JP2012119604A - 固体電解コンデンサ及びその製造方法 - Google Patents
固体電解コンデンサ及びその製造方法 Download PDFInfo
- Publication number
- JP2012119604A JP2012119604A JP2010270153A JP2010270153A JP2012119604A JP 2012119604 A JP2012119604 A JP 2012119604A JP 2010270153 A JP2010270153 A JP 2010270153A JP 2010270153 A JP2010270153 A JP 2010270153A JP 2012119604 A JP2012119604 A JP 2012119604A
- Authority
- JP
- Japan
- Prior art keywords
- conductive polymer
- polymer layer
- layer
- anode
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
【課題】ESRが低い固体電解コンデンサを得る。
【解決手段】陽極1と、陽極1の表面上に形成される誘電体層2と、誘電体層2の上に形成される導電性高分子層5と、導電性高分子層5の上に形成される陰極層8とを備える固体電解コンデンサであって、2つのホスホン酸基を有する化合物が、導電性高分子層5に含有されていることを特徴としている。
【選択図】図1
【解決手段】陽極1と、陽極1の表面上に形成される誘電体層2と、誘電体層2の上に形成される導電性高分子層5と、導電性高分子層5の上に形成される陰極層8とを備える固体電解コンデンサであって、2つのホスホン酸基を有する化合物が、導電性高分子層5に含有されていることを特徴としている。
【選択図】図1
Description
本発明は、固体電解質として導電性高分子を用いる固体電解コンデンサ及びその製造方法に関するものである。
近年、電子機器の小型化、軽量化にともなって、小型で大容量の高周波用のコンデンサが要求されるようになり、このようなコンデンサとして、導電性高分子を用いて固体電解質を形成した固体電解コンデンサが提案されている。
上記固体電解コンデンサにおいては、タンタル、ニオブ、チタンまたはアルミニウムなどの弁金属の焼結体で形成された陽極の表面を酸化して形成される誘電体層、またはエッチドアルミニウム箔の表面を酸化して形成された誘電体層と、この誘電体層の上に形成される導電性高分子層との間の密着性の低下によるESR(等価直列抵抗)の増大という問題がある。
このような問題を解決するため、(1)陽極の表面に誘電体層を形成し、誘電体層の表面をシランカップリング剤により処理した後、導電性高分子層を形成する方法(例えば特許文献1)、及び(2)酸化重合により導電性高分子となるモノマーと酸化剤とシランカップリング剤とを含有する化学重合液を用いて、誘電体層の上に導電性高分子層を形成する方法(例えば、特許文献2)などが提案されている。
しかしながら、上記従来技術によっても、ESRを十分に低くすることができなかった。
本発明の目的は、ESRが低い固体電解コンデンサ及びその製造方法を提供することにある。
本発明の第1の局面に従う固体電解コンデンサは、陽極と、陽極の表面上に形成される誘電体層と、誘電体層の上に形成される導電性高分子層と、導電性高分子層の上に形成される陰極層とを備える固体電解コンデンサであって、2つのホスホン酸基を有する化合物が、導電性高分子層に含有されていることを特徴としている。
本発明によれば、ESRが低く、かつ漏れ電流が抑制された固体電解コンデンサとすることができる。
本発明の第2の局面に従う固体電解コンデンサは、上記第1の局面において、導電性高分子層が、誘電体層の上に形成される第1の導電性高分子層と、第1の導電性高分子層の上に形成される第2の導電性高分子層とを有し、第1の導電性高分子層及び第2の導電性高分子層の少なくともいずれか一方に上記化合物が含有されていることを特徴としている。
本発明の第3の局面に従う製造方法は、陽極を形成する工程と、陽極の表面上に誘電体層を形成する工程と、2つのホスホン酸基を有する化合物の存在下で、導電性高分子のモノマーを重合することにより、誘導体層の上に導電性高分子層を形成する工程と、導電性高分子層の上に陰極層を形成する工程とを備えることを特徴としている。
本発明の第4の局面に従う製造方法は、上記第3の局面に従う製造方法において、導電性高分子層を形成する工程は、化合物の存在下で、導電性高分子のモノマーを液相または気相中で化学重合させることにより、誘電体層の上に第1の導電性高分子層を形成する工程と、第1の導電性高分子層の上に第2の導電性高分子層を形成する工程とを備えることを特徴としている。
本発明の第5の局面に従う製造方法は、上記第3の局面に従う製造方法において、導電性高分子層を形成する工程は、誘電体層の上に第1の導電性高分子層を形成する工程と、化合物の存在下で、導電性高分子のモノマーを電解重合させることにより、第1の導電性高分子層の上に第2の導電性高分子層を形成する工程とを備えることを特徴としている。
本発明の第6の局面に従う製造方法は、上記第4の局面に従う製造方法において、第2の導電性高分子層を形成する工程は、化合物の存在下で、導電性高分子のモノマーを電解重合させることを備えることを特徴としている。
本発明によれば、ESRが低い固体電解コンデンサとすることができる。
図1は、本発明に従う一実施形態の固体電解コンデンサのコンデンサ素子を示す模式的断面図である。
略直方体形状を有する陽極1には、陽極リード9の一部が埋め込まれている。陽極1の表面には、誘電体層2が形成されている。陽極1は、弁作用金属またはその合金からなる粉末を焼結した多孔質体から形成されている。弁作用金属としては、例えば、タンタル、ニオブ、チタン、アルミニウム、ハウフニウム、ジルコニウム等が挙げられる。弁作用金属の合金としては、これらの弁作用金属を50原子%以上含む合金が挙げられる。なお、具体的には、多孔質体の陽極1は、多数の粉末を互いに間隔を空けて焼結することにより、成形されたものであり、陽極1を構成する粉末の表面に、誘電体層2が形成されている。
誘電体層2の上には、第1の導電性高分子層3が形成されている。第1の導電性高分子層3も、陽極1の内部の誘電体層2の上に形成されている。
第1の導電性高分子層3の上には、第2の導電性高分子層4が形成されている。第2の導電性高分子層4は、陽極1を構成する粉末の隙間を埋めるように形成されている。第1の導電性高分子層3と第2の導電性高分子層4から導電性高分子層5が構成されている。
陽極1の外周部の第2の導電性高分子層4の上には、カーボン層6が形成されている。カーボン層6は、カーボンペーストを塗布し乾燥することにより形成されている。カーボン層6の上には、銀層7が形成されている。銀層7は、銀ペーストを塗布し、乾燥することにより形成されている。カーボン層6と銀層7から陰極層8が構成されている。
図2は、本実施形態における陽極1の内部を拡大して示す模式的断面図である。図2に示すように、陽極1は、多孔質体であり、多孔質体の内部の表面上にも誘電体層2が形成されており、この誘電体層2の上に、第1の導電性高分子層3が形成されている。第1の導電性高分子層3は、陽極1である多孔質体の内部にも形成されている。第2の導電性高分子層4は、第1の導電性高分子層3の上に形成されている。第2の導電性高分子層4は、陽極1である多孔質体の内部に形成されていてもよい。
上述のように、陽極1の外周部の第2の導電性高分子層4の上には、カーボン層6及び銀層7が形成されている。以上のようにしてコンデンサ素子が形成される。次に、図3に示すように、コンデンサ素子に、陽極端子13及び陰極端子12を接続し、陽極端子13及び陰極端子12の端部が露出するように樹脂外装体14をモールド成形し、固体電解コンデンサ10が作製される。陰極端子12は銀層7に導電性接着層11を介して接続され、陽極端子13は陽極リード9に溶接などにより接続される。
本発明の第1の局面においては、導電性高分子層5に、2つのホスホン酸基を有する化合物が含有されている。従って、本発明の第1の局面においては、第1の導電性高分子層3及び第2の導電性高分子層4を区別せずに、導電性高分子層5を規定しており、導電性高分子層5に、上記化合物が含有されていればよい。
本発明の第2の局面においては、第1の導電性高分子層3及び第2の導電性高分子層4の少なくともいずれか一方に上記化合物が含有されている。すなわち、第1の導電性高分子層3にのみ上記化合物が含有されていてもよいし、第2の導電性高分子層4のみに上記化合物が含有されていてもよいし、第1の導電性高分子層3及び第2の導電性高分子層4の両方に上記化合物が含有されていてもよい。
本発明の第3の局面に従う製造方法においては、上記化合物の存在下で、導電性高分子のモノマーを重合させることにより、導電性高分子層5を形成する。
本発明の第4の局面に従う製造方法においては、上記化合物の存在下で、導電性高分子のモノマーを液相または気相中で化学重合(化学的酸化重合)させることにより、第1の導電性高分子層3を形成する。
本発明の第5の局面に従う製造方法においては、上記化合物の存在下で、導電性高分子のモノマーを電解重合(電気化学的電解重合)させることにより、第2の導電性高分子層4を形成する。
本発明の第6の局面に従う製造方法においては、上記化合物の存在下で、導電性高分子のモノマーを液相または気相中で化学重合させることにより、第1の導電性高分子層3を形成すると共に、上記化合物の存在下で、導電性高分子のモノマーを電解重合させることにより、第2の導電性高分子層4を形成する。
本発明において用いる上記化合物としては、以下の一般式(1)で表されるものが挙げられる。
(式中、Rは、−(CH2)n−、−(CH2O)n−、−(C2H5O)n−、または−O−(CH2)n−O−を示し、nは、1〜18の整数を示す。)
上記一般式(1)に示すRは、上記のように、アルキレン基、ポリメチレンオキシ基、ポリエチレンオキシ基、ジエーテルアルキル基であるが、これらの中でも、Rは、炭素数1〜18のアルキル基であることが特に好ましい。このようなものとして、以下に示す一般式(2)で表されるものが挙げられる。
(式中、nは、1〜18の整数を示す。)
上記一般式(2)で表わされる化合物の具体例としては、メチレンジホスホン酸(Methylenediphosphonic acid)、1,8−オクタンジホスホン酸(Octanediphosphonic acid)、12−ホスホノドデシルホスホン酸((12-Phosphonododecyl)phosphonic acid)などが挙げられる。
ホスホン酸基は、誘電体層と反応するカップリング基として機能すると共に、導電性高分子のドーパントとしても機能する。本発明における上記化合物は、2つのホスホン酸基を有しているので、誘電体層と導電性高分子層の間をこの化合物を介して化学結合させることができ、密着性を改善することができる。このような効果は、第1の導電性高分子層3に上記化合物を含有させた場合に、特に期待することができる効果である。
また、上述のように、ホスホン酸基は、導電性高分子のドーパントとしても機能するので、導電性高分子層の導電性を改善することができる。このような効果は、第1の導電性高分子層3及び/または第2の導電性高分子層4に上記化合物を含有させることにより、特に期待することができる効果である。
誘電体層と導電性高分子層の間の密着性及び導電性高分子層の導電性を改善することにより、ESRを低減させることができる。
漏れ電流は、コンデンサ素子を作製する工程、または導電性高分子を重合させる工程の際に、誘電体層に欠陥が生じると、発生しやすくなる。すなわち、電解重合の際このような欠陥部に電流が流れるため、このような欠陥部に導電性高分子が形成され、これが漏れ電流の導電パスとなり、漏れ電流が増加する原因となる。本発明の第3の局面〜第6の局面に従い、モノマーを重合させる際に、上記化合物を存在させておくことにより、誘電体層に欠陥が生じた場合、導電性高分子が形成される前に上記化合物によって誘電体層の欠陥を絶縁化することができる。これによって、漏れ電流の導電パスの形成を抑制することができ、漏れ電流を低減することができる。
上記化合物の含有量は、第1の導電性高分子層3及び/または第2の導電性高分子層4における導電性高分子のモノマーに対して、0.001〜5モル%の範囲で含有されていることが好ましく、さらには0.01〜0.25モル%の範囲で含有されていることが好ましい。
本発明において、導電性高分子のモノマーとしては、導電性高分子を形成することができるモノマーであれば特に限定されるものではなく、ピロール、チオフェン、アニリン及びこれらの誘電体が挙げられる。
以上のように、本発明によれば、ESRが低く、かつ漏れ電流が抑制された固体電解コンデンサを得ることができる。
以下、本発明を具体的な実施例により詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
本実施例では、図1に示す実施形態の固体電解コンデンサにおいて、第1の導電性高分子層3に、2つのホスホン酸基を有する化合物を含有させた固体電解コンデンサを、以下のようにして作製した。
本実施例では、図1に示す実施形態の固体電解コンデンサにおいて、第1の導電性高分子層3に、2つのホスホン酸基を有する化合物を含有させた固体電解コンデンサを、以下のようにして作製した。
タンタル粉末を焼結し、多孔質体からなる陽極1を作製した。金属粉末を焼結して陽極1を作製する際、タンタルからなる陽極リード9が埋設された金属粉末の成形体を焼結することにより、陽極に陽極リード9を埋設させた。陽極1を、65℃の0.1質量%リン酸水溶液中で、定電圧10Vを印加して10時間電解化成することにより、陽極1の表面に誘電体層2を形成した。
次に、誘電体層2を形成した陽極1を、ピロール3.0M(モル/リットル)を含むエタノール溶液に5分間浸漬し、次に酸化剤としての過硫酸アンモニウム0.1M、及びドーパントとしてのアルキルナフタレンスルホン酸0.1M、上記化合物としての1,8−オクタンジホスホン酸(アルドリッチ社製)0.5mM(ミリモル/リットル)を含む水溶液に、25℃で5分間浸漬して、誘電体層2の上に、第1の導電性高分子層3を形成した。この第1の導電性高分子層3には、1,8−オクタンジホスホン酸が、導電性高分子のモノマーに対して0.017モル%含まれている。
次に、ピロール0.2M及びアルキルナフタレンスルホン酸0.2Mを含む25℃の水溶液中に、第1の導電性高分子3を形成した陽極1を浸漬し、第1の導電性高分子層3をアノードとして、0.5mAの電流を3時間通電することにより、第1の導電性高分子層3の上に第2の導電性高分子層4を形成した。
次に、陽極1の外周部の第2の導電性高分子層4の上に、カーボンペーストを塗布した後乾燥し、カーボン層6を形成した。カーボン層6の上に、銀ペーストを塗布して乾燥し、銀層7を形成した。さらに、陽極リード9に陽極端子を溶接し、銀層7の上に導電性接着剤層を介して陰極端子を接続し、エポキシ樹脂でトランスファー成形することにより、陽極端子及び陰極端子の端部が露出するようにコンデンサ素子を被覆し、固体電解コンデンサA1を作製した。
(実施例2)
本実施例では、第2の導電性高分子層4に上記化合物を含有させた固体電解コンデンサを、以下のようにして作製した。
本実施例では、第2の導電性高分子層4に上記化合物を含有させた固体電解コンデンサを、以下のようにして作製した。
実施例1と同様にして陽極1の表面に誘電体層2を形成した後、誘電体層2を形成した陽極1を、ピロール3.0Mを含むエタノール溶液に5分間浸漬し、次に過硫酸アンモニウム0.1M及びアルキルナフタレンスルホン酸0.1Mを含む水溶液に25℃で5分間浸漬して、誘電体層2の上に、第1の導電性高分子層3を形成した。
次に、ピロール0.2M、アルキルナフタレンスルホン酸0.2M、1,8−オクタンジホスホン酸0.5mMを含む25℃の水溶液中に、第1の導電性高分子層3を形成した陽極1を浸漬し、第1の導電性高分子層3をアノードとして、0.5mAの電流を3時間通電することにより、第1の導電性高分子層3の上に、第2の導電性高分子層4を形成した。第2の導電性高分子層4には、導電性高分子のモノマーに対し、0.25モル%の上記化合物が含有されている。
次に、実施例1と同様にして、第2の導電性高分子層4の上にカーボン層6及び銀層7を形成し、陽極端子及び陰極端子を接続して、樹脂外装体を形成し、固体電解コンデンサA2を作製した。
(実施例3)
本実施例においては、第1の導電性高分子層3及び第2の導電性高分子層4の両方に上記化合物を含有した固体電解コンデンサを、以下のようにして作製した。
本実施例においては、第1の導電性高分子層3及び第2の導電性高分子層4の両方に上記化合物を含有した固体電解コンデンサを、以下のようにして作製した。
実施例1と同様にして誘電体層2を形成した陽極1を、ピロール3.0Mを含むエタノール溶液に5分間浸漬し、次に過硫酸アンモニウム0.1M、アルキルナフタレンスルホン酸0.1M、及び1,8−オクタンジホスホン酸0.5mMを含む水溶液に、25℃で5分間浸漬して、誘電体層2の上に、第1の導電性高分子層3を形成した。
次に、ピロール0.2M、アルキルナフタレンスルホン酸0.2M、1,8−オクタンジホスホン酸0.5mMを含む25℃の水溶液に、第1の導電性高分子層3を形成した陽極1を浸漬し、第1の導電性高分子層3をアノードとして、0.5mAの電流を3時間通電することにより、第2の導電性高分子層4を形成した。第1の導電性高分子層3には、上記化合物が、導電性高分子のモノマーに対し0.017モル%となるように含有されており、第2の導電性高分子層4には、導電性高分子のモノマーに対し0.25モル%となるように上記化合物が含有されている。
次に、実施例1と同様にして、カーボン層6及び銀層7を形成し、陽極端子及び陰極端子を接続して、樹脂外装体を形成し、固体電解コンデンサA3を作製した。
(比較例1)
この比較例においては、第1の導電性高分子層3及び第2の導電性高分子層4に上記化合物を含有させていない以外は、上記実施例1と同様にして、固体電解コンデンサB1を作製した。
この比較例においては、第1の導電性高分子層3及び第2の導電性高分子層4に上記化合物を含有させていない以外は、上記実施例1と同様にして、固体電解コンデンサB1を作製した。
〔固体電解コンデンサの特性の評価〕
得られた各固体電解コンデンサについて、ESR及び漏れ電流を測定した。ESRは、LCRメータ(インダクタンス−キャパシタンス−レジスタンス測定装置)を用いて、周波数100kHzで測定した。漏れ電流は、定格電圧を印加して、印加開始から5分後の電流値を測定して求めた。
得られた各固体電解コンデンサについて、ESR及び漏れ電流を測定した。ESRは、LCRメータ(インダクタンス−キャパシタンス−レジスタンス測定装置)を用いて、周波数100kHzで測定した。漏れ電流は、定格電圧を印加して、印加開始から5分後の電流値を測定して求めた。
ESR及び漏れ電流の測定結果を表1に示す。なお、表1に示す値は、比較例1を基準とした相対値である。
表1に示す結果から明らかなように、本発明に従う固体電解コンデンサA1〜A3は、比較の固体電解コンデンサB1に比べ、ESR及び漏れ電流がそれぞれ低減している。
ESRが低減した理由は、導電性高分子層に上記化合物が含有されることにより、誘電体層と導電性高分子層との間の密着性がより強固になり、誘電体層と導電性高分子層の接触抵抗が低減し、ESRは低減したと考えられる。また、導電性高分子層間の密着性の向上によっても、ESRが低減したと考えられる。さらには、上記化合物が導電性高分子中においてドーパントとして機能することにより、導電率が向上したことも、ESRが低減した要因であると考えられる。
漏れ電流については、漏れ電流が発生する要因は、第1の導電性高分子層を形成する過程で、誘電体層に欠陥が発生することによるものと思われる。このため、第1の導電性高分子層及び第2の導電性高分子層に上記化合物を含有させることにより、第1の導電性高分子層を形成する際に生じた誘電体層の欠陥を、各導電性高分子層に含まれる上記化合物によって修復することができ、これによって漏れ電流が低減できたと考えられる。
固体電解コンデンサA1(実施例1)と固体電解コンデンサA2(実施例2)とを比較すると、固体電解コンデンサA1(実施例1)の方がESRが低くなっている。これは、第2の導電性高分子層に上記化合物を含有させるよりも第1の導電性高分子層に上記化合物を含有させた方が、誘電体層と第1の導電性高分子層の界面の界面抵抗をより小さくすることができるので、ESR低減の効果がより顕著に発揮されるからであると思われる。
一方、漏れ電流については、第1の導電性高分子層を形成する際に誘電体層に欠陥が生じると考えられ、このようにして生じた誘電体層の欠陥は、第2の導電性高分子層に含まれる上記化合物により修復することができるので、固体電解コンデンサA1(実施例1)よりも、固体電解コンデンサA2(実施例2)の方が、漏れ電流抑制の効果が顕著に発揮されていると考えられる。
固体電解コンデンサA3(実施例3)においては、第1の導電性高分子層及び第2の導電性高分子層の両方に上記化合物が含有されているので、ESRの低減及び漏れ電流の低減においてバランスがとれた結果が得られているものと考えられる。
1…陽極
2…誘電体層
3…第1の導電性高分子層
4…第2の導電性高分子層
5…導電性高分子層
6…カーボン層
7…銀層
8…陰極層
9…陽極リード
10…固体電解コンデンサ
11…導電性接着層
12…陰極端子
13…陽極端子
14…樹脂外装体
2…誘電体層
3…第1の導電性高分子層
4…第2の導電性高分子層
5…導電性高分子層
6…カーボン層
7…銀層
8…陰極層
9…陽極リード
10…固体電解コンデンサ
11…導電性接着層
12…陰極端子
13…陽極端子
14…樹脂外装体
Claims (6)
- 陽極と、前記陽極の表面上に形成される誘電体層と、前記誘電体層の上に形成される導電性高分子層と、前記導電性高分子層の上に形成される陰極層とを備える固体電解コンデンサであって、
2つのホスホン酸基を有する化合物が、前記導電性高分子層に含有されていることを特徴とする固体電解コンデンサ。 - 前記導電性高分子層が、前記誘電体層の上に形成される第1の導電性高分子層と、前記第1の導電性高分子層の上に形成される第2の導電性高分子層とを有し、前記第1の導電性高分子層及び前記第2の導電性高分子層の少なくともいずれか一方に前記化合物が含有されていることを特徴とする請求項1に記載の固体電解コンデンサ。
- 陽極を形成する工程と、
前記陽極の表面上に誘電体層を形成する工程と、
2つのホスホン酸基を有する化合物の存在下で、導電性高分子のモノマーを重合することにより、前記誘導体層の上に導電性高分子層を形成する工程と、
前記導電性高分子層の上に陰極層を形成する工程とを備えることを特徴とする固体電解コンデンサの製造方法。 - 前記導電性高分子層を形成する工程は、
前記化合物の存在下で、導電性高分子のモノマーを液相または気相中で化学重合させることにより、前記誘電体層の上に前記第1の導電性高分子層を形成する工程と、
前記第1の導電性高分子層の上に第2の導電性高分子層を形成する工程とを備えることを特徴とする請求項3に記載の固体電解コンデンサの製造方法。 - 前記導電性高分子層を形成する工程は、
前記誘電体層の上に第1の導電性高分子層を形成する工程と、
前記化合物の存在下で、導電性高分子のモノマーを電解重合させることにより、前記第1の導電性高分子層の上に第2の導電性高分子層を形成する工程とを備えることを特徴とする請求項3に記載の固体電解コンデンサの製造方法。 - 前記第2の導電性高分子層を形成する工程は、前記化合物の存在下で、導電性高分子のモノマーを電解重合させることを備えることを特徴とする請求項4に記載の固体電解コンデンサの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010270153A JP2012119604A (ja) | 2010-12-03 | 2010-12-03 | 固体電解コンデンサ及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010270153A JP2012119604A (ja) | 2010-12-03 | 2010-12-03 | 固体電解コンデンサ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012119604A true JP2012119604A (ja) | 2012-06-21 |
Family
ID=46502090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010270153A Withdrawn JP2012119604A (ja) | 2010-12-03 | 2010-12-03 | 固体電解コンデンサ及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012119604A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104701021A (zh) * | 2013-12-04 | 2015-06-10 | Nec东金株式会社 | 固体电解电容器 |
-
2010
- 2010-12-03 JP JP2010270153A patent/JP2012119604A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104701021A (zh) * | 2013-12-04 | 2015-06-10 | Nec东金株式会社 | 固体电解电容器 |
JP2015109328A (ja) * | 2013-12-04 | 2015-06-11 | Necトーキン株式会社 | 固体電解コンデンサ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI492253B (zh) | 固體電解電容器之製造方法 | |
JP5461110B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP5736534B2 (ja) | 固体電解コンデンサ | |
JP5484995B2 (ja) | 固体電解コンデンサ及びその製造方法 | |
JP2011253878A (ja) | 固体電解コンデンサ | |
JP6142280B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2009505413A (ja) | 固体コンデンサおよびその製造方法 | |
JP6295433B2 (ja) | 固体電解コンデンサ | |
JP5788282B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
WO2004075220A1 (ja) | 固体電解コンデンサ及びその製造方法 | |
JP5623214B2 (ja) | 固体電解コンデンサ | |
WO2013088845A1 (ja) | 固体電解コンデンサ | |
JP5321964B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2012119604A (ja) | 固体電解コンデンサ及びその製造方法 | |
JP5810286B2 (ja) | 固体電解コンデンサの製造方法 | |
US10026559B2 (en) | Electrolytic capacitor and manufacturing method for same | |
JP2004265941A (ja) | 固体電解コンデンサ及びその製造方法 | |
JP2007281268A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP4462506B2 (ja) | 固体電解コンデンサ | |
WO2023145618A1 (ja) | 固体電解コンデンサおよび固体電解コンデンサの製造方法 | |
JP5566709B2 (ja) | 固体電解コンデンサ | |
JP4462505B2 (ja) | 固体電解コンデンサ | |
JP2011155141A (ja) | 固体電解コンデンサ及びその製造方法 | |
JP2006196653A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2007048947A (ja) | 固体電解コンデンサ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140204 |