JP2012126947A - Cavity-maldistributed baking pellet and manufacturing method of the same - Google Patents

Cavity-maldistributed baking pellet and manufacturing method of the same Download PDF

Info

Publication number
JP2012126947A
JP2012126947A JP2010278272A JP2010278272A JP2012126947A JP 2012126947 A JP2012126947 A JP 2012126947A JP 2010278272 A JP2010278272 A JP 2010278272A JP 2010278272 A JP2010278272 A JP 2010278272A JP 2012126947 A JP2012126947 A JP 2012126947A
Authority
JP
Japan
Prior art keywords
pellet
pore
porosity
pellets
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010278272A
Other languages
Japanese (ja)
Other versions
JP5578057B2 (en
Inventor
Masaki Yano
正樹 矢野
Kazuya Kunitomo
和也 国友
Yuji Fujioka
裕二 藤岡
Kenichi Higuchi
謙一 樋口
Kouji Saito
公児 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010278272A priority Critical patent/JP5578057B2/en
Publication of JP2012126947A publication Critical patent/JP2012126947A/en
Application granted granted Critical
Publication of JP5578057B2 publication Critical patent/JP5578057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a baking pellet whose strength does not drop but whose reducibility remains excellent while stored.SOLUTION: The pellet is made by baking iron ore powder and granulated substances mixed with auxiliary material ore powder including CaCOand/or MgCO. The cavity-maldistributed baking pellet features that the (x1) surface part is made of a cavity communicating structure with porosity of 20% or more and the (x2) center part is made of the cavity block structure with porosity of 20% or below.

Description

本発明は、気孔が表層部に偏在する高炉装入用の焼成ペレットに関するものである。   The present invention relates to a fired pellet for charging a blast furnace in which pores are unevenly distributed in a surface layer portion.

一般に、高炉装入原料の一部として従来から使用されている焼成ペレットは、焼結鉱に比べ、高温での還元性に劣るので、高炉で使用した際には、焼結鉱を使用した場合に比較して、高炉内に形成される融着帯が肥大して、炉内通気性が悪化したり、還元材比が上昇したりする。   Generally, calcined pellets that are conventionally used as part of raw materials for blast furnace charging are inferior in reducing properties at high temperatures compared to sintered ore, so when using ore in a blast furnace, In comparison with this, the cohesive zone formed in the blast furnace is enlarged, and the air permeability in the furnace is deteriorated or the ratio of the reducing material is increased.

焼成ペレットの上記欠点は、次の理由によると考えられている。焼成ペレットは、高炉の炉内を降下するに従って、炉内を上昇する還元ガスで加熱され、鉄酸化物が還元されるが、還元初期に表層部で生成する還元鉄が緻密な外殻を形成し、還元ガスの焼成ペレット内部への拡散を阻害するので、還元後期では、鉄酸化物の還元速度が著しく低下する。   The above disadvantages of the fired pellet are considered to be due to the following reason. The calcined pellets are heated by the reducing gas that rises in the furnace as they descend in the blast furnace, reducing the iron oxide, but the reduced iron produced in the surface layer at the beginning of the reduction forms a dense outer shell. In addition, since the diffusion of the reducing gas into the fired pellet is hindered, the reduction rate of the iron oxide is remarkably reduced in the latter stage of reduction.

このため、焼成ペレットは、総合的な還元性が焼結鉱に比較して劣っている。さらに、焼成ペレットは、融着帯を形成する1200℃以上の領域に達しても、中心部にスラグが集中して残留する形態をなしているので、融着帯での収縮が大きい。   For this reason, the calcined pellets are inferior to the sintered ore in overall reducibility. Furthermore, since the fired pellets have a form in which slag concentrates and remains in the central portion even when reaching a region of 1200 ° C. or higher where the cohesive zone is formed, the shrinkage at the cohesive zone is large.

焼成ペレットの上記欠点を改善する方策として、CaO及び/又はMgOを添加して、焼成ペレットを自溶化し、被還元性を改善することが試みられている。例えば、特許文献1には、CaOよりMgOの方が、還元性改善効果が高いことが開示されている。   As a measure for improving the above-described drawbacks of the fired pellets, attempts have been made to add CaO and / or MgO to self-solubilize the fired pellets to improve the reducibility. For example, Patent Document 1 discloses that MgO has a higher reducing effect than CaO.

また、特許文献2には、CaOやMgOの濃度と、CaOやMgO源の粒度の最適化がなされ、CaO/SiO2を0.8以上、MgO/SiO2を0.4以上とし、粒度を44μm〜1mmとすれば、高温での還元率が、さらに改善されることが開示されている。 In Patent Document 2, the concentration of CaO or MgO and the particle size of the CaO or MgO source are optimized, CaO / SiO 2 is 0.8 or more, MgO / SiO 2 is 0.4 or more, and the particle size is It is disclosed that the reduction rate at a high temperature is further improved if the thickness is 44 μm to 1 mm.

しかし、自溶化した焼成ペレット(自溶性焼成ペレット)は、雨や、空気中の湿分を吸収すると、ペレット中のスラグ中のCaO、MgO等の水和反応が経時的に進行し、これに伴う体積膨張で、組織が崩壊し、圧潰強度が低下する(以下「経時劣化」という。)という問題を抱えている。   However, when self-solubilized calcined pellets (self-soluble calcined pellets) absorb rain and moisture in the air, the hydration reaction of CaO, MgO, etc. in the slag in the pellets progresses over time. Due to the accompanying volume expansion, the tissue collapses and the crushing strength is reduced (hereinafter referred to as “aging over time”).

特許文献3には、自溶性焼成ペレットの経時劣化を解決する方策として、特許文献2に開示の方策とは逆に、CaOやMgO源の粒度を小さくすること、具体的には、44μm以下を20%以上とすることが開示されている。   In Patent Document 3, as a measure for solving the deterioration with time of the self-solvent fired pellets, contrary to the measure disclosed in Patent Document 2, the particle size of the CaO or MgO source is reduced, specifically, 44 μm or less. It is disclosed that the content is 20% or more.

以上述べたように、焼成ペレットの自溶化は、焼成ペレットの被還元性を改善するが、一方で、経時劣化の問題を抱えることになり、これまで、被還元性と経時劣化を同時に改善する方策は提案されていない。   As described above, self-solubilization of the calcined pellets improves the reducibility of the calcined pellets, but on the other hand, it has a problem of deterioration with time, so far, both reducibility and deterioration with time have been improved at the same time. No strategy has been proposed.

特開昭50−021917号公報Japanese Patent Laid-Open No. 50-021917 特開平01−136936号公報Japanese Patent Laid-Open No. 01-136936 特開平07−197137号公報JP 07-197137 A

本発明は、上記現状に鑑み、ペレットの輸送や貯留中に経時劣化がなく、かつ、被還元性に優れた焼成ペレットと、その製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide fired pellets that are not deteriorated with time during transportation and storage of the pellets and have excellent reducibility, and a method for producing the same.

本発明者らの検討によれば、単に、気孔率を高くしたり、気孔径を拡大したりすれば、焼成ペレットの被還元性は向上するが、ペレット圧潰強度は低いレベルにとどまり、さらに、原料貯留期間の経時劣化による圧潰強度の低下量は増大する。   According to the study of the present inventors, if the porosity is simply increased or the pore diameter is increased, the reducibility of the fired pellets is improved, but the pellet crushing strength remains at a low level, The amount of decrease in crushing strength due to deterioration over time of the raw material storage period increases.

単に、気孔率を高めたり、気孔径を拡大した場合に、原料貯留期間の焼成ペレットの圧潰強度の低下量が増大する理由は、焼成ペレットの気孔を通じて水分の吸収量が増加し、焼成ペレットのスラグ中のCaO、MgO等の水和反応が進行し、水和反応に起因する組織崩壊(CaO、MgOからCa(OH)2、Mg(OH)2を生成する時の体積膨張による組織破壊)が助長されるからであると考えられる。 Simply increasing the porosity or expanding the pore diameter increases the amount of decrease in the crushing strength of the calcined pellets during the raw material storage period because the amount of moisture absorbed increases through the pores of the calcined pellets. Hydration reaction of CaO, MgO, etc. in slag progresses, and tissue collapse due to hydration reaction (tissue destruction due to volume expansion when Ca (OH) 2 and Mg (OH) 2 are produced from CaO and MgO) It is thought that this is because it is promoted.

そこで、本発明者らは、従来は殆ど検討がなされていなかった焼成ペレットの気孔構造及び組織に着目し、全体の気孔率を高く維持しつつ、表層部と中心部の気孔構造及び組織を調整することによって、被還元性に優れ、かつ、原料貯留期間の圧潰強度の経時劣化量が少ない焼成ペレットを製造することを目指した。   Therefore, the present inventors have focused on the pore structure and structure of the fired pellets, which has not been studied in the past, and adjusted the pore structure and structure of the surface layer portion and the central portion while maintaining the overall porosity high. By doing this, it was aimed to produce calcined pellets that are excellent in reducibility and have a small amount of deterioration over time in the crushing strength during the raw material storage period.

本発明者らは、新たに、鉄鉱石そのものの特性に着目して、各種銘柄の粉鉄鉱石及び副原料を用いた焼成ペレットを製造し、組織の性状・形態を調査した。その結果、鉄鉱石の結晶粒径(以下、「粒径」は直径を意味する。)によっても、自溶性焼成ペレットの焼成後の気孔構造が大きく変化することを見出した。   The inventors of the present invention newly manufactured fired pellets using various brands of powdered iron ore and auxiliary materials, focusing on the characteristics of the iron ore itself, and investigated the properties and morphology of the structure. As a result, it has been found that the pore structure after firing of the self-solvent fired pellets varies greatly depending on the crystal grain size of iron ore (hereinafter, “particle size” means the diameter).

即ち、次の知見を得るに至った。   That is, the following knowledge was obtained.

(i)平均粒径が20μm以下のヘマタイト結晶粒で構成されているカラジャス鉄鉱石粉等の鉄鉱石粉と、ドロマイト等のCaCO3及び/又はMgCO3を含む副原料鉱石粉の混合粒状物を焼成すると、表層部は、スラグを内包しない気孔連通組織であるのに対し、中心部は、カルシウム−シリケートスラグを内包する気孔閉塞組織である焼成ペレット、即ち、中心部に比べて表層部に気孔が偏在した“気孔偏在型の焼成ペレット”となる。 (I) When a mixed granular material of iron ore powder such as Carajas iron ore powder composed of hematite crystal grains having an average particle diameter of 20 μm or less and auxiliary raw material ore powder containing CaCO 3 and / or MgCO 3 such as dolomite is calcined. The surface layer part is a pore-communication structure that does not contain slag, whereas the center part is a calcined pellet that is a pore-closed structure containing calcium-silicate slag, that is, the pores are unevenly distributed in the surface part compared to the center part. It becomes “a pore uneven distribution type fired pellet”.

(ii)気孔偏在型の焼成ペレット(以下「気孔偏在焼成ペレット」ということがある。)は、経時劣化が小さく(原料貯留期間の圧潰強度の経時劣化量が少ない)、かつ、被還元性に優れている。   (Ii) Pore-distributed calcined pellets (hereinafter sometimes referred to as “pore-distributed calcined pellets”) have little deterioration over time (the amount of deterioration over time of the crushing strength during the raw material storage period is small) and are highly reducible. Are better.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)鉄鉱石粉と、CaCO3及び/又はMgCO3を含む副原料鉱石粉の混合粒状物を焼成したペレットであって、
(x1)表層部が、気孔率:20%以上の気孔連通組織からなり、
(x2)中心部が、気孔率:20%未満の気孔閉塞組織からなる
ことを特徴とする気孔偏在焼成ペレット。
(1) A pellet obtained by firing a mixed granule of iron ore powder and a secondary raw material ore powder containing CaCO 3 and / or MgCO 3 ,
(X1) The surface layer portion is composed of a pore-communication structure having a porosity of 20% or more,
(X2) A pore-localized sintered pellet characterized in that the central portion is composed of a pore-occluding tissue having a porosity of less than 20%.

(2)前記気孔連通組織のスラグ含有率が5質量%以下であり、前記気孔閉塞組織のスラグ含有率が10質量%以上であることを特徴とする前記(1)に記載の気孔偏在焼成ペレット。   (2) The slag content in the pore-connected tissue is 5% by mass or less, and the slag content in the pore-occluded tissue is 10% by mass or more. .

(3)前記(1)又は(2)に記載の気孔偏在焼成ペレットを製造する方法において、
(y1)平均粒径が20μm以下のヘマタイト結晶粒を含む鉄鉱石と
(y2)CaCO3及び/又はMgCO3を含む副原料を、SiO2が1.8〜2.2、複合塩基度(CaO+MgO)/SiO2が2.0〜1.5となるように混合し、
(y3)前記混合物を造粒した粒状物を焼成する
ことを特徴とする気孔偏在焼成ペレットの製造方法。
(3) In the method for producing the pore-localized fired pellets according to (1) or (2),
(Y1) iron ore containing hematite crystal grains having an average particle size of 20 μm or less; and (y2) an auxiliary material containing CaCO 3 and / or MgCO 3 , SiO 2 is 1.8 to 2.2, composite basicity (CaO + MgO ) / SiO 2 is mixed to be 2.0 to 1.5,
(Y3) A method for producing pore-localized fired pellets, characterized in that a granulated material obtained by granulating the mixture is fired.

(4)前記焼成を、1200〜1350℃、25〜50分、行うことを特徴とする前記(3)に記載の気孔偏在焼成ペレットの製造方法。   (4) The method according to (3), wherein the firing is performed at 1200 to 1350 ° C. for 25 to 50 minutes.

本発明によれば、ペレットの貯留期間の圧潰強度の経時劣化量が少なく、かつ、被還元性に優れた焼成ペレットを、高炉装入原料として提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the calcined pellet with little deterioration over time of the crushing intensity | strength of the pellet storage period and excellent in reducibility can be provided as a blast furnace charging raw material.

光学顕微鏡で撮像した本発明ペレットの断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue of this invention pellet imaged with the optical microscope. 光学顕微鏡で撮像した本発明ペレットの中心部と表層部の組織(倍率:500倍)を示す図である。(a)は、中心部の組織を示し、(b)は、表層部の組織を示す。It is a figure which shows the structure | tissue (magnification: 500 times) of the center part and surface layer part of this invention pellet imaged with the optical microscope. (A) shows the structure of the central part, and (b) shows the structure of the surface layer part. 光学顕微鏡で撮像した従来ペレットの中心部と表層部の組織(倍率:500倍)を示す図である。(a)は、中心部の組織を示し、(b)は、表層部の組織を示す。It is a figure which shows the structure | tissue (magnification: 500 times) of the center part and surface layer part of the conventional pellet imaged with the optical microscope. (A) shows the structure of the central part, and (b) shows the structure of the surface layer part. 従来のペレトと本発明のペレットの組織構造を模式的に比較して示す図である。It is a figure which compares and shows the structure | tissue structure of the pellet of the conventional pellet and this invention typically.

本発明について、詳細に説明する。   The present invention will be described in detail.

前述したように、本発明者らは、従来は殆ど検討されていなかった焼成ペレットの気孔構造及び組織に着目し、全体の気孔率を高く維持しつつ、表層部と中心部の気孔構造及び組織を調整することによって、被還元性に優れ、かつ、原料貯留期間の圧潰強度の経時劣化量が少ない、焼成ペレットを製造することを目指し、各種銘柄の粉鉄鉱石及び副原料を用いて焼成ペレットを製造し、組織の性状・態様を調査した。   As described above, the present inventors pay attention to the pore structure and structure of the baked pellets, which has hardly been studied in the past, and maintain the overall porosity high, while maintaining the pore structure and structure of the surface layer portion and the central portion. Aiming to produce calcined pellets that are excellent in reducibility and have little crushing strength degradation over time during the raw material storage period by adjusting the amount of calcined pellets using various brands of powdered iron ore and auxiliary materials And the properties and aspects of the tissue were investigated.

(基礎的な調査の結果)
以下に、調査の一結果について説明する。
(Results of basic survey)
The following describes the results of the survey.

ブラジル産カラジャス鉱石、又は、ブラジル産MBR鉱石を粒径125μm以下に粉砕した鉄鉱石粉と、MgCO3とCaCO3を主成分として含有する副原料鉱石粉を、表1に示す成分組成となるように混合した原料を造粒して、粒径8〜15mmの粒状物を製造した。 The component composition shown in Table 1 is composed of Brazilian Carajas ore or iron ore powder obtained by pulverizing Brazilian MBR ore to a particle size of 125 μm or less, and auxiliary raw material ore powder containing MgCO 3 and CaCO 3 as main components. The mixed raw materials were granulated to produce granules having a particle size of 8 to 15 mm.

上記粒状物を、焼成炉で、焼成温度:1280℃、焼成時間:36分焼成して、焼成ペレット(以下、カラジャス鉱石を用いたものを「本発明ペレット」、MBR鉱石を用いたものを「従来ペレット」と呼ぶ。)を製造し、その組織と性状を調査した。   The above granulate is fired in a firing furnace at a firing temperature of 1280 ° C. and a firing time of 36 minutes, and then fired pellets (hereinafter referred to as “the present invention pellet” using the Carajas ore, Conventional pellets ”) were manufactured and their structure and properties were investigated.

ここに、カラジャス鉱石の結晶粒子径は、概ね1〜20μmであるのに対して、MBR鉱石の結晶粒子径は概ね50〜100μmとされている。   Here, the crystal particle diameter of the carajas ore is approximately 1 to 20 μm, whereas the crystal particle diameter of the MBR ore is approximately 50 to 100 μm.

表2に、本発明ペレットと従来ペレットの品質について比較調査した結果の代表的な数値を示す。本発明ペレットは、従来ペレットに比較して、特に加重軟化時の還元性に優れ、かつ、圧潰強度の経時劣化が小さいという、有利な効果を有することが確認された。   Table 2 shows representative numerical values of the results of a comparative investigation on the quality of the pellets of the present invention and the conventional pellets. It has been confirmed that the pellets of the present invention have an advantageous effect that they are excellent in reducing property at the time of weight-softening and are less deteriorated with time in crushing strength than conventional pellets.

次に、本発明ペレットと従来ペレットの組織構造の違いを検討する。   Next, the difference in structure between the pellets of the present invention and the conventional pellets will be examined.

図1に、光学顕微鏡で撮像した本発明ペレットの断面組織を示す。通常の融液反応で、全体的に、ヘマタイトと気孔を主体とする組織が形成されているが、中心部と表層部で、気孔構造及びヘマタイト以外の組織の態様が異なっていることが解る。   In FIG. 1, the cross-sectional structure | tissue of this invention pellet imaged with the optical microscope is shown. Although a structure mainly composed of hematite and pores is formed as a whole by a normal melt reaction, it is understood that the structure of the structure other than the pore structure and the hematite is different between the central portion and the surface layer portion.

図2に、光学顕微鏡で撮像した本発明ペレットの中心部と表層部の組織を示す。図2(a)は、中心部の組織を示し、図2(b)は、表層部の組織を示す。ペレットの中心部と表層部の組織において、明らかに、気孔構造及び気孔率が異なっていることが解る。   In FIG. 2, the structure | tissue of the center part and surface layer part of this invention pellet imaged with the optical microscope is shown. 2A shows the structure of the central part, and FIG. 2B shows the structure of the surface layer part. It can be seen that the pore structure and the porosity are clearly different in the structure of the center portion and the surface layer portion of the pellet.

本発明者らが詳細に分析した結果、次のことが判明した。   As a result of detailed analysis by the inventors, the following has been found.

(i)本発明ペレットの中心部では、焼成反応で生成したカルシウム−シリケート(化学式:CaO・SiO2)系融液が固化したスラグ部が、気孔を閉塞している組織(以下「気孔閉塞組織」という。)となっている。 (I) In the central part of the pellet of the present invention, a structure in which a slag part obtained by solidification of a calcium-silicate (chemical formula: CaO.SiO 2 ) melt generated by a firing reaction closes pores (hereinafter referred to as “pore closed structure”). ").

(ii)同表層部では、焼成反応で生成した気孔が、ほぼ生成したままの形状で集合し、カルシウム−シリケート系融液が固化したスラグ部が殆ど存在しない組織(以下「気孔連通組織」という。)となっている。   (Ii) In the surface layer portion, the pores generated by the firing reaction are gathered in a shape almost as they are formed, and the slag portion in which the calcium-silicate melt is solidified (hereinafter referred to as “pore-connected structure”). .)

一方、図3に、従来ペレットの中心部と表層部の気孔構造及び組織の態様を対比して示す。図3(a)は、中心部の気孔構造及び組織の態様を示し、図3(b)は、表層部の気孔構造及び組織の態様を示す。図3(b)に示す従来ペレットの表層部には、カルシウム−シリケート系融液が固化したスラグ部が存在して、図3(a)に示す従来ペレットの中心部の気孔組織に比べ、気孔が少ない組織となっていることが解る。   On the other hand, FIG. 3 shows a comparison between the pore structure and the structure of the center portion and the surface layer portion of the conventional pellet. FIG. 3 (a) shows the pore structure and tissue aspect of the central part, and FIG. 3 (b) shows the pore structure and tissue aspect of the surface layer part. In the surface layer portion of the conventional pellet shown in FIG. 3 (b), there is a slag portion in which the calcium-silicate melt is solidified, and compared with the pore structure in the center portion of the conventional pellet shown in FIG. 3 (a). It can be seen that there are few organizations.

このように、本発明ペレットの気孔構造及び組織は、従来ペレットの気孔構造及び組織とは顕著に異なるものである。   Thus, the pore structure and structure of the pellet of the present invention are significantly different from those of conventional pellets.

表3に、本発明ペレットと従来ペレットの表層部と中心部における上述した組織構造の定性的な違いとともに、気孔及びスラグの面積率の測定例を対比して示す。   Table 3 shows a comparison of measurement examples of the area ratio of pores and slag, together with the qualitative differences in the above-described structure structure in the surface layer portion and the central portion of the pellets of the present invention and the conventional pellets.

本発明ペレットの表層部では、従来ペレットの表層部に比べて気孔率が格段に高く、カルシウム−シリケート系融液が固化したスラグ部の割合(スラグ率)が、1.7%と極端に小さい。また、本発明ペレットの中心部では、従来ペレットの表層部に比べて気孔率が低く、カルシウム−シリケート系融液が固化したスラグ部の割合(スラグ率)が大きいことが定量的にも示される。   In the surface layer portion of the pellet of the present invention, the porosity is remarkably higher than the surface layer portion of the conventional pellet, and the ratio (slag ratio) of the slag portion where the calcium-silicate melt is solidified is extremely small as 1.7%. . Further, it is quantitatively shown that the porosity of the pellet of the present invention is lower than that of the surface layer of the conventional pellet and the ratio (slag ratio) of the slag portion in which the calcium-silicate melt is solidified is large. .

観察によると、気孔率が20%を境に、気孔の構造が変化するようである。20%以下では断面形状が円形であることから閉塞した気孔であると推定された。また、20%を超えると、断面形状は凹凸を増し、気孔同士が連続していることを窺わせた。   According to observation, it seems that the structure of the pores changes with the porosity of 20%. If it was 20% or less, it was estimated that the pores were closed because the cross-sectional shape was circular. Moreover, when it exceeded 20%, the cross-sectional shape increased unevenness, and it was reminded that the pores were continuous.

このように、本発明ペレットは、表層部に、高炉での被還元性に寄与する気孔が集合して残存する気孔連通組織を有し、中心部に、カルシウム−シリケート系融液が固化したスラグ部が気孔を閉塞した気孔閉塞組織を有する焼成ペレットと言える。   As described above, the pellet of the present invention has a pore communicating structure in which pores contributing to reducibility in the blast furnace are collected and remain in the surface layer portion, and a slag in which the calcium-silicate melt is solidified in the central portion. It can be said that it is a calcined pellet having a pore-occluded tissue in which the portion clogs pores.

図4に、本発明ペレットの全体的な気孔構造及び組織構造を、従来ペレットと対比して模式的に示す。従来ペレットは、全体的にほぼ均質の気孔構造及び組織構造となっているが、本発明ペレットは、表層部が、気孔連通組織からなり、中心部が、カルシウム−シリケート系融液が固化したスラグ部が気孔を閉塞した気孔閉塞組織からなるものである。   FIG. 4 schematically shows the entire pore structure and structure of the pellet of the present invention in comparison with the conventional pellet. Conventional pellets have a generally homogeneous pore structure and structure as a whole, but the pellet of the present invention has a slag in which the surface layer portion is composed of a pore-communication structure and the calcium silicate melt is solidified at the center portion. The part consists of a pore-occluding tissue in which the pores are obstructed.

表層部が気孔連通組織であり、中心部が気孔閉塞組織である二層構造をとることが、本発明の基礎をなす新規な知見である。   It is a novel finding that forms the basis of the present invention to have a two-layer structure in which the surface layer portion is a pore communicating tissue and the central portion is a pore-occluding tissue.

本発明の焼成ペレットにおいて、図2に示す新規な気孔構造及び組織構造が実現する理由は、次のように推測される。   The reason why the novel pore structure and structure shown in FIG. 2 are realized in the fired pellet of the present invention is presumed as follows.

本発明ペレットの原料である元鉱石の粒子(鉱石粒子)は、20μm以下の微細なヘマタイト結晶粒の集合組織で構成されていて、加熱された鉱石組織が軟化融着する時、上記集合組織は、微細な20μm以下のヘマタイト結晶粒単位にまで、粒界で、個々に分断される。   Original ore particles (ore particles) that are raw materials of the present invention pellets are composed of a texture of fine hematite crystal grains of 20 μm or less, and when the heated ore structure is softened and fused, Individually divided at grain boundaries up to fine hematite crystal grain units of 20 μm or less.

個々に分断された結晶粒が再結合する時に生じた空隙、及び、ドロマイトの脱炭酸反応(CO2ガス発生)によって生じた空隙が、多数の微細気孔となってペレット内部に残存する。 The voids generated when the individually divided crystal grains recombine and the voids generated by the dolomite decarboxylation reaction (CO 2 gas generation) become numerous fine pores and remain inside the pellet.

一方、個々に分断された鉱石粒子は、多数の微細気孔を包含したまま結合するので、ペレット内部には、微細で複雑な気孔形状を持った海綿状の骨格が形成される。さらに昇温が進むと、温度がより高い表層部から融液が生じ始める。   On the other hand, since the ore particles that are individually divided are bonded while including a large number of fine pores, a sponge-like skeleton having a fine and complicated pore shape is formed inside the pellet. As the temperature rises further, a melt starts to be generated from the surface layer portion having a higher temperature.

融液は、次第に中心部でも形成されるが、ペレットは、通常のペレットとは異なり、多孔質で海綿状の気孔組織を持っているので、表層部に生じた融液は、表面張力により、ペレットの内部に入り込む。ペレットの内部に入り込んだ融液は、ペレット中心部で、安定した球状形態を形成する。   Although the melt is gradually formed in the center, the pellet has a porous and spongy pore structure, unlike a normal pellet. Get inside the pellet. The melt that has entered the inside of the pellet forms a stable spherical shape at the center of the pellet.

このため、ペレットの表層部は、融液部分が抜けた海綿状組織となる一方、中心部は緻密な構造となる。   For this reason, while the surface layer part of a pellet becomes a spongy structure from which the melt part has been removed, the center part has a dense structure.

本発明の新規な組織構造のペレットでは、その表層部が海綿状組織となるので極めて被還元性が高くなる。また、中心部においても、海綿状組織の気孔を通じて、還元ガスがペレット中心部まで容易に浸透するので、ペレット中心部における還元も進行し易い。   In the pellet having a novel structure according to the present invention, the surface layer portion becomes a spongy structure, so that the reducibility is extremely high. In the center, the reducing gas easily penetrates to the center of the pellet through the pores of the spongy structure, so that the reduction in the center of the pellet is likely to proceed.

新規な組織構造のペレットにおいて、圧潰強度の経時劣化が小さい理由は、次のように推測される。   The reason why the temporal deterioration of the crushing strength is small in the pellets having a new structure is presumed as follows.

(i)焼成反応で生成する融液が、ペレットの中心部に集中して固化するので、固化したスラグ(水に対し不安定なスラグ)が、水や空気中の湿分に触れる機会が少なくなり、体積膨張を伴う消石灰の生成がなくなる。   (I) Since the melt produced by the firing reaction concentrates and solidifies in the center of the pellet, there is little opportunity for the solidified slag (slag unstable to water) to come into contact with moisture in water or air Thus, the generation of slaked lime with volume expansion is eliminated.

(ii)消石灰が生成して中央部で体積膨張があっても、表層部に形成された海綿状の気孔連通組織が、体積膨張で生じる内部応力を吸収する。   (Ii) Even if slaked lime is generated and there is volume expansion at the center, the sponge-like pore communicating structure formed in the surface layer absorbs internal stress generated by volume expansion.

即ち、ペレット表層部における気孔率が高く、かつ、1μm以下の微細な気孔の割合(%)が高ければ、中央部で大きな内部応力が発生しても、吸収することができるので、組織内部に割れが発生しない。   In other words, if the porosity of the pellet surface layer is high and the proportion (%) of fine pores of 1 μm or less is high, even if a large internal stress is generated in the center, it can be absorbed. No cracking occurs.

(請求項1に係る発明の詳細な説明)
本発明の気孔偏在焼成ペレット(本発明ペレット)は、上記知見に基づくもので、
(X1)表層部が、スラグ組織を内包しない気孔連通組織、及び、
(X2)中心部が、スラグ部が気孔を閉塞した気孔閉塞組織、
からなることを基本的な特徴とするものである。
(Detailed Description of the Invention of Claim 1)
The pore-localized fired pellet of the present invention (the present pellet) is based on the above findings,
(X1) The pore layer communicating structure in which the surface layer does not contain the slag structure, and
(X2) a pore-occluded tissue in which the slag portion occludes the pores at the center,
It consists of the basic features.

ここに、ペレットの中心部は、ペレットの中心からペレットの球相当径の1/3までの範囲とし、表層部は、ペレットの表面からペレットの球相当径の1/3までの範囲を目処とする。中間部は、両者の混在した組織を呈するのが一般的である。   Here, the center of the pellet is in the range from the center of the pellet to 1/3 of the pellet equivalent diameter, and the surface layer is in the range from the surface of the pellet to 1/3 of the pellet equivalent diameter. To do. In general, the intermediate portion exhibits a mixed organization.

ただし、ペレットの中心部及び表層部の範囲は、上記範囲に限定されるものではない。焼成ペレットの中央部及び表層部の範囲は、気孔構造及び組織の全体的態様及び/又は部分的態様を考慮して、適宜、設定すればよい。   However, the range of the center part and surface part of a pellet is not limited to the said range. The ranges of the central part and the surface layer part of the fired pellets may be appropriately set in consideration of the overall structure and / or partial aspect of the pore structure and structure.

ペレット表層部の気孔連通組織は、前述したように、圧潰強度の経時劣化が小さく、かつ、被還元性に優れた組織であるので、ペレット表層部の気孔率は、特に限定する必要はないが、気孔率20%を境として連通化することはすでに述べた。   As described above, since the pore communicating structure of the pellet surface layer part is a structure in which the crushing strength is small in deterioration with time and excellent in reducibility, the porosity of the pellet surface layer part is not particularly limited. It has already been mentioned that communication with a porosity of 20% is the boundary.

また、そのために表層部の気孔率が20%以上で、ペレットの高炉での被還元性も格段に向上する。還元率をさらに改善する観点から、気孔率は、30%以上がより好ましい。また、表層部の気孔率の上限は特に定めないが、40%を超えるものは実現していない。   For this reason, the porosity of the surface layer portion is 20% or more, and the reducibility of the pellets in the blast furnace is remarkably improved. From the viewpoint of further improving the reduction rate, the porosity is more preferably 30% or more. Moreover, although the upper limit of the porosity of a surface layer part is not defined in particular, what exceeds 40% is not implement | achieved.

本発明ペレットの中心部の気孔閉塞組織の気孔率は20%以下となるが、10%以下がより好ましい。気孔率が20%以下であれば、焼成ペレットの圧潰強度の経時劣化が小さく、かつ、圧潰強度自体も高めることができる。   The porosity of the pore-occluded tissue at the center of the pellet of the present invention is 20% or less, more preferably 10% or less. When the porosity is 20% or less, deterioration with time of the crushing strength of the fired pellet is small, and the crushing strength itself can be increased.

なお、ペレット中心部の気孔閉塞組織は、表層部の組織に比べ、気孔率が顕著に小さい組織であるが、表層部の気孔率を含めた焼成ペレット全体の気孔率は、従来ペレットの気孔率と同等又は同等以下であるので、全体の気孔率の増加に起因する圧潰強度の低下の問題は生じない。   Note that the pore-closed structure at the center of the pellet is a structure with a significantly smaller porosity than the structure of the surface layer, but the porosity of the entire fired pellet including the porosity of the surface layer is the porosity of the conventional pellet. Therefore, there is no problem of a decrease in crushing strength due to an increase in the overall porosity.

(請求項2に係る発明の詳細な説明)
本発明の効果の多くは、上記気孔構造の実現で発揮されるが、さらに、スラグ分の適正な配置により、さらに好ましい結果が得られる。即ち、表層部の気孔貫通組織のスラグ含有率を5%以下とし、中心部の気孔閉塞組織のそれを10%以上になるように分配する。
(Detailed Description of the Invention of Claim 2)
Many of the effects of the present invention can be achieved by realizing the above-described pore structure, and more preferable results can be obtained by proper arrangement of the slag. That is, the slag content of the pore-penetrating tissue in the surface layer portion is set to 5% or less, and that of the pore-occluding tissue in the central portion is distributed to 10% or more.

これにより、主要組織として、スラグ中のCaO、MgOの水和反応の進行に伴う圧潰強度の経時劣化が生じる原因となるカルシウム−シリケート系融液が固化したスラグ組織を、表層部に比べて多く含有させる。   As a result, as a main structure, the slag structure in which the calcium-silicate melt causing solidification of the crushing strength with the progress of the hydration reaction of CaO and MgO in the slag is solidified more than the surface layer part. Contain.

ペレット中心部の気孔閉塞組織は、気孔率が表層部の組織に比べて顕著に小さい組織であるので、CaO、MgO等の水和反応の進行が抑制され、その結果、水和反応による体積膨張に起因する圧潰強度の経時劣化は小さくなる。   The pore-occluded tissue in the center of the pellet is a tissue whose porosity is significantly smaller than that of the surface layer, so that the progress of the hydration reaction of CaO, MgO, etc. is suppressed. As a result, the volume expansion due to the hydration reaction Degradation with time of the crushing strength due to this is reduced.

(請求項3に係る発明の詳細な説明)
本発明ペレットの製造方法の基本的な要件について説明する。原料である鉄鉱石は、ヘマタイトの結晶粒子の粒径が20μm以下である必要がある。これにより、加熱された鉱石組織が軟化融着する時、鉱石粒子は、その粒界で個々に分断されて、中心部の緻密化を促進する。
(Detailed Description of the Invention of Claim 3)
The basic requirements of the method for producing the pellets of the present invention will be described. The iron ore as the raw material needs to have a hematite crystal particle size of 20 μm or less. Thereby, when the heated ore structure is softened and fused, the ore particles are individually divided at the grain boundaries to promote densification of the central part.

なお、現在ヘマタイト系鉄鉱石でこの条件を満たすものはカラジャス鉱石しかないが、本発明は、カラジャス鉱石に限定されるものではない。また、ゲーサイト系鉱石(マラマンバ鉱石やピソライト鉱石)ではその結晶粒子径は一般的に20μm以下であると考えられる。   Currently, the only hematite iron ore that satisfies this condition is the carajas ore, but the present invention is not limited to the carajas ore. In addition, it is considered that the crystal particle diameter of goethite ore (maramanba ore or pisolite ore) is generally 20 μm or less.

しかし、現在のそれら鉱石ではSiO2,Al23含有量がともに高いため、原料の化学成分が表1に規定する範囲を超えてスラグ生成量が過剰となり、本発明の構造を有する焼成ペレットとはならない。 However, since these ores currently have high SiO 2 and Al 2 O 3 contents, the chemical composition of the raw material exceeds the range specified in Table 1 and the amount of slag produced becomes excessive, and the calcined pellets having the structure of the present invention It will not be.

さらに、スラグ形成成分では、SiO2が1.8〜2.2質量%の範囲において、複合塩基度(CaO+MgO)/SiO2を1.5〜2.0に調整することが必要である。SiO2量の規定は、複合塩基度との規定と相まって全体のスラグ量を決め、この範囲を外れると所望のペレット構造が得られない。 Further, in the slag forming component, it is necessary to adjust the complex basicity (CaO + MgO) / SiO 2 to 1.5 to 2.0 in the range of SiO 2 to 1.8 to 2.2% by mass. The regulation of the amount of SiO 2 determines the total slag amount in combination with the regulation of complex basicity, and if it is outside this range, the desired pellet structure cannot be obtained.

複合塩基度の規定においては、1.5未満であると、より低い温度で融液が生成し始めるので、融液量が多くなり過ぎ、形成された気孔を塞いで、気孔率が低下する。一方、2.0超であると、ペレットの組織内において融液量が過多となる弊害は少なくなるものの、その高炉での使用にあたってスラグボリュームを上昇させてしまう。   In the definition of the complex basicity, when it is less than 1.5, a melt starts to be generated at a lower temperature, so that the amount of the melt is excessively increased, and the formed pores are blocked and the porosity is lowered. On the other hand, if it exceeds 2.0, the adverse effect of the excessive amount of melt in the pellet structure is reduced, but the slag volume is increased when used in the blast furnace.

ペレットの塩基度は、還元性状を最大に発現させ、スラグボリュームを極力上昇させないような複合塩基度に調整することが好ましい。   The basicity of the pellet is preferably adjusted to a composite basicity that maximizes the reducing properties and does not increase the slag volume as much as possible.

本発明ペレットにおいては、CaOとMgOの総量で気孔の存在形態が大きく変化したが、CaOとMgOの間に、気孔の存在形態に及ぼす影響に大きな差は認められなかった。   In the pellets of the present invention, the presence form of the pores greatly changed depending on the total amount of CaO and MgO, but no significant difference was observed between CaO and MgO in the influence on the existence form of the pores.

そこで、本発明ペレットにおいて所要の気孔組織を得るため、上述したように、複合塩基度を指標として採用し、鉄鉱石粉と副原料を混合して製造した焼成前の粒状物の化学成分を規定している。   Therefore, in order to obtain the required pore structure in the pellets of the present invention, as described above, the composite basicity is adopted as an index, and the chemical components of the granular material before firing produced by mixing iron ore powder and auxiliary materials are defined. ing.

本発明のペレットは、上述の原料を塊成化したものである。このとき、塊成化物の粒径は、通常のペレットが有する粒径でよいが、好ましくは、10mm以上、15.0mm以下である。   The pellet of the present invention is obtained by agglomerating the above-described raw materials. At this time, the particle size of the agglomerated material may be the particle size of normal pellets, but is preferably 10 mm or more and 15.0 mm or less.

(請求項4に係る発明の詳細な説明)
造粒及び焼成の工程に関しては、通常の焼成ペレット製造法に準じた方法でよい。即ち、前述の原料を造粒機で粒状物とし、それを、焼成炉で焼成する。焼成温度と焼成時間は、通常の焼成温度と焼成時間でよい。焼成温度は、1200〜1350℃、好ましくは、1250〜1300℃であり、焼成時間は、25〜50分、好ましくは35〜40分である。
(Detailed Description of the Invention of Claim 4)
With respect to the granulation and firing steps, a method according to an ordinary fired pellet manufacturing method may be used. That is, the above-mentioned raw material is granulated with a granulator and fired in a firing furnace. The firing temperature and firing time may be normal firing temperature and firing time. The firing temperature is 1200 to 1350 ° C., preferably 1250 to 1300 ° C., and the firing time is 25 to 50 minutes, preferably 35 to 40 minutes.

(製造方法の一形態)
次に、本発明ペレットの製造方法の一形態を説明する。カラジャス鉄鉱石を粉砕した微粉と、ドロマイト粉を混合して、表1に示す成分組成の原料とし、その原料を、皿型造粒機で造粒して粒状物とする。上記鉄鉱石の微粉は、粒径が小さいほど好ましく、粒径50μm以下がより好ましい。ドロマイト粉も、粒径が小さいほど好ましく、粒径50μm以下がより好ましい。
(One form of manufacturing method)
Next, one form of the manufacturing method of this invention pellet is demonstrated. Fine powder obtained by pulverizing carajas iron ore and dolomite powder are mixed to obtain a raw material having a component composition shown in Table 1, and the raw material is granulated by a dish granulator to form a granular material. The fine iron ore powder is preferably as the particle size is small, and more preferably 50 μm or less. Dolomite powder is also preferred as the particle size is smaller, and more preferably 50 μm or less.

ここに、複合塩基度調整にドロマイトを使用したのは、それがCaOとMgOを同程度含有しており、両成分を同時に調整できて好ましいことによるが、この限りではない。焼成方法については、(請求項4に係る発明の詳細な説明)で述べたとおりである。   Here, the reason why dolomite was used for adjusting the complex basicity is that it contains CaO and MgO to the same extent and both components can be adjusted at the same time, but this is not restrictive. The firing method is as described in (Detailed description of the invention according to claim 4).

ペレットの気孔率は、所望の気孔率に応じて、ドロマイトの添加量を、適宜、設定することで制御可能である。しかし、高炉での使用条件からドロマイトの添加量が制約を受ける場合は、さらに炭材を添加して調整することもできる。炭材は、焼成中にガス化するので、その添加量の増加により気孔量が増加する。   The porosity of the pellet can be controlled by appropriately setting the amount of dolomite added according to the desired porosity. However, when the amount of dolomite added is restricted due to use conditions in the blast furnace, it can also be adjusted by adding a carbonaceous material. Since the carbonaceous material is gasified during firing, the amount of pores increases due to an increase in the amount of the carbonaceous material added.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

本発明ペレットの実機規模製造試験として、有効面積500m2のグレート型ペレット焼成機を使用し、10日間の試験製造を行った。原料として、カラジャス鉄鉱石とドロマイトを使用し、気孔率の制御と加熱用燃料の削減のため、粉コークスを添加した。使用したカラジャス鉱石を適宜サンプリングし、それを樹脂埋め・研磨して断面を顕微鏡で観察してその結晶粒子径を測定したところ、1〜10μmの範囲であった。 As an actual scale production test of the pellets of the present invention, a 10-day test production was performed using a great pellet baking machine having an effective area of 500 m 2 . Carajas iron ore and dolomite were used as raw materials, and coke breeze was added to control porosity and reduce fuel for heating. The used calajas ore was sampled as appropriate, filled and polished with resin, and the cross section was observed with a microscope and the crystal particle diameter was measured, and it was in the range of 1 to 10 μm.

これら原料をボールミル及びローラープレスで粒径50μm以下の比率が90質量%以上となるまで粉砕した後、水分9〜11質量%となるように調整しつつ皿型造粒機で造粒して、10〜15mmの生ペレットを製造した。焼成の最終段における温度は、1250〜1300℃で調整された。   After pulverizing these raw materials with a ball mill and a roller press until the ratio of the particle size of 50 μm or less is 90% by mass or more, granulating with a dish type granulator while adjusting the water content to 9 to 11% by mass, 10-15 mm raw pellets were produced. The temperature in the last stage of baking was adjusted at 1250-1300 degreeC.

表4に、試験操業の結果を、1日の平均データとして示す。   Table 4 shows the results of the test operation as average data for one day.

10日の間、SiO2は、1.8〜2.2質量%、及び、複合塩基度は1.5〜2.0の範囲となるように調整された。その結果、CaOは2.1〜2.7質量%、MgOは1.0〜1.4質量%の範囲で推移した。また、粉コークスは、還元率の推移を確認しつつ、62.0〜98.7kg/tの範囲で調整した。 During the 10 days, SiO 2 is 1.8 to 2.2 mass%, and the composite basicity was adjusted in the range of 1.5 to 2.0. As a result, CaO changed in the range of 2.1 to 2.7% by mass and MgO in the range of 1.0 to 1.4% by mass. Moreover, the powder coke was adjusted in the range of 62.0-98.7 kg / t, confirming the transition of the reduction rate.

その結果、10日間を通じて、圧潰強度247〜291daN、JIS還元率86.3以上、60日後の強度劣化9.8daN以下の、被還元性に優れ、かつ、強度の経時劣化の小さい自溶性焼成ペレットを製造することができた。   As a result, a self-fluxing fired pellet having excellent crushability and low strength deterioration with time, with a crushing strength of 247 to 291 daN, a JIS reduction rate of 86.3 or more and a strength deterioration of 9.8 daN after 60 days over 10 days. Could be manufactured.

前述したように、本発明によれば、ペレットの貯留中において、ペレット強度の経時劣化がないので、圧潰強度が高く、かつ、被還元性に優れた焼成ペレットを、高炉装入原料として提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, since pellet strength does not deteriorate with time during pellet storage, a fired pellet having high crushing strength and excellent reducibility is provided as a blast furnace charge. be able to. Therefore, the present invention has high applicability in the steel industry.

Claims (4)

鉄鉱石粉と、CaCO3及び/又はMgCO3を含む副原料鉱石粉の混合粒状物を焼成したペレットであって、
(x1)表層部が、気孔率:20%以上の気孔連通組織からなり、
(x2)中心部が、気孔率:20%未満の気孔閉塞組織からなる
ことを特徴とする気孔偏在焼成ペレット。
A pellet obtained by firing a mixed granular material of iron ore powder and auxiliary raw material ore powder containing CaCO 3 and / or MgCO 3 ,
(X1) The surface layer portion is composed of a pore-communication structure having a porosity of 20% or more,
(X2) A pore-localized sintered pellet characterized in that the central portion is composed of a pore-occluding tissue having a porosity of less than 20%.
前記気孔連通組織のスラグ含有率が5質量%以下であり、前記気孔閉塞組織のスラグ含有率が10質量%以上であることを特徴とする請求項1に記載の気孔偏在焼成ペレット。   The slag content rate of the said pore continuous structure | tissue is 5 mass% or less, and the slag content rate of the said pore obstruction | occlusion structure | tissue is 10 mass% or more, The pore uneven distribution calcination pellet of Claim 1 characterized by the above-mentioned. 請求項1又は2に記載の気孔偏在焼成ペレットを製造する方法において、
(y1)平均粒径が20μm以下のヘマタイト結晶粒を含む鉄鉱石と
(y2)CaCO3及び/又はMgCO3を含む副原料を、SiO2が1.8〜2.2、複合塩基度(CaO+MgO)/SiO2が2.0〜1.5となるように混合し、
(y3)前記混合物を造粒した粒状物を焼成する
ことを特徴とする気孔偏在焼成ペレットの製造方法。
In the method for producing pore-localized fired pellets according to claim 1 or 2,
(Y1) iron ore containing hematite crystal grains having an average particle size of 20 μm or less; and (y2) an auxiliary material containing CaCO 3 and / or MgCO 3 , SiO 2 is 1.8 to 2.2, composite basicity (CaO + MgO ) / SiO 2 is mixed to be 2.0 to 1.5,
(Y3) A method for producing pore-localized fired pellets, characterized in that a granulated material obtained by granulating the mixture is fired.
前記焼成を、1200〜1350℃、25〜50分、行うことを特徴とする請求項3に記載の気孔偏在焼成ペレットの製造方法。   The said baking is performed at 1200-1350 degreeC and 25-50 minutes, The manufacturing method of the pore uneven distribution baking pellet of Claim 3 characterized by the above-mentioned.
JP2010278272A 2010-12-14 2010-12-14 Porous unevenly-distributed fired pellet and method for producing the same Expired - Fee Related JP5578057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278272A JP5578057B2 (en) 2010-12-14 2010-12-14 Porous unevenly-distributed fired pellet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278272A JP5578057B2 (en) 2010-12-14 2010-12-14 Porous unevenly-distributed fired pellet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012126947A true JP2012126947A (en) 2012-07-05
JP5578057B2 JP5578057B2 (en) 2014-08-27

Family

ID=46644309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278272A Expired - Fee Related JP5578057B2 (en) 2010-12-14 2010-12-14 Porous unevenly-distributed fired pellet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5578057B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440768B2 (en) 2020-08-18 2024-02-29 日本製鉄株式会社 Blast furnace fired pellets and method for producing blast furnace fired pellets
WO2024069991A1 (en) * 2022-09-26 2024-04-04 株式会社神戸製鋼所 Method for producing iron ore pellets, and iron ore pellets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136937A (en) * 1987-11-20 1989-05-30 Kobe Steel Ltd Self-fluxing pellet for charging to blast furnace
JPH0280522A (en) * 1988-09-16 1990-03-20 Kobe Steel Ltd Two layer structure pellet for charging into blast furnace
JP2005344181A (en) * 2004-06-04 2005-12-15 Kobe Steel Ltd Agglomerate including carbonaceous material and its manufacturing method
JP2009102746A (en) * 2007-09-14 2009-05-14 Nippon Steel Corp Method for producing pig iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136937A (en) * 1987-11-20 1989-05-30 Kobe Steel Ltd Self-fluxing pellet for charging to blast furnace
JPH0280522A (en) * 1988-09-16 1990-03-20 Kobe Steel Ltd Two layer structure pellet for charging into blast furnace
JP2005344181A (en) * 2004-06-04 2005-12-15 Kobe Steel Ltd Agglomerate including carbonaceous material and its manufacturing method
JP2009102746A (en) * 2007-09-14 2009-05-14 Nippon Steel Corp Method for producing pig iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440768B2 (en) 2020-08-18 2024-02-29 日本製鉄株式会社 Blast furnace fired pellets and method for producing blast furnace fired pellets
WO2024069991A1 (en) * 2022-09-26 2024-04-04 株式会社神戸製鋼所 Method for producing iron ore pellets, and iron ore pellets

Also Published As

Publication number Publication date
JP5578057B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5375742B2 (en) Granulation method of sintering raw material
JP5578057B2 (en) Porous unevenly-distributed fired pellet and method for producing the same
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP2009161791A (en) Method for manufacturing carbon-containing non-fired pellet for blast furnace
JP6477167B2 (en) Method for producing sintered ore
TW200925289A (en) A blast furnace self fluxing pellet and a method for fabricating the same
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP6724678B2 (en) Reducing material and method for producing reducing material
JP6004191B2 (en) Sintering raw material manufacturing method
JP2002241851A (en) Quasi-particle for sintering
JP2019127628A (en) Method of charging raw materials into blast furnace
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2020105625A (en) Method for manufacturing sintered ore
Umadevi et al. Influence of carbon addition via Corex sludge on pellet quality at JSW steel
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JP2009167466A (en) Method for producing sintered ore
JP4816119B2 (en) Method for producing sintered ore
JP7440768B2 (en) Blast furnace fired pellets and method for producing blast furnace fired pellets
JP2008088533A (en) Method for manufacturing sintered ore
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2018070932A (en) Method of charging raw material into blast furnace
JP2004027245A (en) Method for pelletizing sintering material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees