に送水すれば、図9のような大型発電施設の建設も可能になる。又、水量豊富でありながら自然条件が厳しく、ダム以外に発電に利用困難な急流等もこの方法で適地に導水すれば発電の可能性が世界各地に広がる。 FIG. 10 is a perspective view showing a seventh embodiment of the present invention. A water intake and a dust-proof facility, a sand basin and an upper reservoir (26) are provided in the water intake source, and a water pipe (5) or a water passage leading to it is run to a lowland and the drain is connected to the upper reservoir (26) or water intake (source ) Lower than) and let it flow into the lower reservoir (7). Or it is made to flow directly into the artificial water channel (1) {or water channel (4)}. A plurality of parallel or side-by-side and artificial water channels (1) {or water channels (4)} are provided in the lower reservoir (7). A plurality of underwater water turbines (2) in which a generator (3) is connected to an artificial waterway (1) provided with an arbitrary gradient not depending on a natural gradient are provided in a vertical row. An artificial waterway (1) is installed on the bridge or tower (13). In some cases, a support member (12) may be used. This is a power generation method having the above structure. By this method, for example, it is possible to generate electricity by sending water to a nearby area without a water source, and it is possible to eliminate transmission loss by generating electricity near the city. In the case of the water pipe (5), if there is a hill nearby, water can be pushed up by the difference in water level from the water intake source as shown in Fig. 10 and Fig. 49, so many CO2 zero power generation facilities can be constructed in the vicinity of the city. Become. Further, if water is fed from the upstream part of abundant water sources to the large lower reservoir (7) in a favorable condition by a water pipe (5) or a water channel, a large power generation facility as shown in FIG. 9 can be constructed. In addition, water is abundant, but natural conditions are severe, and the possibility of power generation spreads all over the world if the rapid water that is difficult to use for power generation other than dams is introduced to this site.
図11は、本発明の第8実施態様を示す斜視図である。水路(4)を設ける為に整地された斜面に、任意の勾配を設けた水路(4){又は人工水路(1)}を並列又は横並びに複数設けた点が異なっており、その他の点は全て第7実施態様と同じである。 FIG. 11 is a perspective view showing an eighth embodiment of the present invention. The difference is that a plurality of water channels (4) {or artificial water channels (1)} with an arbitrary slope are provided in parallel or side by side on the slope prepared to provide the water channel (4). All are the same as in the seventh embodiment.
図12は、本発明の第9実施態様を示す斜視図である。 海に通じる、開閉式の海水取り込み口(又は水門又は弁)を設置した防塵池(21)を設け{又は防塵池(21)の任意のヶ所を最大満潮時の海面以下に設け}、隣接して調整池(22)を設けてその境目に緊急停止可能な流量調整弁を設ける。又は人工水路(1)又は水路(4)の端の口径を狭くするか又は流量調整弁を設けて直接海に通じさせる。調整池(22)とその先の海に通じる、自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を並列又は横並びに複数設け、海水が流れ落ちる先に排水門(9)(又は排水弁又は排水ポンプ)を装備した排水用池(8)を設ける。人工水路(1)又は水路(4)に発電気(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路又は水路へと流入する海水量と、調整池(22)から溢れ出る量又は排水用池(8)へと流れ落ちる量をほぼ等しくなるよう流量調整弁、又は水路又は人工水路の口径で調整する。排水門(9)から排水する時点で、中の海水が人工水路(1)または水路(4)に逆流しない容量以上の排水用池(8)を設ける。以上の如く構成された発電方法である。 これの使用法は、海水取り込み口より上に潮が満ちると海水が自動的に防塵池(21)に流入し流量調整弁を通過して調整池(22)に流入し、溢れ出て人工水路又は水路に流入し下掛水車で発電して排水用池(8)へと流れ落ちて溜まる。海水取り込み口以下に水位が下がり流れは止まる。更に潮が引き海水が水路に逆流しない位置に下がったら排水門(9)を開いて中の海水を海へと戻す。再び潮が満ち始めたら排水門(9)を閉じる。更に潮が満ち海水取り込み口から再び海水が流入して流れを起こす。この自然のサイクルが半永久的に続く。これにより100%クリ−ンなエネルギイが生み出せる。尚、海水取り込み用のポンプ、を設けてもよい。 FIG. 12 is a perspective view showing a ninth embodiment of the present invention. Provide a dust-proof pond (21) with an open / close-type seawater intake port (or sluice or valve) that leads to the sea {or set any part of the dust-proof pond (21) below the sea level at the maximum high tide}, adjacent The control basin (22) is provided and a flow rate adjustment valve capable of emergency stop is provided at the boundary. Alternatively, the diameter of the end of the artificial water channel (1) or the water channel (4) is narrowed or a flow regulating valve is provided to directly communicate with the sea. An artificial waterway (1) with an arbitrary slope that does not depend on the natural slope, or a waterway (4) with an arbitrary slope, which leads to the regulating pond (22) and the sea before it, A drainage pond (8) equipped with a drainage gate (9) (or a drainage valve or a drainage pump) is provided at the point where it flows down. A plurality of underwater water turbines (2) each having a power generation (3) connected to an artificial water channel (1) or a water channel (4) are provided in a vertical line. Adjust the flow rate adjustment valve, or the diameter of the waterway or artificial waterway so that the amount of seawater flowing into the artificial waterway or waterway is almost equal to the amount overflowing the adjustment pond (22) or the amount flowing down to the drainage pond (8) To do. When draining from the drainage gate (9), a drainage pond (8) having a capacity that does not flow back into the artificial waterway (1) or the waterway (4) is provided. This is a power generation method configured as described above. The usage is that when the tide rises above the seawater intake, the seawater automatically flows into the dust proof pond (21), passes through the flow control valve and flows into the basin (22), overflows, and flows into the artificial waterway. Or it flows into the water channel, generates electricity with the underwater water turbine, flows down to the drainage pond (8), and accumulates. The water level drops below the seawater intake and the flow stops. When the tide drops and the seawater does not flow back into the channel, the drainage gate (9) is opened and the seawater inside is returned to the sea. When the tide begins to fill again, close the drainage gate (9). Furthermore, the tide fills and the seawater flows again from the seawater intake, causing a flow. This natural cycle continues semi-permanently. This can produce 100% clean energy. A seawater intake pump may be provided.
図13は、本発明の第10実施態様を示す斜視図であり図14は同じく部分断面側面図である。海水用の貯水池(10)を設け、その海と接する面(堤防)の上端部の一部又は全部を最大満潮時の海面以下に設ける、又は海水を貯水池(10)内に取り込む為の開閉式の海水取り込み口(水門又は弁)を設ける。又は海水流入用のポンプを設けてもよい。貯水池(10)内に互いに通じる防塵池(21)を設け、隣接して調整池(22)を設け防塵池との境目に緊急停止可能な流量調整弁を設ける。調整池(22)に通じる自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を並列又は横並びに複数設け、海水が流れ落ちる先に排水門(9)(又は排水弁、又は排水ポンプ)を設置した排水用池(8)を設ける。人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路(1)又は水路(4)へと流入する海水量と調整池(22)から溢れ出る量がほぼ等しくなるように流量調整弁で調整する、又は人工水路(1)又は水路(4)に流入する海水量と排水用池に流れ落ちる量をほぼ等しくなるように水路(4)又は人工水路(1)の口径又は流量調整弁で調整する。排水門(9)を開く時点で中の海水が人工水路(1)又は水路(4)に逆流しない容量以上の排水用池(8)を設ける。又、貯水池(10)の容量は、貯水池内に海水を取り込んだ後、潮が引き再び満ちて貯水池内に再び海水を取り込むまでの間流れが止まらず発電持続可能な大きさにする。 以上の如く構成された、海水による下掛け水車利用の発電方法である。 これの使用法は、潮が満ちて貯水池(10)に海水が流入して溜まり防塵池(21)から流量調整弁を経て調整池(22)に流入して溢れ出し人工水路(1)又は水路(4)に流入して下掛け水車(2)を回転させて発電し、その先の貯水用池(8)に流れ落ちて溜まる。潮が引き、人工水路(1)又は水路(4)に逆流しない高さに水位が下がったら排水門(9)から排水する。干潮になり貯水用池(8)はカラになる。再び潮が満ち始めたら排水門(9)を閉じる。更に潮が満ちて再び貯水池(10)に海水が流入して満たされる。この間、貯水池(10)からの下掛け水車発電機への海水の供給は途絶えることなく続く。このようにして自然のサイクルに合わせて海水の流れを循環させて半永久的に下掛け水車発電は続く。このような発電方法を用いることで100%クリ−ンなエネルギイが半永久的に生み出せる。又、貯水池(10)と排水用池(8)を浅く広く且つ排水門(9)の広さや数を工夫すれば干満の差が小さくても世界中の海岸で実現可能となる。尚防塵池や調整池を廃して人工水路又は水路を貯水池と直通させてもよく防塵池や調整池の有無は任意である。又、人工水路(1)又は水路(4)の端に流量調整弁を設けてもよい。 FIG. 13 is a perspective view showing a tenth embodiment of the present invention, and FIG. 14 is a partially sectional side view of the same. Opening / closing type to provide a reservoir (10) for seawater and to provide part or all of the upper end of the surface in contact with the sea (embankment) below the sea level at maximum high tide, or to take seawater into the reservoir (10) Provide a seawater intake (water gate or valve). Or you may provide the pump for seawater inflow. A dust-proof pond (21) communicating with each other is provided in the reservoir (10), a regulating pond (22) is provided adjacent to the reservoir (10), and a flow rate adjusting valve capable of emergency stop is provided at the boundary with the dust-proof pond. The artificial water channel (1) provided with an arbitrary gradient not depending on the natural gradient leading to the adjustment pond (22) or a plurality of water channels (4) provided with an arbitrary gradient are provided in parallel or side by side, and the drainage gate ( 9) Provide a drainage pond (8) with a drain valve (or drain pump). A plurality of underwater turbines (2) each having an artificial water channel (1) or a water channel (4) connected to a generator (3) are provided in a vertical line. Adjust the flow rate adjustment valve so that the amount of seawater flowing into the artificial waterway (1) or waterway (4) and the amount of overflow from the regulating pond (22) are almost equal, or the artificial waterway (1) or waterway (4) The amount of seawater flowing into the water and the amount flowing down into the drainage pond are adjusted with the diameter of the water channel (4) or the artificial water channel (1) or the flow rate adjusting valve. A drainage pond (8) having a capacity that does not flow back into the artificial channel (1) or channel (4) when the drainage gate (9) is opened is provided. Further, the capacity of the reservoir (10) is set to a size that allows power generation to be sustainable without stopping the flow until the tide is refilled and the seawater is again taken into the reservoir after the seawater is taken into the reservoir. This is a power generation method using an underwater turbine using seawater, configured as described above. The usage of this is that the tide is full and seawater flows into the reservoir (10) and accumulates from the dust proof reservoir (21) through the flow regulating valve and flows into the regulating pond (22) and overflows into the artificial waterway (1) or waterway It flows into (4) and rotates the lower water turbine (2) to generate electricity, and then flows down and accumulates in the reservoir (8) ahead. Drain from the drainage gate (9) when the tide pulls and the water level drops to a level that does not flow back into the artificial channel (1) or channel (4). It becomes low tide and the reservoir (8) becomes empty. When the tide begins to fill again, close the drainage gate (9). Furthermore, the tide fills and the seawater again flows into the reservoir (10) to fill it. During this time, the supply of seawater from the reservoir (10) to the underwater turbine generator continues without interruption. In this way, the water turbine power generation continues semipermanently by circulating the flow of seawater in accordance with the natural cycle. By using such a power generation method, 100% clean energy can be produced semi-permanently. In addition, if the reservoir (10) and the drainage pond (8) are shallow and wide and the width and number of drainage gates (9) are devised, it can be realized on coasts around the world even if the difference in tidal range is small. The dust-proof pond and the adjustment pond may be abolished, and the artificial waterway or the waterway may be directly connected to the reservoir. Further, a flow rate adjusting valve may be provided at the end of the artificial water channel (1) or the water channel (4).
図15は、本発明の第11実施態様を示流れる先にす斜視図である。 海水用の貯水池(10)を設け、その海と接する面の上端部の一部又は全部を最大満潮時の海面以下に設ける、又は貯水池(10)に海水を取り込む為の開閉式の海水取り込み口(水門又は弁)を設ける。(又は海水取り込み用ポンプを設けてもよい)。貯水池(10)内に互いに通じる防塵池(21)を設置し隣接して調整池(22)を設けて防塵池(21)との境目に緊急停止可能な流量調整弁を設ける。調整池(22)と隣接する海と隔てられた空間を設けそこに調整池(22)に通じる自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を並列又は横並びに複数設け、その流れる先に排水門(9)(又は排水ポンプ又は弁)を設けて海に通じさせる。{又は、防塵池(21)や調整池(22)を廃して人工水路(1)又は水路(4)の端に流量調整弁を設けて貯水池(10)と直通させる。}人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路(1)又は水路(4)へと流入する海水量と調整池(22)から溢れ出る量がほぼ等しくなるように、又は人工水路(1)又は水路(4)へと流入する海水量と排水門(9)から流れ落ちる量がほぼ等しくなるよう流量調整弁で調整する。貯水池(10)の容量は、流量調整弁と排水門(9)を開き流れを起こしてから再び流量調整弁と排水門(9)を閉じるまでの間流れ続けて発電し続けられる容量かそれ以上とする。 以上の如く構成された海水による下掛け水車利用の発電方法である。これの使用法は、潮が満ちて貯水池(10)が満たされ、潮が引き始めて排水門(9)以下に水位が下がったら流量調整弁と排水門(9)を開く。防塵池(21)の流量調整弁を通過した海水が調整池(22)に流入して溢れ出し人工水路(1)又は水路(4)に流入して下掛け水車(2)を回転させて発電し排水門(9)から海へと戻される。干潮の後再び潮が満ち排水門(9)に迫ったら排水門(9)と流量調整弁を閉じ、流れを止めて発電を休止する。潮が満ち貯水池(10)を再び満たした後、排水門(9)以下に水位が下がり、先のように発電が繰り返される。こうすることで干満差の少ない場所等での発電が可能になる。尚、第9、第10、第11の各実施態様とも、流量調整弁を人工水路(1)又は水路(4)に直接設けてもよく防塵池(21)や調整池(22)の有無は任意である。 FIG. 15 is a front perspective view showing the eleventh embodiment of the present invention. Open / closed seawater intake port for providing a reservoir (10) for seawater and providing part or all of the upper end of the surface in contact with the sea below the sea level at the time of maximum high tide, or for taking seawater into the reservoir (10) Provide a sluice or valve. (Or a seawater intake pump may be provided). A dust-proof pond (21) communicating with each other is installed in the reservoir (10), an adjustment pond (22) is provided adjacent to the reservoir (10), and a flow rate adjustment valve capable of emergency stop is provided at the boundary with the dust-proof pond (21). Artificial waterway (1) provided with an arbitrary gradient not depending on the natural gradient leading to the adjustment pond (22) or an arbitrary waterway (1) provided with an arbitrary slope (22) and the sea adjacent to the adjustment pond (22) 4) A plurality of parallel or side-by-side are provided, and a drainage gate (9) (or a drainage pump or a valve) is provided at the flow destination to communicate with the sea. {Or, the dust-proof pond (21) and the adjustment pond (22) are abolished, and a flow rate adjusting valve is provided at the end of the artificial water channel (1) or the water channel (4) to directly connect with the reservoir (10). } A plurality of underwater water turbines (2) each having an artificial water channel (1) or a water channel (4) connected to a generator (3) are provided in a vertical row. The amount of seawater flowing into the artificial waterway (1) or waterway (4) and the amount of seawater flowing into the artificial waterway (1) or waterway (4) so that the amount overflowing from the regulating pond (22) is almost equal. And the flow rate adjusting valve so that the amount flowing down from the drainage gate (9) is almost equal. The capacity of the reservoir (10) is the capacity that can continue to flow until the flow control valve and the drainage gate (9) are closed again after the flow control valve and the drainage gate (9) are opened, and more. And This is a power generation method using an underwater turbine using seawater configured as described above. The usage of this is to open the flow control valve and the drainage gate (9) when the tide is full and the reservoir (10) is filled and the tide begins to draw and the water level drops below the drainage gate (9). Seawater that has passed through the flow control valve of the dust-proof pond (21) flows into the control pond (22), overflows, flows into the artificial waterway (1) or waterway (4), and rotates the underwater turbine (2) to generate electricity. It returns to the sea from the drainage gate (9). When the tide rises again after low tide and approaches the drainage gate (9), the drainage gate (9) and the flow control valve are closed, the flow is stopped and power generation is stopped. After the tide is full and the reservoir (10) is filled again, the water level drops below the drainage gate (9) and power generation is repeated as before. By doing so, it is possible to generate electricity in places where there is little tidal difference. In each of the ninth, tenth, and eleventh embodiments, a flow control valve may be provided directly in the artificial water channel (1) or the water channel (4), and whether or not there is a dust-proof pond (21) or a control pond (22). Is optional.
図16、図17、図18は、本発明の第12実施態様を示す斜視図である。 通水した管状の人工水路(1)の天井部に下掛け水車(2)を設置する為の開口部(17)を設け、そこに下掛け水車(2)用の支点部(19)と軸受け(18)が設けてある。{人工水路(1)に支点部のみ又は軸受けのみ設けてもよい}その軸受け(18)を介して発電機(3)を連結した下掛け水車(2)を直接人工水路(1)に設ける形で全体を一体化してある。下掛け水車(2)は縦一列に複数設けてある。人工水路(1)は周囲の地表面より上に設け、この例では段差のある地形の上を跨ぐように自然勾配によらない任意の勾配にて設けてあり、支台(20)と支持部材(12)で支えてある。又、人工水路(1)の両側面に緊急増水時の排水孔が設けてあるがその有無は任意である。 図17は、管状の形状を箱状に又図18では、天井部を開放型にした点が異なっておりその他の点は全て図16と同じである。このように人工水路(1)の形状はこれに限らず任意である。 このように人工水路(1)式にして下掛け水車発電機と一体化し更に地表面よりも上に設け、支台(20)や支持部材(12)や橋梁又はやぐら(13)と組み合わせることで、従来は水路建設が困難であった地形に人工水路(1)と云う形で水路を走らせ、且つその途中途中の人工水路(1)上でも発電が可能になる。又、地面よりも高い位置に水路を設けられるので、洪水等にも強い発電施設となる。又、発電に必要な流量や流速や勾配や経路等を考慮しながら人工水路(1)の設計施工が可能になり、地形と云う自然の束縛から解放される。尚、緊急時に下掛け水車発電機を上に持ち上げる為のスライド機構を設けてもよい。 16, 17 and 18 are perspective views showing a twelfth embodiment of the present invention. An opening (17) for installing the lower water turbine (2) is provided in the ceiling of the tubular artificial water channel (1) through which water passes, and a fulcrum (19) and a bearing for the lower water turbine (2) are provided there. (18) is provided. {Only the fulcrum part or only the bearing may be provided in the artificial water channel (1)} A form in which the underwater turbine (2) connected to the generator (3) through the bearing (18) is directly provided in the artificial water channel (1). The whole is integrated. A plurality of underwater turbines (2) are provided in a vertical row. The artificial water channel (1) is provided above the surrounding ground surface. In this example, the artificial water channel (1) is provided with an arbitrary gradient not depending on the natural gradient so as to straddle the stepped terrain. Supported by (12). Moreover, although the drainage hole at the time of emergency water increase is provided in the both sides | surfaces of the artificial water channel (1), the presence or absence is arbitrary. FIG. 17 is different from FIG. 16 in that the tubular shape is a box shape and FIG. 18 is that the ceiling is an open type. All other points are the same as FIG. Thus, the shape of the artificial water channel (1) is not limited to this and is arbitrary. In this way, the artificial waterway (1) type is integrated with the underwater turbine generator and provided above the ground surface, and combined with the abutment (20), the support member (12), the bridge or the tower (13). In addition, the waterway can be run in the form of an artificial waterway (1) on the terrain where it has been difficult to construct a waterway, and power can be generated on the artificial waterway (1) along the way. In addition, since the water channel is provided at a position higher than the ground, the power generation facility is resistant to floods and the like. In addition, it becomes possible to design and construct the artificial water channel (1) while taking into consideration the flow rate, flow velocity, gradient, route, etc. necessary for power generation, and it is freed from natural constraints such as topography. In addition, you may provide the slide mechanism for raising an underwater turbine generator in the emergency.
図19は、本発明の第13実施態様を示す斜視図である。
第12実施態様の図17と比較すると支点部(19)と軸受け(18)を廃する代わりに、発電機(3)を直接人工水路(1)に設け、その発電機(3)を介して下掛け水車(2)を人工水路(1)に設けた点が異なっておりその他の点は全て第12実施態様と同じである。人工水路(1)に受け台(14)を設け、そこを介して発電機(3)を人工水路(1)に設置してある。こうすることで支点部(19)と軸受け(18)が不要になる。尚、受け台(14)はタワ−式でもよく又その際タワ−に基礎(15)を設けてもよくその形状は任意であり発電気(3)を人工水路(1)に設置する方法は、これに限らず任意である。このようにすることで、水車を大型化する場合等に、この方が都合がよい場合もある。FIG. 19 is a perspective view showing a thirteenth embodiment of the present invention.
Compared to FIG. 17 of the twelfth embodiment, instead of eliminating the fulcrum (19) and the bearing (18), the generator (3) is provided directly in the artificial water channel (1), and the generator (3) is passed through the generator (3). The difference is that the lower water turbine (2) is provided in the artificial water channel (1), and all other points are the same as in the twelfth embodiment. The cradle (14) is provided in the artificial water channel (1), and the generator (3) is installed in the artificial water channel (1) through it. By doing so, the fulcrum part (19) and the bearing (18) become unnecessary. The cradle (14) may be of a tower type, and in that case, the tower (15) may be provided with a base (15) of any shape, and the method of installing the generator (3) in the artificial waterway (1) is as follows. However, the present invention is not limited to this and is arbitrary. By doing in this way, this may be more convenient when the size of the water wheel is increased.
図20、図21、図22は本発明の第14実施態様を示す斜視図である。図21、図22では人工水路(1)の周囲に基礎(15)部分とタワ−(16)を設けてその上に設置した発電機(3)を介して下掛け水車(2)を人工水路(1)に設けてあり図20は、支点部(19)と軸受け(18)を人工水路(1)以外に設け、そこを介して発電機(3)を連結した下掛け水車(2)を人工水路(1)に設けてある。尚、「支点部(19)のみ又は軸受け(18)のみを人工水路(1)以外に設けてもよい」その他の点は第12実施態様と同じである。こうする事で、人工水路(1)に荷重な負担を掛けたくない場合等に使用出来る。 20, FIG. 21, and FIG. 22 are perspective views showing a fourteenth embodiment of the present invention. 21 and 22, the foundation water (15) and the tower (16) are provided around the artificial water channel (1), and the underwater turbine (2) is connected to the artificial water channel via the generator (3) installed on the foundation (15). FIG. 20 is provided in (1), and shows a lower water turbine (2) in which a fulcrum part (19) and a bearing (18) are provided in addition to the artificial water channel (1), and a generator (3) is connected through the water channel (1). It is provided in the artificial water channel (1). It should be noted that “other than the artificial water channel (1) may be provided with only the fulcrum part (19) or only the bearing (18)” is the same as in the twelfth embodiment. In this way, it can be used when it is not desired to place a heavy load on the artificial waterway (1).
図23は、本発明の第15実施態様を示す斜視図である。第12実施態様と比較すると下掛け水車(1)に水汲み用の桶(11)を設けその分開口部(17)を広げたが異なっている。その他の点は全て第12実施態様と同じであり、灌漑用としても利用できる。 FIG. 23 is a perspective view showing the fifteenth embodiment of the present invention. Compared with the twelfth embodiment, the underwater turbine (1) is provided with a water pumping basin (11), and the opening (17) is widened accordingly. All other points are the same as in the twelfth embodiment and can be used for irrigation.
図24は、本発明の第16実施態様を示す斜視図である。
水源の川からバイパス水路を引き、水汲み用の大型水車を設けて、汲み上げた水を人工水路(1)に流し込む方式である。橋梁又はやぐら(13)の上に、発電機(3)を連結した下掛け水車(2)を設置した人工水路(1)が縦一列に複数設けてある。 こうすることで、100%自然エネルギ−による発電となる。又、川の持つ自然勾配による流れに更なる勾配を加えるので発電効率が上がり、更に、川から距離があり且つやぐら上にあるので洪水から守られ、十分な勾配や流量が有りながら発電施設を断念していた所でも建設可能になる。又、人工水路(1)は凹凸面を越えて設置可能なので、川に添うように障害物を乗り越え延々と下流へと伸ばし何十、何百基と水車発電機が設置可能になる。FIG. 24 is a perspective view showing the sixteenth embodiment of the present invention.
This is a system in which a bypass waterway is drawn from the river of the water source, a large water wheel for drawing water is provided, and the pumped water is poured into the artificial waterway (1). On the bridge or tower (13), a plurality of artificial water channels (1) each provided with an underwater turbine (2) connected with a generator (3) are provided in a vertical line. By doing so, power is generated by 100% natural energy. In addition, the power generation efficiency is improved by adding a further gradient to the flow of the natural slope of the river, and furthermore, because it is far from the river and on the other side, it is protected from flooding, and the power generation facility can be installed with sufficient gradient and flow rate. It will be possible to build even where it was abandoned. In addition, since the artificial water channel (1) can be installed over the uneven surface, the obstacle can be installed over the obstacle so as to follow the river, and dozens or hundreds of turbine generators can be installed.
図25、図26は、本発明の第17実施態様を示す斜視図である。川の上流部から流れ込み式で取水する。取水口に通じる防塵施設、沈砂池、余水路等を設けそれに通じる上部貯水池(26)を設ける。図25は、上部貯水池(26)から並列の人工水路(1)を蛇行する下流に向けて直線的に橋梁又はやぐら(13)上に設けてある。人工水路(1)に発電機(3)を連結した下掛け水車(2)が縦一列に複数設けてある。このように、橋梁又はやぐら(13)との組み合わせで凹凸面の上を乗り越えて直線的に人工水路(1)を走らせるので、蛇行する下流へ一気に流れを起こし必要な勾配や流量、流速を得やすくなり、且つ排水口が下流になるほど位置エネルギ−が増し加わるので下掛け水車発電機の利用価値が高まる。図26は、流れの急な上流部の段差の利用を可能にした例である。従来このような地形に下掛け水車(2)を設けても洪水等の危険の為不向きであり、まして流れの無い段差の地形での水車発電など考えられなかったが、下掛け水車発電機と人工水路(1)を一体化し且つ橋梁又はやぐら(13)と組み合わせることで図26のような発電施設が可能になる。又、川から離れた高所に有るので、洪水からも守られる。この図では、上部貯水池(26)から発電機(3)を連結した下掛け水車(2)を縦一列に複数設置した人工水路(1)を橋梁又はやぐら(13)上に並列に設けてあるが、実際上は、更に条件の良い地へと導水して施設を大型化することで、図9のような大型発電施設の建設も可能となる。日本をはじめ、例えばピレネ−やチベットやアルプス等の大河の水を少し脇道にそらし再び元に戻すと云う作業をすればそれは可能であり、CO2ゼロのエネルギ−を半永久的に生み出すことが可能になる。尚、取水した水を別の流れ等に排水しても良い。尚、図25、図26とも自然勾配によらない任意の勾配が設けてある。 25 and 26 are perspective views showing a seventeenth embodiment of the present invention. Intake water from the upstream of the river. A dust-proof facility, a sedimentation basin, a spillway, etc. leading to the water intake will be provided, and an upper reservoir (26) leading to it will be provided. FIG. 25 is provided on the bridge or tower (13) linearly from the upper reservoir (26) to the downstream meandering the parallel artificial water channel (1). A plurality of underwater turbines (2) in which a generator (3) is connected to an artificial waterway (1) are provided in a vertical row. In this way, the artificial waterway (1) is run linearly over the uneven surface in combination with the bridge or tower (13), so that it flows at a stretch to the meandering downstream, and the necessary gradient, flow rate, and flow velocity are increased. It becomes easier to obtain and the potential energy increases as the outlet becomes downstream, so the utility value of the underwater turbine generator increases. FIG. 26 shows an example in which the use of a step in the upstream portion where the flow is steep is made possible. Conventionally, even if the underwater turbine (2) is installed on such terrain, it is unsuitable due to the danger of flooding, etc., and even a water turbine power generation on a terrain with no flow is not considered, but with the underwater turbine generator A power generation facility as shown in FIG. 26 is possible by integrating the artificial waterway (1) and combining it with a bridge or tower (13). In addition, it is protected from floods because of its high altitude away from the river. In this figure, an artificial waterway (1) in which a plurality of underwater turbines (2) connected to a generator (3) from an upper reservoir (26) are installed in a vertical row is provided in parallel on a bridge or a tower (13). However, in practice, it is possible to construct a large-scale power generation facility as shown in FIG. 9 by introducing water to a more favorable land to enlarge the facility. In Japan, for example, the work of diverting the water of a large river such as the Pyrenees, Tibet, and the Alps to a little side road and restoring it again is possible, and it is possible to generate CO2 zero energy semipermanently. Become. The taken water may be drained into another flow or the like. In FIGS. 25 and 26, an arbitrary gradient not depending on the natural gradient is provided.
図27は、本発明の第18実施態様を示す斜視図である。
人工水路(1)を橋梁又はやぐら(13)上に設けてある。図例の場合、ダムから水を引き(河川維持放流水等も利用して)、橋梁又はやぐら(13)で自然勾配によらない任意の勾配を設けてその上に発電機(3)を連結した下掛け水車(2)を縦一列に複数設けた人工水路(1)を設置してある。発電後、水は元の流れに戻す。こうすることで従来は不可能であった図のような空間や様ざまな地形における地上空間での発電も可能になる。FIG. 27 is a perspective view showing an eighteenth embodiment of the present invention.
An artificial waterway (1) is provided on the bridge or tower (13). In the case of the figure, water is drawn from the dam (using river maintenance effluent, etc.), and an arbitrary slope that does not depend on the natural slope is provided on the bridge or tower (13), and the generator (3) is connected to it. An artificial waterway (1) is provided in which a plurality of underwater water turbines (2) are provided in a vertical line. After power generation, the water is returned to its original flow. In this way, it is possible to generate electricity in the ground as shown in the figure and various terrain, which was impossible in the past.
図28は、本発明の第19実施態様を示す部分正面図、図29は同じく側面図、図30は部分拡大側面図、図31は平面図、図32、図33、図36、図37は斜視図、図34、図35は部分側面図である。 揚水用のポンプと上部タンクを設け、揚水した水を自然勾配によらない任意の勾配を設けた人工水路(1)に通じさせる。人工水路(1)には発電機(3)を連結した下掛け水車(2)を縦一列に複数設けてあり、それを橋梁又はやぐら(13)の上に設置してある。 図28〜図31は、海水を揚水した例である。図31は平面図であるが、人工水路(1)の下の空間は図30のように橋梁又はやぐら(13)で支えてある。こうすることで、水資源の乏しい島等での発電に利用できる。又、図29や図31のように上部貯水池(26)に電動ポンプの発電用の雨水を溜める工夫をしたり太陽光パネルや蓄電池を併用して電動ポンプの動力源とすることで安定した電力も得られる。 図32、図33は、川の上流で取水し、川の蛇行を利用して流れを急にする為に直線的、且つ、なるべく遠くの下流へと人工水路(1)を延ばして元の流れ(または別の流れ)に排水する方式である。ポンプで揚水した水を、上部タンク(23)を介して下掛け水車発電機を設けた人工水路(1)に流し込む。橋梁又はやぐら(13)の上に人工水路(1)が設置してある。こうすることで、排水の位置が下がれば下がる程位置エネルギイが増し加えられ発電効率が上がる。又、図32のように、内陸部の水資源の乏しい地帯に送水して灌漑用として利用することも出来る。こうすることで、仮に揚水の消費電力と下掛け水車発電機の発電量が+−ゼロだとしてもCO2ゼロの自前の電力で、今まで不毛の乾燥地帯であった地帯や砂漠に、空間を越えて新たな水の道を開くことも可能になる。 図34は、図のような方法で特に下り坂の鉄道沿い、中でもヨ−ロッパアルプス等の急勾配の地で、近くの水源から揚水して発電する方式である。揚水の消費電力に対して発電量がはるかに余るので鉄道に利用しても良い。 図35は、発電可能な勾配の川の利用である。従来は、洪水等の危険の為に発電施設の建設を断念していた場合が多々あったが、その危険性を避ける為、川から離れた位置に川に添うように施設を設ける。橋梁又はやぐら(13)上に下掛け水車発電気を縦一列に複数設けた人工水路(1)を設置する。川からポンプで揚水した水を人工水路(1)に流し込み発電して流れ落ちた水を再び揚水する、その繰り返しで下流へと続き最後は元の川に排水する。途中途中で水を揚水して補充する。図面上は平行であるが、実際は全体が傾斜しており、仮に水平地において揚水の消費電力と水車発電機の発電量が+−ゼロであったとしても、川そのものの自然勾配による発電分は残る計算になるので、川沿いに延々と下流まで人工水路(1)を延ばせばその分発電量は大きくなる。特に急流において、その有り余る水の位置エネルギ−を活かしきれていなかったが、この方法、施設は急流沿いにおいて威力を発揮する。又、人工水路(1)を並列に設ければ更に威力は増す。この、特に管状の人工水路(1)は障害物の混入等から守られ易い構造なので、何百基も延々と下掛け水車発電機を連ねることも可能になる。時に川から離れ、谷を跨ぎ、野を超え丘を超えて発電しながら下流を目指して施設を建設することも可能でCO2ゼロの巨大なエネルギー源となる。図36、図37は都市空間に橋梁又はやぐら(13)と人工水路(1)を組み合わせてポンプで揚水し人工的な流れを作り出して発電する方式である。地下タンクやプールを水源として水を人工水路内に循環させて、縦一列に設けた下掛け水車発電機で発電する。太陽光発電等を併用、蓄電して揚水の動力源にすればCO2ゼロの安定した電力源になり、系統の安定にもつながる 28 is a partial front view showing the nineteenth embodiment of the present invention, FIG. 29 is a side view, FIG. 30 is a partial enlarged side view, FIG. 31 is a plan view, FIG. 32, FIG. 33, FIG. FIG. 34 and FIG. 35 are partial side views. A pump for pumping water and an upper tank are provided, and the pumped water is led to an artificial water channel (1) having an arbitrary gradient not depending on a natural gradient. The artificial waterway (1) is provided with a plurality of underwater turbines (2) connected to a generator (3) in a vertical row, and is installed on a bridge or a tower (13). 28 to 31 are examples of pumping seawater. FIG. 31 is a plan view, but the space under the artificial water channel (1) is supported by a bridge or a tower (13) as shown in FIG. In this way, it can be used for power generation on islands where water resources are scarce. Moreover, as shown in FIG. 29 and FIG. 31, stable power can be obtained by devising storing the rainwater for power generation of the electric pump in the upper reservoir (26) or by using a solar panel or storage battery as a power source for the electric pump. Can also be obtained. Figures 32 and 33 show the original flow by drawing water upstream of the river and extending the artificial waterway (1) to the downstream as far as possible in order to make the flow steep using the meander of the river. It is a method of draining (or another flow). Water pumped up by the pump is poured into an artificial waterway (1) provided with a lower turbine generator through an upper tank (23). An artificial waterway (1) is installed on the bridge or tower (13). By doing so, the lower the drainage position, the more potential energy is added and the power generation efficiency is increased. In addition, as shown in FIG. 32, water can be sent to an inland area where water resources are scarce and used for irrigation. By doing this, even if the power consumption of the pumped water and the power generation amount of the submerged turbine generator are + -zero, it is possible to create a space in the deserted areas and deserts with CO2 zero power. It is also possible to open new water paths beyond. FIG. 34 shows a method of generating electricity by pumping water from a nearby water source, particularly on a downhill railway, particularly in a steep area such as the European Alps, by the method shown in the figure. Since the amount of power generation far exceeds the power consumption of pumped water, it may be used for railways. FIG. 35 shows the use of a gradient river that can generate electricity. In the past, there were many cases where the construction of a power generation facility was abandoned due to the danger of flooding, etc., but in order to avoid the danger, a facility was set up along the river away from the river. An artificial waterway (1) is provided on a bridge or tower (13) with a plurality of underwater water turbine generators arranged in a vertical line. The pumped water from the river is poured into the artificial channel (1), and the water that has flowed down is generated again, and then the water that has fallen down is pumped down repeatedly, and then drained back to the original river. Water is pumped up halfway along the way. Although it is parallel on the drawing, the whole is actually inclined, and even if the power consumption of the pumped water and the power generation amount of the water turbine generator are + -zero on the horizontal ground, the power generation due to the natural gradient of the river itself is Since the remaining calculation is performed, if the artificial waterway (1) is extended to the downstream along the river, the amount of power generation increases accordingly. In particular, in the rapid stream, the potential energy of the surplus water has not been fully utilized, but this method and facility show its power along the rapid stream. Further, if the artificial water channel (1) is provided in parallel, the power is further increased. In particular, the tubular artificial waterway (1) has a structure that can be easily protected from obstacles and the like, and therefore, it is possible to connect hundreds of underwater turbine generators. Sometimes it is possible to construct a facility aiming downstream while generating power over the valley, crossing the valley, crossing the valley and over the hills, and it becomes a huge energy source of zero CO2. FIG. 36 and FIG. 37 show a system in which a bridge or tower (13) and an artificial waterway (1) are combined in an urban space and pumped to generate an artificial flow to generate electricity. Using underground tanks and pools as the water source, water is circulated in the artificial waterway, and electricity is generated by the underwater turbine generators installed in a vertical line. If combined with solar power generation, etc., and used as a power source for pumping water, it becomes a stable power source with zero CO2 and leads to system stability.
図38は、本発明の第20実施態様を示す斜視図である。
人工水路(1)の底面部に生じる空間に、支持部材(12)が設けてある。人工水路(1)が地表面よりも上の位置の空間に設けてあるので、場合によっては支台(20)では支えられない場合等に用いる。こうすることで、凹凸面や谷をまたいで直線的に人工水路(1)を設けることが出来る。その他の点は、全て第12実施態様と同じである。尚、開口部(17)の上流部側の流れを緊急時に左右にそらしてブレーキ装置の効きをよくする為の装置が設けてあるが、その有無は任意である。又、支持部材(12)とは、人工水路(1)の底面部に生じる空間を支える為の部材を云うものとしその形状や大きさは任意であり、又、人工水路(1)の空間を支える為に支台を巨大化したものもそれに含まれるものとする。FIG. 38 is a perspective view showing a twentieth embodiment of the present invention.
A support member (12) is provided in the space generated in the bottom surface of the artificial water channel (1). Since the artificial water channel (1) is provided in a space above the ground surface, it is used in some cases when it cannot be supported by the abutment (20). By carrying out like this, an artificial waterway (1) can be provided linearly across an uneven surface and a valley. All other points are the same as in the twelfth embodiment. In addition, although the apparatus for deflecting the flow of the upstream part side of an opening part (17) to right and left in an emergency and improving the effectiveness of a brake device is provided, the presence or absence is arbitrary. The support member (12) is a member for supporting the space generated in the bottom surface portion of the artificial water channel (1), and its shape and size are arbitrary, and the space of the artificial water channel (1) is also defined. It also includes the one that makes the abutment huge to support it.
図39は、本発明の第21実施態様を示す斜視図である。
人工水路(1)の底面部と橋梁又はやぐら(13)の天井部(橋板部分)を兼用(又は一体化)してある。(両方の全体を一体化してもよい)。その他の点は、全て第12実施態様と同じである。こうすることで、必ずしも支台(20)は必要なくなる。又、発電機(3)のタワー部分や基礎部分をも兼ねることも出来る。又、短距離であれば、支持部材(12)無しで凹凸部分に人工水路(1)を設けることもできる。FIG. 39 is a perspective view showing a twenty-first embodiment of the present invention.
The bottom surface of the artificial water channel (1) and the bridge or the ceiling (bridge part) of the tower (13) are combined (or integrated). (The whole of both may be integrated). All other points are the same as in the twelfth embodiment. By doing so, the abutment (20) is not necessarily required. Moreover, it can also serve as a tower part and foundation part of a generator (3). Moreover, if it is a short distance, an artificial water channel (1) can also be provided in an uneven | corrugated | grooved part without a supporting member (12).
図40、図41、図42、図43、は、本発明の第22実施態様を示す斜視図である。
建物又は人工構造物の周囲又は内部空間又は屋上に、発電機(3)を連結した下掛け水車(2)を縦一列に複数設置した人工水路(1)が設けてある。人工水路(1)は自然勾配によらない任意の勾配にて橋梁又はやぐら(13)の上又は建物の側面等に直接設けてあり、揚水用のポンプと上部タンク(23)と貯水槽(24)を設けて循環型にしてある。 図40の場合、ピラミッド状の建物の頂上部にポンプと上部タンク(23)を設け外周部にらせん状に人工水路(1)をめぐらし上部タンク(23)の真下の貯水槽(24)に通じさせ、そこから管路で上部タンク(23)へと通じさせて循環型にしてある。尚、太陽光パネルと併用し電動モ−タ−の動力源にすれば、安定した電力が得られる。図41は工場の建物の周囲に、図42は屋上に、発電機(3)を連結した下掛け水車(2)を設置した人工水路(1)が橋梁又はやぐら(3)と共に設けてある。図44は、ビルの壁にジグザグに流れ落ちる人工水路(1)を設けその上に発電機(3)を連結した下掛け水車(2)が複数設置してあり、一番下は上掛け水車にしてある。尚、この場合、全体を上掛け水車にしてもよい。こうすることで、従来の発想を越えた場所での下掛け水車発電機による発電が可能になりその評価も上がる。40, 41, 42, and 43 are perspective views showing a twenty-second embodiment of the present invention.
An artificial waterway (1) in which a plurality of underwater water turbines (2) connected to a generator (3) are arranged in a vertical row is provided around a building or an artificial structure or in an internal space or a rooftop. The artificial waterway (1) is provided directly on the bridge or tower (13) or on the side of the building with an arbitrary gradient not depending on the natural gradient, and includes a pump for pumping, an upper tank (23), and a water tank (24 ) To provide a circulation type. In the case of FIG. 40, a pump and an upper tank (23) are provided at the top of the pyramid-shaped building, and the artificial water channel (1) is spiraled around the outer periphery, leading to the water tank (24) directly below the upper tank (23). From there, it is connected to the upper tank (23) through a pipe line to form a circulation type. In addition, if it uses together with a solar panel and makes it a motive power source of an electric motor, the stable electric power will be obtained. FIG. 41 shows an artificial waterway (1) with a bridge or a tower (3) provided with an underwater water turbine (2) connected to a generator (3). Fig. 44 shows an artificial waterway (1) that flows down in a zigzag on the wall of the building, and a plurality of underwater water turbines (2) connected to a generator (3) are installed on the wall. It is. In this case, the whole may be a top water turbine. By doing so, it is possible to generate electricity with the underwater turbine generator in a place beyond the conventional idea, and the evaluation is also improved.
図44は、本発明の第23実施態様を示す側面図である。いかだ(27){又は船舶}の甲板に下掛け水車用の開口部(17)(又は隙間)と軸受け(18)を設けて、そこを介して発電機(3)を連結した下掛け水車(2)を並列且つ縦に複数設ける。又、川の緊急増水時に水車発電機を上に持ち上げる為のスライド機構が備えてある。支点部(19)と軸受け(18)を含む水車発電機全体を開口部(17)と分離して設け、例えばクレ−ン車の4本の足のように水車発電機ごと持ち上げる為である。スライド機構の構造はこれに限らず任意である。更に、甲板上の一部にポンプと上部タンクを備えた橋梁又はやぐら(13)を並列に設置してその上に発電機(3)を連結した下掛け水車(2)が縦一列に複数設けてある。又、いかだ(27){又は船舶}の両側面に水車発電機を設けてポンプの動力源にしてある。 これの使用法は、いかだ(27)又は船舶を川に多数連結して川の流れで発電する。こうすることで都市部はもちろんのこと辺境の村落等でも川があればCO2ゼロの発電が可能になる。FIG. 44 is a side view showing the 23rd embodiment of the present invention. Raft (27) An underwater turbine in which an opening (17) (or a gap) and a bearing (18) for an underwater turbine are provided on the deck of a {or ship}, and a generator (3) is connected therethrough. A plurality of (2) are provided in parallel and vertically. In addition, a slide mechanism is provided to lift the water turbine generator upward during an emergency flooding of the river. This is because the entire turbine generator including the fulcrum (19) and the bearing (18) is provided separately from the opening (17) and lifted together with the turbine generator, for example, like four legs of a crane wheel. The structure of the slide mechanism is not limited to this and is arbitrary. In addition, a plurality of underwater turbines (2) with a bridge or tower (13) equipped with a pump and an upper tank in parallel on a part of the deck and connected with a generator (3) are provided in a vertical row. It is. Further, a water turbine generator is provided on both sides of the raft (27) {or ship} to serve as a power source for the pump. The usage of this is to generate power in the river flow by connecting many rafts (27) or ships to the river. In this way, it is possible to generate CO2 zero power in riverside villages as well as in urban areas if there are rivers.
図45、図46は本発明の第24実施態様を示す斜視図である。 ダム又は堰又は段差のある流れ(25)の上流部(ダムの内側)から又はそれらの段差のある流れの途中からの取水口を設け、そこに通じる上部貯水池(26)を設ける。そこから自然勾配によらない任意の勾配を設けた図16又は図17、図18と同様の、人工水路(1)又は任意の勾配を設けた水路(4)を並列又は横並びに複数設けてその上に発電機(3)を連結した下掛け水車(1)を縦一列に複数設ける。更にそこから流れ出た水を下流に流す排水路を設ける。図45、図46は、水路建設の為に掘り下げられて整地された斜面に水路(4)が設けてあるが、凹凸面等では人工水路(1)を用いる。又、ポンプで揚水した水を用いてもよい。 このように水路を並列や横並びに設けることで斜面を有効利用できるので図9のような大規模且つ新たな下掛け水車用の発電施設が可能になる。又、高台の団地等の雨水用のため池等の施設もダムの範ちゅうに入るものとし、その施設を用いて図46のような発電施設を設けてもよい。その際、団地内の公園等を利用して予備の地下水槽を設けて連通させてもよい。尚、ジグザグや折れ曲がりや曲線の繰り返しも並列の範ちゅうに含まれるものとする。又、各、人工水路(1)又は水路(4)の入り口に緊急停止可能な流量調整弁を設けるが、そのほかの任意のヶ所にも設けてもよい。尚、この水路(4)は、図45では図18、図46では図16と同様の型のコンクリ−ト製の水路(4)を整地された斜面に埋め込んであり、水路(4)に水車用の支点部(19)と軸受け(18)を設けてそこを介して下掛け水車(2)を設置して両者を一体化してある。尚、人工水路(1)そのものを応用して地面に埋め込み水路(4)に応用してもよい。 45 and 46 are perspective views showing a twenty-fourth embodiment of the present invention. A water intake is provided from the upstream part (inside the dam) of the dam or dam or the stepped flow (25) or from the middle of the stepped flow, and an upper reservoir (26) leading to the intake is provided. The artificial water channel (1) or the water channel (4) provided with an arbitrary gradient is provided in parallel or side-by-side, as in FIG. A plurality of underwater turbines (1) connected to the generator (3) are provided in a vertical row. In addition, a drainage channel will be provided to allow the water flowing out from there to flow downstream. 45 and 46, the water channel (4) is provided on the slope that has been dug down for the construction of the water channel, and the artificial water channel (1) is used on the uneven surface. Moreover, you may use the water pumped up with the pump. By providing the water channels in parallel or side by side in this way, the slope can be used effectively, and thus a large-scale and new power generation facility for underwater turbines as shown in FIG. 9 becomes possible. In addition, facilities such as ponds for rainwater such as upland housing estates are also included in the category of dams, and power generation facilities as shown in FIG. 46 may be provided using such facilities. At that time, a reserve groundwater tank may be provided and communicated using a park in the housing complex. It should be noted that zigzag, bending, and repeated curves are also included in the parallel category. Moreover, although the flow regulating valve which can be stopped urgently is provided at the entrance of each artificial water channel (1) or water channel (4), it may be provided at any other location. In this water channel (4), a concrete water channel (4) of the same type as in FIG. 18 in FIG. 45 and FIG. 16 in FIG. 45 is embedded in a leveled slope, and the water channel (4) is filled with water. A fulcrum part (19) for a vehicle and a bearing (18) are provided, and a lower water turbine (2) is installed therethrough to integrate them. The artificial water channel (1) itself may be applied to be embedded in the ground and applied to the water channel (4).
図47は、本発明の第25実施態様を示す斜視図である。第24実施態様と比較すると水路(4)の代わりに、段差のある地形に人工水路(1)を設けた点が異なっておりその他の点は全て第24実施態様と同じである。図のように、段差のある地形や凹凸面や崖地や岩場等の、水路に不向きな地形では人工水路(1)を用いる。人工水路(1)と下掛け水車(2)と発電機(3)を一体化して橋梁又はやぐら(13)、又は支持部材(12)の上に設けてある。全体をこのように組み合わせることで、厳しい地形でも発電が可能になり新たな発電施設が生まれる。図例は小規模であるが、実際上は、水量豊富なダム等の図9や図8のような大規模施設ほど威力を発揮するので、可能な限り図9同様の大規模施設にする。 FIG. 47 is a perspective view showing a 25th embodiment of the present invention. Compared to the twenty-fourth embodiment, instead of the waterway (4), the artificial waterway (1) is provided on a stepped terrain, and the other points are all the same as the twenty-fourth embodiment. As shown in the figure, the artificial waterway (1) is used for terrain that is not suitable for waterways, such as terrain with steps, uneven surfaces, cliffs, and rocky areas. The artificial waterway (1), the underwater turbine (2), and the generator (3) are integrated and provided on the bridge or tower (13) or the support member (12). By combining the whole in this way, it is possible to generate power even in difficult terrain, and a new power generation facility will be created. Although the example in the figure is small, in practice, a large-scale facility such as FIG. 9 or FIG.
図48、本発明の第26実施態様を示す斜視図である。
水源からの取水口と沈砂池と上部貯水池(26)を設けそれに通じる送水管(5)又は送水路を低地へと走らせ且つ、その排水口を上部貯水池(26)又は取水口(源)よりも低位置に設けて下部貯水池(7)に流入させる。(又は、直接人工水路又は水路に流入させる)。下部貯水池(7)に並列又は横並びに水路(4){又は人工水路(1)}を設けて通じさせる。任意の勾配を設けた水路(4){又は、自然勾配によらない任意の勾配を設けた人工水路(1)}に発電機(3)を連結した下掛け水車(2)を縦一列に複数設置する。第26実施態様の図48では水路(4)を放射状に並列に設けてある。以上の構成からなる、発電施設である。このように、標高差を利用して送水管(5)を利用すると低地にある丘等に自然の力で揚水可能なので、工場や町の近隣の高台にCO2ゼロの発電施設を作ることも出来る。又、適地に大規模な下部貯水池(7)が得られれば,送水量を増やして図9のような大規模発電施設の建設も可能になる。尚、並列とは必ずしも直線的でなく、くのじのような折れ曲がった連続やジグザグの連続や曲線的並列も含むものとする。FIG. 48 is a perspective view showing a twenty-sixth embodiment of the present invention.
A water intake from the water source, a settling basin, and an upper reservoir (26) are provided, and the water pipe (5) or water channel leading to it is run to the lowland, and the drain is made more than the upper reservoir (26) or the water intake (source). It is installed at a low position and flows into the lower reservoir (7). (Or let it flow directly into an artificial channel or channel). The lower reservoir (7) is connected in parallel or sideways with the water channel (4) {or artificial water channel (1)}. A plurality of underwater turbines (2) in which a generator (3) is connected to a water channel (4) {or an artificial water channel (1)} having an arbitrary gradient not depending on a natural gradient in a single row. Install. In FIG. 48 of the twenty-sixth embodiment, the water channels (4) are radially provided in parallel. This is a power generation facility having the above configuration. In this way, if the water pipe (5) is used using the difference in elevation, water can be pumped up naturally to hills in the lowland, so it is possible to create a CO2 zero power generation facility on a hill in the vicinity of the factory or town. . Moreover, if a large-scale lower reservoir (7) is obtained in a suitable location, it will be possible to construct a large-scale power generation facility as shown in FIG. Note that the term “parallel” does not necessarily mean a straight line, but also includes a bent continuation such as a lottery, a zigzag continuation, and a curvilinear parallel.
図49は、本発明の第27実施態様を示す斜視図である。 水路(4)の代りに人工水路(1)が橋梁又はやぐら(13)の上に{場合によっては支持部材(12)の上に}設けてある。その他の点は全て第26実施態様と同じである。こうすることで、崖地や岩場や段差のある凹凸面でも図のように空間を跨いで人工水路式水車発電機の設置が可能になる。 FIG. 49 is a perspective view showing a twenty-seventh embodiment of the present invention. Instead of the waterway (4), an artificial waterway (1) is provided on the bridge or tower (13) {possibly on the support member (12)}. All other points are the same as in the twenty-sixth embodiment. By doing so, it is possible to install an artificial waterway type turbine generator across a space on a cliff, a rocky surface, or an uneven surface with a step as shown in the figure.
図50図51は、本発明の第28実施態様を示す斜視図である。海に通じる海水取り込み口(水門又は弁)を設置した防塵池(21)を設け{又は防塵池(21)の任意のヶ所を最大満潮時の海面以下に設け}隣接して調整池(22)を設けてその境目に緊急停止可能な流量調整弁を設ける。又は人工水路(1)又は水路(4)の端の口径を狭くするか又は流量調整弁を設けて海水流入を調整する形で直接海に通じさせる。又は海水を取り込む為のポンプを設けてもよい。堤防内に、調整池(22)とその先の海に通じる、自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を並列又は横並びに複数設けその流れの先に排水門(9)(又は排水弁又は排水ポンプ)を設置した排水用池(8)を設ける。人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路(1)又は水路(4)へと流入する海水の量が調整池(22)から流れ出る海水量とほぼ等しく、又は飽和状態でなく自然な流れになるように流量調整弁にて調整する。排水門(9)を開く時点で中の海水が人工水路(1)又は水路(4)に逆流しない容量以上の排水用池(8)を設ける。図51の場合、調整池(22)と防塵池(21)を廃して直接人工水路(1)又は水路(4)と海を通じさせ、人工水路(1)又は水路(4)の入り口を小さくして流入量を調整するか又は人工水路(1)又は水路(4)に緊急停止可能な流量調整弁を設けて流れがスム−ズになるように流入量を調整する。又、排水用池(8)の容量は、海水の流入が始まり満潮の後潮が引いて流入が止まるまでの間海水が人工水路(1)又は水路(4)に逆流しない大きさ以上の容量とする。その他は図50と同じである。 以上の如く構成された発電施設である。
これの使用法は、潮が満ちて防塵池(21)に流入し、流量調整弁を経て調整池(22)に流入した海水がそこを溢れ出して人工水路(1)又は水路(4)に流入して下掛け水車発電機にて発電し排水用池(8)に流れ落ちる。更に潮は満ちて満潮になり、海水取り込み口以下に水位が下がるまで海水の流入が続いて発電する。再び潮が満ちるまで発電は休止される。更に潮が引き、海水位が水路に逆流しない位置に下がったら排水門(9)を開いて海に排水する。潮が満ち始めたら排水門(9)を閉じる。更に潮が満ちて再び海水が防塵池に流入して流れが起き発電が再開される。この自然のサイクルが半永久的に判繰り返されてCO2ゼロの発電が続く。図51の場合、潮位が上がって海水が自動的に流入し潮位が下がって止まりその後排水する、その繰り返しである。尚、防塵池や調整池の有無は任意である。又、排水用池(8)を広く浅く、且つ、排水門(9)の数と大きさを工夫すれば、干満差が小さくても、より実現性が高まる。FIG. 51 is a perspective view showing the twenty-eighth embodiment of the present invention. Provide a dustproof pond (21) with a seawater intake port (sluice gate or valve) leading to the sea {or install any part of the dustproof pond (21) below the sea level at the time of maximum high tide} adjacent to the regulating pond (22) A flow regulating valve that can be stopped urgently is provided at the boundary. Alternatively, the diameter of the end of the artificial water channel (1) or the water channel (4) is narrowed, or a flow rate adjusting valve is provided to adjust the inflow of seawater to directly communicate with the sea. Or you may provide the pump for taking in seawater. In the embankment, there are parallel or side-by-side or side-by-side multiple artificial water channels (1) with an arbitrary slope that does not depend on the natural gradient, or water channels (4) with an arbitrary gradient, leading to the regulating pond (22) and the sea ahead A drainage pond (8) with a drainage gate (9) (or drainage valve or drainage pump) is installed at the end of the flow. A plurality of underwater turbines (2) each having an artificial water channel (1) or a water channel (4) connected to a generator (3) are provided in a vertical line. Adjust the flow rate adjustment valve so that the amount of seawater flowing into the artificial waterway (1) or waterway (4) is almost equal to the amount of seawater flowing out of the adjustment pond (22), or is not saturated but natural. . A drainage pond (8) having a capacity that does not flow back into the artificial channel (1) or channel (4) when the drainage gate (9) is opened is provided. In the case of FIG. 51, the adjustment pond (22) and the dust-proof pond (21) are abolished and directly passed through the artificial waterway (1) or waterway (4) and the sea, and the entrance of the artificial waterway (1) or waterway (4) is made smaller. The flow rate is adjusted so that the flow becomes smooth by adjusting the flow rate or by providing a flow rate adjusting valve capable of emergency stop in the artificial water channel (1) or the water channel (4). In addition, the capacity of the drainage pond (8) is larger than the size that the seawater does not flow back into the artificial waterway (1) or waterway (4) until the inflow of seawater starts and after the high tide draws and the inflow stops. And Others are the same as FIG. This is a power generation facility configured as described above.
The usage of this is that the tide is full and flows into the dust proof pond (21), and the seawater that flows into the regulating pond (22) through the flow regulating valve overflows into the artificial waterway (1) or waterway (4). It flows into the drainage pond (8) by generating electricity with the underwater turbine generator. Furthermore, the tide is full and full, and the inflow of seawater continues to generate electricity until the water level drops below the seawater intake. Power generation is suspended until the tide is filled again. When the tide is lowered and the sea level drops to a position where it does not flow back into the channel, the drainage gate (9) is opened to drain into the sea. When the tide begins to close, close the drainage gate (9). Furthermore, the tide fills up and seawater flows into the dust pond again, generating a flow and restarting power generation. This natural cycle is repeated semipermanently, followed by CO2 zero power generation. In the case of FIG. 51, the tide level rises, seawater automatically flows in, the tide level falls, stops, and then drains. In addition, the presence or absence of a dust-proof pond or an adjustment pond is arbitrary. Further, if the drainage pond (8) is wide and shallow and the number and size of the drainage gates (9) are devised, the feasibility is further enhanced even if the tidal difference is small.
図52図53は、本発明の第29実施態様を示す斜視図である。 海水用の貯水池(10)を設け、その海と接する面の上端部の一部又は全部を最大満潮時の海面以下に設ける、又は貯水池(10)用の開閉式の海水取り込み口(水門又は弁)を設ける、又は海水を貯水池又は人工水路又は水路に流入させる為のポンプを設ける。貯水池(10)の内側に互いに通じる防塵池(21)を設置し隣接して調整池(22)を設け、防塵池(21)との境目に緊急停止可能な流量調整弁を設ける。調整池(22)とその先の貯水池に通じる、自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を堤防内に並列又は横並びに複数設け、その流れ落ちる先に排水門(9)(又は排水弁又は排水ポンプ)を設置した排水用池(8)を設ける。人工水路(1)又は水路(4)に、発電機(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路(1)又は水路(4)への海水流入量が調整池(22)から溢れ出る海水量とほぼ等しくなるように、又は飽和状態でなく自然な流れになるように流量調整弁で調整する。排水門(9)を開く時点で、中の海水が人工水路(1)又は水路(4)に逆流しない容量かそれ以上の容量の排水用池(8)を設ける。又、貯水池(10)の容量は、貯水池内に海水を取り込んだ後、潮が引き、再び満ちて貯水池(10)内に再び海水を取り込むまでの間流れが止まらずに発電持続可能な大きさにする。図53の場合、防塵池(21)と調整池(22)を廃して人工水路(1)又は水路(4)の端に流量調整弁を設けて直接、貯水池(10)に通じさせてある。尚、人工水路(1)又は水路(4)の入口を小さくして海水の流入量を調整してもよい。その際、流れがスムーズになるように調整する。その他の点は図52と同じである。又、このように防塵池(21)や調整池(22)の有無は任意である。以上の如く構成された海水の干満を利用した発電施設である。 これの使用法は、潮が満ち貯水池(10)に海水が流入して溜まり、防塵池(21)から流量調整弁を経て調整池(22)に流入して溢れ出し人工水路(1)又は水路(4)に流入して水車発電機で発電してその先の排水用池(8)に流れ落ちて溜まる。潮が引き、水位が人工水路(1)又は水路(4)に逆流しない高さに下がったら排水門(9)を開き排水する。潮が満ち始めたら排水門(9)を閉じ、更に潮が満ちて再び貯水池(10)に海水が流入(又は水門を開いて取水)して満たされる。この間、貯水池(10)からの海水の供給は途絶えることなく続き人工水路(1)又は水路(4)に流れ続ける。このようにして自然のサイクルで海水の流れを循環させて、半永久的にCO2ゼロの下掛け水車発電は続く。尚、貯水池(10)と排水用池(8)を広く、浅く、且つ、排水門(9)の数と大きさを工夫すれば、干満差が小さくても実現性が高まる。 FIG. 52 is a perspective view showing the 29th embodiment of the present invention. A reservoir (10) for seawater is provided, and a part or all of the upper end of the surface in contact with the sea is provided below the sea level at the time of maximum high tide, or an openable seawater intake port (sluice or valve) for the reservoir (10) ) Or a pump for flowing seawater into a reservoir, artificial waterway or waterway. A dust-proof pond (21) communicating with each other is installed inside the reservoir (10), a regulating pond (22) is provided adjacent to the reservoir (10), and a flow regulating valve capable of emergency stop is provided at the boundary with the dust-proof pond (21). An artificial waterway (1) with an arbitrary slope that does not depend on the natural slope, or a waterway (4) with an arbitrary slope that leads to the regulating pond (22) and the reservoir ahead is provided in parallel or side by side in the dike. A drainage pond (8) provided with a drainage gate (9) (or a drainage valve or a drainage pump) is provided at the end of the flow. A plurality of underwater turbines (2) each having a generator (3) connected to an artificial water channel (1) or a water channel (4) are provided in a vertical row. Adjust the flow rate adjustment valve so that the amount of seawater flowing into the artificial waterway (1) or waterway (4) is almost equal to the amount of seawater that overflows from the adjustment pond (22), or is natural rather than saturated. To do. When the drainage gate (9) is opened, a drainage pond (8) having a capacity that prevents the seawater inside from flowing back into the artificial waterway (1) or the waterway (4) or more is provided. In addition, the capacity of the reservoir (10) is such that the power flow is sustainable without stopping until the tide is pulled after the seawater is taken into the reservoir, and then the water is refilled into the reservoir (10). To. In the case of FIG. 53, the dust-proof pond (21) and the regulating pond (22) are abolished, and a flow rate adjusting valve is provided at the end of the artificial water channel (1) or the water channel (4) to directly communicate with the reservoir (10). In addition, you may adjust the inflow amount of seawater by making the entrance of an artificial waterway (1) or a waterway (4) small. At that time, adjust the flow to be smooth. The other points are the same as in FIG. Moreover, the presence or absence of the dust-proof pond (21) and the adjustment pond (22) is arbitrary. It is a power generation facility using the tidal seawater constructed as described above. The usage of this is that the tide is full and seawater flows into the reservoir (10) and accumulates, flows from the dust proof reservoir (21) through the flow regulating valve and flows into the regulating pond (22) and overflows, and the artificial waterway (1) or waterway It flows into (4), generates electricity with the water turbine generator, and flows down and accumulates in the drainage pond (8) ahead. When the tide pulls and the water level drops to a level that does not flow back into the artificial channel (1) or channel (4), the drainage gate (9) is opened and drained. When the tide begins to fill, the drainage gate (9) is closed, and further the tide fills and seawater flows into the reservoir (10) again (or opens the sluice to take water) and fills. During this time, the supply of seawater from the reservoir (10) continues without interruption and continues to flow into the artificial waterway (1) or the waterway (4). In this way, the seawater flow is circulated in a natural cycle, and semi-permanent CO2 zero-wheel turbine power generation continues. If the reservoir (10) and the drainage pond (8) are wide and shallow, and the number and size of the drainage gates (9) are devised, the feasibility increases even if the tidal difference is small.
図54、図55は、本発明の第30実施態様を示す斜視図である。海水用の貯水池(10)を設けてその海と接する面の上端部の一部又は全部を最大満潮時の海面以下に設ける、又は貯水池(10)用の開閉式の海水取り込み口(水門又は弁)を設ける、又は海水を貯水池(10)又は人工水路(1)又は水路(4)に流入させる為のポンプを設ける。貯水池(10)の内側に互いに通じる防塵池(21)を設置し、隣接して調整池(22)を設けて互いの境目に緊急停止可能な流量調整弁を設ける。調整池(22)の隣接する先に排水門(9)(又は排水弁又は排水ポンプ)を設置した海と隔てられた空間を設け、そこに調整池(22)とその先の海に通じる自然勾配によらない任意の勾配を設けた人工水路(1)又は任意の勾配を設けた水路(4)を並列(又は横並び)に複数設けその流れの先の排水門(9)に通じさせる。人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を縦一列に複数設ける。人工水路(1)又は水路(4)へと流入する海水量と調整池(22)から溢れ出る海水量をほぼ等しくなるように流量調整弁で調整する。貯水池(10)の容量は、流量調整弁と排水門(9)を開いて流れを起こしてから後、流量調整弁と排水門(9)を閉じるまでの間、水路又は人工水路への流れが続き発電し続けられる容量かそれ以上に設ける。図55の場合、防塵池(21)と調整池(22)を廃して人工水路(1)又は水路(4)の端に流量調整弁を設けて貯水池(10)に直通させてあり流量調整弁で流れが飽和状態にならずスムーズに流れるように調整する。又は、単に流入口を狭くして調整してもよい。以上の如く構成された発電施設である。防塵池(21)又は調整池(22)の有無は任意である。尚、排水門の代わりに、排水弁又は排水ポンプを設けてもよい。 これの使用法は、潮が満ち貯水池(10)が満たされた後、潮が引き排水門(9)以下の水位に下がったら流量調整弁と排水門(9)を開く。海水は流量調整弁から調整池(22)に入り溢れ出て(又は直接)人工水路(1)又は水路(4)に流入して下掛け水車発電機を稼動させて発電し排水門(9)から海に戻される。更に潮は引き、再び水位が満ちて排水門(9)に迫ったら排水門(9)と流量調整弁を閉じて発電を休止する。再び満潮になり貯水池(10)を満たした後、潮が排水門(9)以下に引いたら前述のように発電を繰り返す。こうする事で、干満差の小さい所でも発電可能になる。又、貯水池(10)を広く且つ浅くすれば、より、実現可能となる。 54 and 55 are perspective views showing a 30th embodiment of the present invention. A reservoir (10) for seawater is provided, and part or all of the upper end of the surface in contact with the sea is provided below the sea level at the time of maximum high tide, or an open / close seawater intake port (sluice or valve) for the reservoir (10) ) Or a pump for flowing seawater into the reservoir (10), the artificial waterway (1) or the waterway (4). A dust-proof pond (21) communicating with each other is installed inside the reservoir (10), a regulating pond (22) is provided adjacent to each other, and a flow regulating valve capable of emergency stop is provided at each boundary. A space separated from the sea where the drainage gate (9) (or drainage valve or drainage pump) is installed adjacent to the regulating pond (22), and there is nature that leads to the regulating pond (22) and the sea ahead A plurality of artificial water channels (1) provided with an arbitrary gradient not depending on the gradient or water channels (4) provided with an arbitrary gradient are provided in parallel (or side by side) and communicated to a drainage gate (9) at the end of the flow. A plurality of underwater turbines (2) each having an artificial water channel (1) or a water channel (4) connected to a generator (3) are provided in a vertical line. The flow rate adjusting valve adjusts the amount of seawater flowing into the artificial waterway (1) or the waterway (4) and the amount of seawater overflowing from the adjustment pond (22). The capacity of the reservoir (10) is that the flow to the waterway or artificial waterway is from the time the flow control valve and drainage gate (9) are opened to the flow until the flow control valve and drainage gate (9) are closed. Install more capacity or more to continue generating electricity. In the case of FIG. 55, the dust-proof pond (21) and the regulating pond (22) are abolished, and a flow regulating valve is provided at the end of the artificial water channel (1) or the water channel (4) and directly connected to the reservoir (10). Adjust the flow so that it does not become saturated and flows smoothly. Or you may adjust by narrowing an inflow port simply. This is a power generation facility configured as described above. The presence or absence of the dust-proof pond (21) or the adjustment pond (22) is arbitrary. A drain valve or a drain pump may be provided instead of the drain gate. This is used by opening the flow regulating valve and drainage gate (9) when the tide is full and the reservoir (10) is filled and then the tide is pulled down to a level below the drainage gate (9). Seawater enters the regulating pond (22) from the flow regulating valve and overflows (or directly) into the artificial waterway (1) or waterway (4) to operate the underwater turbine generator to generate electricity and drainage gate (9) Returned to the sea. Furthermore, the tide is pulled, and when the water level fills again and approaches the drainage gate (9), the drainage gate (9) and the flow control valve are closed to stop the power generation. After high tide again and filling the reservoir (10), power generation is repeated as described above when the tide is pulled below the drainage gate (9). In this way, it is possible to generate power even in places where the tidal range is small. Further, if the reservoir (10) is wide and shallow, it can be realized more.
図56、図57は本発明の第31実施態様を示す斜視図である。 管状の人工水路(1)の天井部に発電機(3)を連結した下掛け水車(2)を設置する為の開口部(17)が設けてある。図56の場合、開口部(17)を箱状にし、その中央部を山状にして下掛け水車(2)を支える為の支点部(19)と軸受け(18)が設けてある。又、降雨等で増水時の余水排水孔が設けてある。このようにすることで、従来はただの管であったものが下掛け水車発電機との一体化を可能にし、障害物等の混入しにくい下掛け水車用の人工水路(1)に生まれ変わる。 図57の場合、ただの開口部(17)だけを設けてある。強風等の自然条件が厳しい場所では、風力発電のようにタワー等を介して水車と発電機を設ける為である。尚、人工水路(1)の形状はこれに限らず任意である。又、支点部(19)や軸受け(18)を廃して人工水路(1)以外にそれらを設けてもよい。 56 and 57 are perspective views showing the 31st embodiment of the present invention. An opening (17) for installing an underwater turbine (2) having a generator (3) connected to the ceiling of the tubular artificial water channel (1) is provided. In the case of FIG. 56, the opening (17) has a box shape, and the central portion thereof has a mountain shape, and a fulcrum portion (19) and a bearing (18) for supporting the underwater turbine (2) are provided. In addition, a sewage drainage hole is provided when the water increases due to rainfall or the like. By doing in this way, what was formerly a simple tube can be integrated with the underwater turbine generator and reborn as an artificial waterway (1) for an underwater turbine that is less likely to contain obstacles. . In the case of FIG. 57, only the opening (17) is provided. This is because in a place where natural conditions such as strong winds are severe, a turbine and a generator are provided via a tower or the like like wind power generation. The shape of the artificial water channel (1) is not limited to this and is arbitrary. Moreover, you may abolish a fulcrum part (19) and a bearing (18), and provide them in addition to the artificial water channel (1).
図58は、本発明の第32実施態様を示す斜視図である。 箱状の人工水路(1)の開口部(17)に、直接発電機(3)を連結した下掛け水車(2)を設ける為の、支点部(19)と軸受け(18)が設けてある。尚、支点部(19)を廃し人工水路(1)を深くして軸受け(18)のみを設けてもよい。このようにすることで、例えばローマ水道のような高所や山等の風の強い所に下掛け水車発電機を設置する場合、風圧を少しでも少なく出来る。尚、人工水路(1)の形状はこれに限らず任意である。 FIG. 58 is a perspective view showing a thirty-second embodiment of the present invention. The opening (17) of the box-shaped artificial water channel (1) is provided with a fulcrum (19) and a bearing (18) for providing an underwater turbine (2) connected directly to the generator (3). . Note that the fulcrum part (19) may be eliminated, the artificial water channel (1) may be deepened, and only the bearing (18) may be provided. In this way, for example, when installing the underwater turbine generator at a high place such as the Roman Channel or a windy place such as a mountain, the wind pressure can be reduced as much as possible. The shape of the artificial water channel (1) is not limited to this and is arbitrary.
図59は、本発明の第33実施態様を示す斜視図である。天井部が開放型の人工水路(1)に、発電機(3)を連結した下掛け水車(2)を設ける為の山型の支点部(19)を設けその一部に軸受け(18)が設けてある。このように、支点部(19)と軸受け(18)を水路と一体化することで、ただの水路であったものが下掛け水車(2)の設置が可能な人工水路(1)に生まれ変わる。そして、下掛け水車発電機と一体化出来るので空間等のさまざまな場所での発電が可能になる。 FIG. 59 is a perspective view showing the 33rd embodiment of the present invention. An artificial water channel (1) with an open ceiling is provided with a mountain-shaped fulcrum (19) for providing an underwater water turbine (2) to which a generator (3) is connected, and a bearing (18) is provided at a part thereof. It is provided. Thus, by integrating the fulcrum part (19) and the bearing (18) with the water channel, what was just a water channel is reborn into an artificial water channel (1) on which an underwater turbine (2) can be installed. And since it can be integrated with the underwater turbine generator, power generation in various places such as space becomes possible.
図60は、本発明の第34実施態様を示す斜視図である。 管状の人工水路(1)の天井部に下掛け水車(2)を設置する為の開口部(17)と水車用の支点部(19)と軸受け(18)を設け、そこに水汲み用の桶(11)を装備した下掛け水車(2)を縦一列に複数設けて灌漑用とする。人工水路(1)を地表面よりも上に設けて自然勾配によらない任意の勾配を設ける。 こうする事で、岩盤地帯や土木工事が困難な地や砂漠のような気象条件が厳しい地へも谷や丘を越えて水路を建設することが可能になり、新たな開墾や灌漑に役立つ。又、露出面が少ない形状なので異物混入や蒸発に強く、過酷な気象条件にも耐えやすい。 FIG. 60 is a perspective view showing a thirty-fourth embodiment of the present invention. An opening (17) for installing the underwater water turbine (2), a fulcrum (19) for the water turbine, and a bearing (18) are provided on the ceiling of the tubular artificial water channel (1), and water is drawn there. A plurality of underwater water turbines (2) equipped with 桶 (11) are provided for irrigation. An artificial waterway (1) is provided above the ground surface to provide an arbitrary gradient that does not depend on the natural gradient. In this way, it becomes possible to construct a waterway across valleys and hills even in places with severe weather conditions such as deserts such as bedrock areas, civil engineering work, etc., and it will be useful for new reclamation and irrigation. In addition, it has a shape with few exposed surfaces, so it is resistant to contamination and evaporation, and can withstand harsh weather conditions.
図61は、本発明の第35実施態様を示す斜視図である。第34実施態様と比較すると、人工水路(1)の形状が管状でなく、天井部を開放型にした点が異なっておりその他の点は全て第34実施態様と同じである。場所によっては、この方が建設コストが安くなる。 FIG. 61 is a perspective view showing the 35th embodiment of the present invention. Compared to the thirty-fourth embodiment, the shape of the artificial water channel (1) is not tubular and the ceiling part is an open type, and the other points are all the same as the thirty-fourth embodiment. Depending on the location, this will result in lower construction costs.
以上実施態様を紹介したが、これらの説明の他に共通の施設をここに記することにする。変圧器、系統連係保護装置、変電設備、電力系統への送電設備、避雷針、変速機(増速機、減速機)流量計、遠隔監視装置、流量調整弁、サ−ジタンク、防塵施設、沈砂池、余水路、ブレ−キ装置.調速機、等を設置するが、ケ−スバイケ−スで省略しても良い場合は省いてもよいものとする。又、並列とは直線的並列ばかりでなく、例えばくのじのような折れ曲がりの連続やジグザグや曲線的連続も並列に含まれるものとする。又、横並びとは必ずしも秩序立ててなくともよく、横に隣り合わせて並ぶ様を言うものとする。又、貯水池(10)の範ちゅうに防塵池(21)や調整池(22)も含まれるものとし、その有無は任意である。又、防塵ネット等の防塵設備の有無も任意である。又、人工水路(1)又は水路(4)の入り口やその他の任意のヶ所に緊急停止可能な流量調整弁を設けてもよい。又、発電施設に設置する人工水路(1)の型は、必ずしも図1や図16のものでなくともよく、任意である。又、人工水路(1)の材質は任意である。 Although the embodiments have been described above, common facilities will be described here in addition to these descriptions. Transformer, system linkage protection device, substation equipment, power transmission equipment to power system, lightning rod, transmission (speed increaser, speed reducer) flow meter, remote monitoring device, flow control valve, surge tank, dustproof facility, sand basin , Spillway, brake device. A governor, etc. is installed, but it may be omitted if it can be omitted in the case-by-case. In addition, the term “parallel” includes not only a linear parallel but also a series of bending such as a lottery, a zigzag, and a curvilinear continuity. Further, the term “side by side” does not necessarily indicate order, but means to line up side by side. The category of the reservoir (10) includes the dust proof pond (21) and the regulating pond (22), and the presence or absence thereof is arbitrary. The presence or absence of dustproof equipment such as a dustproof net is also optional. Moreover, you may provide the flow regulating valve which can be stopped urgently at the entrance of the artificial water channel (1) or the water channel (4), and other arbitrary places. Further, the type of the artificial water channel (1) installed in the power generation facility is not necessarily the one shown in FIGS. 1 and 16, and is arbitrary. The material of the artificial water channel (1) is arbitrary.
1 人工水路
2 下掛け水車
3 発電機
4 水路
5 送水管
6 バイパス水路
7 下部貯水池
8 排水用池
9 排水門
10 貯水池
11 桶
12 支持部材
13 橋梁又はやぐら
14 受け台
15 基礎
16 タワ−
17 開口部
18 軸受け
19 支点部
20 支台
21 防塵池
22 調整池
23 上部タンク
24 貯水槽
25 ダム又は堰又は段差のある流れ
26 上部貯水池
27 いかだDESCRIPTION OF SYMBOLS 1
17
本発明は、基本構造として、周囲の地表面よりも上に設けた人工水路に自然勾配によらない任意の勾配を設け、且つ、下掛け水車を人工水路に直接設けて一体化する為に、人工水路の一部に支点部と軸受けを設けて、そこを介して下掛け水車を設置して両者を一体化し、その下掛け水車に発電機を接続して発電する、人工水路式水車発電機による発電方法と海水干満式水車発電機による発電方法と人工水路式水車発電機と海水干満式水車発電機と下掛け水車発電機用の人工水路と人工水路式灌漑用水車に関するものである。
尚、人工水路とは従来の土木工事等により、地形に合わせて地面を掘り下げて傾斜(勾配)を作り流れを作り出す水路ではなく、それ以外の、例えば管状のものや雨どい状の半円管状等のような人工構造物を斜面上(又は斜面の半地下)に設け、又はその人工構造物に自然勾配によらない任意の勾配を設けて流れを作り出し、下掛け水車(2)による発電用又は灌漑用として使用する為の水路を言うものとする。又、単に自然勾配による流れの端から流れ落ちる段差のある地形等で、その流れを受ける為の短距離のものではなく、少なくとも発電機を連結した下掛け水車(人が持ち運び出来るミニ水車でなく通常の従来型の水車)を複数連ねて、発電用又は灌漑用として利用するものを言うものとする。又自然勾配とは、自然界の流れにおける勾配の他、土木工事で地形に合わせて地面を掘り流れを作り出す従来型の水路の流れの勾配を言うものとする。又、下掛け水車とは水路の流れを利用する本来の下掛け水車の他に、上掛け水車を除く水路に設置した胸掛け水車や中掛け水車や前掛け水車や流し掛け水車等の水車の底面部を、水路を流れる水が上流から下流へと流れるもの、又は水車の後方部から底面部へと水路の下流に向かって流れ下る水の圧力を動力源とする水車をいうものとする。In the present invention, as a basic structure, an artificial canal provided above the surrounding ground surface is provided with an arbitrary gradient not depending on a natural gradient, and an underwater turbine is directly provided on the artificial canal for integration. An artificial waterway type turbine generator that provides a fulcrum and a bearing on a part of an artificial waterway, installs a lower water turbine through the fulcrum, integrates both, and connects the generator to the lower waterwheel to generate electricity. The present invention relates to a power generation method by a seawater tidal water turbine generator, an artificial waterway turbine power generator, a seawater tidal water turbine generator, an artificial waterway for an underwater turbine power generator, and an artificial waterway irrigation water turbine.
The artificial waterway is not a waterway that creates a flow by creating a slope (gradient) by digging the ground according to the topography by conventional civil engineering work, etc. Other than that, for example, a tubular one or a gutter-like semicircular tubular An artificial structure such as the above is installed on the slope (or the semi-underground of the slope), or the artificial structure is provided with an arbitrary gradient that does not depend on the natural gradient to create a flow, and is used for power generation by the underwater turbine (2) Or it shall be a waterway for use in irrigation. Also, it is not just a short distance to receive the flow, such as terrain with a step that flows down from the end of the flow due to the natural gradient, but at least an underwater turbine connected with a generator (usually not a mini waterwheel that can be carried by people) The conventional water turbine is used for power generation or irrigation. The natural gradient means a gradient of a conventional water channel that creates a flow by digging the ground according to the topography in civil engineering work in addition to the gradient in the flow of the natural world. In addition to the original under water wheel that uses the flow of the water channel, the under water wheel is the bottom surface of a water wheel such as a chest water wheel, a middle water wheel, a front water wheel, or a floating water wheel installed in a water channel other than the upper water wheel. This means that the water flowing through the water channel flows from the upstream to the downstream, or the water turbine that uses the pressure of the water flowing down from the rear part to the bottom surface of the water wheel toward the downstream of the water channel as a power source.
Claims (50)
B,人工水路(1)に、自然勾配によらない任意の勾配を設ける。
C,人工水路(1)に,下掛け水車(2)を複数設ける。
D,人工水路(1)に設置した下掛け水車(2)に発電機(3)を設ける。(連結する)
以上の如く構成された人工水路式水車発電機による発電方法。A. An artificial waterway (1) is provided above the surrounding ground surface.
B, Arbitrary gradient not depending on natural gradient is provided in the artificial channel (1).
C, A plurality of underwater turbines (2) are provided in the artificial waterway (1).
D. A generator (3) is installed on the lower water turbine (2) installed in the artificial waterway (1). (Link)
A power generation method using an artificial waterway type turbine generator configured as described above.
F,ダム又は堰又は段差のある流れ(25)に通じる任意の勾配を設けた人工水路(1)又は水路(4)を複数設ける。
G,ダム又は堰又は段差のある流れ(25)から取水した水又はポンプで取水した水を人工水路(1)又は水路(4)に流し込む。
H,人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
以上の如く構成された人工水路式水車発電機による発電方法。E, water is taken from the upstream part (inside of the dam, etc.) of the step (head) of the dam or dam or the stepped flow (25), or the water is taken from the upper part of the water level having these steps, or Water is taken from the middle of a dam or weir or stepped flow (25). Or take in water with a pump. (Takes water)
F, multiple dams or weirs or artificial waterways (1) or waterways (4) provided with any gradient leading to a stepped flow (25).
Water taken from G, dam or weir or stepped flow (25) or water taken by a pump is poured into artificial waterway (1) or waterway (4).
H. An underwater turbine (2) in which a generator (3) is connected to an artificial channel (1) or a channel (4) is provided.
A power generation method using an artificial waterway type turbine generator configured as described above.
J,送水管(5)又は送水路の排水口を取水源又は取水源と連結した上部貯水池(26)よりも低位に設ける。
K,任意の勾配を設けた人工水路(1)又は水路(4)を設ける。
L,水源より取水した水を送水管(5)又は送水路の排水口から下部貯水池(7)に流し込み、そこを介して人工水路(1)又は水路(4)に流し込む、又は下部貯水池(7)を介さずに直接人工水路(1)又は水路(4)に流し込む。
M,人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
以上の如く構成された人工水路式水車発電機による発電方法。I, the water taken from the water source is sent to the lowland through the water pipe (5) or the water channel.
J, the drain of the water pipe (5) or the water channel is installed at a lower position than the water reservoir or the upper reservoir (26) connected to the water source.
K, an artificial waterway (1) or waterway (4) provided with an arbitrary gradient is provided.
L, the water taken from the water source is poured into the lower reservoir (7) through the water pipe (5) or the outlet of the water channel, and then into the artificial water channel (1) or the water channel (4), or the lower reservoir (7 ) Directly into the artificial channel (1) or channel (4).
M, an underwater turbine (2) in which a generator (3) is connected to the artificial channel (1) or channel (4) is provided.
A power generation method using an artificial waterway type turbine generator configured as described above.
O,海水取り込み口と排水用池(8)を設けて、その両方に通じる任意の勾配を設けた人工水路(1)又は水路(4)を設ける。
P,人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
Q,人工水路(1)又は水路(4)に通じる海水取り込み口を海と通じる任意のヶ所に設ける,又は人工水路(1)又は水路(4)に通じる海水取り込み口として堤防の任意のヶ所を最大満潮時の海面以下に設ける,又は人工水路(1)又は水路(4)を海と直通させる、又は海水取り込み用のポンプを設ける。
R,人工水路(1)又は水路(4)から流れ出た海水を溜める為の排水用池(8)を設ける。
S,排水用池(8)に開閉式の排水門(9)又は、排水弁又は排水ポンプを設ける。
以上の如く構成された海水干満式水車発電機による発電方法。N, the tidal difference of the sea is used for power generation.
O, a seawater intake port and a drainage pond (8) are provided, and an artificial waterway (1) or waterway (4) provided with an arbitrary gradient leading to both is provided.
P, an artificial waterway (1) or an underwater turbine (2) in which a generator (3) is connected to the waterway (4) is provided.
Q, provide a seawater intake port leading to the artificial waterway (1) or waterway (4) at any location that communicates with the sea, or any location on the levee as a seawater intake port leading to the artificial waterway (1) or waterway (4) Install below the sea level at the maximum high tide, or connect the artificial waterway (1) or waterway (4) directly to the sea, or install a pump for taking in seawater.
R. A drainage pond (8) is provided for storing seawater that has flowed out of the artificial channel (1) or channel (4).
S, Open / close drainage gate (9) or drainage valve or drainage pump is installed in drainage pond (8).
A power generation method using a seawater tidal water turbine generator configured as described above.
U,海水用の貯水池(10)と、排水用池(8)を設けて互いに通じさせる。
V,貯水池(10)に海水取り込み口を設ける、又は貯水池(10)の海と接する堤防の上端部の一部又は全部を最大満潮時の海面以下に設ける,又は貯水池(10)内に海水を取り込む為のポンプを設ける。
W,貯水池(10)と排水用池(8)の間の堤防の内側の区域内に、互いに通じる任意の勾配を設けた人工水路(1)又は水路(4)を設ける。
X,人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
Y,人工水路(1)又は水路(4)を通過した海水を溜める為の排水用池(8)を設ける。
Z,排水用池(8)に開閉式の排水門(9)又は排水弁又は排水ポンプを設ける。
以上の如く構成された海水干満式水車発電機による発電方法。T, the slow difference of the sea is used for power generation.
U, a reservoir (10) for seawater and a drainage pond (8) are provided to communicate with each other.
V, provide a seawater intake in the reservoir (10), or install a part or all of the upper end of the levee in contact with the sea in the reservoir (10) below the sea level at the maximum high tide, or put seawater in the reservoir (10) Provide a pump to take in.
W, an artificial waterway (1) or a waterway (4) provided with an arbitrary gradient communicating with each other is provided in an area inside the embankment between the reservoir (10) and the drainage pond (8).
X, an artificial waterway (1) or an underwater turbine (2) in which a generator (3) is connected to the waterway (4) is provided.
Y, a drainage pond (8) is provided for storing seawater that has passed through the artificial waterway (1) or waterway (4).
Z, open / close drainage gate (9) or drainage valve or drainage pump in drainage pond (8).
A power generation method using a seawater tidal water turbine generator configured as described above.
b,海水用の貯水池(10)を設けて、人工水路(1)又は水路(4)に通じさせる。
c,貯水池(10)に開閉式の海水取り込み口(水門又は弁)を設ける。又は貯水池(10)の海と接する堤防の上端部の一部又は全部を最大満潮時の海面以下に設ける,又は貯水池(10)内に海水を取り込む為のポンプを設ける。
d,海への排水門(9)又は排水弁又は排水ポンプを設置した海と隔てられた区域を設け、そこに貯水池(10)に通じる任意の勾配を設けた人工水路(1)又は水路(4)を設置する。
e,人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
以上の如く構成された海水干満式水車発電機による発電方法。a. Use the difference between the sea and the sea for power generation.
b. A reservoir (10) for seawater is provided and communicated with the artificial waterway (1) or waterway (4).
c. Open / close type seawater intake port (sluice gate or valve) is provided in the reservoir (10). Alternatively, a part or all of the upper end of the embankment in contact with the sea of the reservoir (10) is provided below the sea level at the time of maximum high tide, or a pump for taking seawater into the reservoir (10) is provided.
d, Artificial waterway (1) or waterway (1) or waterway (1) or waterway (1) or a waterway (with an arbitrary slope leading to the reservoir (10) in the area separated from the sea where the drainage gate (9) or drainage valve or drainage pump is installed 4) is installed.
e. An underwater turbine (2) in which a generator (3) is connected to the artificial water channel (1) or the water channel (4) is provided.
A power generation method using a seawater tidal water turbine generator configured as described above.
g,人工水路(1)に、自然勾配によらない任意の勾配を設ける。
h,人工水路(1)に、下掛け水車(2)を複数設ける。
i,人工水路(1)に 設置した下掛け水車(2)に発電機(3)を設ける。(連結する)
j,人工水路(1)に、水を通じさせる。
以上の如く構成された人工水路式水車発電機。f, the artificial waterway (1) is provided above the surrounding ground surface.
g. Arbitrary gradient not depending on natural gradient is provided in the artificial water channel (1).
h. A plurality of underwater turbines (2) are provided in the artificial waterway (1).
i. Install the generator (3) in the underwater turbine (2) installed in the artificial waterway (1). (Link)
j, let water flow through the artificial channel (1).
An artificial waterway type turbine generator configured as described above.
l,軸受け(18)又は支点部(19)を介して、又は支点部(19)と軸受け(18)を介して下掛け水車(2)を人工水路(1)に設ける。
m,下掛け水車(2)に発電機(3)を連結する。
以上の如く構成された請求項第18項記載の人工水路式水車発電機。k, the artificial waterway (1) is provided with a bearing (18) or a fulcrum (19) for the underwater turbine (2), or both a bearing (18) and a fulcrum (19) are provided.
1. An underwater turbine (2) is provided in the artificial water channel (1) through the bearing (18) or the fulcrum (19) or through the fulcrum (19) and the bearing (18).
m, connect the generator (3) to the underwater turbine (2).
The artificial waterway type turbine generator according to claim 18 configured as described above.
以上の如く構成された請求項第29項記載の人工水路式水車発電機。A raft (27) or an underwater turbine (2) with a generator (3) connected to the deck of the ship is provided, or a bridge or a tower (13) is provided on the raft (27) or the deck of the ship, and power is generated thereon. An artificial waterway (1) with an underwater turbine (2) connected with a machine (3) is installed, or an underwater turbine (2) with a generator (3) connected to the side of a raft (27) or ship .
30. The artificial waterway type turbine generator according to claim 29 configured as described above.
o、ダム又は堰又は段差のある流れ(25)に通じる任意の勾配を設けた人工水路(1)又は水路(4)を複数設ける。
p、人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
以上の如く構成された人工水路式水車発電機。n, provide a water intake for taking water from a dam or dam or a step (fall) part of the stepped flow (25) or from an upper water area (inside such a dam), or a dam or Provide a water intake for taking water from the middle of the weir or stepped flow (25), or provide a pump for taking water from the dam, weir or stepped flow (25).
o, a plurality of artificial waterways (1) or waterways (4) provided with an arbitrary gradient leading to a dam or dam or a stepped flow (25).
p, the lower water turbine (2) which connected the generator (3) to the artificial water channel (1) or the water channel (4) is provided.
An artificial waterway type turbine generator configured as described above.
r、送水管(5)又は送水路の排水口を取水源又は取水源と連結した上部貯水池(26)よりも低位置に設ける。
s、任意の勾配を設けた人工水路(1)又は水路(4)を設ける。
t、送水管(5)又は送水路を下部貯水池(7)に通じさせる、又は送水管内の水が下部貯水池(7)に流入可能な位置に送水管(5)の排水口を設ける。
u、下部貯水池(7)に通じる人工水路(1)又は水路(4)を設ける,又は送水管(5)又は送水路と人工水路(1)又は水路(4)を直通させる。
v、人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
以上の如く構成された人工水路式水車発電機。q. Provide a water pipe (5) or water channel to feed water taken from the water source to the lowland.
r, the drain of the water pipe (5) or the water channel is provided at a lower position than the water reservoir or the upper reservoir (26) connected to the water source.
s, providing an artificial waterway (1) or waterway (4) with an arbitrary gradient.
t, The water pipe (5) or the water channel is connected to the lower reservoir (7), or the drain of the water pipe (5) is provided at a position where the water in the water pipe can flow into the lower reservoir (7).
u, provide an artificial channel (1) or channel (4) leading to the lower reservoir (7), or directly connect the water pipe (5) or channel and the artificial channel (1) or channel (4).
v. An underwater turbine (2) in which a generator (3) is connected to the artificial water channel (1) or the water channel (4) is provided.
An artificial waterway type turbine generator configured as described above.
い、海水取り込み口と排水用池(8)との間の堤防の内側の区域に、両方に通じる任意の勾配を設けた 人工水路(1)又は水路(4)を設ける。
う、人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
え、人工水路(1)又は水路(4)に通じる海水取り込み口を海と通じる任意のヶ所に設ける,又は堤防の任意のヶ所を最大満潮時の海面以下に設けて人工水路(1)又は水路(4)に通じさせる、又は人工水路(1)又は水路(4)を海と直通させる、又は海水取り込み用のポンプを設ける。
お、人工水路(1)又は水路(4)から流れ出た海水を溜める為の排水用池(8)を設ける。
か、排水用池(8)に開閉式の排水門(9)又は排水弁又は排水用ポンプを設ける。
以上の如く構成された海水干満式水車発電機。Oh, a seawater intake port and a drainage pond (8) communicating with each other.
In the area inside the embankment between the seawater intake and the drainage pond (8), an artificial channel (1) or channel (4) with an arbitrary gradient leading to both will be provided.
The artificial waterway (1) or the waterway (4) is provided with a lower water turbine (2) in which a generator (3) is connected.
Establish an artificial waterway (1) or waterway with a seawater intake opening leading to the artificial waterway (1) or waterway (4) at any place that communicates with the sea, or any place on the dike below the sea level at the time of maximum high tide Provide a pump for communicating with (4), or directly connecting the artificial waterway (1) or waterway (4) with the sea, or for taking in seawater.
A drainage pond (8) is provided for collecting seawater flowing out from the artificial waterway (1) or waterway (4).
Or an openable drainage gate (9) or drainage valve or drainage pump is provided in the drainage pond (8).
A seawater tidal turbine generator constructed as described above.
く、貯水池(10)に海水取り込み口を設ける、又は貯水池(10)の海と接する面の堤防の上端部の一部又は全部を最大満潮時の海面以下に設ける、又は海水を貯水池(10)又は人工水路(1)又は水路(4)に流入させる為のポンプを設ける。
け、貯水池(10)と排水用池(8)の間の堤防の内側の区域に、両方に通じる任意の勾配を設けた人工水路(1)又は水路(4)を設ける。
こ、人工水路(1)又は水路(4)に発電機(3)を連結した下掛け水車(2)を設ける。
さ、人工水路(1)又は水路(4)を通過した海水を溜める為の排水用池(8)を設ける。
し、排水用池(8)に開閉式の排水門(9)を設ける、又は排水弁又は排水ポンプを設ける。
以上の如く構成された海水干満式水車発電機。In addition, a reservoir (10) and a drainage basin (8) for seawater leading to the sea will be provided.
The reservoir (10) is provided with a seawater intake, or a part or all of the upper end of the dike on the surface in contact with the sea of the reservoir (10) is provided below the sea level at the maximum high tide, or the seawater is stored in the reservoir (10). Alternatively, a pump for flowing into the artificial water channel (1) or the water channel (4) is provided.
In the area inside the embankment between the reservoir (10) and the drainage pond (8), an artificial water channel (1) or water channel (4) provided with an arbitrary gradient leading to both is provided.
An underwater turbine (2) in which a generator (3) is connected to the artificial water channel (1) or the water channel (4) is provided.
A drainage pond (8) is provided for storing seawater that has passed through the artificial waterway (1) or waterway (4).
The drainage pond (8) is provided with an openable drainage gate (9), or a drainage valve or drainage pump is provided.
A seawater tidal turbine generator constructed as described above.
せ、貯水池(10)に海水取り込み口を設ける、又は貯水池(10)の海と接する面の堤防の一部又は全部を最大満潮時の海面以下に設ける、又は貯水池(10)内に海水を取り込む為のポンプを設ける。
そ、海への排水門(9)又は排水弁又は排水ポンプを設置した海と隔てられた区域を設け,そこに貯水池(10)に通じる任意の勾配を設けた人工水路(1)又は水路(4)を設置する。
た、人工水路(1)又は水路(4)に、発電機(3)を連結した下掛け水車(2)を設ける。
以上の如く構成された海水干満式水車発電機。A reservoir (10) for seawater communicating with the artificial waterway (1) or the waterway (4) is provided.
The reservoir (10) is provided with a seawater intake, or a part or all of the dike on the surface of the reservoir (10) in contact with the sea is provided below the sea level at the time of maximum high tide, or the seawater is taken into the reservoir (10). Provide a pump for this purpose.
An artificial waterway (1) or waterway (1) or waterway (1) or a waterway (with an arbitrary slope leading to the reservoir (10) in the area separated from the sea where the drainage gate (9) or drainage valve or drainage pump is installed. 4) is installed.
An artificial waterway (1) or a waterway (4) is provided with an underwater turbine (2) in which a generator (3) is connected.
A seawater tidal turbine generator constructed as described above.
つ、人工水路(1)に自然勾配によらない任意の勾配を設ける。
て、人工水路(1)に下掛け水車(2)を設ける。
と、人工水路(1)に、設けた下掛け水車(2)に発電機(3)を連結する。
以上の如く構成された下掛け水車発電機用の人工水路That is, the artificial water channel (1) is provided above the surrounding ground surface.
In addition, an arbitrary gradient not depending on the natural gradient is provided in the artificial water channel (1).
Then, the lower water turbine (2) is provided in the artificial water channel (1).
Then, the generator (3) is connected to the lower water turbine (2) provided in the artificial water channel (1).
Artificial water channel for underwater turbine generator constructed as described above
に、人工水路(1)に自然勾配によらない任意の勾配を設ける。
ぬ、人工水路(1)に下掛け水車(2)を設ける。
ね、下掛け水車(2)に水汲み用の桶(11)を設ける。
以上の如く構成された人工水路式灌漑用水車。An artificial waterway (1) is provided above the surrounding ground surface.
In addition, an arbitrary gradient not depending on the natural gradient is provided in the artificial water channel (1).
An underwater turbine (2) is provided in the artificial waterway (1).
Ne, a water pump (11) is provided in the lower water turbine (2).
An artificial waterway irrigation turbine constructed as described above.
は、人工水路(1)に支点部(19)又は軸受け(18)を設ける、又は支点部(19)と軸受け(18)の両方を設ける。
以上の如く構成された請求項第48項記載の人工水路式灌漑用水車。The artificial water channel (1) is formed in a tubular shape, and an opening (17) for installing the lower water turbine (2) is provided on the ceiling.
Provide the fulcrum part (19) or the bearing (18) in the artificial water channel (1), or provide both the fulcrum part (19) and the bearing (18).
49. An artificial waterway type irrigation turbine according to claim 48 configured as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011014566A JP2012145090A (en) | 2011-01-07 | 2011-01-07 | Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011014566A JP2012145090A (en) | 2011-01-07 | 2011-01-07 | Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012145090A true JP2012145090A (en) | 2012-08-02 |
Family
ID=46788886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011014566A Withdrawn JP2012145090A (en) | 2011-01-07 | 2011-01-07 | Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012145090A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031064A1 (en) * | 2011-08-29 | 2013-03-07 | Suzuki Tizuru | Sealed-recirculation water channel for power generation and generation equipment using water channel |
EP2957764A1 (en) * | 2014-06-16 | 2015-12-23 | Shui-Chuan Chen | Hydraulic power generation device |
-
2011
- 2011-01-07 JP JP2011014566A patent/JP2012145090A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031064A1 (en) * | 2011-08-29 | 2013-03-07 | Suzuki Tizuru | Sealed-recirculation water channel for power generation and generation equipment using water channel |
JPWO2013031064A1 (en) * | 2011-08-29 | 2015-03-23 | 千鶴 鈴木 | Closed circulation channel for power generation and power generation equipment using this channel |
EP2957764A1 (en) * | 2014-06-16 | 2015-12-23 | Shui-Chuan Chen | Hydraulic power generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100867547B1 (en) | Integration power system consisted of tidal power and ocean stream | |
BR112012010871A2 (en) | "electric well power plant". | |
WO2010060504A2 (en) | Energy accumulation system and method | |
CN102277863A (en) | Method for circularly generating power with seawater and comprehensively utilizing seawater under action of artificial sea level fall | |
WO2022016825A1 (en) | Power generation device using water-retaining dams respectively having bell-mouth-type water channels | |
Okedu et al. | Harnessing Hydropower Potential in Desert Regions: The Case of Wadi Dayqah Dam, Quriyat, Oman | |
KR101171014B1 (en) | Debris barrier having small hydropower generating apparatus | |
JP2000282446A (en) | Dam for hydroelectric power generation, and method for generating power and pumping method using the same | |
JP2012145090A (en) | Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel | |
Tong et al. | Advanced materials and devices for hydropower and ocean energy | |
WO2019103634A2 (en) | Cascading hydroelectric power plant | |
KR100642333B1 (en) | The hydroelectric power generation apparatus using to smallhydraulic power | |
KR200418822Y1 (en) | Water-power generating apparatus | |
Pal et al. | Hydropower technology | |
JP2001214424A (en) | Construction method for dam and electricity generating method by hydraulic power | |
KR20070093225A (en) | Water-power generating method and apparatus | |
JP6560813B1 (en) | Gravity added water wheel | |
Tunde | Small hydro schemes-taking Nigeria's energy generation to the next level | |
KR20110107892A (en) | Reformed tidal generation structures and working management program with the 3 basins | |
CN202323893U (en) | Hydroelectric power station capable of being built densely | |
KR20090081304A (en) | Multilevel hydroelectric powergeneration system having tunnel-type water reserving equipment | |
RU185644U1 (en) | Damless hydroelectric power station | |
WO2023282731A1 (en) | Hydroelectric power generation system without weir | |
JP2540078B2 (en) | Deep underground river overflow manhole power generation structure | |
CN208533455U (en) | A kind of flood control tunnel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110225 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140401 |