JP2012129073A - Contact substrate, manufacturing method thereof, and input device using contact substrate - Google Patents

Contact substrate, manufacturing method thereof, and input device using contact substrate Download PDF

Info

Publication number
JP2012129073A
JP2012129073A JP2010279664A JP2010279664A JP2012129073A JP 2012129073 A JP2012129073 A JP 2012129073A JP 2010279664 A JP2010279664 A JP 2010279664A JP 2010279664 A JP2010279664 A JP 2010279664A JP 2012129073 A JP2012129073 A JP 2012129073A
Authority
JP
Japan
Prior art keywords
pattern
substrate
conductive
contact
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010279664A
Other languages
Japanese (ja)
Inventor
Satoru Matsumora
悟 松茂良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2010279664A priority Critical patent/JP2012129073A/en
Publication of JP2012129073A publication Critical patent/JP2012129073A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact substrate which can manufacture a code pattern without specially using a metal mold and can flow a large current therethrough, and to provide a method of manufacturing the contact substrate, and an input device using the contact substrate.SOLUTION: A contact substrate 1 having an insulating pattern 4 and a conductive pattern 5 on a sliding surface 1a includes: a conductive substrate 2; and an insulating layer 3 forming the insulating pattern 4 on a surface 2a of the conductive substrate 2 by a thermal transfer printer. The contact substrate 1 can be manufactured which can flow the large current therethrough without using the metal mold.

Description

本発明は、コードパターンの形成に金型を用いることなく製造でき大電流を流すことが可能な接点基板に関する。   The present invention relates to a contact board that can be manufactured without using a metal mold for forming a code pattern and can flow a large current.

接点基板(コード板)の製造に関する従来技術としてインサート成形がある。しかしながらインサート成形であると、コードパターン毎に、パターン抜き加工の金型とインサート金属が部品の表面に位置するように押さえるピンの位置の異なる外形射出成形型が必要であり、リードタイム(LT)が長く、また型費がかかるといった問題があった。   There is insert molding as a conventional technique related to the manufacture of a contact board (code board). However, in the case of insert molding, for each code pattern, a pattern punching die and an outer shape injection molding die with different pin positions to hold the insert metal on the surface of the part are required, and lead time (LT) However, there was a problem that the mold cost was long.

インサート成形でなくプリント基板を用いて接点基板を製造する方法では、フォトレジストの現像・剥離工程や銅箔のエッチング工程を必要とし製造工程の煩雑性や製造コストが高くなるといった問題があった。   In the method of manufacturing a contact board using a printed circuit board instead of insert molding, there has been a problem that the development and peeling process of the photoresist and the etching process of the copper foil are required, and the complexity of the manufacturing process and the manufacturing cost are increased.

下記の特許文献1に記載された発明には、例えばポリイミド樹脂からなる絶縁基板の表面に、導電パターンを熱転写印刷する印刷回路基板の製造方法が開示されている。   The invention described in Patent Document 1 below discloses a method for manufacturing a printed circuit board in which a conductive pattern is thermally transferred and printed on the surface of an insulating substrate made of, for example, a polyimide resin.

特開昭64−8700号公報JP-A 64-8700

しかしながら、特許文献1に記載されているように、絶縁性基板に導電パターンを形成する方法では、回路の導通抵抗が高くなり、使用電流値に制約がかかり大電流を流すことができないといった問題があった。   However, as described in Patent Document 1, in the method of forming a conductive pattern on an insulating substrate, there is a problem that the conduction resistance of the circuit becomes high, the current value is limited, and a large current cannot flow. there were.

そこで本発明は上記従来の課題を解決するためのものであり、特にコードパターンの製造に金型を用いることなく製造でき、大電流を流すことが可能な接点基板及びその製造方法、ならびに接点基板を用いた入力装置を提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, a contact board that can be manufactured without using a mold for manufacturing a code pattern and can flow a large current, a manufacturing method thereof, and a contact board An object of the present invention is to provide an input device using the.

本発明は、摺動面に絶縁パターンと導電パターンとを有する接点基板であって、
導電性基板と、前記導電性基板の表面に熱転写プリンタによって前記絶縁パターンに形成された絶縁層と、を有することを特徴とするものである。
The present invention is a contact board having an insulating pattern and a conductive pattern on a sliding surface,
It has an electroconductive board | substrate, and the insulating layer formed in the said insulating pattern by the thermal transfer printer on the surface of the said electroconductive board | substrate.

また本発明における入力装置は、本発明の接点基板と、摺動面上を摺動する摺動子とを有することを特徴とするものである。本発明では、前記導電性基板の前記絶縁層が形成された表面側に対して反対側の裏面側をコモン摺動子が摺動する構成にできる。   An input device according to the present invention includes the contact board according to the present invention and a slider that slides on a sliding surface. In this invention, it can be set as the structure which a common slider slides on the back surface side on the opposite side with respect to the surface side in which the said insulating layer of the said conductive substrate was formed.

また本発明は、摺動面に絶縁パターンと導電パターンとを有する接点基板の製造方法であって、
導電性基板の表面に熱転写プリンタを用いて前記絶縁パターンからなる絶縁層を熱転写印刷することを特徴するものである。
Further, the present invention is a method of manufacturing a contact board having an insulating pattern and a conductive pattern on a sliding surface,
It is characterized in that the insulating layer comprising the insulating pattern is thermally transferred and printed on the surface of the conductive substrate using a thermal transfer printer.

本発明では記導電パターンの位置にて露出する導電性基板の表面にめっき層を施して、導電パターンと絶縁パターン間の段差を小さくすることができるし、また本発明では、前記導電パターンの位置における前記導電性基板を、裏面側から前記絶縁層を形成した表面側の方向にプレスして変形させることも可能である。   In the present invention, a plating layer can be applied to the surface of the conductive substrate exposed at the position of the conductive pattern to reduce the step between the conductive pattern and the insulating pattern. In the present invention, the position of the conductive pattern can be reduced. It is also possible to deform the conductive substrate by pressing in the direction from the rear surface side to the front surface side where the insulating layer is formed.

本発明によれば、コードパターンの形成に金型を用いることなく大電流を流すことが可能な接点基板を製造することができる。   According to the present invention, it is possible to manufacture a contact board capable of flowing a large current without using a mold for forming a code pattern.

すなわち本発明では導電性基板に絶縁層を熱転写プリンタによりパターン形成するが、逆に絶縁性基板に導電層を熱転写プリンタによりパターン形成する形態では、体積固有抵抗値がおおよそ10-4〜10-5Ω・cmと高いAgペースト等を使わざるをえず、かつ、膜厚も高々10μm程度と薄く、更にパターニングによる回路長の増加から、導通抵抗値が高くなり使用電流に制限がかかる。また、Agペースト中のAg粉は延展性があり柔らかく、導電層の硬さを増すためのニッケルやアルミナ等のAg粉より硬い粒子を充填すると、それだけAg粉を減らさざるを得ず導電性が劣化するという問題を持っている。 That is, in the present invention, the insulating layer is patterned on the conductive substrate by the thermal transfer printer. Conversely, in the embodiment in which the conductive layer is patterned on the insulating substrate by the thermal transfer printer, the volume resistivity value is approximately 10 −4 to 10 −5. A high Ag paste such as Ω · cm must be used, and the film thickness is as thin as about 10 μm. Further, the increase in circuit length due to patterning increases the conduction resistance value, which limits the current used. In addition, Ag powder in Ag paste is spread and soft, and if it is filled with particles harder than Ag powder such as nickel or alumina to increase the hardness of the conductive layer, the Ag powder has to be reduced accordingly. Has the problem of deteriorating.

よって本発明のように導電性基板の表面に絶縁パターンを熱転写する形態とすることでコードパターンの形成に金型を用いることなく大電流を流すことが可能な接点基板を製造できるのである。   Therefore, a contact substrate capable of flowing a large current without using a mold for forming the code pattern can be manufactured by adopting a configuration in which the insulating pattern is thermally transferred onto the surface of the conductive substrate as in the present invention.

ところで、本発明では絶縁層の形成に熱転写プリンタを用いたが、スクリーン印刷やインクジェットを用いる方法に比べて以下のメリットがある。すなわち本発明のように熱転写プリンタを用いることで、スクリーン印刷に比べてファインパターンが可能になり、表面粗さが小さくなり、面内膜厚のばらつきを抑えることができる。さらにスクリーンマスクが不要なので絶縁パターンのパターン変更を容易にできる。またインクジェットに比べて、膜厚を出すことができ、μmオーダー〜サブミクロンオーダーの任意のフィラー(粒子)を含有させることができる。この為、絶縁層の耐磨耗性が向上すると共に、磨耗したとしても絶縁性が破壊するまでの寿命を長くできる。また、ドライフィルムや液状フォトレジストに比べて安い設備費で、製造プロセスを容易化でき、さらに絶縁パターンのパターン変更をより容易にできる。以上により低コストで、絶縁層の膜厚コントロール、表面平滑性、絶縁耐圧を向上させることができ、優れた摺動特性を備える接点基板にできる。   In the present invention, the thermal transfer printer is used to form the insulating layer, but there are the following merits as compared with the method using screen printing or inkjet. That is, by using a thermal transfer printer as in the present invention, a fine pattern is possible as compared with screen printing, surface roughness is reduced, and variations in in-plane film thickness can be suppressed. Furthermore, since no screen mask is required, the pattern of the insulating pattern can be easily changed. Moreover, compared with an inkjet, a film thickness can be taken out and arbitrary fillers (particles) on the order of μm to submicron can be included. For this reason, the wear resistance of the insulating layer is improved, and even if the insulating layer is worn, the life until the insulation is broken can be extended. In addition, the manufacturing process can be facilitated and the pattern change of the insulating pattern can be further facilitated at a lower equipment cost than a dry film or a liquid photoresist. As described above, the thickness of the insulating layer, surface smoothness, and withstand voltage can be improved at low cost, and a contact substrate having excellent sliding characteristics can be obtained.

本発明によれば、コードパターンの形成に金型を用いることなく大電流を流すことが可能な接点基板を製造することができる。   According to the present invention, it is possible to manufacture a contact board capable of flowing a large current without using a mold for forming a code pattern.

図1(a)は本実施形態における接点基板(コード板)の縦断面図、図1(b)は図1(a)に示す接点基板を用いた入力装置の部分縦断面図である。FIG. 1A is a longitudinal sectional view of a contact board (code plate) in the present embodiment, and FIG. 1B is a partial longitudinal sectional view of an input device using the contact board shown in FIG. 別の実施形態における接点基板(コード板)の縦断面図である。It is a longitudinal cross-sectional view of the contact substrate (code board) in another embodiment.

図1(a)は本実施形態における接点基板(コード板)の縦断面図、図1(b)は図1(a)に示す接点基板を用いた入力装置の部分縦断面図である。   FIG. 1A is a longitudinal sectional view of a contact board (code plate) in the present embodiment, and FIG. 1B is a partial longitudinal sectional view of an input device using the contact board shown in FIG.

本実施形態における接点基板1は、摺動面1aに絶縁パターン4と導電パターン5が現れている。   In the contact substrate 1 in this embodiment, the insulating pattern 4 and the conductive pattern 5 appear on the sliding surface 1a.

図1(a)に示すように、接点基板1は、金属条等の導電性基板2と、導電性基板2の表面2aに熱転写プリンタによって前記絶縁パターン4に形成された絶縁層3とを有して構成される。   As shown in FIG. 1A, the contact substrate 1 has a conductive substrate 2 such as a metal strip, and an insulating layer 3 formed on the insulating pattern 4 on the surface 2a of the conductive substrate 2 by a thermal transfer printer. Configured.

導電性基板2は、黄銅やリン青銅等の銅系合金が好適である。絶縁層3は、樹脂とフィラーを有してパターン形成される。樹脂は、熱可塑性樹脂や熱硬化性樹脂の別を問わない。熱可塑性樹脂としては結晶性の樹脂の場合は融点(Tm)が高いか、非晶性の樹脂の場合はガラス転移点が高く耐熱性に優れた樹脂が適しており、熱可塑性ポリイミド等を好ましく使用することが出来る。また熱硬化性樹脂としては、Bステージの熱硬化性樹脂を好ましく使用でき、具体的には熱硬化型アクリル樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ビスマレイドトリアジン樹脂、ジアリルフタレート樹脂等である。   The conductive substrate 2 is preferably a copper alloy such as brass or phosphor bronze. The insulating layer 3 has a resin and a filler and is patterned. The resin may be a thermoplastic resin or a thermosetting resin. As the thermoplastic resin, a crystalline resin has a high melting point (Tm), or an amorphous resin has a high glass transition point and is excellent in heat resistance. A thermoplastic polyimide or the like is preferable. Can be used. As the thermosetting resin, B-stage thermosetting resin can be preferably used. Specifically, thermosetting acrylic resin, melamine resin, urethane resin, phenol resin, epoxy resin, bismaleide triazine resin, diallyl phthalate resin. Etc.

またエポキシ樹脂とビスマレイミドトリアジン樹脂(BTレジン;登録商標)とのブレンド樹脂を用いることも好適である。   It is also preferable to use a blend resin of an epoxy resin and a bismaleimide triazine resin (BT resin; registered trademark).

フィラーとしては、摺動子(図1(b)の符号8)の磨耗を減らすために、出来るだけ球状のものが好ましく適用される。本実施形態では、熱転写プリンタを用いて絶縁層3を導電性基板2の表面2aに熱転写印刷するものであり、フィラーとして、μmオーダーからサブミクロンオーダーであって所定硬さを備える粒子を適量含有させることができる。フィラーには真球状ガラス微粒子(サンスフェア;登録商標)、カーボンビーズ(ニカビーズ;登録商標)、ボロンナイトライド、酸化チタン等を適宜選択することが出来る。   As the filler, in order to reduce the wear of the slider (symbol 8 in FIG. 1B), a spherical one is preferably applied as much as possible. In the present embodiment, the insulating layer 3 is thermally transferred and printed on the surface 2a of the conductive substrate 2 using a thermal transfer printer. The filler contains an appropriate amount of particles having a predetermined hardness from the μm order to the submicron order. Can be made. As the filler, spherical glass fine particles (Sunsphere; registered trademark), carbon beads (Nika beads; registered trademark), boron nitride, titanium oxide, and the like can be appropriately selected.

更に、導電性基板2との接着性を向上させるために、カップンリング剤、含硫黄樹脂(チオコール;登録商標)等を添加剤として含んでいてもよい。   Further, in order to improve the adhesion to the conductive substrate 2, a coupling agent, a sulfur-containing resin (thiocol; registered trademark) or the like may be included as an additive.

絶縁層3の膜厚は数μm〜数十μmの範囲内にて調整できる。また、絶縁層3の熱転写工程は、1回でも、膜厚を厚くするために複数回でも良い。   The film thickness of the insulating layer 3 can be adjusted within a range of several μm to several tens of μm. Further, the thermal transfer process of the insulating layer 3 may be performed once or a plurality of times in order to increase the film thickness.

図1(a)に示すように、絶縁層3が形成されておらず露出する導電性基板2の表面2a(導電パターン5の位置)にはめっき層6が形成されている。めっき層6は例えば図示しない下地めっき層上に電気接点用金属を電気めっきされたものである。このとき導電性基板2を電気めっきでの電極とし、絶縁層3をマスクとして、露出する導電性基板2の表面2aにめっき成長させてめっき層6を形成することができる。なお、めっき層6を無電解めっきにて形成することも可能である。図1(a)に示すように、導電性基板2の裏面2bにもめっき層7が形成される。
めっき層6は材質を問わないし、単層でも材質の異なる積層構造であってもよい。
As shown in FIG. 1A, a plating layer 6 is formed on the surface 2a (position of the conductive pattern 5) of the conductive substrate 2 that is exposed without the insulating layer 3 formed. The plating layer 6 is formed by, for example, electroplating a metal for electrical contact on a base plating layer (not shown). At this time, the plating layer 6 can be formed by growing the plating on the exposed surface 2a of the conductive substrate 2 using the conductive substrate 2 as an electrode in electroplating and the insulating layer 3 as a mask. It is also possible to form the plating layer 6 by electroless plating. As shown in FIG. 1A, the plating layer 7 is also formed on the back surface 2 b of the conductive substrate 2.
The plating layer 6 may be of any material, and may be a single layer or a laminated structure having different materials.

めっき層6の図示しない下地めっきは、Cuめっき、Niめっき等の単一金属めっき、Ni−P、Ni−W等のニッケル合金めっき、めっき皮膜中にPTFE(テフロン;登録商標)粉、カーボンナノチューブ等を含む分散めっき等であってもよい。   The base plating (not shown) of the plating layer 6 includes single metal plating such as Cu plating and Ni plating, nickel alloy plating such as Ni-P and Ni-W, PTFE (Teflon; registered trademark) powder and carbon nanotubes in the plating film. Dispersion plating containing etc. may be sufficient.

めっき層6の表面めっきは、電気接点に適した耐食性の高いAu、Ag、Pdのみならず、大電流により酸化皮膜が破壊しやすいCu、Sn等であっても良い。   The surface plating of the plating layer 6 may be not only Au, Ag, and Pd, which have high corrosion resistance suitable for electrical contacts, but also Cu, Sn, etc., which easily breaks the oxide film due to a large current.

めっき層6を形成することで、絶縁層3と導電性基板2との間の段差を小さくすることが可能であり、また絶縁層の熱転写の際に生じる微小な地汚れを被うことができる。ここで言う「地汚れ」とは、絶縁パターン形成時に、意図しない箇所に転写された絶縁物や、熱転写フィルム等から付着した絶縁物を指す。   By forming the plating layer 6, it is possible to reduce the step between the insulating layer 3 and the conductive substrate 2, and it is possible to cover minute ground stains that occur during thermal transfer of the insulating layer. . The term “soil stain” as used herein refers to an insulator transferred to an unintended location or an insulator attached from a thermal transfer film or the like when forming an insulating pattern.

図1(b)に示すように、接点基板1(コード板)の摺動面1aに摺動子8が接しており、接点基板1の裏面1bにコモン摺動子12が接している。   As shown in FIG. 1B, the slider 8 is in contact with the sliding surface 1 a of the contact substrate 1 (code plate), and the common slider 12 is in contact with the back surface 1 b of the contact substrate 1.

摺動子と接点基板のうち一方が移動側で他方が固定側であり、例えば摺動子8,12が固定側であり、接点基板1が図1(b)のX方向に移動する。これにより、摺動子8は接点基板1の摺動面1aに現れた導電パターン5(めっき層6の表面)と絶縁パターン4(絶縁層3の表面)とを交互に摺動し、一方、コモン摺動子12は接点基板1の裏面1bに位置するめっき層7の表面を摺動する。   One of the slider and the contact board is the moving side and the other is the fixed side. For example, the sliders 8 and 12 are the fixed side, and the contact board 1 moves in the X direction in FIG. Thereby, the slider 8 slides alternately between the conductive pattern 5 (the surface of the plating layer 6) and the insulating pattern 4 (the surface of the insulating layer 3) appearing on the sliding surface 1a of the contact substrate 1, The common slider 12 slides on the surface of the plating layer 7 located on the back surface 1 b of the contact board 1.

摺動子8にはプルアップ抵抗が接続され、所定電圧を印加した状態で、摺動子8が接点基板1の導電パターン5上を摺動すると、摺動子8とコモン摺動子12とが電気的に接続され、オン(ON)信号が出力され、一方、摺動子8が接点基板1の絶縁パターン4上を摺動すると摺動子8とコモン摺動子12が電気的に切断され、オフ(OFF)信号が出力される。そして、接点基板1が図1(b)のX方向に移動することで、このオン信号とオフ信号が交互に繰り返され、パルス信号が出力される。   When a pull-up resistor is connected to the slider 8 and a predetermined voltage is applied, when the slider 8 slides on the conductive pattern 5 of the contact substrate 1, the slider 8 and the common slider 12 Are electrically connected and an ON signal is output. On the other hand, when the slider 8 slides on the insulating pattern 4 of the contact board 1, the slider 8 and the common slider 12 are electrically disconnected. And an OFF signal is output. Then, when the contact substrate 1 moves in the X direction in FIG. 1B, the on signal and the off signal are alternately repeated, and a pulse signal is output.

例えば上記のパルス信号をA相パルス信号と称することとして、図には示さないが、導電パターン(絶縁パターン)のX方向への位置が、図1(b)とは異なる(ずれた)B相領域を設け、B相領域における導電パターン及び絶縁パターン上に図1(b)に示す摺動子8(A相摺動子)とは別のB相摺動子を、前記摺動子8,12とともに接点基板1に対して相対的に摺動させることで、B相摺動子とコモン摺動子12との間での電気的な接続・切断によるB相パルス信号を得ることができ、このとき、B相パルス信号をA相パルス信号と異なる位相にできる。よってA相パルス信号とB相パルス信号を得ることで、接点基板1の移動量(速度)のみならず移動方向も知ることができる。   For example, the above pulse signal is referred to as an A-phase pulse signal. Although not shown in the drawing, the position of the conductive pattern (insulating pattern) in the X direction is different (shifted) from that in FIG. A B-phase slider different from the slider 8 (A-phase slider) shown in FIG. 1B is provided on the conductive pattern and the insulating pattern in the B-phase region. By sliding relative to the contact board 1 together with 12, the B-phase pulse signal can be obtained by electrical connection / disconnection between the B-phase slider and the common slider 12. At this time, the B-phase pulse signal can have a different phase from the A-phase pulse signal. Therefore, by obtaining the A-phase pulse signal and the B-phase pulse signal, not only the moving amount (speed) of the contact substrate 1 but also the moving direction can be known.

図1(b)では、接点基板1がX方向に直線的に移動する図であるが、ロータリスイッチのように接点基板1が回転するタイプで、回転中心から同心円上に導電パターンと絶縁パターンとが交互に配列された構成とすることもできる。   In FIG. 1 (b), the contact substrate 1 moves linearly in the X direction. However, the contact substrate 1 rotates like a rotary switch, and a conductive pattern and an insulating pattern are concentrically arranged from the rotation center. It is also possible to adopt a configuration in which are alternately arranged.

また図1(b)では、接点基板1の裏面1bをコモン領域として使用することができ、同心円状に配置される摺動子の数を減らせるので、製品の外形寸法を小さくすることができる。   In FIG. 1B, the back surface 1b of the contact board 1 can be used as a common region, and the number of sliders arranged concentrically can be reduced, so that the outer dimensions of the product can be reduced. .

本実施形態における接点基板1の製造方法としては、導電性基板2の表面2aに熱転写プリンタを用いて絶縁パターン4からなる絶縁層3を熱転写印刷する。続いて絶縁層3をマスクとして導電パターン5の位置にて露出する導電性基板2の表面2aにめっきを施す。   As a manufacturing method of the contact substrate 1 in the present embodiment, the insulating layer 3 composed of the insulating pattern 4 is thermally transferred and printed on the surface 2a of the conductive substrate 2 using a thermal transfer printer. Subsequently, the surface 2a of the conductive substrate 2 exposed at the position of the conductive pattern 5 is plated using the insulating layer 3 as a mask.

本実施形態における接点基板1を製造する手法としては、導電性基板に絶縁パターンを形成するか、絶縁性基板に導電パターンを形成するかしかない。   The only method for manufacturing the contact substrate 1 in this embodiment is to form an insulating pattern on the conductive substrate or to form a conductive pattern on the insulating substrate.

絶縁性基板に導電パターンを形成する形態では、導電パターンに導電性、絶縁性基板との接着性や摺動磨耗に耐えうる条件を満たすことが必要となる。   In the form in which the conductive pattern is formed on the insulating substrate, it is necessary that the conductive pattern is conductive, satisfies the condition that it can withstand adhesion to the insulating substrate and sliding wear.

しかしながら、絶縁性基板に導電パターンを形成する形態では、Agペースト等からなる導電パターンの導通抵抗値が高くなり使用電流に制限がかかる。またAg粉を入れて且つ硬度を適度に調整することは困難である。また導電パターンを形成した場合、絶縁パターン部が凹部になり、この段差を埋めることは困難である。特に導電パターン間が狭ければ、絶縁材料の塗布・印刷等は困難である。よって導電パターンに求められる全ての条件を満たすことは難しい。これに対して、導電性基板に絶縁パターンを形成する形態では、導電性は導電性基板2及びめっき層6,7(なお後述するめっき層が形成されない形態では導電性基板)で適切に確保されているから絶縁層3は導電性基板との接着性や摺動磨耗に耐えうる条件を満たせばよく、それは、絶縁層3を構成する樹脂やフィラーの材質、含有量等により簡単かつ適切に調整することができ、換言すれば絶縁性基板に導電パターンを形成するよりも調整の自由度を高めることができる。また、導電パターン間が狭くても、めっき液に触れていればめっき皮膜は析出し絶縁パターンとの段差を小さくすることができる。更に、インサート成形におけるインサート端子と異なり、導電性基板はシート状なので、面内の電位差が小さく、めっき皮膜の膜厚のばらつきも小さくできる。なお熱転写プリンタによる熱転写時の加圧により絶縁層3の表面を平滑面にきれいに形成できる。   However, in the form in which the conductive pattern is formed on the insulating substrate, the conductive resistance value of the conductive pattern made of Ag paste or the like becomes high, and the working current is limited. Moreover, it is difficult to put Ag powder and adjust the hardness appropriately. Further, when the conductive pattern is formed, the insulating pattern portion becomes a concave portion, and it is difficult to fill this step. In particular, when the space between the conductive patterns is narrow, it is difficult to apply and print the insulating material. Therefore, it is difficult to satisfy all the conditions required for the conductive pattern. On the other hand, in the embodiment in which the insulating pattern is formed on the conductive substrate, the conductivity is appropriately ensured by the conductive substrate 2 and the plating layers 6 and 7 (in the embodiment in which a plating layer to be described later is not formed). Therefore, the insulating layer 3 only needs to satisfy the conditions that can withstand adhesion to the conductive substrate and sliding wear, and it can be easily and appropriately adjusted according to the material and content of the resin and filler constituting the insulating layer 3. In other words, the degree of freedom of adjustment can be increased as compared with the case where the conductive pattern is formed on the insulating substrate. Even if the space between the conductive patterns is narrow, if the plating solution is touched, the plating film is deposited and the step difference from the insulating pattern can be reduced. Further, unlike the insert terminal in insert molding, the conductive substrate is in the form of a sheet, so that the in-plane potential difference is small and the variation in the thickness of the plating film can be reduced. Note that the surface of the insulating layer 3 can be formed smoothly on a smooth surface by pressurization during thermal transfer by a thermal transfer printer.

また本実施形態では、導電性基板2の表面2aに熱転写プリンタにより絶縁層3をパターン形成するものであるから、インサート成形のようにコードパターンの形成に金型を必要ともしない。   In this embodiment, since the insulating layer 3 is formed by patterning on the surface 2a of the conductive substrate 2 by a thermal transfer printer, a mold is not required for forming the code pattern as in insert molding.

以上により本実施形態によれば、金型を用いることなく、大電流を流すことが可能な接点基板1を製造することができる。   As described above, according to the present embodiment, it is possible to manufacture the contact board 1 capable of flowing a large current without using a mold.

ところで、本実施形態では絶縁層3の形成に熱転写プリンタを用いたが、スクリーン印刷やインクジェットを用いる方法に比べて以下のメリットがある。すなわち本実施形態のように熱転写プリンタを用いることで、スクリーン印刷に比べてファインパターンが可能になり、表面粗さが小さくなり、面内膜厚のばらつきを抑えることができ、さらに絶縁パターン4のパターン変更を容易にできる。またインクジェットに比べて、膜厚を出すことができ、μmオーダー〜サブミクロンオーダーの任意のフィラー(粒子)を含有させることができる。この為、絶縁層の耐摩耗性が向上すると共に、磨耗したとしても絶縁性が破壊するまでの寿命を長くできる。また、ドライフィルムや液状フォトレジストに比べて安い設備費で、製造プロセスを容易化でき、さらに絶縁パターン4のパターン変更をより容易にできる。以上により低コストで、絶縁層3の膜厚コントロール、表面平滑性、絶縁耐圧を向上させることができ、優れた摺動特性を備える接点基板1を製造することが可能になる。   By the way, although the thermal transfer printer was used for formation of the insulating layer 3 in this embodiment, there exist the following merits compared with the method using screen printing or an inkjet. That is, by using a thermal transfer printer as in the present embodiment, a fine pattern is possible as compared with screen printing, the surface roughness is reduced, variation in in-plane film thickness can be suppressed, and the insulating pattern 4 The pattern can be changed easily. Moreover, compared with an inkjet, a film thickness can be taken out and arbitrary fillers (particles) on the order of μm to submicron can be included. For this reason, the wear resistance of the insulating layer is improved, and even if it is worn, the life until the insulation is broken can be extended. In addition, the manufacturing process can be simplified and the pattern change of the insulating pattern 4 can be further facilitated at a lower equipment cost than a dry film or a liquid photoresist. As described above, it is possible to improve the film thickness control, surface smoothness, and withstand voltage of the insulating layer 3 at low cost, and it is possible to manufacture the contact substrate 1 having excellent sliding characteristics.

図1に示すように、導電パターン5の位置に露出する導電性基板2の表面2aにめっき層6を形成することで、絶縁層3と導電性基板2間の段差を小さくすることができ、また地汚れを被うことができるが、図2(a)のように、めっき層6がない形態も本実施形態の一形態である。   As shown in FIG. 1, by forming the plating layer 6 on the surface 2a of the conductive substrate 2 exposed at the position of the conductive pattern 5, the step between the insulating layer 3 and the conductive substrate 2 can be reduced. Further, although it can be covered with soil, a form without the plating layer 6 is also one form of this embodiment as shown in FIG.

あるいは図2(a)の導電性基板9を金属箔等の変形させやすい材質や膜厚として、図2(a)の矢印に示すように、導電パターン5の位置における導電性基板9を裏面9b側から絶縁層3が形成された表面9a側に向けてプレス(熱プレス、弾性プレス、真空プレス等)して変形させることもできる。図9(b)が導電性基板9の変形後の図である。   Alternatively, the conductive substrate 9 in FIG. 2A is made of a material or film thickness that is easily deformed, such as a metal foil, and the conductive substrate 9 at the position of the conductive pattern 5 is placed on the back surface 9b as shown by the arrow in FIG. It can also be deformed by pressing (hot pressing, elastic pressing, vacuum pressing, etc.) from the side toward the surface 9a on which the insulating layer 3 is formed. FIG. 9B is a view after the conductive substrate 9 is deformed.

さらに図2(c)のように、導電パターン5に位置する変形した導電性基板9の表面9a及び導電性基板9の裏面9bに薄いめっき層10,11を形成してもよい。めっき層10,11の形成は導電性基板9を変形させる前、すなわち図2(a)の時点で行い、その後、図2(b)のように導電性基板9を変形させることも可能である。   Further, as shown in FIG. 2C, thin plating layers 10 and 11 may be formed on the front surface 9 a of the deformed conductive substrate 9 and the back surface 9 b of the conductive substrate 9 positioned in the conductive pattern 5. The plating layers 10 and 11 can be formed before the conductive substrate 9 is deformed, that is, at the time of FIG. 2A, and then the conductive substrate 9 can be deformed as shown in FIG. 2B. .

図2(b)(c)に示す実施形態により、導電パターンと絶縁パターン間の段差を小さくすることができる。   2B and 2C, the step between the conductive pattern and the insulating pattern can be reduced.

1 接点基板
1a 摺動面
2、9 導電性基板
3 絶縁層
4 絶縁パターン
5 導電パターン
6、7、10、11 めっき層
8 摺動子
12 コモン摺動子
DESCRIPTION OF SYMBOLS 1 Contact board 1a Sliding surface 2, 9 Conductive board 3 Insulating layer 4 Insulating pattern 5 Conductive pattern 6, 7, 10, 11 Plating layer 8 Slider 12 Common slider

Claims (8)

摺動面に絶縁パターンと導電パターンとを有する接点基板であって、
導電性基板と、前記導電性基板の表面に熱転写プリンタによって前記絶縁パターンに形成された絶縁層と、を有することを特徴とする接点基板。
A contact board having an insulating pattern and a conductive pattern on a sliding surface,
A contact substrate comprising: a conductive substrate; and an insulating layer formed in the insulating pattern on a surface of the conductive substrate by a thermal transfer printer.
前記導電性基板の表面には、前記導電パターンの位置にめっき層が形成されている請求項1記載の接点基板。   The contact board according to claim 1, wherein a plating layer is formed at a position of the conductive pattern on the surface of the conductive board. 前記導電パターンの位置における前記導電性基板は、裏面側から前記絶縁層が形成された表面側の方向に向けて変形させられている請求項1又は2に記載の接点基板。   The contact substrate according to claim 1, wherein the conductive substrate at the position of the conductive pattern is deformed from a back surface side toward a front surface side on which the insulating layer is formed. 請求項1ないし3のいずれか1項に記載された接点基板と、前記摺動面上を摺動する摺動子とを有することを特徴とする入力装置。   An input device comprising: the contact board according to claim 1; and a slider that slides on the sliding surface. 前記導電性基板の前記絶縁層が形成された表面側に対して反対側の裏面側をコモン摺動子が摺動する請求項4記載の入力装置。   The input device according to claim 4, wherein a common slider slides on the back side opposite to the surface side on which the insulating layer of the conductive substrate is formed. 摺動面に絶縁パターンと導電パターンとを有する接点基板の製造方法であって、
導電性基板の表面に熱転写プリンタを用いて前記絶縁パターンからなる絶縁層を熱転写印刷することを特徴する接点基板の製造方法。
A method of manufacturing a contact board having an insulating pattern and a conductive pattern on a sliding surface,
A method of manufacturing a contact substrate, comprising: thermally transferring and printing an insulating layer comprising the insulating pattern on a surface of a conductive substrate using a thermal transfer printer.
前記導電パターンの位置にて露出する前記導電性基板の表面にめっきを施す請求項6記載の接点基板の製造方法。   The method for manufacturing a contact substrate according to claim 6, wherein the surface of the conductive substrate exposed at the position of the conductive pattern is plated. 前記導電パターンの位置における前記導電性基板を、裏面側から前記絶縁層を形成した表面側の方向にプレスして変形させる請求項6又は7に記載の接点基板の製造方法。   The method for manufacturing a contact substrate according to claim 6 or 7, wherein the conductive substrate at the position of the conductive pattern is deformed by pressing from the back surface side toward the front surface side on which the insulating layer is formed.
JP2010279664A 2010-12-15 2010-12-15 Contact substrate, manufacturing method thereof, and input device using contact substrate Withdrawn JP2012129073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279664A JP2012129073A (en) 2010-12-15 2010-12-15 Contact substrate, manufacturing method thereof, and input device using contact substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279664A JP2012129073A (en) 2010-12-15 2010-12-15 Contact substrate, manufacturing method thereof, and input device using contact substrate

Publications (1)

Publication Number Publication Date
JP2012129073A true JP2012129073A (en) 2012-07-05

Family

ID=46645882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279664A Withdrawn JP2012129073A (en) 2010-12-15 2010-12-15 Contact substrate, manufacturing method thereof, and input device using contact substrate

Country Status (1)

Country Link
JP (1) JP2012129073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461321A (en) * 2018-03-27 2018-08-28 国网山东省电力公司郓城县供电公司 A kind of dual power supply switching protection
CN112687489A (en) * 2019-10-18 2021-04-20 黄培勋 Mechanical encoder and mechanical movable assembly thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461321A (en) * 2018-03-27 2018-08-28 国网山东省电力公司郓城县供电公司 A kind of dual power supply switching protection
CN112687489A (en) * 2019-10-18 2021-04-20 黄培勋 Mechanical encoder and mechanical movable assembly thereof

Similar Documents

Publication Publication Date Title
CN109417850A (en) Flexible interconnection
TWI580327B (en) Printed circuit board and method for fabricating the same, and apparatus for fabricating printed circuit borad
WO2010113341A1 (en) Current detection metal plate resistor and method of producing same
US20130048342A1 (en) Circuit board
JP6454766B2 (en) Anisotropic conductive sheet and electrical connection device using anisotropic conductive sheet
CN109643696A (en) Flexible interconnection
JP2007287654A (en) Connection unit
US20140141548A1 (en) Method of manufacturing a metal clad circuit board
JP2012129073A (en) Contact substrate, manufacturing method thereof, and input device using contact substrate
CN101287331A (en) Conductive structure of electrically connected mat of circuit board
CN206181556U (en) Electronic device
JP2016162935A (en) Method of manufacturing wiring board and wiring board
JP4476164B2 (en) Switch board and switch using the switch board
KR100952297B1 (en) Semiconductor device test contactor and manufacturing method thereof
KR101026061B1 (en) Conductor having resistance layer, fabrication method thereof and printed circuit board including the same
JPH03211802A (en) Variable resistor provided with switch
CN208768331U (en) Circuit board structure for forming connecting terminal by limiting opening window through solder mask
JP2006318711A (en) Switch board and its manufacturing method
KR101883391B1 (en) Silicone gaskets for surface mounting of electronic components manufacturing methods and the resulting silicon gasket over him
KR101026000B1 (en) Resistance layer coated conductor, fabrication method thereof and printed circuit board including the same
JP2021044297A (en) Circuit board
JP2021044142A (en) Circuit board
CN109903938A (en) A kind of resistor integrally to radiate and manufacturing method
KR100776685B1 (en) Flat carbon resistor embedded printed circuit board and manufacturing method thereof
CN202230927U (en) Electric appliance key-press plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304