JP2012141003A - 無段変速装置 - Google Patents

無段変速装置 Download PDF

Info

Publication number
JP2012141003A
JP2012141003A JP2010293331A JP2010293331A JP2012141003A JP 2012141003 A JP2012141003 A JP 2012141003A JP 2010293331 A JP2010293331 A JP 2010293331A JP 2010293331 A JP2010293331 A JP 2010293331A JP 2012141003 A JP2012141003 A JP 2012141003A
Authority
JP
Japan
Prior art keywords
rotation
swing arm
side swing
shaft
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010293331A
Other languages
English (en)
Other versions
JP5522029B2 (ja
Inventor
Shuzo Oda
修三 小田
Taku Kaneko
金子  卓
Kazuki Iwatani
和樹 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010293331A priority Critical patent/JP5522029B2/ja
Priority to US13/331,269 priority patent/US8771125B2/en
Publication of JP2012141003A publication Critical patent/JP2012141003A/ja
Application granted granted Critical
Publication of JP5522029B2 publication Critical patent/JP5522029B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

【課題】無段変速機構にかかる負担が小さく、動力循環が起こらず、且つ入出力軸の径方向における体格を小型化できる無段変速装置を提供する。
【解決手段】駆動源により回転駆動される入力軸12と、入力軸12と同軸上に設けられ、入力軸の回転に基づく動力を取り出す出力軸22と、入力軸12と出力軸22との間に設けられた無段変速機構13、15〜20と、無段変速機構と出力軸22との間に設けられたおよびシングルピニオン式の差動歯車機構32と、入力軸12および出力軸22と同軸上に設けられたバイパス軸30とを備え、無段変速機構は、入力軸12の回転を変速して差動歯車機構32に伝達し、バイパス軸30は、入力軸12の回転を、無段変速機構をバイパスして差動歯車機構32に伝達し、差動歯車機構32は、無段変速機構およびバイパス軸30から伝達された回転を出力軸22に伝達する。
【選択図】図13

Description

本発明は、変速比を無段階に調整可能な無段変速装置に関する。
従来、特許文献1には、無段変速機構(バリエータ)にかかる負担を軽減して耐久性向上を図った無段変速装置が記載されている。
具体的には、遊星歯車機構の動力をバリエータに動力循環させる第1の動力伝達機構と、バリエータの入力ディスクの回転をバリエータのパワーローラおよび出力ディスクをバイパスして遊星歯車機構に伝達させる第2の動力伝達機構とを備えている。
第2の動力伝達機構は、動力の伝達を担うバイパス軸を有しており、このバイパス軸は、バリエータの入力軸および出力軸と平行かつ非同軸に配置されている。
この従来技術によると、動力伝達経路に、バリエータのパワーローラおよび出力ディスクをバイパスする第2の動力伝達機構を設けているので、バリエータにかかる負担を軽減して耐久性向上を図ることができる。
特許第3738535号公報
上記従来技術では、第1の動力伝達機構が遊星歯車機構の動力をバリエータに動力循環させるので、動力伝達経路が長くなって機械的損失が大きくなる(効率が低下する)という問題がある。
また、上記従来技術では、第2の動力伝達機構のバイパス軸が入出力軸と非同軸に配置されているので、装置全体の体格が入出力軸の径方向に大型化してしまうという問題もある。
本発明は上記点に鑑みて、無段変速機構にかかる負担が小さく、動力循環が起こらず、且つ入出力軸の径方向における体格を小型化できる無段変速装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、駆動源により回転駆動される入力軸(12)と、
入力軸(12)と同軸上に設けられ、入力軸の回転に基づく動力を取り出す出力軸(22)と、
入力軸(12)と出力軸(22)との間に設けられた無段変速機構(13、15、16、17、18、19、20)と、
無段変速機構(13、15〜20)と出力軸(22)との間に設けられたおよびシングルピニオン式の差動歯車機構(32)と、
入力軸(12)および出力軸(22)と同軸上に設けられたバイパス軸(30)とを備え、
無段変速機構(13、15〜20)は、入力軸(12)の回転を変速して差動歯車機構(32)に伝達し、
バイパス軸(30)は、入力軸(12)の回転を、無段変速機構(13、15〜20)をバイパスして差動歯車機構(32)に伝達し、
差動歯車機構(32)は、無段変速機構(13、15〜20)およびバイパス軸(30)から伝達された回転を出力軸(22)に伝達することを特徴とする。
これによると、入力軸(12)からの動力が無段変速機構(13、15〜20)とバイパス軸(30)とに分配される。このため、無段変速機構(13、15〜20)にかかる負担を軽減できる。
また、無段変速機構(13、15〜20)とバイパス軸(30)とに分配された動力は、差動歯車機構(32)を介して出力軸(22)に伝達されるので、動力循環が起こらない。
また、バイパス軸(30)は、入力軸(12)および出力軸(22)と同軸上に設けられているので、入出力軸(12、22)の径方向における体格を小型化できる。
請求項2に記載の発明では、請求項1に記載の無段変速装置において、入力軸(12)からバイパス軸(30)への回転伝達を断続する断続機構(31)を備え、
断続機構(31)がバイパス軸(30)への回転伝達を断続することによって、得られる変速比の範囲が変化することを特徴とする。
これにより、得られる変速比の範囲を広げることができる。
請求項3に記載の発明では、請求項2に記載の無段変速装置において、断続機構(31)は、クラッチ機構で構成されている。
請求項4に記載の発明では、請求項2または3に記載の無段変速装置において、バイパス軸(30)の回転方向を制限する第1の回転制限機構(33)を備え、
第1の回転制限機構(33)は、無段変速機構(13、15〜20)から差動歯車機構(32)に伝達される回転の方向と同じ方向にバイパス軸(30)が回転することを制限し、無段変速機構(13、15〜20)から差動歯車機構(32)に伝達される回転の方向と反対の方向にバイパス軸(30)が回転することを許容するものであることを特徴とする。
これにより、断続機構(31)が入力軸(12)からバイパス軸(30)への回転伝達を遮断している場合に、差動歯車機構(32)からバイパス軸(30)への回転伝達を制限することができる。
請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の無段変速装置において、無段変速機構(13、15〜20)は、
入力側揺動アーム(15、352)と、
入力側揺動アーム(15)を揺動自在に支持する支持部材(133、32)と、
入力軸(12)の一方向の回転運動を入力側揺動アーム(15)の揺動運動に変換する回転−揺動変換機構(13、30、31)と、
入力側揺動アーム(15)の所定部位から押圧されることによって揺動する出力側揺動アーム(16)と、
出力側揺動アーム(16)の揺動運動を一方向の回転運動に変換する揺動−回転変換機構(17、18、19、20)と、
出力側揺動アーム(16)に対する入力側揺動アーム(15)の作用点の位置を入力側揺動アーム(15)の揺動半径の方向に変化させることによって出力側揺動アーム(16)の揺動量を調整可能な調整機構(14、33)とを備え、
揺動−回転変換機構(17、18、19、20)は、差動歯車機構(32)に回転を伝達することを特徴とする。
これによると、出力側揺動アーム(16)に対する入力側揺動アーム(15)の作用点の位置が変化することで変速比が変わるので、変速比を変えても回転バランスが変化しない。このため、変速比毎に回転バランスが変化することを防止できる。
また、変速比を調整する際には調整機構(14)によって両揺動アーム(15、16)相互間の相対位置を調整すればよいので、調整機構(14)として複雑な機構を必要としない。このため、部品点数を削減して構成を簡素化できる。
請求項6に記載の発明では、請求項5に記載の無段変速装置において、無段変速機構(13、15〜20)は、
入力側揺動アーム(15、352)と、
入力側揺動アーム(15)を揺動自在に支持する支持部材(133、32)と、
入力軸(12)の一方向の回転運動を入力側揺動アーム(15)の揺動運動に変換する回転−揺動変換機構(13、30、31)と、
入力側揺動アーム(15)の所定部位から押圧されることによって揺動する出力側揺動アーム(16)と、
出力側揺動アーム(16)の揺動運動を一方向の回転運動に変換する揺動−回転変換機構(17、18、19、20)と、
出力側揺動アーム(16)に対する入力側揺動アーム(15)の作用点の位置を入力側揺動アーム(15)の揺動半径の方向に変化させることによって出力側揺動アーム(16)の揺動量を調整可能な調整機構(14、33)とを備え、
揺動−回転変換機構は、
出力側揺動アーム(16)の軸の回転を差動歯車機構(32)に伝達する歯車機構(18、19、20)と、
出力側揺動アーム(16)の軸から歯車機構(18、19、20)に伝達される回転を一方向に制限する第2の回転制限機構(17)とを有し、
歯車機構(18、19、20)は、出力側揺動アーム(16)の軸から第2の回転制限機構(17)を介して伝達された回転と、差動歯車機構(32)に伝達する回転とが互いに逆方向になるように構成され、
歯車機構(18、19、20)は、第2の回転制限機構(17)を介して出力側揺動アーム(16)の軸に連結された外歯ギヤ(18)を有し、
第2の回転制限機構(17)が制限する外歯ギヤ(18)の回転の方向は、第1の回転制限機構(33)が制限する回転の方向と同一になっている。
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の無段変速装置において、差動歯車機構(32)は、
無段変速機構(13、15〜20)から回転が伝達されるキャリア(323)と、
バイパス軸(30)から回転が伝達される太陽ギヤ(321)と、
出力軸(22)に回転を伝達する内歯ギヤ(324)とを有している。
請求項8に記載の発明では、請求項5または6に記載の無段変速装置において、回転−揺動変換機構(13、30、31)は、入力側揺動アーム(15)を駆動する駆動ピン(137)を有し、
入力側揺動アーム(15)には、駆動ピン(137)が挿入される第1の溝(151)が形成され、
出力側揺動アーム(16)の揺動軸は、その軸方向から見たときに、入力側揺動アーム(15)の揺動角を2等分する仮想揺動中心線に対してずれて配置され、
作用点は、第1の溝(151)よりも出力側揺動アーム(16)の揺動軸側に位置していることを特徴とする。
これによると、出力側揺動アーム(16)の揺動角を2等分する仮想揺動中心線の方向を、入力側揺動アーム(15)の仮想揺動中心線と平行な方向に近づけることができるので、出力側揺動アーム(16)の揺動角速度の変動を小さくすることができる。このため、揺動−回転変換機構(17、18、19、20)を経て出力される出力軸(22)の回転速度の変動を小さくすることができる。
請求項9に記載の発明では、請求項8に記載の無段変速装置において、出力側揺動アーム(16)は、入力側揺動アーム(15)によって押圧されるピン(161)を有し、
入力側揺動アーム(15)には、ピン(161)が挿入される第2の溝(152)が形成され、
第1の溝(151)および第2の溝(152)は、互いに非平行な直線形状を有している。
請求項10に記載の発明では、請求項5、6、8および9のいずれか1つに記載の無段変速装置において、 調整機構(14、33)は、出力側揺動アーム(16)に対する支持部材(133、32)の相対位置を変化させる機構で構成されている。これにより、部品点数を削減して構成を簡素化できる。
請求項11に記載の発明では、請求項10に記載の無段変速装置において、回転−揺動変換機構(13)は遊星歯車機構で構成され、
入力側揺動アーム(15)は、回転−揺動変換機構(13)のキャリア(133)に揺動自在に支持され且つ回転−揺動変換機構(13)の遊星ギヤ(132)の自転によって揺動し、
支持部材は、回転−揺動変換機構(13)のキャリア(133)で構成され、
調整機構(14)は、回転−揺動変換機構(13)のキャリア(133)の回転角度を所定範囲内の任意の角度で固定可能にする機構で構成されていることを特徴とする。
これにより、入力軸(12)の回転運動を入力側揺動アーム(15)の揺動運動に良好に変換することができる。
因みに、遊星ギヤ(132)を複数個有する遊星歯車機構を用いれば、入力側揺動アーム(15)および出力側揺動アーム(16)を複数組設けることができるので、入力側揺動アーム(15)および出力側揺動アーム(16)の多極化を極めて容易に実現することができる。
請求項12に記載の発明では、請求項5に記載の無段変速装置において、回転−揺動変換機構は、入力軸(12)に連結された偏心カム(30)と、出力側揺動アーム(16)を入力側揺動アーム(15)側に付勢する弾性部材(31)とで構成され、
調整機構(14)は、偏心カム(30)の軸に対する支持部材(32)の回転角度を所定範囲内の任意の角度で固定可能にする機構で構成されている。
請求項13に記載の発明では、請求項11に記載の無段変速装置において、遊星ギヤ(132)に揺動自在に連結された梃子クランク機構(35)を備え、
梃子クランク機構(35)は、複数本の連接棒(351、352)を有し、
出力側揺動アーム(16)は、複数本の連接棒(351、352)のうち所定の連接棒(352)の所定部位から押圧されることによって揺動し、
入力側揺動アームは、所定の連接棒(352)によって構成されていることを特徴とする。
これにより、出力側揺動アーム(16)の揺動量を大きく確保して最大変速比を大きくできる。
請求項14に記載の発明では、請求項5、6、8、9、10、11、12および13のいずれか1つに記載の無段変速装置において、調整機構(14)は、作用点の位置を、入力側揺動アーム(15)のうち揺動半径が0になる零点位置に調整可能になっており、
入力側揺動アーム(15)は、作用点の位置を零点位置に調整したときの作用点の位置公差を吸収する公差吸収部(152a)を有していることを特徴とする。
これにより、製造上や作動上の誤差による作用点の位置公差を吸収して変速比(変速比=出力回転数/入力回転数)を0にすることができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における無段変速装置の断面図である。 図1の無段変速装置の内部構造の要部を示す斜視図であり、変速比が0の状態を示している。 図1の要部拡大図である。 遊星歯車機構および入力側揺動アームの模式的な正面図である。 図1の無段変速装置のうち入力軸から入力側揺動アームまでの部分を分解して示す正面図である。 第1実施形態における入力側揺動アームのうち第1のアーム部の平面図である。 図1の無段変速装置の内部構造の要部を示す斜視図であり、変速比が最大の状態を示している。 図1の無段変速装置の内部構造の要部を示す斜視図であり、変速比が中間変速比の状態を示している。 第2実施形態における入力側揺動アームのうち第1のアーム部の平面図である。 第3実施形態における回転−揺動変換機構を示す正面図である。 第4実施形態における回転−揺動変換機構を示す正面図である。 第5実施形態における無段変速装置の低変速比モードを示す図である。 第5実施形態における無段変速装置の高変速比モードを示す図である。 第5実施形態における無段変速装置の共線図である。
図1〜図12に示す第1〜第4実施形態は、本発明の適用対象となる無段変速装置の基本構成を示す参考例としての実施形態である。
(第1実施形態)
本第1実施形態は、無段変速装置を冷凍サイクルの圧縮機に適用したものである。図1は、本実施形態における無段変速装置を示す断面図である。図2は、図1の無段変速装置の内部構造の要部を示す斜視図である。
図1、図2に示すように、無段変速装置は、中空円柱状の筐体11と、筐体11に対して回転可能に支持された入力軸12と、筐体11内において入力軸12に連結された遊星歯車機構13とを有している。筐体11は、成形上の都合や内蔵部品の組付上の都合等から複数の部材に分割して成形されている。
遊星歯車機構13は、太陽ギヤ131、遊星ギヤ132、キャリア133および内歯ギヤ134で構成されている。太陽ギヤ131および内歯ギヤ134は入力軸12と同軸上に配置されている。
内歯ギヤ134は、入力軸12に対してボルト結合されて入力軸12と一体に回転する。遊星ギヤ132は、本実施形態では4個設けられている。
キャリア133には、太陽ギヤ131を回転可能に支持する軸135と、遊星ギヤ132を回転可能に支持する軸136とが固定されている。キャリア133は、調整機構14を介して筐体11に固定されている。
調整機構14は、キャリア133を太陽ギヤ131および内歯ギヤ134と同軸上に回転させて、キャリア133の回転角度を所定範囲内の任意の角度で固定可能にするものである。
具体的には、調整機構14は、キャリア133と同軸状の円盤状部材141と、円盤状部材141の外周部から筐体11の壁面を貫通して筐体11の外部に突出するハンドル部142とを有している。円盤状部材141は、軸135に固定されているとともに、筐体11の軸方向中間部に一体的に形成された仕切壁部111に回転可能に支持されている。
筐体11の外部からハンドル部142を操作して円盤状部材141を回転させることでキャリア133の回転角度を無段階に調整できる。ハンドル部142の操作は、筐体11の外部に配置された電動アクチュエータ(図示せず)によって行われる。もちろんハンドル部142を手動で操作してもよい。
キャリア133は、入力側揺動アーム15を揺動自在に支持する支持部材の役割を果たしている。入力側揺動アーム15は、遊星ギヤ132と同数個(本実施形態では4個)設けられ、遊星ギヤ132の自転によって揺動する。
図3は図1の要部拡大図であり、図4は遊星歯車機構13および入力側揺動アーム15の模式的な正面図である。図3、図4に示すように、入力側揺動アーム15に形成された第1の溝151に、遊星ギヤ132に一体に形成された駆動ピン137が挿入されている。これにより、遊星歯車機構13は、入力軸12の回転運動を入力側揺動アーム15の揺動運動に変換する回転−揺動変換機構として機能する。
図3に示すように、複数個の入力側揺動アーム15はそれぞれ出力側揺動アーム16に連結されている。具体的には、入力側揺動アーム15に形成された第2の溝152に、出力側揺動アーム16に一体に形成されたピン161が挿入されている。
図1、図2に示すように、複数個の出力側揺動アーム16の軸はそれぞれ、一方向クラッチ17を介して外歯ギヤ18の中心軸部に連結されている。一方向クラッチ17は、外歯ギヤ18が一方向に回転するのを阻止し、他方向に回転するのは許容するものである。
換言すれば、一方向クラッチ17は、出力側揺動アーム16の軸から外歯ギヤ18への回転力の伝達を一方向に制限する回転力伝達制限機構としての役割を果たす。したがって、出力側揺動アーム16の揺動により外歯ギヤ18が一方向に回転する。
複数個の外歯ギヤ18は、1つの内歯ギヤ19および1つの外歯ギヤ20に噛み合うようになっている。内歯ギヤ19は、ベアリング21を介して筐体11に回転自在に支持されている。外歯ギヤ20は、入力軸12と同軸上に配置された出力軸22に一体に形成されている。
一方向クラッチ17、外歯ギヤ18、内歯ギヤ19および外歯ギヤ20は、出力側揺動アーム16の揺動運動を出力軸22の回転運動に変換する揺動−回転変換機構としての役割を果たす。
出力軸22は増速機23に連結されている。増速機23は、出力軸22の回転によって公転する遊星ギヤ231と、遊星ギヤ231に噛み合う内歯ギヤ232および太陽ギヤ233とで構成されている。増速機23の遊星ギヤ231、内歯ギヤ232および太陽ギヤ233は筐体11に収容されている。増速機23の内歯ギヤ232は筐体11に固定されている。増速機23の太陽ギヤ233には、増速機23の出力軸が一体に形成されている。なお、筐体11内において、上述の各部材の組み付けは適宜ベアリングを介して行われている。また、筐体11は、Oリング等のシール部材によって適宜封止されている。
次に、入力側揺動アーム15と出力側揺動アーム16との連結構造を図3、図5に基づいて詳細に説明する。図5は、図1に示す無段変速装置のうち入力軸12から入力側揺動アーム15までの部分を分解して入力側揺動アーム15側(入力軸12と反対側)から軸方向に見た状態を示す正面図である。
図3に示すように、入力側揺動アーム15の第1の溝151は、入力側揺動アーム15の片面(遊星ギヤ132側の面)に形成されている。一方、入力側揺動アーム15の第2の溝152は、図3、図5に示すように入力側揺動アーム15の他面(出力側揺動アーム16側の面)に形成されている。本実施形態では、第1、第2の溝151、152は直線形状を有している。
本実施形態では、入力側揺動アーム15は、第1の溝151が形成された第1のアーム部15aと、第2の溝152が形成された第2のアーム部15bとを軸方向に重ねて一体化した構成になっている。
本実施形態では、出力側揺動アーム16の揺動軸は、その軸方向から見たときに、入力側揺動アーム15の揺動角を2等分する仮想揺動中心線(図示せず)に対してずれて配置されている。
軸方向から見たときに、第1、第2のアーム部15a、15bは、長手方向一端部同士の位置が合致し、長手方向他端部に向かうにつれて互いにずれている。したがって、入力側揺動アーム15の第1の溝151および第2の溝152は互いに非平行になっている。
これにより、出力側揺動アーム16に対する入力側揺動アーム15の作用点の位置が、入力側揺動アーム15の第1の溝151よりも出力側揺動アーム16の揺動軸側に位置することとなる。
このため、出力側揺動アーム16の揺動軸がその軸方向から見たときに入力側揺動アーム15の仮想揺動中心線に対してずれていても、出力側揺動アーム16の揺動角を2等分する仮想揺動中心線(図示せず)の方向を、入力側揺動アーム15の仮想揺動中心線と平行な方向に近づけることができるので、出力側揺動アーム16の揺動角速度の変動を小さくすることができ、ひいては、揺動−回転変換機構を経て出力される出力軸22の回転速度の変動を小さくすることができる。
本実施形態では、出力側揺動アーム16の揺動軸が、入力側揺動アーム15の第1の溝151よりも出力軸22側(揺動−回転変換機構の中心側)に配置されているので、入力側揺動アーム15の第2の溝152は、第1の溝151よりも出力軸22側(揺動−回転変換機構の中心側)に配置されている。なお、第1、第2の溝151、152は互いに平行になっていてもよい。
入力側揺動アーム15の軸153は第1のアーム部15aの一端部に形成されている。軸方向から見たときに、第2の溝152は、その長手方向一端部152aが軸153と重合している。本実施形態では、図6に示すように第2の溝152は、出力側揺動アーム16のピン161に対して逃がしをもたない形状になっている。
上記構成における作動を説明する。調整機構14によってキャリア133を所定の回転角度で筐体11に固定した状態において入力軸12が一方向に回転すると、入力軸12の回転運動が遊星歯車機構13によって入力側揺動アーム15の揺動運動に変換される。
具体的には、入力軸12が回転すると内歯ギヤ134も回転し、これにより遊星ギヤ132が公転することなく自転し、遊星ギヤ132の自転により遊星ギヤ132の駆動ピン137が遊星ギヤ132の軸周りに公転して入力側揺動アーム15が揺動駆動される。入力側揺動アーム15が揺動すると、出力側揺動アーム16のピン161が入力側揺動アーム15の第2の溝152の壁面に押圧されて出力側揺動アーム16も揺動する。
出力側揺動アーム16が揺動すると、出力側揺動アーム16の揺動運動が揺動−回転変換機構17〜20によって出力軸22の一方向の回転運動に変換される。具体的には、出力側揺動アーム16が揺動すると一方向クラッチ17を介して外歯ギヤ18が一方向に回転し、これにより外歯ギヤ20および出力軸22が一方向に回転する。そして出力軸22の回転は、増速機23によって増速される。
上記構成において変速比(増速比)を調整する際には、調整機構14によってキャリア133の回転角度を調整する。図2は、変速比(変速比=出力回転数/入力回転数)が0になるようにキャリア133の回転角度を調整した状態を示し、図7は、変速比が最大になるようにキャリア133の回転角度を調整した状態を示し、図8は、変速比が中間変速比になるようにキャリア133の回転角度を調整した状態を示している。
キャリア133の回転角度を変えることで出力側揺動アーム16に対する入力側揺動アーム15の作用点の位置が変化するので、入力側揺動アーム15の揺動量に対する出力側揺動アーム16の揺動量が変化し、ひいては出力軸22の回転数(出力回転数)が変化する。
キャリア13の回転角度は無段階に調整可能となっているので、入力軸12の回転数(入力回転数)に対する出力軸22の回転数(出力回転数)を無段階に変化させることができる。よって、変速比を無段階に調整することができる。
具体的には、図2に示す状態(変速比:0)では、入力側揺動アーム15の作用点が入力側揺動アーム15の軸153に最も接近し、入力側揺動アーム15の長手方向における軸153から作用点までの距離が0になる。換言すれば、入力側揺動アーム15のうち揺動半径が0になる零点位置に作用点が位置する。これにより、入力側揺動アーム15が揺動しても出力側揺動アーム16が揺動しないので、変速比を0にすることができる。
図7に示す状態(変速比:最大)では、入力側揺動アーム15の長手方向(揺動半径の方向)における軸153から作用点までの距離が最大になる。これにより、入力側揺動アーム15の揺動量に対する出力側揺動アーム16の揺動量が最大になるので変速比を最大にすることができる。
図8に示す状態(変速比:中間変速比)では、入力側揺動アーム15の長手方向における軸153から作用点までの距離が中程度になる。これにより、入力側揺動アーム15の揺動量に対する出力側揺動アーム16の揺動量が中程度になるので変速比を中間変速比にすることができる。
本実施形態によると、出力側揺動アーム16に対する入力側揺動アーム15の作用点の位置が変化することで変速比が変わるので、変速比を変えても回転バランスが変化しない。このため、変速比毎に回転バランスが変化することを防止できる。
また、変速比を調整する際には、入力軸12と一体に回転しない入力側揺動アーム15の位置を調整すればよいので、調整機構14を少ない部品点数で構成できる。具体的には、調整機構14は、出力側揺動アーム16に対する支持部材133の相対位置を変化させるといった簡素な機構である。このため、無段変速装置の構成を簡素化できる。
(第2実施形態)
上記第1実施形態では、入力側揺動アーム15の第2の溝152は、出力側揺動アーム16のピン161に対して逃がしをもたない形状になっているが、本第2実施形態では、図9に示すように、第2の溝152の長手方向一端部152aに、ピン161に対する逃がし形状が形成されている。具体的には、逃がし形状は、ピン161の外形よりも所定寸法大きい形状になっている。
逃がし形状の寸法は、製造上や作動上の誤差による入力側揺動アーム15の位置公差を考慮して決定される。なお、第2の溝152の残余の部位はピン161に対して逃がしをもたない形状になっている。
出力側揺動アーム16に対する入力側揺動アーム15の作用点の位置を変速比:0の位置(零点位置)に調整した場合には、第2の溝152の長手方向一端部152aに出力側揺動アーム16のピン161がくる。
ここで、上述した図6のように第2の溝152に逃がし形状を設けていない場合には、公差の範囲内において入力側揺動アーム15の位置がばらつくと、入力側揺動アーム15の揺動により出力側揺動アーム16が僅かに揺動してしまうので変速比が確実に0にならない。
この点に鑑みて、本実施形態では、図9のように第2の溝152に逃がし形状を設けているので、入力側揺動アーム15の位置公差を吸収して出力側揺動アーム16が揺動しないようにすることができる。換言すれば、第2の溝152のうち逃がし形状が設けられた長手方向一端部152aは、入力側揺動アーム15の作用点の位置を零点位置に調整したときの作用点の位置公差を吸収する公差吸収部の役割を果たす。よって、入力側揺動アーム15の位置公差を吸収して変速比を0にすることができる。
(第3実施形態)
上記第1実施形態では、入力軸12の回転運動を入力側揺動アーム15の揺動運動に変換する回転−揺動変換機構を遊星歯車機構13によって構成しているが、本第2実施形態では、図10に示すように、回転−揺動変換機構を、入力軸12に連結された偏心カム30と、出力側揺動アーム16に設けられた弾性部材31とによって構成している。
偏心カム30は、そのカム面上を入力側揺動アーム15が摺動するように配置されている。入力側揺動アーム15は、環板状の支持部材32に揺動自在に設けられている。支持部材32は、調整機構33を介して筐体11に固定されている。
調整機構33は、支持部材32を入力軸12と同軸上に回転させて、支持部材32の回転角度を所定範囲内で任意(無段階)に調整可能にするものである。図10の例では、調整機構33は、筐体11の外部に配置された電動アクチュエータ34によって操作されるようになっている。
弾性部材31は、出力側揺動アーム16を入力側揺動アーム15側に付勢するように筐体11に固定されている。
上記構成における作動を説明する。調整機構33によって支持部材32を所定の回転角度で筐体11に固定した状態において入力軸12が一方向に回転すると、入力軸12の回転運動が偏心カム30によって入力側揺動アーム15の揺動運動に変換される。
具体的には、入力軸12が回転すると偏心カム30が偏心回転し、これにより入力側揺動アーム15が偏心カム30のカム面に押圧され、入力側揺動アーム15が出力側揺動アーム16を押圧する。入力側揺動アーム15に押圧された出力側揺動アーム16は弾性部材31の弾性復元力によって入力側揺動アーム15側に押し戻され、入力側揺動アーム15を偏心カム30のカム面側に押し戻す。これにより入力側揺動アーム15が揺動し、出力側揺動アーム16も揺動する。
出力側揺動アーム16が揺動すると、出力側揺動アーム16の揺動運動が揺動−回転変換機構17〜20によって出力軸22の一方向の回転運動に変換される。
上記構成において、変速比を調整する際には、調整機構33によって支持部材32の回転角度を調整する。支持部材32の回転角度を変えることで出力側揺動アーム16に対する入力側揺動アーム15の作用点の位置が変化するので、上記第1実施形態と同様に変速比を無段階に調整することができる。
なお、本実施形態においても、上記第2実施形態と同様に、入力側揺動アーム15の第2の溝152のうち長手方向一端部(揺動軸153と重合する部位)に、出力側揺動アーム16のピン161に対する逃がし形状を形成すれば、入力側揺動アーム15の位置公差を吸収して変速比を0にすることができる。
(第4実施形態)
上記第1実施形態では、遊星ギヤ132に入力側揺動アーム15を直接連結しているが、本第3実施形態では、図11に示すように、遊星歯車機構13に梃子クランク機構35を連結し、梃子クランク機構35を構成する複数本の連接棒351、352のうち遊星歯車機構13に直接連結されていない連接棒352が入力側揺動アームの役割を果たすようにしている。
本実施形態では、梃子クランク機構35は、2つの連接棒351、352を有し、一方の連接棒351は遊星ギヤ132に揺動自在に支持され、他方の連接棒351はキャリア133に揺動自在に支持されている。
図示を省略しているが、入力側揺動アームをなす連接棒352のうち遊星ギヤ132と反対側の面には、出力側揺動アーム16のピン161が挿入される溝が、その長手方向に延びて形成されている。
この連接棒352の溝は、その長手方向一端部が連接棒352の揺動軸352aと重合するように形成されている。この溝の一端部に、上記第2実施形態と同様に出力側揺動アーム16のピン161に対する逃がし形状を形成すれば、連接棒352の位置公差を吸収して変速比を0にすることができる。
図11中、点P1は、変速比が0の場合における出力側揺動アーム16のピン161の位置を示している。この状態では、出力側揺動アーム16のピン161の位置が連接棒352の揺動軸352aの位置と重合している。
これに対し、図11中、点P2は、変速比が最大の場合における出力側揺動アーム16のピン161の位置を示している。この状態では、出力側揺動アーム16のピン161の位置が連接棒352の揺動軸352aから最も離れた位置になっている。
上記構成における作動を説明する。調整機構14によってキャリア133を所定の回転角度で筐体11に固定した状態において入力軸12が一方向に回転すると、内歯ギヤ134も回転し、これにより遊星ギヤ132が公転することなく自転し、遊星ギヤ132の自転により梃子クランク機構35が運動する。すなわち、入力側揺動アームをなす連接棒352が、その揺動軸352aを中心として揺動する。
そして、入力側揺動アームをなす連接棒352の揺動により出力側揺動アーム16も揺動するので、出力側揺動アーム16の揺動運動が揺動−回転変換機構17〜20によって出力軸22の一方向の回転運動に変換され、出力軸22の回転は増速機23によって増速される。
上記構成において、変速比を調整する際には、調整機構14によってキャリア133の回転角度を調整する。キャリア133の回転角度を変えることで、出力側揺動アーム16のピン161の位置が点P1から点P2の間で相対的に変化するので、出力側揺動アーム16に対する入力側揺動アーム(すなわち連接棒352)の作用点の位置も変化する。これにより、上記第1実施形態と同様に変速比を無段階に調整することができる。
本実施形態によると、上記第1実施形態のように遊星ギヤ132に入力側揺動アームを直接連結した場合と比較して、入力側揺動アーム(すなわち連接棒352)の揺動量を大きくすることができるので最大変速比を大きくできる。
(第5実施形態)
上記第1実施形態では、入力軸12の回転力が、遊星ギヤ132→入力側揺動アーム15→出力側揺動アーム16→外歯ギヤ18→外歯ギヤ20→出力軸22という経路で伝達されるが、図12、図13に示す第5実施形態では、入力軸12の回転力が、上記経路に加えて、バイパス軸30にも分配して伝達されるようにしている。
本実施形態の無段変速装置は、低変速比モード(Loモード)と高変速比モード(Hiモード)とに切り替え可能になっており、図12は低変速比モード(Loモード)での作動状態を示している。
バイパス軸30は、入力軸12および出力軸22の両方と同軸上に設けられている。バイパス軸30は、太陽ギヤ131の中心部および外歯ギヤ20の中心部を貫通し、太陽ギヤ131および出力軸22に対して独立に回転可能になっている。本実施形態では、太陽ギヤ131は、入力軸12と一体に回転するようになっている。
バイパス軸30には、入力軸12からの回転力がクラッチ機構31(断続機構)を介して伝達されるようになっている。
バイパス軸30は、差動歯車機構32の太陽ギヤ321に連結されている。差動歯車機構32は、太陽ギヤ321、遊星ギヤ322、キャリア323および内歯ギヤ324で構成されたシングルピニオン式のものである。太陽ギヤ321および遊星ギヤ322は、キャリア323に回転可能に支持されている。
差動歯車機構32は無段変速機構13、15〜20と出力軸22との間に設けられており、差動歯車機構32と出力軸22との間には増速機23が設けられている。無段変速機構の外歯ギヤ20は差動歯車機構32のキャリア323に連結されている。したがって、差動歯車機構32のキャリア323は、無段変速機構の外歯ギヤ20と一体に回転する。
図12では図示を省略しているが、バイパス軸30は、第1の回転制限機構をなす一方向クラッチ33を介して筐体11に支持されている。一方向クラッチ33は、バイパス軸30が無段変速機構の外歯ギヤ20および差動歯車機構32のキャリア323と同方向に回転するのを阻止し、バイパス軸30が無段変速機構の外歯ギヤ20および差動歯車機構32のキャリア323と逆方向に回転するのは許容する。
なお、本実施形態では、一方向クラッチ33が阻止する回転の方向は、無段変速機構13、15〜20の一方向クラッチ17(第2の回転制限機構)が阻止する回転の方向と同じになる。
差動歯車機構32の内歯ギヤ324は、増速機23の内歯ギヤ232に連結されている。図12では図示を省略しているが、差動歯車機構32の内歯ギヤ324および増速機23の内歯ギヤ232は、筐体11に対して回転可能に支持されている。増速機23の遊星ギヤ231は、自転はするが公転はしないように筐体11に支持されている。
上記構成における作動を説明する。図12に示す低変速比モードでは、入力軸12からバイパス軸30への回転力の伝達がクラッチ機構31によって遮断される。そのため、入力軸12が駆動源により回転駆動されると、入力軸12の回転力は、太陽ギヤ131→遊星ギヤ132→入力側揺動アーム15→出力側揺動アーム16→外歯ギヤ18→外歯ギヤ20→キャリア323→遊星ギヤ322→内歯ギヤ324→増速機23→出力軸22という経路で伝達される。
このとき、図12(b)に示すように、遊星ギヤ322が公転および自転するが、太陽ギヤ321は回転しない。これは、太陽ギヤ321に連結されたバイパス軸30の回転が一方向クラッチ33によって阻止されるからである。
図12(c)は低変速比モード(Loモード)の作動を模式的に示すものである。低変速比モード(Loモード)では、入力軸12の回転力が無段変速機構13、15〜20のみを経て差動歯車機構32に伝達され、バイパス軸30には入力軸12の回転力が分配されない。
一方、図13に示す高変速比モード(Hiモード)では、入力軸12の回転力がクラッチ機構31を介してバイパス軸30に伝達される。そのため、入力軸12の回転力は、低変速比モードの動力伝達経路に加えて、バイパス軸30→太陽ギヤ321→遊星ギヤ322→内歯ギヤ324→増速機23→出力軸22という経路でも伝達される。
このとき、図13(b)に示すように、太陽ギヤ321がキャリア323と逆方向に回転するので、低変速比モードに比べて遊星ギヤ322の自転が増速される。その結果、低変速比モードに比べて内歯ギヤ324の回転数が高くなる。換言すれば、低変速比モードに比べて変速比が高くなる。
図13(c)は高変速比モード(Hiモード)の作動を模式的に示すものである。高変速比モード(Hiモード)では、入力軸12からの動力が無段変速機構13、15〜20とバイパス軸30とに分配されて差動歯車機構32に伝達される。このため、無段変速機構13、15〜20にかかる負担を軽減して耐久性向上を図ることができる。

図14(a)は低変速比モード(Loモード)における共線図であり、図14(b)は高変速比モード(Hiモード)における共線図である。図14(a)では、高変速比モード(Hiモード)における共線図を破線で示し、図14(b)では、低変速比モード(Loモード)における共線図を破線で示している。
低変速比モード(Loモード)では太陽ギヤ321(クラッチ接続サン)が回転しないのに対し、高変速比モード(Hiモード)では太陽ギヤ321(クラッチ接続サン)がキャリア323の回転方向と逆方向に回転する(回転数がマイナスになる)ので低変速比モード(Loモード)に比べて内歯ギヤ324(リングギヤ)の回転数が高くなる。そのため、高変速比モード(Hiモード)では、得られる変速比の範囲(変速範囲)が低変速比モード(Loモード)に比べて高くなる。
本実施形態によると、高変速比モード(Hiモード)では、バイパス軸30から差動歯車機構32の太陽ギヤ321に入力される回転と、無段変速機構13、15〜20から差動歯車機構32のキャリア323に入力される回転とが逆回転の関係になるので、動力循環が起こらない。そのため、動力循環による機械的損失が発生せず高効率である。
また、バイパス軸30は入力軸12および出力軸22の両方と同軸上に設けられているので、バイパス軸30を設けても装置全体の体格が無段変速機構13、15〜20の径方向に大型化することを回避できる。
(他の実施形態)
なお、上記各実施形態では、入力側揺動アームの位置を調整することで作用点の位置を調整するようにしているが、出力側揺動アームの位置を調整することで作用点の位置を調整するようにしてもよい。
また、上記各実施形態では、入力側揺動アームの溝に出力側揺動アームのピンを挿入することによって出力側揺動アームが入力側揺動アームから押圧されるようになっているが、これに限定されるものではなく、例えば、出力側揺動アームの所定部位を入力側揺動アームの側面に当接させることによって出力側揺動アームが入力側揺動アームから押圧されるようにしてもよい。
また、上記第5実施形態では、上記第1実施形態に対してバイパス軸30を設けた例を示したが、これに限定されるものではなく、上記第2〜第4実施形態に対してバイパス軸30を設けてもよい。
また、上記第5実施形態では、無段変速機構として、入力側揺動アームおよび出力側揺動アームを有するものを用いているが、これに限定されることなく、種々の無段変速機構を用いてもよい。
また、上記第5実施形態では、本発明の無段変速装置を冷凍サイクルの圧縮機に適用した例を示したが、本発明の無段変速装置は種々の回転機械に広く適用することが可能である。
12 入力軸
13 遊星歯車機構(回転−揺動変換機構)
131 太陽ギヤ
132 遊星ギヤ
133 キャリア(支持部材)
134 内歯ギヤ
14 調整機構
15 入力側揺動アーム
16 出力側揺動アーム
17 一方向クラッチ(揺動−回転変換機構)
18 外歯ギヤ(揺動−回転変換機構)
19 内歯ギヤ(揺動−回転変換機構)
20 外歯ギヤ(揺動−回転変換機構)
22 出力軸

Claims (14)

  1. 駆動源により回転駆動される入力軸(12)と、
    前記入力軸(12)と同軸上に設けられ、前記入力軸の回転に基づく動力を取り出す出力軸(22)と、
    前記入力軸(12)と前記出力軸(22)との間に設けられた無段変速機構(13、15、16、17、18、19、20)と、
    前記無段変速機構(13、15〜20)と前記出力軸(22)との間に設けられたおよびシングルピニオン式の差動歯車機構(32)と、
    前記入力軸(12)および前記出力軸(22)と同軸上に設けられたバイパス軸(30)とを備え、
    前記無段変速機構(13、15〜20)は、前記入力軸(12)の回転を変速して前記差動歯車機構(32)に伝達し、
    前記バイパス軸(30)は、前記入力軸(12)の回転を、前記無段変速機構(13、15〜20)をバイパスして前記差動歯車機構(32)に伝達し、
    前記差動歯車機構(32)は、前記無段変速機構(13、15〜20)および前記バイパス軸(30)から伝達された回転を前記出力軸(22)に伝達することを特徴とする無段変速装置。
  2. 前記入力軸(12)から前記バイパス軸(30)への回転伝達を断続する断続機構(31)を備え、
    前記断続機構(31)が前記バイパス軸(30)への回転伝達を断続することによって、得られる変速比の範囲が変化することを特徴とする請求項1に記載の無段変速装置。
  3. 前記断続機構(31)は、クラッチ機構で構成されていることを特徴とする請求項2に記載の無段変速装置。
  4. 前記バイパス軸(30)の回転方向を制限する第1の回転制限機構(33)を備え、
    前記第1の回転制限機構(33)は、前記無段変速機構(13、15〜20)から前記差動歯車機構(32)に伝達される回転の方向と同じ方向に前記バイパス軸(30)が回転することを制限し、前記無段変速機構(13、15〜20)から前記差動歯車機構(32)に伝達される回転の方向と反対の方向に前記バイパス軸(30)が回転することを許容するものであることを特徴とする請求項2または3に記載の無段変速装置。
  5. 前記無段変速機構(13、15〜20)は、
    入力側揺動アーム(15、352)と、
    前記入力側揺動アーム(15)を揺動自在に支持する支持部材(133、32)と、
    前記入力軸(12)の一方向の回転運動を前記入力側揺動アーム(15)の揺動運動に変換する回転−揺動変換機構(13、30、31)と、
    前記入力側揺動アーム(15)の所定部位から押圧されることによって揺動する出力側揺動アーム(16)と、
    前記出力側揺動アーム(16)の揺動運動を一方向の回転運動に変換する揺動−回転変換機構(17、18、19、20)と、
    前記出力側揺動アーム(16)に対する前記入力側揺動アーム(15)の作用点の位置を前記入力側揺動アーム(15)の揺動半径の方向に変化させることによって前記出力側揺動アーム(16)の揺動量を調整可能な調整機構(14、33)とを備え、
    前記揺動−回転変換機構(17、18、19、20)は、前記差動歯車機構(32)に回転を伝達することを特徴とする請求項1ないし4のいずれか1つに記載の無段変速装置。
  6. 前記無段変速機構(13、15〜20)は、
    入力側揺動アーム(15、352)と、
    前記入力側揺動アーム(15)を揺動自在に支持する支持部材(133、32)と、
    前記入力軸(12)の一方向の回転運動を前記入力側揺動アーム(15)の揺動運動に変換する回転−揺動変換機構(13、30、31)と、
    前記入力側揺動アーム(15)の所定部位から押圧されることによって揺動する出力側揺動アーム(16)と、
    前記出力側揺動アーム(16)の揺動運動を一方向の回転運動に変換する揺動−回転変換機構(17、18、19、20)と、
    前記出力側揺動アーム(16)に対する前記入力側揺動アーム(15)の作用点の位置を前記入力側揺動アーム(15)の揺動半径の方向に変化させることによって前記出力側揺動アーム(16)の揺動量を調整可能な調整機構(14、33)とを備え、
    前記揺動−回転変換機構は、
    前記出力側揺動アーム(16)の軸の回転を前記差動歯車機構(32)に伝達する歯車機構(18、19、20)と、
    前記出力側揺動アーム(16)の軸から前記歯車機構(18、19、20)に伝達される回転を一方向に制限する第2の回転制限機構(17)とを有し、
    前記歯車機構(18、19、20)は、前記出力側揺動アーム(16)の軸から前記第2の回転制限機構(17)を介して伝達された回転と、前記差動歯車機構(32)に伝達する回転とが互いに逆方向になるように構成され、
    前記歯車機構(18、19、20)は、前記第2の回転制限機構(17)を介して前記出力側揺動アーム(16)の軸に連結された外歯ギヤ(18)を有し、
    前記第2の回転制限機構(17)が制限する前記外歯ギヤ(18)の回転の方向は、前記第1の回転制限機構(33)が制限する回転の方向と同一になっていることを特徴とする請求項5に記載の無段変速装置。
  7. 前記差動歯車機構(32)は、
    前記無段変速機構(13、15〜20)から回転が伝達されるキャリア(323)と、
    前記バイパス軸(30)から回転が伝達される太陽ギヤ(321)と、
    前記出力軸(22)に回転を伝達する内歯ギヤ(324)とを有していることを特徴とする請求項1ないし6のいずれか1つに記載の無段変速装置。
  8. 前記回転−揺動変換機構(13、30、31)は、前記入力側揺動アーム(15)を駆動する駆動ピン(137)を有し、
    前記入力側揺動アーム(15)には、前記駆動ピン(137)が挿入される第1の溝(151)が形成され、
    前記出力側揺動アーム(16)の揺動軸は、その軸方向から見たときに、前記入力側揺動アーム(15)の揺動角を2等分する仮想揺動中心線に対してずれて配置され、
    前記作用点は、前記第1の溝(151)よりも前記出力側揺動アーム(16)の前記揺動軸側に位置していることを特徴とする請求項5または6に記載の無段変速装置。
  9. 前記出力側揺動アーム(16)は、前記入力側揺動アーム(15)によって押圧されるピン(161)を有し、
    前記入力側揺動アーム(15)には、前記ピン(161)が挿入される第2の溝(152)が形成され、
    前記第1の溝(151)および前記第2の溝(152)は、互いに非平行な直線形状を有していることを特徴とする請求項8に記載の無段変速装置。
  10. 前記調整機構(14、33)は、前記出力側揺動アーム(16)に対する前記支持部材(133、32)の相対位置を変化させる機構で構成されていることを特徴とする請求項5、6、8および9のいずれか1つに記載の無段変速装置。
  11. 前記回転−揺動変換機構(13)は遊星歯車機構で構成され、
    前記入力側揺動アーム(15)は、前記回転−揺動変換機構(13)のキャリア(133)に揺動自在に支持され且つ前記回転−揺動変換機構(13)の遊星ギヤ(132)の自転によって揺動し、
    前記支持部材は、前記回転−揺動変換機構(13)のキャリア(133)で構成され、
    前記調整機構(14)は、前記回転−揺動変換機構(13)のキャリア(133)の回転角度を所定範囲内の任意の角度で固定可能にする機構で構成されていることを特徴とする請求項10に記載の無段変速装置。
  12. 前記回転−揺動変換機構は、前記入力軸(12)に連結された偏心カム(30)と、前記出力側揺動アーム(16)を前記入力側揺動アーム(15)側に付勢する弾性部材(31)とで構成され、
    前記調整機構(14)は、前記偏心カム(30)の軸に対する前記支持部材(32)の回転角度を所定範囲内の任意の角度で固定可能にする機構で構成されていることを特徴とする請求項5に記載の無段変速装置。
  13. 前記遊星ギヤ(132)に揺動自在に連結された梃子クランク機構(35)を備え、
    前記梃子クランク機構(35)は、複数本の連接棒(351、352)を有し、
    前記出力側揺動アーム(16)は、前記複数本の連接棒(351、352)のうち所定の連接棒(352)の所定部位から押圧されることによって揺動し、
    前記入力側揺動アームは、前記所定の連接棒(352)によって構成されていることを特徴とする請求項11に記載の無段変速装置。
  14. 前記調整機構(14)は、前記作用点の位置を、前記入力側揺動アーム(15)のうち揺動半径が0になる零点位置に調整可能になっており、
    前記入力側揺動アーム(15)は、前記作用点の位置を前記零点位置に調整したときの前記作用点の位置公差を吸収する公差吸収部(152a)を有していることを特徴とする請求項5、6、8、9、10、11、12および13のいずれか1つに記載の無段変速装置。
JP2010293331A 2010-04-14 2010-12-28 無段変速装置 Active JP5522029B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010293331A JP5522029B2 (ja) 2010-12-28 2010-12-28 無段変速装置
US13/331,269 US8771125B2 (en) 2010-04-14 2011-12-20 Continuously variable transmission apparatus and air conditioning system having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293331A JP5522029B2 (ja) 2010-12-28 2010-12-28 無段変速装置

Publications (2)

Publication Number Publication Date
JP2012141003A true JP2012141003A (ja) 2012-07-26
JP5522029B2 JP5522029B2 (ja) 2014-06-18

Family

ID=46677467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293331A Active JP5522029B2 (ja) 2010-04-14 2010-12-28 無段変速装置

Country Status (1)

Country Link
JP (1) JP5522029B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214420A (ja) * 2004-01-28 2005-08-11 Zahnradfab Friedrichshafen Ag パワースプリット式トランスミッション

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214420A (ja) * 2004-01-28 2005-08-11 Zahnradfab Friedrichshafen Ag パワースプリット式トランスミッション

Also Published As

Publication number Publication date
JP5522029B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
US8100807B2 (en) Reduction gear transmission and solar tracking photovoltaic power generation unit utilizing the same
WO2011001802A1 (ja) 遊星歯車機構
WO2010021246A1 (ja) 歯車伝動装置とそれを利用する太陽光発電装置
JP5477044B2 (ja) 遊星歯車機構
US20090249918A1 (en) Finger Joint Mechanism
JP4953491B2 (ja) 増速機とそれを備えた発電装置
JP2010014177A (ja) 偏心揺動型歯車伝動装置
JP5522029B2 (ja) 無段変速装置
JP5292108B2 (ja) 減速装置とそれを利用する追尾式太陽光発電装置
CN101818655B (zh) 行星齿轮差速动力装置
JP5229335B2 (ja) 無段変速装置およびエアコンシステム
JP4598460B2 (ja) 遊星歯車変速機
JP5796499B2 (ja) 揺動運動を介在させて変速比を調整した無段変速装置
JP2013124687A (ja) スライダリンク機構を用いて変速比を調整した無段変速装置
CN202219374U (zh) 采用直驱方式实现激光加工头光学元件转动和摆动的装置
JP2009507184A (ja) 伝動装置、特に連係伝動装置
JP2001193809A (ja) 回転駆動装置及び該回転駆動装置の製造方法
JP2022064473A (ja) 歯車減速装置
US8771125B2 (en) Continuously variable transmission apparatus and air conditioning system having the same
JP6130223B2 (ja) 無段変速機
KR102462455B1 (ko) 유성기어 구동기
CN107687500B (zh) 包络线齿轮传动装置
JP5155773B2 (ja) 歯車伝動装置とそれを利用する太陽光発電装置
JP6132689B2 (ja) 無段変速機
JP2014228104A (ja) 無段変速機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250