JP2012138372A - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2012138372A
JP2012138372A JP2012079439A JP2012079439A JP2012138372A JP 2012138372 A JP2012138372 A JP 2012138372A JP 2012079439 A JP2012079439 A JP 2012079439A JP 2012079439 A JP2012079439 A JP 2012079439A JP 2012138372 A JP2012138372 A JP 2012138372A
Authority
JP
Japan
Prior art keywords
negative electrode
metal
secondary battery
lithium
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012079439A
Other languages
Japanese (ja)
Other versions
JP5351990B2 (en
Inventor
Yasushi Madokoro
靖 間所
Kunihiko Eguchi
邦彦 江口
Katsuhiro Nagayama
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012079439A priority Critical patent/JP5351990B2/en
Publication of JP2012138372A publication Critical patent/JP2012138372A/en
Application granted granted Critical
Publication of JP5351990B2 publication Critical patent/JP5351990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material having high discharge capacity and achieving excellent cycle characteristics and initial charge/discharge efficiency when used as a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery made of the obtained negative electrode material, having high discharge capacity and achieving excellent cycle characteristics and initial charge/discharge efficiency, and a lithium ion secondary battery manufactured by using the negative electrode for a secondary battery.SOLUTION: In a negative electrode material for a lithium ion secondary battery, a layer of metal and/or a metal compound that can be alloyed with lithium is formed on at least a part of a surface of a graphitic material via a compound layer having metal atoms and carbon atoms that can be alloyed with lithium, and the graphitic material forms recesses and projections by allowing a fine graphite particle with an average particle size of 10 nm to 1 μm to attach on a surface of a mother particle using a graphite particle having a particle size larger than that of the fine graphite particle as the mother particle.

Description

本発明は、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は、他の二次電池に比べて高い電圧、高いエネルギー密度を有するので、電子機器の電源として広く普及している。近年、電子機器の小型化あるいは高性能化が急速に進み、リチウムイオン二次電池のエネルギー密度をさらに向上させる要望がますます高まっている。   Lithium ion secondary batteries have a higher voltage and higher energy density than other secondary batteries, and are therefore widely used as power sources for electronic devices. In recent years, electronic devices have been rapidly reduced in size and performance, and there is an increasing demand for further improving the energy density of lithium ion secondary batteries.

現在、リチウムイオン二次電池は、正極にLiCoO、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は、充放電の可逆性に優れるものの、その放電容量はすでに層間化合物(LiC)の理論値(372mAh/g)に近い値まで到達している。そこで、電池のエネルギー密度をさらに高めるためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。 Currently, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in charge / discharge reversibility, the discharge capacity has already reached a value close to the theoretical value (372 mAh / g) of the intercalation compound (LiC 6 ). Therefore, in order to further increase the energy density of the battery, it is necessary to develop a negative electrode material having a discharge capacity larger than that of graphite.

金属リチウムは負極材料として最大の放電容量を有する。しかし、充電時にリチウムがデンドライト状に析出して負極が劣化するため、電池の充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、電池が短絡する可能性もある。   Metallic lithium has the maximum discharge capacity as a negative electrode material. However, since lithium is deposited in a dendritic state during charging and the negative electrode is deteriorated, there is a problem that the charge / discharge cycle of the battery is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, and the battery may be short-circuited.

そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する、金属または金属化合物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かにしのぐ放電容量をもつ。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、リチウムイオン二次電池のサイクル特性は未だに実用レベルに至っていない。   Therefore, a metal or a metal compound that forms an alloy with lithium has been studied as a negative electrode material replacing lithium metal. These alloy negative electrodes have discharge capacities far surpassing that of graphite, though not as much as metallic lithium. However, powder expansion and separation of the active material occur due to volume expansion accompanying alloying, and the cycle characteristics of the lithium ion secondary battery have not yet reached a practical level.

前述のような合金負極の欠点を解決するため、リチウムと合金化する、金属または金属化合物と、黒鉛材料および/または炭素材料との複合化による負極の開発が検討されている。   In order to solve the drawbacks of the above-described alloy negative electrode, development of a negative electrode by combining a metal or a metal compound, which is alloyed with lithium, and a graphite material and / or a carbon material has been studied.

体積膨張に伴う金属の粉化・剥離を抑制するためには、金属と黒鉛材料および/または炭素材料界面の密着性を向上させることが有効である。しかし、金属と黒鉛材料を単純に混合するだけでは充分な密着性を得ることができず、充放電を繰り返すと金属が黒鉛から遊離し、サイクル特性が低下するという問題がある。   In order to suppress metal pulverization / peeling accompanying volume expansion, it is effective to improve the adhesion between the metal and the graphite material and / or carbon material interface. However, there is a problem that sufficient adhesion cannot be obtained by simply mixing the metal and the graphite material, and the metal is liberated from the graphite and the cycle characteristics are deteriorated when charging and discharging are repeated.

このような問題に対して、特許文献1(特開平11−279785号公報)には、粒子状黒鉛表面に、有機材料と金属化合物とに由来する被覆層を形成した複合炭素材料を電極として用いる技術が開示されている。この複合炭素材料において、有機材料に由来する被覆層は、黒鉛と金属の結合剤としての役割を担っている。   In order to solve such problems, Patent Document 1 (Japanese Patent Laid-Open No. 11-279785) uses a composite carbon material in which a coating layer derived from an organic material and a metal compound is formed on the surface of particulate graphite as an electrode. Technology is disclosed. In this composite carbon material, the coating layer derived from the organic material plays a role as a binder of graphite and metal.

また、特許文献2(特開2004−185975号公報)には、黒鉛粒子表面に、リチウムと合金化可能な金属をメカノケミカル処理で固定化し、さらにその表面に炭素層を形成してなる3層構造の複合炭素材料を電極として用いる技術が開示されている。この複合炭素材料において、メカノケミカル処理は、黒鉛と金属の密着性を向上させる目的で実施されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-185975) discloses a three-layer structure in which a metal that can be alloyed with lithium is fixed to a graphite particle surface by mechanochemical treatment, and a carbon layer is formed on the surface. A technique using a composite carbon material having a structure as an electrode is disclosed. In this composite carbon material, mechanochemical treatment is performed for the purpose of improving the adhesion between graphite and metal.

また、特許文献3、4などには、リチウムと合金化可能な金属を集電体上に、真空蒸着法、スパッタリング法、イオンプレーティング法などのPVD(Physical Vapor Deposition)法やCVD(Chemical Vapor Deposition)法で薄膜を形成する技術が開示されている。   In Patent Documents 3 and 4 and the like, a metal that can be alloyed with lithium is placed on a current collector, a PVD (Physical Vapor Deposition) method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a CVD (Chemical Vapor). A technique for forming a thin film by a deposition method is disclosed.

特開平11−279785号公報JP-A-11-279785 特開2004−185975号公報JP 2004-185975 A WO01/031720号公報WO01 / 031720 Publication 特開2004−127561号公報JP 2004-127561 A

しかし、上記特許文献1に記載の複合炭素材料であっても、充放電に伴う金属の膨張・収縮により被覆層が破壊されると、黒鉛と金属の界面には何ら密着性が確保されていないため両者の遊離を免れず、充放電効率やサイクル特性が低下してしまう。   However, even in the composite carbon material described in Patent Document 1, when the coating layer is broken due to the expansion / contraction of the metal accompanying charge / discharge, no adhesion is secured at the interface between the graphite and the metal. Therefore, the liberation of both cannot be avoided, and the charge / discharge efficiency and cycle characteristics deteriorate.

また、上記特許文献2に記載の複合炭素材料については、メカノケミカル処理は機械的にせん断力をかけて黒鉛と金属を一体化するものであり、金属の膨張・収縮に伴う金属と黒鉛の遊離を完全に抑制できるほどの界面密着性を持たない。それゆえ、この複合炭素材料であっても、充放電に伴う金属の膨張・収縮により被覆層が破壊されると、やはり充放電効率やサイクル特性が低下してしまう。また、最表層に炭素層を有しているので充放電容量が低いという問題もある。   In the composite carbon material described in Patent Document 2, the mechanochemical treatment mechanically applies a shearing force to integrate the graphite and the metal, and releases the metal and the graphite due to the expansion and contraction of the metal. It does not have interfacial adhesion enough to completely suppress. Therefore, even with this composite carbon material, if the coating layer is destroyed due to metal expansion / contraction caused by charge / discharge, the charge / discharge efficiency and cycle characteristics are also lowered. In addition, since the outermost layer has a carbon layer, there is a problem that the charge / discharge capacity is low.

また、特許文献3、4に記載の方法でも、黒鉛と金属の界面には何ら密着性が確保されていないため、充放電に伴い金属が膨張・収縮を繰り返すと界面に亀裂を生じ、両者の遊離を免れず、充放電効率やサイクル特性が低下してしまう。   Further, even in the methods described in Patent Documents 3 and 4, since no adhesion is secured at the interface between graphite and metal, when the metal repeatedly expands and contracts with charge and discharge, a crack occurs at the interface. The liberation is unavoidable and the charge / discharge efficiency and cycle characteristics deteriorate.

上述の通り、従来技術では、黒鉛とリチウムと合金化可能な金属や金属化合物の密着性を強化し、初期充放電効率やサイクル特性を向上させることが困難であるという問題を有している。   As described above, the prior art has a problem that it is difficult to improve the initial charge / discharge efficiency and the cycle characteristics by enhancing the adhesion of a metal or metal compound that can be alloyed with graphite and lithium.

本発明は、上記のような状況を鑑みてなされたものであり、上記問題点を解決してリチウムイオン二次電池用負極材料として用いて、放電容量が高く、優れたサイクル特性と初期充放電効率が得られる負極材料を提供することを目的とする。また、得られた負極材料を用いてなる、放電容量が高く、優れたサイクル特性と初期充放電効率を有するリチウムイオン二次電池用負極およびこの二次電池用負極を用いたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above situation, and is used as a negative electrode material for a lithium ion secondary battery by solving the above problems, and has a high discharge capacity, excellent cycle characteristics and initial charge / discharge. It aims at providing the negative electrode material from which efficiency is obtained. Further, a negative electrode for a lithium ion secondary battery having a high discharge capacity, excellent cycle characteristics and initial charge / discharge efficiency, and a lithium ion secondary battery using the negative electrode for the secondary battery, using the obtained negative electrode material The purpose is to provide.

上記目的を達成するために、本発明は以下のような特徴を有する。   In order to achieve the above object, the present invention has the following features.

[1]黒鉛質物の表面の少なくとも一部に、リチウムと合金化可能な金属原子および炭素原子を有する化合物層を介して、リチウムと合金化可能な金属および/または金属化合物の層を設け、前記黒鉛質物が、平均粒子径が10nm〜1μmの微小黒鉛粒子を、それより粒径の大きな黒鉛粒子を母粒子として、該母粒子の表面に付着することで凹凸を形成してなることを特徴とするリチウムイオン二次電池用負極材料。   [1] A layer of a metal and / or metal compound that can be alloyed with lithium is provided on at least a part of the surface of the graphite material via a compound layer having a metal atom and a carbon atom that can be alloyed with lithium, The graphite material is formed by forming irregularities by adhering fine graphite particles having an average particle diameter of 10 nm to 1 μm to the surface of the mother particles using graphite particles having a larger particle diameter as mother particles. A negative electrode material for a lithium ion secondary battery.

[2]前記リチウムと合金化可能な金属原子および炭素原子を有する化合物層において、前記炭素原子が前記黒鉛質物側に偏在していることを特徴とする上記[1]に記載のリチウムイオン二次電池用負極材料。   [2] The lithium ion secondary as described in [1] above, wherein in the compound layer having a metal atom and a carbon atom that can be alloyed with lithium, the carbon atom is unevenly distributed on the graphite material side. Negative electrode material for batteries.

[3]上記[1]または[2]に記載のリチウムイオン二次電池用負極材料を用いたことを特徴とするリチウムイオン二次電池用負極。   [3] A negative electrode for a lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery according to [1] or [2].

[4]負極として、上記[3]に記載のリチウムイオン二次電池用負極を用いたことを特徴とするリチウムイオン二次電池。   [4] A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to [3] above as the negative electrode.

本発明のリチウムイオン二次電池用負極材料を用いると、黒鉛の理論容量を超える優れた放電容量が得られ、同時に優れた初期充放電効率とサイクル特性を示すリチウムイオン二次電池を得ることができる。そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。   By using the negative electrode material for a lithium ion secondary battery of the present invention, an excellent discharge capacity exceeding the theoretical capacity of graphite can be obtained, and at the same time, a lithium ion secondary battery exhibiting excellent initial charge / discharge efficiency and cycle characteristics can be obtained. it can. Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density of the battery, and is effective in reducing the size and performance of the mounted device.

本発明の負極材料の電池特性を評価するための評価電池の断面図である。It is sectional drawing of the evaluation battery for evaluating the battery characteristic of the negative electrode material of this invention.

以下、本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically.

[リチウムイオン二次電池用負極材料]
本発明のリチウムイオン二次電池用負極材料(以下、単に「負極材料」とも称す。)は、黒鉛質物の表面の少なくとも一部に、リチウムと合金化可能な金属原子および炭素原子を有する化合物層(界面層)を介して、リチウムと合金化可能な金属および/または金属化合物の層(最表層)を設けた負極材料である。ここで、前記リチウムと合金化可能な金属原子および炭素原子を有する化合物層においては、この化合物層に含まれる炭素原子を前記黒鉛質物側に偏在させることが好ましい。
[Anode material for lithium ion secondary batteries]
The negative electrode material for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as “negative electrode material”) is a compound layer having metal atoms and carbon atoms that can be alloyed with lithium on at least a part of the surface of the graphite material. This is a negative electrode material provided with a layer (outermost layer) of a metal and / or metal compound that can be alloyed with lithium via (interface layer). Here, in the compound layer having metal atoms and carbon atoms that can be alloyed with lithium, it is preferable that the carbon atoms contained in the compound layer are unevenly distributed on the graphite material side.

前記負極材料においては、リチウムと合金化可能な金属および/または金属化合物が黒鉛質物と界面層を介して化学的に結合しているため両者の接着性が優れ、充放電によるこの金属の剥離、脱落を抑制することができ、初期充放電効率やサイクル特性が向上する。また、界面の接着強度向上に伴い負極材料内の導電性が向上するため、初期充放電効率やサイクル特性が向上する。   In the negative electrode material, a metal and / or metal compound that can be alloyed with lithium is chemically bonded to the graphite through an interface layer, so that the adhesion between the two is excellent. Omission can be suppressed, and the initial charge / discharge efficiency and cycle characteristics are improved. Moreover, since the electrical conductivity in the negative electrode material is improved as the adhesive strength at the interface is improved, the initial charge / discharge efficiency and cycle characteristics are improved.

本発明の負極材料全体に占める前記リチウムと合金化可能な金属の質量割合は3〜70%、特に5〜50%であることが好ましい。前記金属は単体または化合物として、最表層においてはそれ自身単独で存在し、界面層においては炭素原子と共存する。前記金属の質量割合が3%未満の場合には、放電容量向上効果が小さくなることがある。一方、質量割合が70%超の場合には、サイクル特性が低下することがある。   The mass proportion of the metal that can be alloyed with lithium in the whole negative electrode material of the present invention is preferably 3 to 70%, particularly preferably 5 to 50%. The metal is present alone or as a compound in the outermost layer itself and coexists with carbon atoms in the interface layer. When the mass ratio of the metal is less than 3%, the effect of improving the discharge capacity may be reduced. On the other hand, when the mass ratio exceeds 70%, the cycle characteristics may deteriorate.

質量割合は公知の元素定量分析やX線回折法(XRD)などによる金属種の定性分析から換算して得ることができる。   The mass ratio can be obtained by conversion from a qualitative analysis of a metal species by a known elemental quantitative analysis or X-ray diffraction method (XRD).

前記金属および/または金属化合物の層の平均厚みは概ね1nm〜2μm、好ましくは10nm〜1μmの範囲である。前記平均厚みは負極材料の断面を走査型電子顕微鏡または透過型電子顕微鏡で観察することによって測定することができる。   The average thickness of the metal and / or metal compound layer is generally in the range of 1 nm to 2 μm, preferably 10 nm to 1 μm. The average thickness can be measured by observing a cross section of the negative electrode material with a scanning electron microscope or a transmission electron microscope.

本発明の負極材料全体に占める、界面層(前記リチウムと合金化可能な金属原子および炭素原子を有する化合物層)中の前記金属の質量割合は、負極材料中の全金属量のうちの0.5〜30%、特に1〜10%であることが好ましい。質量割合が0.5%未満の場合には界面の接着強度が不足するため、サイクル特性が低下することがある。一方、質量割合が30%超の場合には放電容量向上効果が小さくなることがある。   The mass ratio of the metal in the interface layer (compound layer having a metal atom and a carbon atom that can be alloyed with lithium) in the entire negative electrode material of the present invention is 0% of the total metal amount in the negative electrode material. It is preferably 5 to 30%, particularly 1 to 10%. When the mass ratio is less than 0.5%, the adhesive strength at the interface is insufficient, and the cycle characteristics may be deteriorated. On the other hand, when the mass ratio exceeds 30%, the effect of improving the discharge capacity may be reduced.

界面層(前記リチウムと合金化可能な金属原子と炭素原子とを有する化合物層)中の炭素原子濃度は黒鉛質物側に偏在しているのが好ましい。このことにより界面層と前記黒鉛質物との接着性が向上するため、充放電にともなう金属の脱落をより抑制することができ、サイクル特性が向上する。   The carbon atom concentration in the interface layer (the compound layer having metal atoms and carbon atoms that can be alloyed with lithium) is preferably unevenly distributed on the graphite material side. As a result, the adhesion between the interface layer and the graphite material is improved, so that the metal can be prevented from falling off during charging and discharging, and the cycle characteristics are improved.

炭素濃度分布は、負極材料の粒子断面を電子プローブマイクロアナライザ(EPMA)で元素マッピングすることによって確認することができる。また、グロー放電発光分析(GDS)で深さ方向の元素分布を測定することによっても確認することができる。   The carbon concentration distribution can be confirmed by element mapping the particle cross section of the negative electrode material with an electron probe microanalyzer (EPMA). It can also be confirmed by measuring the element distribution in the depth direction by glow discharge emission analysis (GDS).

前記負極材料は、平均粒子径が1〜50μmであることが好ましい。平均粒子径が1μm未満の場合は、負極を形成するときの負極合剤ペーストの調整が難しくなるほか、黒鉛質物の活性なエッジが露出しやすくなり、初期充放電効率が低下することがある。平均粒子径が50μm超の場合には、負極の活物質層の厚みを調整することが難しくなる。より好ましい平均粒子径は3〜40μmである。平均粒子径はレーザー回折式粒度分布計によって測定することができる。   The negative electrode material preferably has an average particle size of 1 to 50 μm. When the average particle diameter is less than 1 μm, it is difficult to adjust the negative electrode mixture paste when forming the negative electrode, and active edges of the graphite are likely to be exposed, and the initial charge / discharge efficiency may be reduced. When the average particle diameter exceeds 50 μm, it is difficult to adjust the thickness of the active material layer of the negative electrode. A more preferable average particle diameter is 3 to 40 μm. The average particle diameter can be measured by a laser diffraction particle size distribution meter.

前記負極材料は、リチウムと合金化可能な金属と黒鉛質物を必須の構成成分とするが、これに加えて、異種の炭素質物、黒鉛質物、無機質物、金属を含んでいてもよい。具体的には、異種の炭素質物、黒鉛質物、無機質物、金属との混合物、造粒物、被覆物、積層物であってもよい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。この場合も負極材料全体として平均粒子径が1〜50μmであることが好ましい。   The negative electrode material contains a metal that can be alloyed with lithium and a graphite material as essential constituent components, but may further contain different types of carbonaceous material, graphite material, inorganic material, and metal. Specifically, it may be a carbonaceous material, a graphite material, an inorganic material, a mixture with a metal, a granulated material, a coating, or a laminate. Further, it may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment and the like. Also in this case, the average particle diameter of the negative electrode material as a whole is preferably 1 to 50 μm.

本発明の負極材料が、優れたサイクル特性を発現する理由は明らかではないが、前記リチウムと合金化可能な金属および/または金属化合物の層と黒鉛質物との接着強度が、前記リチウムと合金化可能な金属原子と炭素原子とを有する化合物層により向上しているため、リチウムと合金化可能な金属および/または金属化合物の膨張収縮に伴う前記金属および/または金属化合物の剥離や脱落が抑制されることが寄与しているものと考えられる。   The reason why the negative electrode material of the present invention exhibits excellent cycle characteristics is not clear, but the adhesion strength between the metal and / or metal compound layer that can be alloyed with lithium and the graphite is alloyed with lithium. Since it is improved by a compound layer having possible metal atoms and carbon atoms, the metal and / or metal compound that can be alloyed with lithium is prevented from peeling and falling off due to expansion and contraction of the metal and / or metal compound. Is considered to contribute.

[黒鉛質物]
上記負極材料を構成する黒鉛質物は、負極活物質としてリチウムイオンを吸蔵・放出できるものであればよく、特に限定されない。
[Graphite]
The graphite material constituting the negative electrode material is not particularly limited as long as it can absorb and release lithium ions as the negative electrode active material.

前記黒鉛質物として、その一部または全部が黒鉛質で形成されているもの、例えば、タール、ピッチ類を最終的に1500℃以上で熱処理してなる人造黒鉛が挙げられる。具体的には、易黒鉛化性炭素材料と言われる石油系、石炭系のタール、ピッチ類を原料として重縮合させたメソフェーズ焼成体、メソフェーズ小球体、メソフェーズ炭素繊維或いはコークス類を好ましくは1500℃以上、より好ましくは2800〜3300℃で黒鉛化処理して得たものを用いることができる。   Examples of the graphite material include those formed partly or entirely of graphite, for example, artificial graphite obtained by finally heat treating tar and pitch at 1500 ° C. or higher. Specifically, a mesophase calcined product, mesophase spherule, mesophase carbon fiber or coke obtained by polycondensation using petroleum-based and coal-based tars and pitches, which are called graphitizable carbon materials, is preferably 1500 ° C. As mentioned above, More preferably, what was obtained by graphitizing at 2800-3300 degreeC can be used.

前記黒鉛質物の形状は特に限定されず、鱗片状、塊状、球状、繊維状などのいずれであってもよいが、塊状あるいは球状であることが好ましい。また、前記黒鉛質物は表面に微小な凹凸を有することが好ましい。前記凹凸は、例えばカーボンブラックなどの微小黒鉛粒子を、それより粒径の大きな黒鉛粒子を母粒子として、母粒子の表面にメカノケミカル処理などの機械的処理によって付着することで形成することができる。この場合、凹凸を形成する微小黒鉛粒子の平均粒子径は10nm〜1μm、母粒子の平均粒子径は1〜50μmであることが好ましい。表面に凹凸が存在すると、金属の膨張時の応力が緩和されるため、初期充放電効率やサイクル特性が向上する。また凸部では粒子間接点が確保されるため導電性が向上し、やはり初期充放電効率やサイクル特性が向上する。   The shape of the graphite material is not particularly limited, and may be any of a scale shape, a lump shape, a spherical shape, a fibrous shape, and the like, but a lump shape or a spherical shape is preferable. The graphite material preferably has fine irregularities on the surface. The unevenness can be formed by attaching fine graphite particles such as carbon black to the surface of the mother particles by mechanical treatment such as mechanochemical treatment using graphite particles having a larger particle size as mother particles. . In this case, the average particle diameter of the fine graphite particles forming the irregularities is preferably 10 nm to 1 μm, and the average particle diameter of the mother particles is preferably 1 to 50 μm. When unevenness is present on the surface, the stress at the time of metal expansion is relaxed, so that the initial charge / discharge efficiency and cycle characteristics are improved. Moreover, since the particle indirect point is secured at the convex portion, the conductivity is improved, and the initial charge / discharge efficiency and the cycle characteristics are also improved.

前記黒鉛質物は高い放電容量を得る観点から、結晶性の高いものが好ましい。結晶性の指標としては、X線広角回折による(002)面の平均格子面間隔d002で0.34nm以下が好ましく、0.337nm以下が特に好ましい。   From the viewpoint of obtaining a high discharge capacity, the graphite material preferably has high crystallinity. The crystallinity index is preferably 0.34 nm or less, and particularly preferably 0.337 nm or less in terms of the average lattice spacing d002 of the (002) plane by X-ray wide angle diffraction.

なお、格子面間隔の測定は、CuKα線をX線源、高純度シリコンを標準物質に使用して、黒鉛質物の(002)面の回折ピークを測定し、そのピークの位置よりd002を算出する方法を用いることができる。算出方法としては、学振法(日本学術振興会第117委員会が定めた測定法)に従うものであり、具体的には、「大谷杉郎著、「炭素繊維」、近代編集社、1986年、第733〜742頁」などに記載された方法によって測定した値を用いることができる。   The lattice spacing is measured by measuring the diffraction peak on the (002) plane of the graphite using CuKα ray as the X-ray source and high-purity silicon as the standard substance, and calculating d002 from the peak position. The method can be used. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 117th Committee of the Japan Society for the Promotion of Science). Specifically, “Suguro Otani,“ Carbon Fiber ”, Modern Editorial Company, 1986. , Pp. 733-742, etc., can be used.

また、前記黒鉛質物の比表面積は0.1〜50m/g、特に0.3〜5m/gの範囲であることが好ましい。比表面積が0.1m/g未満の場合には、必然的に前記リチウムと合金化可能な金属および/または金属化合物の単位面積当たりの付着量が多くなり、前記金属および/または金属化合物の充電時の割れや粉化を生じることがある。比表面積が50m/g超の場合には、前記金属および/または金属化合物の単位面積当たりの付着量が少なくなるものの、黒鉛質物の活性なエッジ面の露出割合が増え、初期充放電効率が低下したり、負極を形成するときの負極合剤ペーストの調整が難しくなる。なお、前記比表面積は、窒素ガスの吸着によるBET法により測定した値を用いた。 The specific surface area of the graphite is preferably in the range of 0.1 to 50 m 2 / g, particularly 0.3 to 5 m 2 / g. When the specific surface area is less than 0.1 m 2 / g, the amount of the metal and / or metal compound that can be alloyed with lithium inevitably increases per unit area, and the metal and / or metal compound May cause cracking or powdering during charging. When the specific surface area is more than 50 m 2 / g, the amount of the metal and / or metal compound deposited per unit area decreases, but the exposure rate of the active edge surface of the graphite increases and the initial charge / discharge efficiency is improved. It becomes difficult to adjust the negative electrode mixture paste when the negative electrode is formed or the negative electrode is formed. In addition, the value measured by the BET method by adsorption of nitrogen gas was used for the specific surface area.

前記黒鉛質物は異種の炭素質物や黒鉛質物を含むものであってもよい。この場合、黒鉛質物全体の結晶性の平均値が、X線広角回折による(002)面の平均格子面間隔d002で0.34nm以下であることが好ましい。具体的には、異種の炭素質物や黒鉛質物との混合物、造粒物、被覆物、積層物であってもよく、特に炭素質物を被覆したものが好ましい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。   The graphite material may include different types of carbonaceous materials and graphite materials. In this case, the average value of crystallinity of the entire graphite material is preferably 0.34 nm or less in terms of the average lattice spacing d002 of the (002) plane by X-ray wide angle diffraction. Specifically, it may be a mixture of a different carbonaceous material or a graphite material, a granulated material, a coated material, or a laminate, and a carbonaceous material-coated material is particularly preferable. Further, it may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment and the like.

[リチウムと合金化可能な金属、金属化合物]
上記負極材料を構成するリチウムと合金化可能な金属としては、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどを挙げることができ、好ましくはSi、Snであり、特に好ましくはSiである。また、前記リチウムと合金化可能な金属としては、この金属の2種以上の合金であってもよい。
[Metals and metal compounds that can be alloyed with lithium]
Examples of metals that can be alloyed with lithium constituting the negative electrode material include Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, Ni etc. can be mentioned, Preferably it is Si and Sn, Most preferably, it is Si. The metal that can be alloyed with lithium may be an alloy of two or more of these metals.

前記合金中には、前記金属以外の元素が含有されていてもよく、酸化物や窒化物などの金属化合物を形成していてもよい。また、前記金属及び金属化合物は、そのものが非晶質、または非晶質のものを含むことが好ましい。非晶質であると充電時の膨張が軽減されるからである。   The alloy may contain an element other than the metal, and may form a metal compound such as an oxide or a nitride. The metal and the metal compound are preferably amorphous or amorphous. This is because if it is amorphous, expansion during charging is reduced.

[リチウムと合金化可能な金属原子および炭素原子を有する化合物層]
リチウムと合金化可能な金属原子および炭素原子を有する化合物層(界面層)に存在する金属種としては、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどを挙げることができ、好ましくはSi、Snであり、特に好ましくはSiである。また、前記リチウムと合金化可能な金属としては、この金属の2種以上の合金であってもよい。
[Compound layer having metal atoms and carbon atoms that can be alloyed with lithium]
Examples of the metal species present in the compound layer (interface layer) having metal atoms and carbon atoms that can be alloyed with lithium include Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, and B. , Au, Pt, Pd, Sb, Ge, Ni, and the like. Si, Sn are preferable, and Si is particularly preferable. The metal that can be alloyed with lithium may be an alloy of two or more of these metals.

接着性をより向上させるため、界面層の金属原子は、リチウムと合金化可能な金属、金属化合物の層(最表層)に存在する金属原子と同じものが好ましい。   In order to further improve the adhesion, the metal atoms in the interface layer are preferably the same as the metal atoms that can be alloyed with lithium and the metal atoms present in the metal compound layer (outermost layer).

リチウムと合金化可能な金属原子および炭素原子を有する化合物層(界面層)における金属の質量割合は特に制限されないが、リチウムと合金化可能な金属、金属化合物の層(最表層)に存在する金属の1〜30%が好ましい。質量割合が1%未満である場合は、充分な接着効果が得られず、サイクル特性が低下することがある。また、30%超の場合は、放電容量向上効果が小さいことがある。   The mass ratio of the metal in the compound layer (interface layer) having metal atoms and carbon atoms that can be alloyed with lithium is not particularly limited, but the metal that can be alloyed with lithium and the metal present in the metal compound layer (outermost layer) 1-30% of is preferable. When the mass ratio is less than 1%, a sufficient adhesive effect cannot be obtained, and the cycle characteristics may be deteriorated. On the other hand, if it exceeds 30%, the effect of improving the discharge capacity may be small.

[負極材料の製造方法]
本発明の負極材料の製造方法としては、黒鉛質物の表面の少なくとも一部に、リチウムと合金化可能な金属原子および炭素原子を有する化合物層を介して、リチウムと合金化可能な金属および/または金属化合物の層を有する構造が得られる方法であればいかなる方法を用いてもよいが、本発明の効果を最大限に発現する方法を以下に例示する。
[Method for producing negative electrode material]
As a method for producing a negative electrode material of the present invention, a metal that can be alloyed with lithium and / or a compound layer having a metal atom and a carbon atom that can be alloyed with lithium on at least a part of the surface of the graphite material and / or Any method may be used as long as a structure having a metal compound layer can be obtained, and a method for maximizing the effects of the present invention will be exemplified below.

前記リチウムと合金化可能な金属および/または金属化合物の層を黒鉛質物表面に形成させる方法は、気相法を用いることが好ましい。気相法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー法などのPVD(Physical Vapor Deposition)法や、常圧CVD(Chemical Vapor Deposition)法、減圧CVD法、プラズマCVD法、MO(Magneto−optic)CVD法、光CVDなどのCVD法が挙げられる。これらの中でも、スパッタリング法が最も好ましい。スパッタリング法としては、直流スパッタリング法、マグネトロンスパッタリング法、高周波スパッタリング法、反応性スパッタリング法、バイアススパッタリング法、イオンビームスパッタリング法などを用いることができる。   The method of forming the metal and / or metal compound layer that can be alloyed with lithium on the surface of the graphite is preferably a vapor phase method. As the vapor phase method, a PVD (Physical Vapor Deposition) method such as a vacuum deposition method, a sputtering method, an ion plating method, a molecular beam epitaxy method, an atmospheric pressure CVD (Chemical Vapor Deposition) method, a low pressure CVD method, a plasma CVD method, etc. , MO (Magneto-optical) CVD methods, and CVD methods such as photo-CVD. Among these, the sputtering method is most preferable. As the sputtering method, a direct current sputtering method, a magnetron sputtering method, a high frequency sputtering method, a reactive sputtering method, a bias sputtering method, an ion beam sputtering method, or the like can be used.

前記スパッタリング法は、カソード側に金属のターゲットを設置し、一般に1〜10−2Pa程度の不活性ガス雰囲気中で電極間にグロー放電を起こし、不活性ガスをイオン化させ、ターゲットの金属を叩き出して、アノード側に設置した黒鉛質物にターゲット金属を被覆する方法である。この場合、黒鉛質物を機械的に攪拌する、または超音波などの振動を与えることによって黒鉛質物に動きを与え、黒鉛質物の表面に均一に金属を被覆することが有効である。金属は複数の金属を用いてもよい。すなわち、複数の金属をターゲットとして同時にスパッタリングして、合金を合成してもよいし、複数の金属を順に積層してもよい。 In the sputtering method, a metal target is installed on the cathode side, and generally a glow discharge is generated between electrodes in an inert gas atmosphere of about 1 to 10 −2 Pa to ionize the inert gas and strike the target metal. This is a method of coating the target metal on the graphite material placed on the anode side. In this case, it is effective to move the graphite material mechanically by stirring the graphite material or applying vibration such as ultrasonic waves to uniformly coat the surface of the graphite material with metal. A plurality of metals may be used as the metal. That is, a plurality of metals may be simultaneously sputtered to synthesize an alloy, or a plurality of metals may be laminated in order.

また、前記リチウムと合金化可能な金属原子および炭素原子を有する化合物層は、前記スパッタリングの際、メタン、エタン、プロパン、ブタンなどの炭化水素を含んだガスを、機内に導入することで形成させることができる。前記炭化水素の混合量は特に限定されないが、イオン源として導入した不活性ガスに対して、圧力で50%以下であることが好ましい。なお、好ましい圧力の下限値は1%である。   The compound layer having metal atoms and carbon atoms that can be alloyed with lithium is formed by introducing a gas containing hydrocarbons such as methane, ethane, propane, and butane into the apparatus during the sputtering. be able to. The mixing amount of the hydrocarbon is not particularly limited, but is preferably 50% or less by pressure with respect to the inert gas introduced as the ion source. A preferred lower limit of the pressure is 1%.

このとき、前記炭化水素の流量を調節しながら機内に導入することで、前記化合物層中の炭素原子の濃度分布を制御できる。例えば、炭化水素の流量を連続的および/または段階的に減少させることにより、炭素原子を前記黒鉛質粒子側に偏在させることができる。   At this time, the concentration distribution of carbon atoms in the compound layer can be controlled by introducing the hydrocarbon into the apparatus while adjusting the flow rate of the hydrocarbon. For example, carbon atoms can be unevenly distributed on the graphite particle side by decreasing the flow rate of the hydrocarbon continuously and / or stepwise.

ここで、炭化水素の流量を連続的に減少させるとは、所定の減少速度で炭化水素の流量を減少させることを意味し、減少速度は途中で変更しても構わない。また、炭化水素の流量を段階的に減少させるとは、一定流量で炭化水素を流した後、所定量だけ炭化水素の流量を少なくし、この流量を所定時間流すことを意味する。炭化水素の流量の減少は、連続的にのみでも、段階的にのみでも、これらを組み合わせても構わない。   Here, continuously reducing the flow rate of hydrocarbon means reducing the flow rate of hydrocarbon at a predetermined reduction rate, and the reduction rate may be changed in the middle. Further, decreasing the flow rate of hydrocarbon stepwise means that after flowing hydrocarbon at a constant flow rate, the flow rate of hydrocarbon is decreased by a predetermined amount and this flow rate is allowed to flow for a predetermined time. The decrease in the flow rate of hydrocarbons may be performed continuously, stepwise, or a combination thereof.

最後に、炭化水素ガスの非存在下で、リチウムと合金化可能な金属をスパッタリング法で付着させることにより、本発明のリチウムイオン二次電池用負極材料を得ることができる。ここで、炭化水素ガスの非存在下とは、炭化水素ガス濃度が0.1vol%以下を言う。   Finally, a negative electrode material for a lithium ion secondary battery of the present invention can be obtained by depositing a metal that can be alloyed with lithium by sputtering in the absence of a hydrocarbon gas. Here, the absence of hydrocarbon gas means that the hydrocarbon gas concentration is 0.1 vol% or less.

また、本発明のリチウムイオン二次電池用負極材料は、黒鉛質物と、リチウムと合金化可能な金属および/または金属化合物とにメカノケミカル処理を施して、前記黒鉛質物の表面の少なくとも一部に、前記リチウムと合金化可能な金属および/または金属化合物を付着させた後、900〜1300℃の温度範囲で熱処理することで得ることができる。   Further, the negative electrode material for a lithium ion secondary battery of the present invention is obtained by subjecting a graphite material and a metal and / or metal compound that can be alloyed with lithium to mechanochemical treatment so that at least a part of the surface of the graphite material is obtained. After the metal and / or metal compound that can be alloyed with lithium are attached, the heat treatment can be performed in a temperature range of 900 to 1300 ° C.

ここで、メカノケミカル処理とは、被処理物に圧縮、剪断、衝突、摩擦などの機械的エネルギーを付与する方法である。このような操作が可能な装置としては、例えば、GRANUREX(フロイント産業(株)製)、ニューグラマシン((株)セイシン企業製)、アグロマスター(ホソカワミクロン(株)製)などの造粒機、ロールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロシステム((株)奈良機械製作所製)、メカノフュージョシステム(ホソカワミクロン(株))などの圧縮剪断式加工装置などが挙げられる。   Here, the mechanochemical treatment is a method of imparting mechanical energy such as compression, shearing, collision, friction, etc. to an object to be treated. Examples of such devices that can be operated include granulators such as GRANUREX (manufactured by Freund Sangyo Co., Ltd.), Newgra Machine (manufactured by Seishin Enterprise Co., Ltd.), Agromaster (manufactured by Hosokawa Micron Co., Ltd.), and roll mills. And compression shearing processing devices such as a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechanomicro system (manufactured by Nara Machinery Co., Ltd.), and a mechano-fusion system (Hosokawa Micron Co., Ltd.).

メカノケミカル処理後に、900〜1300℃の温度範囲で熱処理する。この熱処理により、黒鉛質物と、リチウムと合金化可能な金属および/または金属化合物との間に、リチウムと合金化可能な金属原子および炭素原子を有する化合物層を介することができる。熱処理の温度を調整することにより、前記化合物層中の炭素原子を前記黒鉛質物側に偏在させることもできる。熱処理温度が900℃未満では、黒鉛質物と、リチウムと合金化可能な金属および/または金属化合物との反応が不十分になるおそれがあり、1300℃より高いと、反応が進みすぎて金属炭化物の存在量が増加し、容量が低下するおそれがある。   After the mechanochemical treatment, heat treatment is performed in a temperature range of 900 to 1300 ° C. By this heat treatment, a compound layer having metal atoms and carbon atoms that can be alloyed with lithium can be interposed between the graphite material and the metal and / or metal compound that can be alloyed with lithium. By adjusting the temperature of the heat treatment, carbon atoms in the compound layer can be unevenly distributed on the graphite material side. If the heat treatment temperature is less than 900 ° C, the reaction between the graphite and the metal and / or metal compound that can be alloyed with lithium may be insufficient. The abundance may increase and the capacity may decrease.

このようにして得られた負極材料は、目的に応じて、さらに異種の炭素質物、黒鉛質物、無機質物などを混合、被覆、付着させることもできる。例えば、本発明の負極材料に、さらにCVD法によって、炭素質物を薄膜で被覆したり、炭素質物前駆体を液相で付着させ、焼成することもできる。   The negative electrode material obtained in this way can be further mixed, coated and adhered with different carbonaceous materials, graphite materials, inorganic materials and the like according to the purpose. For example, the negative electrode material of the present invention can be further baked by coating a carbonaceous material with a thin film by CVD or attaching a carbonaceous material precursor in a liquid phase.

[負極]
リチウムイオン二次電池の負極を構成する負極材料として、上述した本発明の負極材料以外に公知の負極材料や導電性材料を混合して用いることができる。例えば、天然黒鉛、人造黒鉛、メソフェーズ小球体の黒鉛質物、メソフェーズ炭素繊維の黒鉛質物、メソフェーズ焼成体の黒鉛質物などの各種負極材料や、カーボンブラック、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維などの導電性材料を混合して用いることができる。
[Negative electrode]
As a negative electrode material constituting the negative electrode of the lithium ion secondary battery, known negative electrode materials and conductive materials can be mixed and used in addition to the negative electrode material of the present invention described above. For example, various negative electrode materials such as natural graphite, artificial graphite, mesophase globular graphite, mesophase carbon fiber graphite, mesophase calcined graphite, carbon black, acetylene black, ketjen black, vapor grown carbon fiber A conductive material such as can be mixed and used.

リチウムイオン二次電池の負極の作製は、通常の負極の成形方法に準じて行うことができるが、化学的、電気化学的に安定な負極を得ることができる成形方法であれば何ら制限されない。   The production of the negative electrode of the lithium ion secondary battery can be performed according to a normal method of forming a negative electrode, but is not limited as long as it is a molding method capable of obtaining a chemically and electrochemically stable negative electrode.

また、負極の作製時には、前記負極材料に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いることが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム、さらにはカルボキシメチルセルロースなどが用いられる。また、これらを併用することもできる。結合剤は、通常、負極合剤の全量中1〜20質量%程度の量で用いるのが好ましい。   Moreover, the negative electrode mixture which added the binder to the said negative electrode material can be used at the time of preparation of a negative electrode. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene Butadiene rubber, carboxymethyl cellulose and the like are used. Moreover, these can also be used together. In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture.

負極の作製の具体例として、前記負極材料の粒子を結合剤と混合することによって負極合剤を調製し、この負極合剤を、通常、集電体の片面または両面に塗布することで負極合剤層を形成する方法が挙げられる。   As a specific example of the preparation of the negative electrode, a negative electrode mixture is prepared by mixing the particles of the negative electrode material with a binder, and this negative electrode mixture is usually applied to one or both sides of a current collector to form a negative electrode mixture. The method of forming an agent layer is mentioned.

負極の作製には、負極作製用の通常の溶媒を用いることができる。負極合剤を溶媒中に分散させ、ペースト状にした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着される。より具体的には、例えば、前記負極材料の粒子とポリフッ化ビニリデンなどのフッ素系樹脂粉末またはスチレンブタジエンゴムなどの水分散粘結剤、カルボキシメチルセルロースなどの水溶性粘結剤とを、N−メチルピロリドン、ジメチルホルムアルデヒドまたは水、アルコールなどの溶媒と混合してスラリーとした後、ニーダーなどで混練し、ペーストを調製する。このペーストを集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。前記負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。   A normal solvent for preparing a negative electrode can be used for preparing the negative electrode. When the negative electrode mixture is dispersed in a solvent and made into a paste, and then applied to the current collector and dried, the negative electrode mixture layer is uniformly and firmly adhered to the current collector. More specifically, for example, the negative electrode material particles and a fluorine-based resin powder such as polyvinylidene fluoride or a water-dispersible binder such as styrene butadiene rubber, or a water-soluble binder such as carboxymethyl cellulose are used. A paste is prepared by mixing with pyrrolidone, dimethylformaldehyde or a solvent such as water or alcohol to form a slurry, and then kneading with a kneader. If this paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded can be obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.

また、前記負極材料の粒子と、結合剤としてのポリエチレン、ポリビニルアルコールなどの樹脂粉末とを乾式混合し、金型内でホットプレス成形して負極を作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、リチウムイオン二次電池の放電容量や急速充放電効率が低下することがある。   Alternatively, the negative electrode material particles can be dry-mixed with resin powders such as polyethylene and polyvinyl alcohol as a binder, and hot-press molded in a mold to produce a negative electrode. However, dry mixing requires a large amount of binder to obtain sufficient strength of the negative electrode, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency of the lithium ion secondary battery may be reduced. .

前記負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。   When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.

前記負極に用いる集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタルなどの網状等のものが好ましい。また、前記集電体の材質としては、銅、ステンレス、ニッケルなどが好ましい。また、集電体の厚みは、箔状の場合、5〜20μm程度とすることが好ましい。   The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil shape or a net shape such as a mesh or expanded metal. Moreover, as a material of the said electrical power collector, copper, stainless steel, nickel, etc. are preferable. Moreover, it is preferable that the thickness of an electrical power collector shall be about 5-20 micrometers in the case of foil shape.

また、本発明は、前記リチウムイオン二次電池用負極を用いて形成されるリチウムイオン二次電池でもある。   Moreover, this invention is also a lithium ion secondary battery formed using the said negative electrode for lithium ion secondary batteries.

本発明のリチウムイオン二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については、一般的なリチウムイオン二次電池の要素に準じる。   The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components are in accordance with elements of a general lithium ion secondary battery.

[正極]
本発明のリチウムイオン二次電池に使用される正極材(正極活物質)としては、リチウム化合物が用いられるが、充分な量のリチウムを吸蔵/脱離し得るものを選択することが好ましい。例えば、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物、その他のリチウム含有化合物、一般式MMo8−Y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは少なくとも一種の遷移金属を表す)で表されるシュブレル相化合物、活性炭、活性炭素繊維などを用いることができる。前記バナジウム酸化物としては、V、V13、V、Vで示されるものなどを用いることができる。
[Positive electrode]
As the positive electrode material (positive electrode active material) used in the lithium ion secondary battery of the present invention, a lithium compound is used, but it is preferable to select a material that can occlude / desorb a sufficient amount of lithium. For example, lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, other lithium-containing compounds, general formula M x Mo 6 S 8-Y (where X is 0 ≦ X ≦ 4, Y is 0 ≦ Y) A numerical value in the range of ≦ 1, and M represents at least one kind of transition metal) can be used. Examples of the vanadium oxide, or the like can be used those represented by V 2 O 5, V 6 O 13, V 2 O 4, V 3 O 8.

前記リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組み合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM 1−X (式中Xは0≦X≦1の範囲の数値であり、M、Mは少なくとも一種の遷移金属元素である)またはLiM 1−Y (式中Yは0≦Y≦1の範囲の数値であり、M、Mは少なくとも一種の遷移金属元素である)で示される。式中M、Mで示される遷移金属はCo、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどである。好ましくはCo、Mn、Cr、Ti、V、Fe、Alなどである。具体例としては、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5などを挙げることができる。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 x O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind of transition) A metal element) or LiM 1 1-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 1, and M 1 and M 2 are at least one transition metal element) It is. In the formula, transition metals represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, and the like. Preferably, Co, Mn, Cr, Ti, V, Fe, Al and the like are used. Specific examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.

また、前記リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、塩類などを出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。なお、出発原料は酸化物および塩類に限定されず、水酸化物などであってもよい。   Further, the lithium-containing transition metal oxide is, for example, lithium, transition metal oxide, salts and the like as a starting material, these starting materials are mixed according to the composition of the desired metal oxide, and 600 ~ It can be obtained by firing at a temperature of 1000 ° C. The starting materials are not limited to oxides and salts, and may be hydroxides.

本発明のリチウムイオン二次電池においては、正極活物質は前記のリチウム化合物を単独で使用しても、2種類以上併用して使用してもよい。また、正極中に炭酸リチウムなどの炭酸アルカリ塩を添加することもできる。   In the lithium ion secondary battery of the present invention, the positive electrode active material may be used alone or in combination of two or more of the above lithium compounds. Further, an alkali carbonate such as lithium carbonate can be added to the positive electrode.

正極は、例えば、前記リチウム化合物と結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の片面または両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛やカーボンブラックなどの炭素材料が使用される。   The positive electrode is formed by, for example, applying a positive electrode mixture composed of the lithium compound, a binder, and a conductive agent for imparting conductivity to the positive electrode on one or both sides of the current collector to form a positive electrode mixture layer. Produced. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, a carbon material such as graphite or carbon black is used.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電体に接着される。   Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタルなどの網状等のものが好ましい。また、前記集電体の材質としては、アルミニウム、ステンレス、ニッケルなどが好ましい。また、集電体の厚みは、箔状の場合、10〜40μm程度とすることが好ましい。   The shape of the current collector is not particularly limited, but is preferably a foil shape or a mesh shape such as a mesh or expanded metal. Moreover, as a material of the said electrical power collector, aluminum, stainless steel, nickel, etc. are preferable. The thickness of the current collector is preferably about 10 to 40 μm in the case of a foil shape.

[非水電解質]
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩である、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[{C(CF}]、LiAlCl 、LiSiFなどのリチウム塩を用いることができる。酸化安定性の点からは、特に、LiPF、LiBFが好ましい。
[Nonaqueous electrolyte]
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2) 2, LiN ( HCF 2 CF 2 CH 2 OSO 2) 2, LiN ((CF 3) 2 CHOSO 2) 2, LiB [{C 6 H 3 (CF 3) 2}] 4, LiAlCl 4, Lithium salts such as LiSiF 6 can be used. From the viewpoint of oxidation stability, LiPF 6 and LiBF 4 are particularly preferable.

電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜3.0mol/lがより好ましい。   The electrolyte salt concentration in the electrolytic solution is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 3.0 mol / l.

前記非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。   The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .

非水電解質液を調製するための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1、1−または1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。   As a solvent for preparing the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, Benzoyl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.

前記非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリックスとして可塑剤(非水電解液)でゲル化された高分子を用いることが好ましい。前記マトリックスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを用いることが特に好ましい。   When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer constituting the matrix include ether-based polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. It is particularly preferable to use a fluorine-based polymer compound such as a copolymer.

前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、この可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜2.0mol/lがより好ましい。   A plasticizer is blended in the polymer solid electrolyte or polymer gel electrolyte, and the electrolyte salt or non-aqueous solvent can be used as the plasticizer. In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte solution that is a plasticizer is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 2.0 mol / l.

前記高分子固体電解質の作製方法は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶剤を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。   The method for producing the polymer solid electrolyte is not particularly limited. For example, a method in which a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) are mixed and heated to melt the polymer compound, organic After dissolving a polymer compound, a lithium salt, and a non-aqueous solvent (plasticizer) in a solvent, a method of evaporating an organic solvent for mixing, a polymerizable monomer, a lithium salt, and a non-aqueous solvent (plasticizer) are mixed, Examples include a method of obtaining a polymer by irradiating the mixture with ultraviolet rays, an electron beam, a molecular beam or the like to polymerize a polymerizable monomer.

ここで、前記固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。   Here, the ratio of the non-aqueous solvent (plasticizer) in the solid electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

[セパレータ]
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
[Separator]
In the lithium ion secondary battery of the present invention, a separator can also be used.

セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好適である。   Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. As a material for the separator, a microporous membrane made of synthetic resin is suitable. Among them, a polyolefin microporous membrane is suitable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are suitable.

[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、上述した構成の、黒鉛質物を含有する負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention comprises a negative electrode, a positive electrode, and a non-aqueous electrolyte containing a graphite material, which are configured as described above, in the order of, for example, a negative electrode, a non-aqueous electrolyte, and a positive electrode. Consists of housing. Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.

また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。   In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.

リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例、参考例および比較例では、図1に示すように、黒鉛質物を含有する作用電極(負極)2とリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Further, in the following examples, reference examples and comparative examples, as shown in FIG. 1, a single electrode evaluation comprising a working electrode (negative electrode) 2 containing a graphite material and a counter electrode (positive electrode) 4 made of lithium foil is used. A button-type secondary battery was fabricated and evaluated. An actual battery can be produced according to a known method based on the concept of the present invention.

負極材料中のリチウムと合金化可能な金属の質量割合は、負極材料を灰化したのち、発光分光法による元素分析を行って、金属としての濃度に換算して求めた。   The mass ratio of the metal that can be alloyed with lithium in the negative electrode material was obtained by ashing the negative electrode material, performing elemental analysis by emission spectroscopy, and converting it to a concentration as a metal.

金属と黒鉛の界面層における炭素濃度分布は、負極材料の粒子断面を電子プローブマイクロアナライザ(EPMA)で元素マッピングすることによって確認した。さらに、元素マッピングからリチウムと合金化可能な金属および/または金属化合物の層(最表層)と、リチウムと合金化可能な金属原子および炭素原子を有する化合物層(界面層)に存在するSiを定量して、各層におけるSiの存在比を求め、その値を発光分光法で測定した全Si量に乗じることで、各層に存在するSi量を算出した。なお、前記存在比の算出は断面の20視野で行い、加算平均値を採用した。   The carbon concentration distribution in the interface layer between the metal and graphite was confirmed by element mapping the particle cross section of the negative electrode material with an electron probe microanalyzer (EPMA). Furthermore, Si present in the metal and / or metal compound layer (uppermost layer) that can be alloyed with lithium and the compound layer (interface layer) that has metal atoms and carbon atoms that can be alloyed with lithium is quantified from elemental mapping. Then, the abundance ratio of Si in each layer was obtained, and the amount of Si present in each layer was calculated by multiplying the value by the total Si amount measured by emission spectroscopy. The abundance ratio was calculated from 20 fields of view of the cross section, and an addition average value was adopted.

〔参考例1〕
[負極材料の作製]
黒鉛質物として、メソフェーズ小球体(JFEケミカル(株)製、KMFC)を3000℃で6時間かけて黒鉛化したもの(平均粒径20μm)を用いた。
[Reference Example 1]
[Production of negative electrode material]
As the graphite material, mesophase microspheres (KMFC manufactured by JFE Chemical Co., Ltd.) graphitized at 3000 ° C. for 6 hours (average particle size 20 μm) were used.

DC二極スパッタリング装置のアノード側ステージに前記黒鉛質物を配置し、カソード側に純度99.999質量%の単結晶シリコンターゲットを配置して、圧力0.5Pa、電圧600V、電流0.5Aの条件でスパッタリングを2時間行った後、黒鉛質物を攪拌した。スパッタリングの際には、アルゴンの圧力に対して10%の圧力のメタンを同時に導入した。メタンの導入量はスパッタリングの進行にあわせて徐々に低減し、スパッタリング終了時にゼロとなるように調整した。その後、再びアルゴンガスのみの条件でスパッタリングを4時間行い、攪拌を繰り返した。   The graphite material is arranged on the anode side stage of the DC bipolar sputtering apparatus, the single crystal silicon target having a purity of 99.999 mass% is arranged on the cathode side, and the pressure is 0.5 Pa, the voltage is 600 V, and the current is 0.5 A. After sputtering for 2 hours, the graphite material was stirred. During sputtering, methane having a pressure of 10% with respect to the pressure of argon was simultaneously introduced. The amount of methane introduced was gradually reduced as the sputtering progressed, and was adjusted to zero at the end of sputtering. Thereafter, sputtering was again performed for 4 hours under the condition of only argon gas, and stirring was repeated.

得られた負極材料について走査型電子顕微鏡により目視観察した結果、シリコンが膜状に全体を被覆していることが分かった。
また、断面観察から、黒鉛質物とシリコン膜の間に、シリコンと炭素の化合物からなる界面層が存在するのが観察された。
As a result of visual observation of the obtained negative electrode material with a scanning electron microscope, it was found that the silicon was entirely covered in a film shape.
From the cross-sectional observation, it was observed that an interface layer made of a compound of silicon and carbon was present between the graphite material and the silicon film.

さらに、粒子断面のEPMAによる元素マッピングから、シリコンと炭素の化合物層は、炭素濃度が黒鉛側からシリコン膜側に向かって徐々に減少していることを確認した。   Furthermore, from elemental mapping by EPMA of the particle cross section, it was confirmed that the carbon concentration of the compound layer of silicon and carbon gradually decreased from the graphite side toward the silicon film side.

また、最表層および界面層に存在するSi量は、それぞれ9質量%、1質量%であった。   The amounts of Si present in the outermost layer and the interface layer were 9% by mass and 1% by mass, respectively.

[作用電極(負極)の作製]
上記方法により作製した負極材料に4質量%の結合剤ポリフッ化ビニリデンを混合し、さらに、溶剤N−メチルピロリドンを加え、有機溶剤系負極合剤ペーストを作製した。これを銅箔上に均一な厚さに塗布し、さらに真空中90℃で溶剤を揮発させて乾燥した。次に、この銅箔上に塗布された負極合剤をハンドプレスによって加圧した。さらに直径15.5mmの円形状に打抜くことで、集電体銅箔(厚み16μm)に密着した負極合剤層(厚み50μm)からなる作用電極(負極)を作製した。
[Production of working electrode (negative electrode)]
4% by mass of the binder polyvinylidene fluoride was mixed with the negative electrode material prepared by the above method, and a solvent N-methylpyrrolidone was further added to prepare an organic solvent-based negative electrode mixture paste. This was applied to the copper foil to a uniform thickness, and further the solvent was volatilized at 90 ° C. in a vacuum and dried. Next, the negative electrode mixture applied on the copper foil was pressurized by a hand press. Furthermore, the working electrode (negative electrode) which consists of a negative mix layer (thickness 50 micrometers) closely_contact | adhered to collector copper foil (thickness 16 micrometers) was produced by punching in circular shape of diameter 15.5mm.

[対極(正極)の作製]
リチウム金属箔をニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔(厚み0.5mm)からなる対極(正極)を作製した。
[Production of counter electrode (positive electrode)]
A lithium metal foil is pressed onto a nickel net and punched into a circular shape with a diameter of 15.5 mm, and a current collector made of nickel net and a counter electrode made of a lithium metal foil (thickness 0.5 mm) in close contact with the current collector ( Positive electrode) was prepared.

[電解液、セパレータ]
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶剤に、LiPFを1mol/lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
[Electrolyte, separator]
LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

[評価電池の作製]
評価電池として図1に示すボタン型二次電池を作製した。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.

外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極合剤からなる円盤状の作用電極(負極)2および銅箔からなる集電体7bが積層された電池系である。   The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. Inside, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolyte, and a disk-like made of a negative electrode mixture A battery system in which a working electrode (negative electrode) 2 and a current collector 7b made of copper foil are laminated.

前記評価電池は電解液を含浸させたセパレータ5を集電体7bに密着した作用電極2と、集電体7aに密着した対極4との間に挟んで積層した後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。   In the evaluation battery, the separator 5 impregnated with the electrolytic solution was stacked between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the working electrode 2 was attached to the exterior cup. 1, the counter electrode 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3. The part was crimped and sealed.

評価電池は実電池において負極用活物質として使用可能な黒鉛質物粒子を含有する作用電極2と、リチウム金属箔とからなる対極4とから構成される電池である。   The evaluation battery is a battery composed of a working electrode 2 containing graphite particles that can be used as a negative electrode active material in a real battery and a counter electrode 4 made of a lithium metal foil.

前記のように作製された評価電池について、25℃の温度下で下記のような充放電試験を行い、初期充放電効率とサイクル特性を計算した。評価結果(放電容量、初期充放電効率とサイクル特性)を表1に示した。   The evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., and the initial charge / discharge efficiency and cycle characteristics were calculated. The evaluation results (discharge capacity, initial charge / discharge efficiency and cycle characteristics) are shown in Table 1.

[放電容量、初期充放電効率]
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるその間の通電量から充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式(1)から初期充放電効率を計算した。なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料からリチウムイオンが脱離する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)×100 ・・・(1)
[サイクル特性]
引き続き、回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を100回繰返し、得られた放電容量から、次式(2)を用いてサイクル特性を計算した。
サイクル特性(%)=(第50サイクルにおける放電容量/第1サイクルにおける放電容量)×100 ・・・(2)
〔実施例1〕
上記参考例1において、メソフェーズ小球体の黒鉛化物を下記の通り前処理する以外は、上記参考例1と同様に負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および電池の評価を行った。前期負極材料の特性と評価結果を同じく表1に示した。
(前処理)
メソフェーズ小球体の黒鉛化物:98質量部に、炭素質微粒子(ケッチェンブラック、平均粒子径30nm)を3000℃で黒鉛化したもの:2質量部を加え、乾式粉体複合化装置(メカノフュージョンシステム、ホソカワミクロン(株)製)を用いて、回転ドラムの周速20m/秒、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰り返し付与し、メカノケミカル処理を施した。得られた複合材料をSEM(走査型電子顕微鏡)観察したところ、前記黒鉛粉末表面に微小黒鉛粒子が分散して付着し、表面に凹凸が形成されていることが確認できた。
[Discharge capacity, initial charge / discharge efficiency]
After constant current charging of 0.9 mA until the circuit voltage reaches 0 mV, switching to constant voltage charging when the circuit voltage reaches 0 mV, and the charge capacity is obtained from the amount of current during which the current value reaches 20 μA. It was. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity was determined from the amount of electricity supplied during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following equation (1). In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching lithium ions from the negative electrode material was discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) × 100 (1)
[Cycle characteristics]
Subsequently, after performing constant current charging of 4.0 mA until the circuit voltage reaches 0 mV, switching to constant voltage charging when the circuit voltage reaches 0 mV, and further continuing charging until the current value reaches 20 μA, Paused for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 4.0 mA. This charge / discharge was repeated 100 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following equation (2).
Cycle characteristics (%) = (discharge capacity in the 50th cycle / discharge capacity in the first cycle) × 100 (2)
[Example 1]
In the above Reference Example 1, except that the mesophase small sphere graphitized material is pretreated as follows, the preparation of the negative electrode mixture, the preparation of the negative electrode, the preparation of the lithium ion secondary battery, and the evaluation of the battery are the same as in the above Reference Example 1. Went. Table 1 shows the characteristics and evaluation results of the negative electrode material in the previous period.
(Preprocessing)
Graphitized mesophase spherules: 98 parts by mass, carbonaceous fine particles (Ketjen black, average particle size 30 nm) graphitized at 3000 ° C .: 2 parts by mass are added, and a dry powder compounding device (mechano-fusion system) , Manufactured by Hosokawa Micron Co., Ltd.), applying a compressive force and a shearing force repeatedly under the conditions of a peripheral speed of the rotating drum of 20 m / second, a processing time of 60 minutes, and a distance of 5 mm between the rotating drum and the internal member. Treated. When the obtained composite material was observed by SEM (scanning electron microscope), it was confirmed that fine graphite particles were dispersed and adhered to the surface of the graphite powder, and irregularities were formed on the surface.

〔参考例2〕
上記参考例1において、メタンの導入量を一定にした以外は、参考例1と同様に負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および電池の評価を行った。前記負極材料の特性と評価結果を同じく表1に示した。
[Reference Example 2]
In Reference Example 1, except that the amount of methane introduced was constant, preparation of the negative electrode mixture, preparation of the negative electrode, preparation of the lithium ion secondary battery, and evaluation of the battery were performed in the same manner as in Reference Example 1. The characteristics and evaluation results of the negative electrode material are also shown in Table 1.

〔参考例3〕
天然黒鉛(中越黒鉛工業所製、BF15A):90質量部に、Si粉末(高純度化学研究所製、平均粒径2μm):10質量部を加え、乾式粉体複合化装置(メカノフュージョンシステム、ホソカワミクロン(株)製)を用いて、回転ドラムの周速20m/s、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰り返し付与し、メカノケミカル処理を施した。得られた複合材料をSEM観察したところ、前記黒鉛粉末表面に、Si粒子が分散して付着していることが確認できた。
[Reference Example 3]
Natural graphite (manufactured by Chuetsu Graphite Industries Co., Ltd., BF15A): 90 parts by mass, Si powder (manufactured by High Purity Chemical Laboratory, average particle size 2 μm): 10 parts by mass are added, and a dry powder compounding apparatus (mechanofusion system, Hosokawa Micron Co., Ltd.), mechanochemical treatment by repeatedly applying compressive force and shearing force under the conditions of a peripheral speed of the rotating drum of 20 m / s, a processing time of 60 minutes, and a distance of 5 mm between the rotating drum and the internal member. Was given. When the obtained composite material was observed by SEM, it was confirmed that Si particles were dispersed and adhered to the surface of the graphite powder.

その後、得られた複合材料を、さらに1100℃で10時間熱処理した。最終的に得られた複合材料の粒子断面のEPMAによる元素マッピングから、Siと黒鉛の界面にはSiC層が形成されていることが確認できた。最表層および界面層に存在するSi量は、それぞれ9質量%、1質量%であった。   Thereafter, the obtained composite material was further heat-treated at 1100 ° C. for 10 hours. Elemental mapping by EPMA of the particle cross section of the finally obtained composite material confirmed that a SiC layer was formed at the interface between Si and graphite. The amounts of Si present in the outermost layer and the interface layer were 9% by mass and 1% by mass, respectively.

上記実施例1、参考例1〜3から、本発明の負極材料を用いたリチウムイオン二次電池は優れた放電容量、初期充放電効率およびサイクル特性を有していることがわかる。   From Example 1 and Reference Examples 1 to 3, it can be seen that the lithium ion secondary battery using the negative electrode material of the present invention has excellent discharge capacity, initial charge / discharge efficiency, and cycle characteristics.

〔比較例1〕
上記参考例1において、スパッタリングの際にメタンを導入しない以外は、実施例1と同様に負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および電池の評価を行った。前記負極材料の特性と評価結果を同じく表1に示した。
[Comparative Example 1]
In Reference Example 1, except that methane was not introduced during sputtering, the preparation of the negative electrode mixture, the production of the negative electrode, the production of the lithium ion secondary battery, and the evaluation of the battery were performed in the same manner as in Example 1. The characteristics and evaluation results of the negative electrode material are also shown in Table 1.

参考例1、実施例1と比較例1との対比から、金属と黒鉛の界面に、黒鉛側から金属側に向かって炭素濃度が徐々に減少するような界面層が存在すると、初期充放電効率とサイクル特性が向上することが分かる。   From the comparison between Reference Example 1, Example 1 and Comparative Example 1, when an interface layer in which the carbon concentration gradually decreases from the graphite side to the metal side at the interface between the metal and graphite, the initial charge and discharge efficiency It can be seen that the cycle characteristics are improved.

Figure 2012138372
Figure 2012138372

本発明のリチウムイオン二次電池用負極材料は、その特性を活かして、小型から大型までの高性能リチウムイオン二次電池に使用することができる。   The negative electrode material for lithium ion secondary batteries of the present invention can be used for high performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a、7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Electrolyte solution impregnation separator 6 Insulation gasket 7a, 7b Current collector

Claims (4)

黒鉛質物の表面の少なくとも一部に、リチウムと合金化可能な金属原子および炭素原子を有する化合物層を介して、リチウムと合金化可能な金属および/または金属化合物の層を設け、前記黒鉛質物が、平均粒子径が10nm〜1μmの微小黒鉛粒子を、それより粒径の大きな黒鉛粒子を母粒子として、該母粒子の表面に付着することで凹凸を形成してなることを特徴とするリチウムイオン二次電池用負極材料。   A layer of a metal and / or metal compound that can be alloyed with lithium is provided on at least a part of the surface of the graphite material via a compound layer having a metal atom and a carbon atom that can be alloyed with lithium. Lithium ions characterized by forming irregularities by adhering fine graphite particles having an average particle diameter of 10 nm to 1 μm to the surface of the mother particles using graphite particles having a larger particle diameter as mother particles Negative electrode material for secondary batteries. 前記リチウムと合金化可能な金属原子および炭素原子を有する化合物層において、前記炭素原子が前記黒鉛質物側に偏在していることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。   2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein in the compound layer having a metal atom and a carbon atom that can be alloyed with lithium, the carbon atom is unevenly distributed on the graphite side. . 請求項1または2に記載のリチウムイオン二次電池用負極材料を用いたことを特徴とするリチウムイオン二次電池用負極。   A negative electrode for a lithium ion secondary battery, wherein the negative electrode material for a lithium ion secondary battery according to claim 1 or 2 is used. 負極として、請求項3に記載のリチウムイオン二次電池用負極を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to claim 3 as the negative electrode.
JP2012079439A 2006-01-31 2012-03-30 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP5351990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079439A JP5351990B2 (en) 2006-01-31 2012-03-30 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006023075 2006-01-31
JP2006023075 2006-01-31
JP2012079439A JP5351990B2 (en) 2006-01-31 2012-03-30 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007013775A Division JP4986222B2 (en) 2006-01-31 2007-01-24 Method for producing negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012138372A true JP2012138372A (en) 2012-07-19
JP5351990B2 JP5351990B2 (en) 2013-11-27

Family

ID=46675584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079439A Active JP5351990B2 (en) 2006-01-31 2012-03-30 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5351990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017592A (en) * 2014-08-06 2016-02-16 삼성전자주식회사 All Solid secondary battery, method of controlling all solid secondary battery and method of evaluating all solid secondary battery
US11764407B2 (en) 2017-11-21 2023-09-19 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641220A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Polarizable electrode and manufacture thereof
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2001220670A (en) * 2000-02-02 2001-08-14 Kawasaki Heavy Ind Ltd Plasma sputtering system
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP3520921B2 (en) * 2001-03-27 2004-04-19 日本電気株式会社 Negative electrode for secondary battery and secondary battery using the same
JP2004185989A (en) * 2002-12-03 2004-07-02 Hitachi Chem Co Ltd Graphite particle for electrode, its manufacturing method, negative electrode for nonaqueous secondary battery using the same, and nonaqueous electrolyte secondary battery
JP2004213927A (en) * 2002-12-27 2004-07-29 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous lithium ion secondary battery, negative electrode, and nonaqueous lithium ion secondary battery
JP2005310760A (en) * 2004-03-22 2005-11-04 Jfe Chemical Corp Anode material for lithium ion secondary battery, manufacturing method of the same, anode of lithium ion secondary battery, and lithium ion secondary battery
JP2006173121A (en) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell using this anode active material
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641220A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Polarizable electrode and manufacture thereof
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2001220670A (en) * 2000-02-02 2001-08-14 Kawasaki Heavy Ind Ltd Plasma sputtering system
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP3520921B2 (en) * 2001-03-27 2004-04-19 日本電気株式会社 Negative electrode for secondary battery and secondary battery using the same
JP2004185989A (en) * 2002-12-03 2004-07-02 Hitachi Chem Co Ltd Graphite particle for electrode, its manufacturing method, negative electrode for nonaqueous secondary battery using the same, and nonaqueous electrolyte secondary battery
JP2004213927A (en) * 2002-12-27 2004-07-29 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous lithium ion secondary battery, negative electrode, and nonaqueous lithium ion secondary battery
JP2005310760A (en) * 2004-03-22 2005-11-04 Jfe Chemical Corp Anode material for lithium ion secondary battery, manufacturing method of the same, anode of lithium ion secondary battery, and lithium ion secondary battery
JP2006173121A (en) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell using this anode active material
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017592A (en) * 2014-08-06 2016-02-16 삼성전자주식회사 All Solid secondary battery, method of controlling all solid secondary battery and method of evaluating all solid secondary battery
JP2016039006A (en) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
KR102349962B1 (en) * 2014-08-06 2022-01-11 삼성전자주식회사 All Solid secondary battery, method of controlling all solid secondary battery and method of evaluating all solid secondary battery
US11764407B2 (en) 2017-11-21 2023-09-19 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11929463B2 (en) 2017-11-21 2024-03-12 Samsung Electronics Co., Ltd. All-solid-state secondary battery and method of charging the same
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same

Also Published As

Publication number Publication date
JP5351990B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI528620B (en) Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery using negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
US8216719B2 (en) Non-aqueous secondary battery and method for producing the same
JP5008180B2 (en) Non-aqueous secondary battery
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5671110B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2005031898A1 (en) Composite particle and, utilizing the same, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6097706B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5953249B2 (en) Composite graphite particles and their use in lithium ion secondary batteries
JP4855696B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4986222B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4723830B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4785341B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5156195B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5351990B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP2007165293A (en) Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150