JP2012136346A - Return path side belt supporting structure of air floating type belt conveyor - Google Patents

Return path side belt supporting structure of air floating type belt conveyor Download PDF

Info

Publication number
JP2012136346A
JP2012136346A JP2010291638A JP2010291638A JP2012136346A JP 2012136346 A JP2012136346 A JP 2012136346A JP 2010291638 A JP2010291638 A JP 2010291638A JP 2010291638 A JP2010291638 A JP 2010291638A JP 2012136346 A JP2012136346 A JP 2012136346A
Authority
JP
Japan
Prior art keywords
belt
air
return path
return
blowing pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010291638A
Other languages
Japanese (ja)
Inventor
Takashi Kanbayashi
隆 神林
Masahiro Fujita
昌弘 藤田
Hiroki Shimizu
弘樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Transport Machinery Co Ltd
Original Assignee
IHI Transport Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Transport Machinery Co Ltd filed Critical IHI Transport Machinery Co Ltd
Priority to JP2010291638A priority Critical patent/JP2012136346A/en
Publication of JP2012136346A publication Critical patent/JP2012136346A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Belt Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a return path side belt supporting structure of an air floating type belt conveyor reducing travelling resistance of the return path side belt, reducing the capacity of a driving motor, suppressing the wear at a contacting area of the belt, reducing the processes and workload at the site and the cost of processing and installation, and shortening the installation period.SOLUTION: A plurality of air blowout pipes 20 having air blowout openings 18 drilled in the upper surfaces are arranged on a lower surface side of the return path side of the belt 3 in a manner of extending in the moving direction of the belt 3 and at necessary spacings in the direction of the width of the belt 3. An air-supply pipe 15 of an air supply means 17 is connected to the air blowout pipes 20, and air reservoirs 21 are formed in a recessing manner in the upper surfaces of the air blowout pipes 20 where the air blowout openings 18 are formed.

Description

本発明は、空気浮上式ベルトコンベヤの復路側ベルト支持構造に関するものである。   The present invention relates to a return side belt support structure for an air-floating belt conveyor.

近年、鉱石や石炭等のバラ物を搬送する搬送装置として、コンベヤベルトを空気層によって浮上保持する空気浮上式ベルトコンベヤが利用されている。   2. Description of the Related Art In recent years, an air levitation belt conveyor that floats and holds a conveyor belt by an air layer is used as a conveying device that conveys loose objects such as ore and coal.

前記空気浮上式ベルトコンベヤは、例えば、図6及び図7に示されるように、所要間隔をあけてそれぞれ回転自在に配置された駆動プーリ1と従動プーリ2との間にベルト3を無端状に掛け回し、該ベルト3の下面側に支持部材としてのトラフ部材4,5を延設し、該トラフ部材4,5の幅方向中央下面側に、ブロワ6によって空気が供給される空気ダクト7,8を設けると共に、前記トラフ部材4,5の幅方向中央部に、前記空気ダクト7,8に供給される空気をトラフ部材4,5の上面側に噴出させる吹出口9,10を穿設し、更に、前記ベルト3の往路(バラ物を搬送する側)における上流端位置に、バラ物をベルト3上に供給する供給シュート11を設置し、前記ベルト3の往路における下流端位置に、ベルト3によって搬送されたバラ物を払い出す排出シュート12を設置してなる構成を有している。   For example, as shown in FIGS. 6 and 7, the air-floating belt conveyor has an endless belt 3 between a driving pulley 1 and a driven pulley 2 that are rotatably arranged at predetermined intervals. The trough members 4, 5 are extended as support members on the lower surface side of the belt 3, and the air ducts 7, to which air is supplied by the blower 6, are provided on the lower surface side in the width direction of the trough members 4, 5. 8 and at the center in the width direction of the trough members 4, 5, air outlets 9, 10 for blowing the air supplied to the air ducts 7, 8 to the upper surface side of the trough members 4, 5 are drilled. Further, a supply chute 11 for supplying the loose material onto the belt 3 is installed at the upstream end position in the forward path (the side where the loose article is conveyed) of the belt 3, and the belt 3 is disposed at the downstream end position in the forward path of the belt 3. Conveyed by 3 It has installed formed by constituting the discharge chute 12 for paying out a La material.

尚、図中、13は前記ブロワ6からの空気を空気ダクト7へ導く給気配管、14は該給気配管13途中に設けられた流量調整バルブ、15は前記ブロワ6からの空気を空気ダクト8へ導く給気配管、16は該給気配管15途中に設けられた流量調整バルブであり、これらブロワ6、給気配管13,15、及び流量調整バルブ14,16により空気供給手段17が構成されている。   In the figure, 13 is an air supply pipe for guiding air from the blower 6 to the air duct 7, 14 is a flow rate adjusting valve provided in the air supply pipe 13, and 15 is an air duct for supplying air from the blower 6. An air supply pipe 16 leading to 8 is a flow rate adjusting valve provided in the middle of the air supply pipe 15. The air supply means 17 is constituted by the blower 6, the air supply pipes 13 and 15, and the flow rate adjusting valves 14 and 16. Has been.

前記空気浮上式ベルトコンベヤにおいては、前記駆動プーリ1を回転駆動しつつ、前記空気供給手段17のブロワ6によって圧送される空気を流量調整バルブ14,16の開度調整により流量調整しつつ給気配管13,15から空気ダクト7,8へ供給すると、該空気ダクト7,8へ供給された空気が吹出口9,10からトラフ部材4,5の上面側に噴出し、該トラフ部材4,5とベルト3との間に空気層が形成されベルト3が浮上した状態で往路と復路とを循環移動する形となり、この状態で、前記供給シュート11からベルト3上にバラ物を供給すると、該バラ物は前記ベルト3によって搬送され排出シュート12へ払い出される。   In the air-floating belt conveyor, air is pumped by the blower 6 of the air supply means 17 while the drive pulley 1 is driven to rotate, and the air flow rate is adjusted by adjusting the opening of the flow rate adjusting valves 14 and 16. When supplied from the pipes 13 and 15 to the air ducts 7 and 8, the air supplied to the air ducts 7 and 8 is ejected from the outlets 9 and 10 to the upper surface side of the trough members 4 and 5, and the trough members 4 and 5. In this state, an air layer is formed between the belt 3 and the belt 3 so that the belt 3 circulates and moves between the forward path and the backward path. The loose material is conveyed by the belt 3 and discharged to the discharge chute 12.

尚、前記ベルト3の断面形状は、図7の例では往路は上面側が谷状に凹む円弧形状、復路は上面側が谷状に凹むV字形状となっているが、復路を上面側が山状に突出する円弧形状とするものもある。   In the example of FIG. 7, the cross-sectional shape of the belt 3 is an arc shape in which the upper surface side is recessed in a valley shape on the forward path, and the V-shape in which the upper surface side is recessed in a valley shape on the return path. Some have a protruding arc shape.

このような構成により、前記空気浮上式ベルトコンベヤにおいては、極めて低抵抗で騒音や振動を生ずることなくベルト3を移動させることができ、一般的なベルトをキャリアローラで支持する形式のローラベルトコンベヤのようにローラの回転によって生ずる騒音や振動によって作業環境や周囲環境に影響を与えることがない。   With such a configuration, in the air levitation belt conveyor, the belt 3 can be moved without causing noise and vibration with extremely low resistance, and a general type of belt belt conveyor in which a general belt is supported by a carrier roller. Thus, the work environment and the surrounding environment are not affected by the noise and vibration generated by the rotation of the roller.

尚、従来の空気浮上式ベルトコンベヤの一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level of a conventional air levitation belt conveyor.

特開2009−269749号公報JP 2009-269949 A

しかしながら、前述の如き従来の空気浮上式ベルトコンベヤにおいては、往路側のトラフ部材4に倣うように湾曲するベルト3の癖により、V字形状とされた平坦な鋼板製の復路側のトラフ部材5から前記ベルト3全面が完全に浮き上がらず、特にベルト3の端部がトラフ部材5に接触しやすくなり、ベルト3の走行抵抗が増加し駆動プーリ1を回転駆動する駆動モータ(図示せず)の容量を大きくする必要が生じると共に、該ベルト3及びトラフ部材5の互いの接触箇所における摩耗が激しくなるという欠点を有していた。   However, in the conventional air levitation belt conveyor as described above, the trough member 5 on the return path side made of a flat steel plate having a V shape is formed by the wrinkles of the belt 3 that curves so as to follow the trough member 4 on the forward path side. The entire surface of the belt 3 is not lifted up, and the end of the belt 3 is likely to come into contact with the trough member 5, and the running resistance of the belt 3 increases to drive the drive pulley 1 (not shown). In addition to the necessity of increasing the capacity, the belt 3 and the trough member 5 have the disadvantages that the wear at the contact points with each other becomes severe.

又、前記ベルト3が接触する部位を極力減らすために、トラフ部材5の表面をグラインダ等で滑らかに仕上げる必要があり、現地での加工工数が増加し、加工据付費が嵩むと共に、据付に要する工期が長引くという欠点をも有していた。   In addition, in order to reduce the number of contact portions of the belt 3 as much as possible, it is necessary to finish the surface of the trough member 5 with a grinder or the like. This increases the number of processing steps on the site, increases the processing installation cost, and requires installation. It also had the disadvantage that the construction period was prolonged.

本発明は、斯かる実情に鑑み、復路側のベルトの走行抵抗を減少させ、駆動モータの容量を小さくし得ると共に、該ベルトの接触箇所における摩耗を抑制し得、且つ現地での加工工数並びに加工据付費の削減と据付工期の短縮化を図り得る空気浮上式ベルトコンベヤの復路側ベルト支持構造を提供しようとするものである。   In view of such circumstances, the present invention can reduce the running resistance of the belt on the return path, reduce the capacity of the drive motor, suppress wear at the contact point of the belt, It is an object of the present invention to provide a return side belt support structure for an air levitation belt conveyor that can reduce processing installation costs and shorten the installation period.

本発明は、所要間隔をあけてそれぞれ回転自在に配置された複数のプーリ間にベルトを無端状に掛け回し、該ベルトの往路における下面側に、湾曲形成されるトラフ部材を延設し、該トラフ部材上面側に空気を供給することにより、前記ベルトを前記トラフ部材から浮上させつつ循環移動させる空気浮上式ベルトコンベヤの復路側ベルト支持構造において、
前記ベルトの復路下面側にその移動方向へ延び且つ前記ベルトの幅方向へ所要間隔をあけて配設され、上面側に空気の吹出口が穿設された複数の空気吹出パイプと、
該空気吹出パイプへ空気を供給する空気供給手段と
を備え、
前記空気吹出パイプの吹出口が穿設される上面側に、空気溜部を凹設したことを特徴とする空気浮上式ベルトコンベヤの復路側ベルト支持構造にかかるものである。
In the present invention, a belt is looped endlessly between a plurality of pulleys that are rotatably arranged with a predetermined interval, and a trough member that is curved is extended on the lower surface side of the forward path of the belt, In the return side belt support structure of the air levitation type belt conveyor that circulates and moves the belt from the trough member by supplying air to the trough member upper surface side,
A plurality of air outlet pipes extending in the moving direction on the lower surface side of the return path of the belt and arranged at a required interval in the width direction of the belt, and having an air outlet formed on the upper surface side;
Air supply means for supplying air to the air outlet pipe,
The present invention relates to a return-side belt support structure for an air-floating belt conveyor, wherein an air reservoir is recessed on the upper surface side where an air outlet of the air outlet pipe is formed.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前述の如く構成すると、ベルトの復路において、トラフ部材により面接触的に支持されていたベルトが、上面側に空気溜部を凹設した空気吹出パイプにより線接触的に支持されつつ空気浮上される形となるため、往路側のトラフ部材に倣うように湾曲するベルトの癖があったとしても、復路側のベルトの端部が空気吹出パイプに接触することが避けられ、ベルトの走行抵抗が減少しプーリを回転駆動する駆動モータの容量を大きくする必要がなくなると共に、該ベルト及び空気吹出パイプの互いの接触箇所における摩耗が抑えられる。   With the above-described configuration, in the belt return path, the belt that is supported in surface contact by the trough member is floated while being supported in line contact by the air outlet pipe having the air reservoir recessed in the upper surface side. Therefore, even if there is a bend on the belt that curves to follow the trough member on the forward path side, the end of the belt on the return path side is prevented from contacting the air outlet pipe, and the running resistance of the belt is reduced. Thus, it is not necessary to increase the capacity of the drive motor that rotationally drives the pulley, and wear at the contact point between the belt and the air blowing pipe is suppressed.

又、従来のように、前記ベルトが接触する部位を極力減らすために、復路側のトラフ部材の表面をグラインダ等で滑らかに仕上げる必要がなくなり、現地での加工工数が減り、加工据付費が安く済むと共に、据付に要する工期が短縮可能となる。   In addition, as in the past, in order to reduce the number of parts that contact the belt as much as possible, it is not necessary to finish the surface of the trough member on the return path smoothly with a grinder, etc., reducing the number of on-site processing steps and reducing processing installation costs. In addition, the construction period required for installation can be shortened.

しかも、前記複数本の空気吹出パイプの吹出口が穿設される上面側には、空気溜部を凹設してあるため、前記空気吹出パイプから吹き出される空気の圧力が空気溜部に蓄えられてベルトに効率良く作用する形となり、該ベルトを浮上させる上で有効となる。   Moreover, since the air reservoir is recessed on the upper surface side where the air outlets of the plurality of air outlet pipes are drilled, the pressure of the air blown from the air outlet pipe is stored in the air reservoir. Thus, the belt acts efficiently and becomes effective in raising the belt.

前記空気浮上式ベルトコンベヤの復路側ベルト支持構造においては、前記空気吹出パイプの空気溜部の両縁部におけるベルト当接部位に、該空気吹出パイプより摩擦係数の低い耐摩耗性部材を埋め込むことができ、このようにすると、前記ベルト及び空気吹出パイプの互いの接触箇所における摩耗が更に抑えられると共に、摩耗が進行した場合、前記空気吹出パイプ全体を交換せずに耐摩耗性部材だけを交換するだけで済む。   In the return-side belt support structure of the air-floating belt conveyor, a wear-resistant member having a lower friction coefficient than that of the air blowing pipe is embedded in belt contact portions at both edges of the air reservoir of the air blowing pipe. In this way, the wear at the contact point between the belt and the air blowing pipe is further suppressed, and when wear progresses, only the wear-resistant member is replaced without replacing the entire air blowing pipe. Just do it.

又、前記空気浮上式ベルトコンベヤの復路側ベルト支持構造においては、前記空気吹出パイプのベルト幅方向配設位置を、該空気吹出パイプの所定長さ毎に所要量だけずらすようにすることもでき、このようにすると、前記ベルト及び空気吹出パイプの互いの接触箇所を分散させることが可能となり、摩耗を更に抑える上で有効となる。   Further, in the return side belt support structure of the air levitation belt conveyor, the arrangement position of the air blowing pipe in the belt width direction can be shifted by a required amount for each predetermined length of the air blowing pipe. In this way, it is possible to disperse the contact points of the belt and the air blowing pipe, which is effective in further suppressing wear.

更に又、前記空気浮上式ベルトコンベヤの復路側ベルト支持構造においては、前記ベルトの復路を、該ベルトの往路の上方に配置することもでき、このようにすると、ベルトに付着したバラ物は、往路側のベルト上に落下する形となって、自動的に回収することが可能となる一方、往路側のベルトと復路側のベルトをコンパクトにまとめて、省スペース化を図ることも可能となる。   Furthermore, in the return path side belt support structure of the air levitation belt conveyor, the return path of the belt can be arranged above the forward path of the belt. While falling on the forward belt, it can be automatically collected, while the forward belt and the return belt can be compactly combined to save space. .

本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造によれば、復路側のベルトの走行抵抗を減少させ、駆動モータの容量を小さくし得ると共に、該ベルトの接触箇所における摩耗を抑制し得、且つ現地での加工工数並びに加工据付費の削減と据付工期の短縮化を図り得るという優れた効果を奏し得る。   According to the return side belt support structure of the air levitation type belt conveyor of the present invention, the running resistance of the return side belt can be reduced, the capacity of the drive motor can be reduced, and wear at the contact point of the belt can be suppressed. In addition, it is possible to achieve an excellent effect of reducing the number of processing steps and processing installation costs at the site and shortening the installation work period.

更に、前記ベルトの復路を、該ベルトの往路の上方に配置した場合、ベルトに付着したバラ物を往路側のベルト上に自動的に回収でき、且つ省スペース化をも図り得るという優れた効果を奏し得る。   Further, when the return path of the belt is disposed above the forward path of the belt, the excellent effect that the loose matter attached to the belt can be automatically collected on the forward path belt and space can be saved. Can be played.

本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第一実施例を示す正断面図である。It is a front sectional view showing the first example of the return side belt support structure of the air floating type belt conveyor of the present invention. 本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第一実施例における空気吹出パイプを示す断面図である。It is sectional drawing which shows the air blowing pipe in the 1st Example of the return side belt support structure of the air floating type belt conveyor of this invention. 本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第一実施例における空気吹出パイプのベルト幅方向配設位置を示す平面図である。It is a top view which shows the belt width direction arrangement | positioning position of the air blowing pipe in the 1st Example of the return side belt support structure of the air floating type belt conveyor of this invention. 本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第二実施例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 2nd Example of the return path side belt support structure of the air floating type belt conveyor of this invention. 本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第二実施例を示す正断面図である。It is a front sectional view showing a second embodiment of the return side belt support structure of the air levitation belt conveyor of the present invention. 従来の空気浮上式ベルトコンベヤの一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the conventional air floating type belt conveyor. 従来の空気浮上式ベルトコンベヤの一例を示す正断面図である。It is a front sectional view showing an example of a conventional air levitation belt conveyor.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図3は本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第一実施例であって、図中、図6及び図7と同一の符号を付した部分は同一物を表わしており、基本的な構成は図6及び図7に示す従来のものと同様であるが、本第一実施例の特徴とするところは、図1〜図3に示す如く、ベルト3の復路下面側に、空気の吹出口18が上面側に穿設された複数(図の例では四本)の空気吹出パイプ20を、ベルト3の移動方向へ延びるよう前記ベルト3の幅方向へ所要間隔をあけて配設し、該空気吹出パイプ20に空気供給手段17の給気配管15を接続し、前記空気吹出パイプ20の吹出口18が穿設される上面側に、空気溜部21を凹設した点にある。   1 to 3 show a first embodiment of a return side belt support structure for an air levitation belt conveyor according to the present invention. In the figure, the same reference numerals as those in FIGS. 6 and 7 denote the same parts. The basic configuration is the same as the conventional one shown in FIGS. 6 and 7, but the feature of the first embodiment is that the lower surface of the return path of the belt 3 as shown in FIGS. On the side, a plurality of (four in the example shown in the figure) air outlet pipes 20 having air outlets 18 formed on the upper surface side are spaced in the width direction of the belt 3 so as to extend in the moving direction of the belt 3. The air supply pipe 15 of the air supply means 17 is connected to the air outlet pipe 20, and the air reservoir 21 is recessed on the upper surface side where the outlet 18 of the air outlet pipe 20 is drilled. It is in the point.

本第一実施例の場合、前記空気吹出パイプ20の空気溜部21の両縁部におけるベルト3当接部位には、図2に示す如く、該空気吹出パイプ20より摩擦係数の低い耐摩耗性部材24を埋め込むようにしてある。該耐摩耗性部材24としては、例えば、高分子樹脂等を用いることができる。   In the case of the first embodiment, the belt 3 contact portions at both edges of the air reservoir 21 of the air blowing pipe 20 have wear resistance having a lower friction coefficient than that of the air blowing pipe 20 as shown in FIG. The member 24 is embedded. As the wear resistant member 24, for example, a polymer resin or the like can be used.

更に又、前記空気吹出パイプ20のベルト3幅方向配設位置は、図3に示す如く、該空気吹出パイプ20の所定長さ毎に所要量だけずらすようにしてある。   Further, the position of the air blowing pipe 20 in the width direction of the belt 3 is shifted by a required amount for each predetermined length of the air blowing pipe 20, as shown in FIG.

次に、上記第一実施例の作用を説明する。   Next, the operation of the first embodiment will be described.

前述の如く構成すると、ベルト3の復路において、トラフ部材5(図7参照)により面接触的に支持されていたベルト3が、上面側に空気溜部21を凹設した空気吹出パイプ20により線接触的に支持されつつ空気浮上される形となるため、往路側のトラフ部材4に倣うように湾曲するベルト3の癖があったとしても、復路側のベルト3の端部が空気吹出パイプ20に接触することが避けられ、ベルト3の走行抵抗が減少し駆動プーリ1を回転駆動する駆動モータ(図示せず)の容量を大きくする必要がなくなると共に、該ベルト3及び空気吹出パイプ20の互いの接触箇所における摩耗が抑えられる。   When configured as described above, the belt 3 supported in surface contact by the trough member 5 (see FIG. 7) in the return path of the belt 3 is lined by the air outlet pipe 20 in which the air reservoir 21 is recessed on the upper surface side. Since the air levitates while being supported in a contact manner, the end of the belt 3 on the return path is connected to the air outlet pipe 20 even if there is a wrinkle of the belt 3 that curves so as to follow the trough member 4 on the forward path. Contact with the belt 3, the running resistance of the belt 3 is reduced, and it is not necessary to increase the capacity of a drive motor (not shown) that drives the drive pulley 1 to rotate, and the belt 3 and the air blowing pipe 20 are mutually connected. The wear at the contact point is suppressed.

又、従来のように、前記ベルト3が接触する部位を極力減らすために、復路側のトラフ部材5(図7参照)の表面をグラインダ等で滑らかに仕上げる必要がなくなり、現地での加工工数が減り、加工据付費が安く済むと共に、据付に要する工期が短縮可能となる。   Further, as in the prior art, in order to reduce the portion where the belt 3 contacts as much as possible, it is not necessary to finish the surface of the trough member 5 on the return path side (see FIG. 7) smoothly with a grinder or the like. As a result, the processing and installation costs can be reduced, and the work period required for installation can be shortened.

しかも、前記複数本の空気吹出パイプ20の吹出口18が穿設される上面側には、空気溜部21を凹設してあるため、前記空気吹出パイプ20から吹き出される空気の圧力が空気溜部21に蓄えられてベルト3に効率良く作用する形となり、該ベルト3を浮上させる上で有効となる。   Moreover, since the air reservoir 21 is recessed on the upper surface side where the air outlets 18 of the plurality of air outlet pipes 20 are drilled, the pressure of the air blown from the air outlet pipe 20 is air. The shape is stored in the reservoir portion 21 and acts efficiently on the belt 3, which is effective in raising the belt 3.

又、前記空気吹出パイプ20の空気溜部21の両縁部におけるベルト3当接部位には、図2に示す如く、該空気吹出パイプ20より摩擦係数の低い耐摩耗性部材24を埋め込んであるため、前記ベルト3及び空気吹出パイプ20の互いの接触箇所における摩耗が更に抑えられると共に、摩耗が進行した場合、前記空気吹出パイプ20全体を交換せずに耐摩耗性部材24だけを交換するだけで済む。   Further, as shown in FIG. 2, a wear-resistant member 24 having a lower friction coefficient than that of the air blowing pipe 20 is embedded in the contact portion of the belt 3 at both edges of the air reservoir 21 of the air blowing pipe 20. Therefore, the wear at the contact point between the belt 3 and the air blowing pipe 20 is further suppressed, and when the wear progresses, only the wear-resistant member 24 is replaced without replacing the entire air blowing pipe 20. Just do it.

更に又、前記空気吹出パイプ20のベルト3幅方向配設位置は、図3に示す如く、該空気吹出パイプ20の所定長さ毎に所要量だけずらすようにしてあるため、前記ベルト3及び空気吹出パイプ20の互いの接触箇所を分散させることが可能となり、摩耗を更に抑える上で有効となる。   Furthermore, the position of the air blowing pipe 20 in the width direction of the belt 3 is shifted by a required amount for each predetermined length of the air blowing pipe 20, as shown in FIG. It is possible to disperse the contact portions of the blow pipe 20 with each other, which is effective in further suppressing wear.

尚、前記空気吹出パイプ20の配置は、図1の例では、前記ベルト3の復路における断面形状がV字形状となるようにしてあるが、該ベルト3の復路における断面形状が平坦な形状、或いはその上面側が山状に突出する円弧形状となるように、前記空気吹出パイプ20の配置を変更することも可能である。   In the example of FIG. 1, the air blowing pipe 20 is arranged such that the cross-sectional shape of the belt 3 on the return path is V-shaped, but the cross-sectional shape of the belt 3 on the return path is flat. Alternatively, it is possible to change the arrangement of the air outlet pipe 20 so that the upper surface side has an arc shape protruding in a mountain shape.

こうして、復路側のベルト3の走行抵抗を減少させ、駆動モータの容量を小さくし得ると共に、該ベルト3の接触箇所における摩耗を抑制し得、且つ現地での加工工数並びに加工据付費の削減と据付工期の短縮化を図り得る。   In this way, the running resistance of the belt 3 on the return path side can be reduced, the capacity of the drive motor can be reduced, the wear at the contact point of the belt 3 can be suppressed, and the processing man-hours and processing installation costs at the site can be reduced. The installation period can be shortened.

図4及び図5は本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造の第二実施例であって、図中、図1〜図3と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1〜図3に示す第一実施例と同様であるが、本第二実施例の特徴とするところは、図4及び図5に示す如く、前記ベルト3の復路を、該ベルト3の往路の上方に配置した点にある。   4 and 5 show a second embodiment of the return side belt support structure of the air levitation belt conveyor of the present invention. In the figure, the same reference numerals as in FIGS. 1 to 3 denote the same parts. The basic configuration is the same as that of the first embodiment shown in FIGS. 1 to 3, but the feature of the second embodiment is that the belt 3 has a characteristic as shown in FIGS. The return path is located above the forward path of the belt 3.

本第二実施例の場合、往路側から駆動プーリ1に掛け回されるベルト3を、複数の従動プーリ22a,22b,22c,22dに順次掛け回して方向変換させることにより、前記ベルト3の往路の上方に復路が配置されるようにし、更に、前記ベルト3を複数の従動プーリ23a,23b,23c,23dに順次掛け回して方向変換させることにより、前記ベルト3の従動プーリ2に掛け回して往路へ導くようにしてある。   In the case of the second embodiment, the belt 3 wound around the drive pulley 1 from the forward path side is sequentially wound around the plurality of driven pulleys 22a, 22b, 22c, and 22d to change the direction thereof, whereby the forward path of the belt 3 is reached. Further, the belt 3 is wound around the driven pulley 2 of the belt 3 by sequentially winding the belt 3 around the driven pulleys 23a, 23b, 23c, and 23d to change the direction. It is supposed to lead to the outward trip.

尚、図4中、30は図4の紙面と直交する方向へ延びるよう供給シュート11の上方に配設されたバラ物の供給用コンベヤ、31は図4の紙面と直交する方向へ延びるよう排出シュート12の下方に配設されたバラ物の排出用コンベヤであり、前記供給用コンベヤ30によって供給されるバラ物を供給シュート11からベルト3上に投下する一方、前記排出シュート12へ払い出されたバラ物を排出用コンベヤ31上に投下して外部へ搬出するようにしてある。   In FIG. 4, 30 is a conveyor for supplying loose articles disposed above the supply chute 11 so as to extend in a direction orthogonal to the paper surface of FIG. 4, and 31 is discharged so as to extend in a direction orthogonal to the paper surface of FIG. A loose material discharge conveyor disposed below the chute 12, which drops the rose material supplied by the supply conveyor 30 from the supply chute 11 onto the belt 3, while being discharged to the discharge chute 12. The loose objects are dropped onto the discharge conveyor 31 and carried out to the outside.

図4及び図5に示す第二実施例の如く構成すると、図1〜図3に示す第一実施例と同様に、ベルト3の復路において、トラフ部材5(図7参照)により面接触的に支持されていたベルト3が、上面側に空気溜部21を凹設した空気吹出パイプ20により線接触的に支持されつつ空気浮上される形となるため、往路側のトラフ部材4に倣うように湾曲するベルト3の癖があったとしても、復路側のベルト3の端部が空気吹出パイプ20に接触することが避けられ、ベルト3の走行抵抗が減少し駆動プーリ1を回転駆動する駆動モータ(図示せず)の容量を大きくする必要がなくなると共に、該ベルト3及び空気吹出パイプ20の互いの接触箇所における摩耗が抑えられ、又、従来のように、前記ベルト3が接触する部位を極力減らすために、復路側のトラフ部材5(図7参照)の表面をグラインダ等で滑らかに仕上げる必要がなくなり、現地での加工工数が減り、加工据付費が安く済むと共に、据付に要する工期が短縮可能となり、しかも、前記複数本の空気吹出パイプ20の吹出口18が穿設される上面側には、空気溜部21を凹設してあるため、前記空気吹出パイプ20から吹き出される空気の圧力が空気溜部21に蓄えられてベルト3に効率良く作用する形となり、該ベルト3を浮上させる上で有効となるが、更に、前記ベルト3の復路を、該ベルト3の往路の上方に配置したことにより、ベルト3に付着したバラ物は、往路側のベルト3上に落下する形となって、自動的に回収することが可能となる一方、図5に示す如く、往路側のベルト3と復路側のベルト3をコンパクトにまとめて、省スペース化を図ることも可能となる。   When configured as in the second embodiment shown in FIGS. 4 and 5, as in the first embodiment shown in FIGS. 1 to 3, the trough member 5 (see FIG. 7) is in surface contact in the return path of the belt 3. Since the supported belt 3 is in the form of air levitation while being supported in line contact by the air outlet pipe 20 having the air reservoir 21 recessed on the upper surface side, it follows the trough member 4 on the forward path side. Even if the curled belt 3 has wrinkles, the end of the belt 3 on the return path side is prevented from coming into contact with the air blowing pipe 20, and the driving resistance of the belt 3 is reduced to drive the drive pulley 1 to rotate. It is not necessary to increase the capacity of the belt 3 (not shown), and wear at the contact point between the belt 3 and the air blowing pipe 20 is suppressed. To reduce It is no longer necessary to finish the surface of the trough member 5 (see FIG. 7) smoothly with a grinder, etc., reducing the number of on-site processing steps, reducing processing installation costs, and shortening the work period required for installation, Since the air reservoir 21 is recessed on the upper surface side where the air outlets 18 of the plurality of air outlet pipes 20 are drilled, the pressure of the air blown from the air outlet pipe 20 is reduced to the air reservoir. 21 is stored in the belt 3 and acts efficiently on the belt 3, which is effective in raising the belt 3, and further, by arranging the return path of the belt 3 above the forward path of the belt 3, The loose material adhering to the belt 3 falls onto the forward belt 3 and can be automatically collected, while the forward belt 3 and the backward belt 3 are shown in FIG. Compact belt 3 Collectively, it is also possible to achieve space saving.

因みに、前記ベルト3の復路を、該ベルト3の往路の上方に配置できる理由は、前記複数本の空気吹出パイプ20の吹出口18が穿設される上面側に空気溜部21を凹設し、前記空気吹出パイプ20から吹き出される空気の圧力が空気溜部21に蓄えられてベルト3に効率良く作用し、間隔をあけて配設される空気吹出パイプ20だけで、特にベルト3の下面が覆われるような空気室を形成せずに、該ベルト3を浮上させることが可能となるためである。   Incidentally, the reason why the return path of the belt 3 can be arranged above the forward path of the belt 3 is that the air reservoir 21 is recessed on the upper surface side where the outlets 18 of the plurality of air outlet pipes 20 are drilled. The pressure of the air blown out from the air blowing pipe 20 is stored in the air reservoir 21 and acts on the belt 3 efficiently, and only the air blowing pipe 20 arranged at intervals, particularly the lower surface of the belt 3. This is because the belt 3 can be levitated without forming an air chamber that is covered.

尚、図4及び図5に示す第二実施例の場合、図2に示す例と同様な形で、前記空気吹出パイプ20の空気溜部21の両縁部におけるベルト3当接部位に、該空気吹出パイプ20より摩擦係数の低い耐摩耗性部材24を埋め込むことができ、このようにすると、前記ベルト3及び空気吹出パイプ20の互いの接触箇所における摩耗が更に抑えられると共に、摩耗が進行した場合、前記空気吹出パイプ20全体を交換せずに耐摩耗性部材24だけを交換するだけで済む。   In the case of the second embodiment shown in FIGS. 4 and 5, the belt 3 abutting portions at both edges of the air reservoir 21 of the air blowing pipe 20 are formed in the same manner as the example shown in FIG. The wear-resistant member 24 having a lower friction coefficient than that of the air blowing pipe 20 can be embedded. In this way, wear at the contact point between the belt 3 and the air blowing pipe 20 is further suppressed, and wear has progressed. In this case, it is only necessary to replace the wear-resistant member 24 without replacing the entire air blowing pipe 20.

又、図4及び図5に示す第二実施例の場合、図3に示す例と同様な形で、前記空気吹出パイプ20のベルト3幅方向配設位置を、該空気吹出パイプ20の所定長さ毎に所要量だけずらすようにすることもでき、このようにすると、前記ベルト3及び空気吹出パイプ20の互いの接触箇所を分散させることが可能となり、摩耗を更に抑える上で有効となる。   In the case of the second embodiment shown in FIGS. 4 and 5, the position of the air blowing pipe 20 in the width direction of the belt 3 is set to a predetermined length of the air blowing pipe 20 in the same manner as in the example shown in FIG. It is also possible to shift the required amount every time, and in this way, the contact points of the belt 3 and the air blowing pipe 20 can be dispersed, which is effective in further suppressing wear.

更に又、前記空気吹出パイプ20の配置は、図5の例では、前記ベルト3の復路における断面形状が平坦な形状となるようにしてあるが、該ベルト3の復路における断面形状がV字形状、或いはその上面側が山状に突出する円弧形状となるように、前記空気吹出パイプ20の配置を変更することも可能である。   Furthermore, in the example of FIG. 5, the air blowing pipe 20 is arranged such that the cross-sectional shape of the return path of the belt 3 is a flat shape, but the cross-sectional shape of the return path of the belt 3 is V-shaped. Alternatively, it is possible to change the arrangement of the air blowing pipe 20 so that the upper surface side has an arc shape protruding in a mountain shape.

こうして、図4及び図5に示す第二実施例においても、図1〜図3に示す第一実施例と同様に、復路側のベルト3の走行抵抗を減少させ、駆動モータの容量を小さくし得ると共に、該ベルト3の接触箇所における摩耗を抑制し得、且つ現地での加工工数並びに加工据付費の削減と据付工期の短縮化を図り得、更に、前記ベルト3の復路を、該ベルト3の往路の上方に配置したことにより、ベルト3に付着したバラ物を往路側のベルト3上に自動的に回収でき、且つ省スペース化をも図り得る。   Thus, in the second embodiment shown in FIGS. 4 and 5, as in the first embodiment shown in FIGS. 1 to 3, the traveling resistance of the belt 3 on the return path side is reduced and the capacity of the drive motor is reduced. In addition, the wear at the contact point of the belt 3 can be suppressed, the on-site processing man-hours and processing installation costs can be reduced, and the installation period can be shortened. By disposing it above the forward path, the loose matter attached to the belt 3 can be automatically collected on the belt 3 on the forward path side, and space can be saved.

尚、本発明の空気浮上式ベルトコンベヤの復路側ベルト支持構造は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the return side belt support structure of the air levitation belt conveyor of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. is there.

1 駆動プーリ(プーリ)
2 従動プーリ(プーリ)
3 ベルト
4 トラフ部材
6 ブロワ
7 空気ダクト
9 吹出口
13 給気配管
14 流量調整バルブ
15 給気配管
16 流量調整バルブ
17 空気供給手段
18 吹出口
20 空気吹出パイプ
21 空気溜部
22a 従動プーリ(プーリ)
22b 従動プーリ(プーリ)
22c 従動プーリ(プーリ)
22d 従動プーリ(プーリ)
23a 従動プーリ(プーリ)
23b 従動プーリ(プーリ)
23c 従動プーリ(プーリ)
23d 従動プーリ(プーリ)
24 耐摩耗性部材
1 Drive pulley (pulley)
2 Driven pulley (pulley)
3 Belt 4 Trough member 6 Blower 7 Air duct 9 Air outlet 13 Air supply pipe 14 Flow rate adjusting valve 15 Air supply pipe 16 Flow rate adjusting valve 17 Air supply means 18 Air outlet 20 Air outlet pipe 21 Air reservoir 22a Drive pulley (pulley)
22b Driven pulley (pulley)
22c Driven pulley (pulley)
22d Driven pulley (pulley)
23a Driven pulley (pulley)
23b Driven pulley (pulley)
23c Driven pulley (pulley)
23d Driven pulley (pulley)
24 Wear-resistant members

Claims (4)

所要間隔をあけてそれぞれ回転自在に配置された複数のプーリ間にベルトを無端状に掛け回し、該ベルトの往路における下面側に、湾曲形成されるトラフ部材を延設し、該トラフ部材上面側に空気を供給することにより、前記ベルトを前記トラフ部材から浮上させつつ循環移動させる空気浮上式ベルトコンベヤの復路側ベルト支持構造において、
前記ベルトの復路下面側にその移動方向へ延び且つ前記ベルトの幅方向へ所要間隔をあけて配設され、上面側に空気の吹出口が穿設された複数の空気吹出パイプと、
該空気吹出パイプへ空気を供給する空気供給手段と
を備え、
前記空気吹出パイプの吹出口が穿設される上面側に、空気溜部を凹設したことを特徴とする空気浮上式ベルトコンベヤの復路側ベルト支持構造。
A belt is looped endlessly between a plurality of pulleys that are rotatably arranged with a required interval, and a trough member that is curved is extended on the lower surface side of the forward path of the belt, and the upper surface side of the trough member In the return side belt support structure of the air levitation belt conveyor that circulates and moves the belt while floating from the trough member by supplying air to the belt,
A plurality of air outlet pipes extending in the moving direction on the lower surface side of the return path of the belt and arranged at a required interval in the width direction of the belt, and having an air outlet formed on the upper surface side;
Air supply means for supplying air to the air outlet pipe,
A return-side belt support structure for an air-floating belt conveyor, wherein an air reservoir is recessed on an upper surface side where an air outlet of the air outlet pipe is formed.
前記空気吹出パイプの空気溜部の両縁部におけるベルト当接部位に、該空気吹出パイプより摩擦係数の低い耐摩耗性部材を埋め込んだ請求項1記載の空気浮上式ベルトコンベヤの復路側ベルト支持構造。   The belt support on the return side of the air levitation belt conveyor according to claim 1, wherein a wear-resistant member having a lower friction coefficient than that of the air blowing pipe is embedded in belt contact portions at both edges of the air reservoir of the air blowing pipe. Construction. 前記空気吹出パイプのベルト幅方向配設位置を、該空気吹出パイプの所定長さ毎に所要量だけずらすようにした請求項1又は2記載の空気浮上式ベルトコンベヤの復路側ベルト支持構造。   The return-side belt support structure for an air levitation belt conveyor according to claim 1 or 2, wherein a position in the belt width direction of the air blowing pipe is shifted by a required amount for each predetermined length of the air blowing pipe. 前記ベルトの復路を、該ベルトの往路の上方に配置した請求項1〜3のうちいずれか一つに記載の空気浮上式ベルトコンベヤの復路側ベルト支持構造。   The return path side belt support structure for an air-floating belt conveyor according to any one of claims 1 to 3, wherein the return path of the belt is disposed above the forward path of the belt.
JP2010291638A 2010-12-28 2010-12-28 Return path side belt supporting structure of air floating type belt conveyor Withdrawn JP2012136346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291638A JP2012136346A (en) 2010-12-28 2010-12-28 Return path side belt supporting structure of air floating type belt conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291638A JP2012136346A (en) 2010-12-28 2010-12-28 Return path side belt supporting structure of air floating type belt conveyor

Publications (1)

Publication Number Publication Date
JP2012136346A true JP2012136346A (en) 2012-07-19

Family

ID=46674118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291638A Withdrawn JP2012136346A (en) 2010-12-28 2010-12-28 Return path side belt supporting structure of air floating type belt conveyor

Country Status (1)

Country Link
JP (1) JP2012136346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185999B1 (en) * 2019-07-17 2020-12-03 주식회사 라우텍 Dust Prevention Apparatus for Chute of Conveyor Belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185999B1 (en) * 2019-07-17 2020-12-03 주식회사 라우텍 Dust Prevention Apparatus for Chute of Conveyor Belt

Similar Documents

Publication Publication Date Title
WO2002074666A1 (en) Belt conveyor and auxiliary equipment thereof
US7000758B2 (en) Conveyor system
KR101281770B1 (en) Tension device of belt conveyer
JP2012136346A (en) Return path side belt supporting structure of air floating type belt conveyor
JP2012136347A (en) Return path side belt supporting structure of air floating type belt conveyor
JP2004292085A (en) Floating belt conveyor device
US3529713A (en) Method and device for conveying rod-shaped objects,and especially cigarettes,between two levels
JPH08244933A (en) Belt conveyor device
JP2005089043A (en) Air floating type belt conveyor
JP3384181B2 (en) Belt conveyor device
JP3476005B2 (en) Air levitated belt conveyor device
JP3836737B2 (en) Air-floating belt conveyor
JP4675495B2 (en) Air-floating belt conveyor device
JP2001151320A (en) Levitation type belt conveyor device
JPH11246020A (en) Air levitation belt conveyer
JP4292353B2 (en) Floating belt conveyor
JPH1159840A (en) Pneumatic floating type belt conveyer
JP2002284325A (en) Floating type belt conveyor device
JP3970490B2 (en) Air-floating long belt conveyor
JP2001310810A (en) Conveying belt for air floating type belt conveyer
JP2002249212A (en) Floating belt conveyor device
JP5812949B2 (en) Transport device
JP2001315934A (en) Carrying belt for air-cushioned belt conveyor
JP2002302223A (en) Flow dynamics conveyor
JP3726981B2 (en) Air floating belt conveyor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304