JP2012116715A5 - - Google Patents

Download PDF

Info

Publication number
JP2012116715A5
JP2012116715A5 JP2010268924A JP2010268924A JP2012116715A5 JP 2012116715 A5 JP2012116715 A5 JP 2012116715A5 JP 2010268924 A JP2010268924 A JP 2010268924A JP 2010268924 A JP2010268924 A JP 2010268924A JP 2012116715 A5 JP2012116715 A5 JP 2012116715A5
Authority
JP
Japan
Prior art keywords
magnesium oxide
oxide powder
thermosetting resin
resin composition
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010268924A
Other languages
Japanese (ja)
Other versions
JP2012116715A (en
JP5447355B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010268924A priority Critical patent/JP5447355B2/en
Priority claimed from JP2010268924A external-priority patent/JP5447355B2/en
Priority to CN2011100473213A priority patent/CN102485804A/en
Publication of JP2012116715A publication Critical patent/JP2012116715A/en
Publication of JP2012116715A5 publication Critical patent/JP2012116715A5/ja
Application granted granted Critical
Publication of JP5447355B2 publication Critical patent/JP5447355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

熱硬化性樹脂組成物の製造法、プリプレグおよび積層板の製造法Process for producing thermosetting resin composition, process for producing prepreg and laminate

本発明は、酸化マグネシウム粉末を含む熱硬化性樹脂組成物の製造法に関する。さらには、この樹脂組成物を用いたプリプレグの製造法、当該プリプレグにより構成される電気絶縁層又は電気絶縁層となる積層板の製造法に関する。この電気絶縁層は、耐湿特性、加工性に優れかつ熱伝導性が良好で、発熱部品を実装するプリント配線板等の電気配線板の絶縁層として好適である。 The present invention relates to a method for producing the thermosetting resin composition containing an acid magnesium powder. Further, the present invention relates to a method for producing a prepreg using this resin composition, and a method for producing an electrical insulating layer constituted by the prepreg or a laminate to be the electrical insulating layer. This electrical insulating layer is excellent in moisture resistance and processability and thermal conductivity, and is suitable as an insulating layer of an electrical wiring board such as a printed wiring board on which a heat-generating component is mounted.

電子機器の軽薄短小化に伴い、電子機器に搭載するプリント配線板には、配線を微細化する技術と部品を高密度に実装する技術が求められている。その一方で、プリント配線板には、実装部品が発した熱を放散する高熱伝導の特性も求められている。特に、自動車などにおける電子回路では、各種制御操作に大電流を使用するので、導電回路の抵抗に起因する発熱やパワー素子からの発熱が著しい。従って、プリント配線板の熱伝導の特性は高レベルであることが必須となってきている。   With the reduction in size and weight of electronic devices, a printed wiring board mounted on an electronic device is required to have a technique for miniaturizing wiring and a technique for mounting components at high density. On the other hand, the printed wiring board is also required to have high thermal conductivity which dissipates the heat generated by the mounted components. In particular, in an electronic circuit in a car or the like, since a large current is used for various control operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are significant. Therefore, it is essential that the heat conduction characteristics of the printed wiring board be at a high level.

プリント配線板の電気絶縁層は、熱硬化性樹脂で構成されている。現状においては、プリント配線板の電気絶縁層の熱伝導性を向上させる目的で、熱硬化性樹脂に無機充填材を添加することが広く行なわれている。例えば、無機充填材として熱伝導率の高いアルミナ粒子を熱硬化性樹脂に添加し、その熱硬化性樹脂組成物で構成された電気絶縁層の熱伝導性を向上させることが知られている。しかし、アルミナ粒子は硬度が非常に高いので、これを添加した熱硬化性樹脂の電気絶縁層は加工性が劣る。この理由で、アルミナ粒子以外の無機充填材を熱硬化性樹脂に添加する例もある。   The electrical insulating layer of the printed wiring board is made of a thermosetting resin. At present, it is widely practiced to add an inorganic filler to a thermosetting resin in order to improve the thermal conductivity of the electrical insulating layer of the printed wiring board. For example, it is known that alumina particles having high thermal conductivity as an inorganic filler are added to a thermosetting resin to improve the thermal conductivity of the electrical insulating layer formed of the thermosetting resin composition. However, since the alumina particles have a very high hardness, the electrical insulating layer of the thermosetting resin to which the alumina particles are added has poor processability. For this reason, there is also an example in which an inorganic filler other than alumina particles is added to the thermosetting resin.

酸化マグネシウムの熱伝導率はアルミナの熱伝導率と同等である。酸化マグネシウムの硬度はアルミナの硬度より低いので、酸化マグネシウム粉末を添加した樹脂成形体の加工性は良好である。しかしながら、酸化マグネシウムは吸湿性が大きいので、プリント配線板等の電気絶縁用途に酸化マグネシウムを使用すると、電気絶縁層の耐湿特性(特に、吸湿した後の電気絶縁性)が低下するという問題がある。   The thermal conductivity of magnesium oxide is equivalent to the thermal conductivity of alumina. Since the hardness of magnesium oxide is lower than that of alumina, the processability of a resin molded product to which magnesium oxide powder is added is good. However, since magnesium oxide has high hygroscopicity, there is a problem that the use of magnesium oxide for electrical insulation applications such as a printed wiring board degrades the moisture resistance of the electrical insulation layer (in particular, the electrical insulation after absorbing moisture). .

上記の耐湿特性を上げる対策として、例えば、特許文献1には、酸化マグネシウム粉末の表面をシリカで被覆することが開示されている。その具体的な製造法として、次の1)〜4)がある。
1)酸化マグネシウム粉末にシリカを溶射する。
2)酸化マグネシウム粉末にシリカを化学蒸着させる。
3)酸化マグネシウム粉末に微粉シリカを噴霧し接着させる。
4)酸化マグネシウム粉末に微粉シリカを混合して焼成する。
また、特許文献2には、酸化マグネシウム粉末の表面をシランカップリング剤で処理することが開示されている。
For example, Patent Document 1 discloses that the surface of a magnesium oxide powder is coated with silica as a measure to improve the above-mentioned moisture resistance property. The following 1)-4) are as a concrete manufacturing method.
1) Spray silica onto magnesium oxide powder.
2) Chemical vapor deposition of silica on magnesium oxide powder.
3) Spray and bond finely powdered silica to magnesium oxide powder.
4) Mix fine powder silica with magnesium oxide powder and bake it.
Patent Document 2 discloses that the surface of magnesium oxide powder is treated with a silane coupling agent.

特開昭61−283648号公報Japanese Patent Application Laid-Open No. 61-283648 特開平3−79666号公報Unexamined-Japanese-Patent No. 3-79666

しかしながら、特許文献1に記載された酸化マグネシウム粉末は、次のように多段階で製造される。まず、酸化マグネシウム粉末を焼成する。その後に、酸化マグネシウム粉末に、溶射、化学蒸着又は噴霧接着の手段によりシリカ膜を形成し、酸化マグネシウム粉末表面を被覆する。あるいは、酸化マグネシウム粉末に微粉シリカを混合して焼成することにより、酸化マグネシウム粉末表面をシリカ膜で被覆する。このような手段であるため、製造工程が増加し製造のための設備が必要になるという問題がある。また、特許文献2に記載された技術は、プリント配線板等の電気絶縁用途において、耐湿特性のレベルが不充分であるという問題がある。プリント配線板の電気絶縁層の吸湿処理試験を実施すると、シランカップリング剤により表面処理された酸化マグネシウム粉末と樹脂との僅かな隙間の界面から吸湿が進行し、プリント配線板の電気絶縁層が膨張したり、電気絶縁層の絶縁性が低下する。   However, the magnesium oxide powder described in Patent Document 1 is manufactured in multiple steps as follows. First, the magnesium oxide powder is fired. Thereafter, the magnesium oxide powder is coated with a silica film by means of thermal spraying, chemical vapor deposition or spray adhesion to coat the surface of the magnesium oxide powder. Alternatively, the surface of the magnesium oxide powder is coated with a silica film by mixing fine powder silica with magnesium oxide powder and baking it. Because such means is used, there is a problem that the number of manufacturing processes is increased and equipment for manufacturing is required. Further, the technology described in Patent Document 2 has a problem that the level of moisture resistance is insufficient in electrical insulation applications such as printed wiring boards. When the moisture absorption test of the electrical insulating layer of the printed wiring board is carried out, moisture absorption proceeds from the interface between the resin and the magnesium oxide powder surface-treated with the silane coupling agent, and the electrical insulating layer of the printed wiring board It expands or the insulation of the electrical insulation layer is lowered.

本発明が解決しようとする課題は、吸湿性を小さくする改善をした酸化マグネシウム粉末を簡易な方法で製造することである。また、この酸化マグネシウム粉末を含み、耐湿特性、加工性に優れかつ熱伝導性が良好な電気絶縁層のための熱硬化性樹脂組成物を製造することである。さらには、この樹脂組成物を用いたプリプレグを製造し、当該プリプレグにより構成される積層板を提供することである。   The problem to be solved by the present invention is to manufacture magnesium oxide powder with improved hygroscopicity by a simple method. Another object of the present invention is to produce a thermosetting resin composition for an electrical insulating layer which contains this magnesium oxide powder and which is excellent in moisture resistance, processability and thermal conductivity. Furthermore, the prepreg using this resin composition is manufactured, and it is providing the laminated board comprised with the said prepreg.

上記課題を解決するために、本発明で使用する酸化マグネシウム粉末の製造は、シリカ含有量が1〜6質量%である酸化マグネシウムを原料として使用する。そして、この酸化マグネシウムを1650℃〜1800℃で焼成することにより、酸化マグネシウム粉末の表面にシリカ膜を形成する。 In order to solve the above problems, manufacturing magnesium oxide powder used in the present invention, the silica content is to use magnesium oxide is 1-6 wt% as a raw material. Then, by firing the magnesium oxide at 1650 ° C. to 1800 ° C., it forms a silica film on the surface of the magnesium oxide powder.

本発明に係る第1の熱硬化性樹脂組成物の製造法は、酸化マグネシウム粉末を含む熱硬化性樹脂組成物の製造法であって、前記酸化マグネシウム粉末は、上記の方法により製造されたものであり、かつ、平均粒径d1を、10μm≦d1≦80μmの範囲とする。そして、熱硬化性樹脂固形分と酸化マグネシウム粉末を合わせた体積中に、前記酸化マグネシウム粉末の含有量が20〜80体積%となるように混合することを特徴とする(請求項)。 The first method for producing a thermosetting resin composition according to the present invention is a method for producing a thermosetting resin composition containing magnesium oxide powder, and the magnesium oxide powder is produced by the above method. And the average particle diameter d1 is in the range of 10 μm ≦ d1 ≦ 80 μm. Then, it is characterized in that in the combined volume of the thermosetting resin solid content and the magnesium oxide powder, the content of the magnesium oxide powder is 20 to 80% by volume (claim 1 ).

また、本発明に係る第2の熱硬化性樹脂組成物の製造法は、酸化マグネシウム粉末を含む熱硬化性樹脂組成物の製造法であって、前記請求項において酸化マグネシウム粉末の一部を酸化マグネシウム粉末以外の無機充填材に置換え、前記無機充填材は、平均粒径d2を、0.1μm≦d2≦50μmの範囲とする。そして、熱硬化性樹脂固形分と酸化マグネシウム粉末と無機充填材を合わせた体積中に、前記酸化マグネシウム粉末の含有量が5〜50体積%、無機充填材の含有量が15〜30体積%となるように混合することを特徴とする(請求項)。 The second method for producing a thermosetting resin composition according to the present invention is a method for producing a thermosetting resin composition containing a magnesium oxide powder, wherein a part of the magnesium oxide powder in the above-mentioned claim 1 is used. The inorganic filler is replaced with an inorganic filler other than magnesium oxide powder, and the inorganic filler has an average particle diameter d2 in the range of 0.1 μm ≦ d2 ≦ 50 μm. And, in the combined volume of the thermosetting resin solid content, the magnesium oxide powder and the inorganic filler, the content of the magnesium oxide powder is 5 to 50% by volume, and the content of the inorganic filler is 15 to 30% by volume. characterized by mixing such that (claim 2).

上記の樹脂組成物の製造法において、好ましくは、前記酸化マグネシウム粉末が、カップリング剤又は分散剤にて表面処理を施されたものである(請求項)。 In the above method for producing a resin composition, preferably, the magnesium oxide powder is subjected to surface treatment with a coupling agent or a dispersing agent (claim 3 ).

また、好ましくは、熱硬化性樹脂組成物が、(式1)で示す分子構造に代表される、液晶性エポキシ樹脂モノマを配合したエポキシ樹脂組成物である(請求項)。 Preferably, the thermosetting resin composition is an epoxy resin composition containing a liquid crystalline epoxy resin monomer represented by the molecular structure represented by (Formula 1) (Claim 4 ).

Figure 2012116715
Figure 2012116715

さらに好ましくは、上記(式1)においてRが水素である、(式2)で示す分子構造の液晶性エポキシ樹脂モノマを配合したエポキシ樹脂組成物である(請求項)。 More preferably, it is an epoxy resin composition in which a liquid crystalline epoxy resin monomer having a molecular structure represented by (Formula 2) in which R is hydrogen in (Formula 1) is blended (Claim 5 ).

Figure 2012116715
Figure 2012116715

本発明に係るプリプレグの製造法は、上記の方法により製造された熱硬化性樹脂組成物をシート状に形成し、これを、加熱して乾燥することを特徴とする(請求項)。
本発明に係る積層板の製造法は、上記の方法により製造されたプリプレグを、電気絶縁層を構成するためのプリプレグ層の全部又は一部の層として使用し加熱加圧成形することを特徴とする(請求項)。
The method for producing a prepreg according to the present invention is characterized in that the thermosetting resin composition produced by the above method is formed into a sheet, which is heated and dried (Claim 6 ).
The method for producing a laminate according to the present invention is characterized in that heat and pressure molding is carried out using the prepreg produced by the above method as all or a part of a prepreg layer for constituting an electrical insulating layer. (Claim 7 ).

本発明で使用する酸化マグネシウム粉末の製造は、シリカ含有量が1〜6質量%である酸化マグネシウムを原料として使用し、この酸化マグネシウムを1650℃〜1800℃(シリカの融点付近の温度)で焼成する。この操作により、酸化マグネシウム粉末の表面に溶け出したシリカが、酸化マグネシウム粉末と完全に分離することなく、酸化マグネシウム粉末の表面を被覆して、酸化マグネシウム粉末の表面にシリカ膜を形成する。このため、特許文献1に記載されたような特殊な工程を必要とせず、従来の酸化マグネシウム粉末の焼成工程を経るだけで済み、製造工程を簡略化することができる。また、酸化マグネシウム粉末の表面がシリカ膜で被覆されているので、酸化マグネシウム粉末の吸湿性を改善することができる。 Manufacture of magnesium oxide powder used in the present invention, magnesium oxide silica content is 1-6 wt% was used as raw material, with the magnesium oxide 1650 ° C. to 1800 ° C. (temperature near the melting point of silica) Baking. By this operation, the silica dissolved on the surface of the magnesium oxide powder covers the surface of the magnesium oxide powder without completely separating it from the magnesium oxide powder, and forms a silica film on the surface of the magnesium oxide powder. For this reason, the special process as described in Patent Document 1 is not required, and only the conventional baking process of magnesium oxide powder can be performed, and the manufacturing process can be simplified. In addition, since the surface of the magnesium oxide powder is coated with a silica film, the hygroscopicity of the magnesium oxide powder can be improved.

また、本発明に係る第1の熱硬化性樹脂組成物の製造法は、上記の方法により製造された酸化マグネシウム粉末を熱硬化性樹脂に混合し、前記酸化マグネシウム粉末の平均粒径及び含有量を特定することにより、耐湿特性、加工性に優れかつ熱伝導性が良好な電気絶縁層のための熱硬化性樹脂組成物を得ることができる。   Moreover, the manufacturing method of the 1st thermosetting resin composition which concerns on this invention mixes the magnesium oxide powder manufactured by said method with a thermosetting resin, The average particle diameter and content of the said magnesium oxide powder By specifying the above, it is possible to obtain a thermosetting resin composition for an electrical insulating layer which is excellent in moisture resistance characteristics, processability and thermal conductivity.

さらに、本発明に係る第2の熱硬化性樹脂組成物の製造法は、前記酸化マグネシウム粉末の一部を酸化マグネシウム粉末以外の無機充填材に置換えて混合し、前記酸化マグネシウム粉末以外の無機充填材の平均粒径及び含有量を特定することにより、耐湿特性、加工性に優れかつ熱伝導性が良好な電気絶縁層のための熱硬化性樹脂組成物を得ることができる。   Furthermore, in the method for producing the second thermosetting resin composition according to the present invention, a part of the magnesium oxide powder is replaced with an inorganic filler other than the magnesium oxide powder and mixed, and the inorganic filling other than the magnesium oxide powder is mixed By specifying the average particle size and content of the material, it is possible to obtain a thermosetting resin composition for an electrical insulating layer which is excellent in moisture resistance characteristics and processability and has a good thermal conductivity.

上述のように、本発明によれば、原料となる酸化マグネシウム中のシリカ含有量と焼成温度を特定することで、耐湿特性、加工性に優れかつ熱伝導性が良好な絶縁層を製造することができ、当該絶縁層はプリント配線板等の電気配線板に好適に用いることができる。   As described above, according to the present invention, an insulating layer having excellent moisture resistance and processability and good thermal conductivity is specified by specifying the silica content in magnesium oxide as a raw material and the firing temperature. The insulating layer can be suitably used for an electrical wiring board such as a printed wiring board.

本発明で使用する酸化マグネシウム粉末は、具体的には、例えば、次のようにして製造することができる。まず、海水あるいは塩化マグネシウム水溶液に水酸化カルシウムを加えて水酸化マグネシウムを析出させる。これを濾過することにより分離した水酸化マグネシウムを焼成し、原料となる酸化マグネシウムの1次粒子を製造する。そして、この原料となる酸化マグネシウムを焼成することにより、酸化マグネシウム粉末を製造する。 Specifically, the magnesium oxide powder used in the present invention can be produced, for example, as follows. First, calcium hydroxide is added to seawater or an aqueous solution of magnesium chloride to precipitate magnesium hydroxide. The separated magnesium hydroxide is calcined by filtration to produce primary particles of magnesium oxide as a raw material. And magnesium oxide powder is manufactured by baking the magnesium oxide used as this raw material.

このとき、原料となる酸化マグネシウムは、シリカ含有量が1〜6質量%であるものを使用する。シリカ含有量が1質量%より少ないと、溶融したシリカが酸化マグネシウム粉末の表面を充分に覆うことができず、酸化マグネシウム粉末の吸湿性を小さくする改善をすることができない。また、6質量%より多いと、酸化マグネシウム粉末の表面を覆うシリカ膜の厚みが厚くなるため、酸化マグネシウム本来の熱伝導率を発揮できず、樹脂成形物の熱伝導性が低下する。ここで、シリカ含有量とは、原料となる酸化マグネシウムの全質量(シリカ等を含む)を100質量%としたときの値をいう。なお、原料となる酸化マグネシウムのシリカ含有量は、例えば、海水中の珪酸の量を変えることで調整することができる。また、水酸化マグネシウムを焼成するときの焼成温度や焼成時間を変えることで調整することもできる。   At this time, the magnesium oxide used as a raw material has a silica content of 1 to 6% by mass. If the silica content is less than 1% by mass, the fused silica can not sufficiently cover the surface of the magnesium oxide powder, and the improvement to reduce the hygroscopicity of the magnesium oxide powder can not be made. When the content is more than 6% by mass, the thickness of the silica film covering the surface of the magnesium oxide powder is increased, so that the thermal conductivity inherent to magnesium oxide can not be exhibited, and the thermal conductivity of the resin molded product is reduced. Here, the silica content refers to a value when the total mass (including silica and the like) of magnesium oxide as a raw material is 100% by mass. In addition, the silica content of the magnesium oxide used as a raw material can be adjusted by changing the quantity of the silicic acid in seawater, for example. Moreover, it can also adjust by changing the calcination temperature and calcination time at the time of baking magnesium hydroxide.

また、焼成温度は、1650℃〜1800℃(シリカの融点付近の温度)とする。焼成温度が1650℃より低いと、シリカが溶融しないため、酸化マグネシウム粉末の表面を覆うことができず、酸化マグネシウム粉末の吸湿性を小さくする改善をすることができない。また、1800℃より高いと、溶融したシリカが酸化マグネシウム粉末と分離するため、シリカ膜を形成できず、酸化マグネシウム粉末の吸湿性を小さくする改善をすることができない。   In addition, the firing temperature is set to 1650 ° C. to 1800 ° C. (temperature near the melting point of silica). If the firing temperature is lower than 1650 ° C., the silica does not melt, so the surface of the magnesium oxide powder can not be covered, and improvement to reduce the hygroscopicity of the magnesium oxide powder can not be made. Further, if the temperature is higher than 1800 ° C., the fused silica is separated from the magnesium oxide powder, so that a silica film can not be formed, and improvement to reduce the hygroscopicity of the magnesium oxide powder can not be made.

本発明に係る第1の熱硬化性樹脂組成物の製造法は、上記の方法により製造された酸化マグネシウム粉末を混合し、酸化マグネシウム粉末の平均粒径d1を、10μm≦d1≦80μmの範囲とする。平均粒径d1が10μmより小さいと、酸化マグネシウム粉末と樹脂との接触点が増えるため、樹脂との界面が熱抵抗となり、熱伝導率が向上しない。また、80μmより大きいと、吸湿しやすくなるため、耐湿特性(特に、吸湿した後の絶縁性)が低下する。   The manufacturing method of the 1st thermosetting resin composition concerning this invention mixes the magnesium oxide powder manufactured by said method, The average particle diameter d1 of magnesium oxide powder is 10 micrometers <= d1 <= 80 micrometers and Do. When the average particle diameter d1 is smaller than 10 μm, the contact point between the magnesium oxide powder and the resin increases, the interface with the resin becomes a thermal resistance, and the thermal conductivity is not improved. On the other hand, if it is larger than 80 μm, moisture absorption is likely to occur, so that the moisture resistance (in particular, the insulation after moisture absorption) is reduced.

なお、平均粒径d1及び後述するd2は、公知のレーザー回折・散乱法による粒度測定装置(例えば、日機装株式会社製「マイクロトラックSPA−7997型」)を用いて測定したものである。ここで、レーザー回折・散乱法とは、充填材粒子にレーザー光を照射したとき、粒子径により散乱光の強度パターンが変化することを利用した測定法である。   In addition, average particle diameter d1 and d2 mentioned later are measured using the particle size measuring apparatus (For example, Nikkiso Co., Ltd. "micro track SPA-7997 type") by a well-known laser diffraction and scattering method. Here, the laser diffraction / scattering method is a measuring method utilizing the fact that when filler particles are irradiated with laser light, the intensity pattern of scattered light changes with the particle diameter.

本発明に係る第2の熱硬化性樹脂組成物の製造法は、上記の方法により製造された酸化マグネシウム粉末と前記酸化マグネシウム粉末の一部を酸化マグネシウム以外の無機充填材に置換えて、これらを混合する。無機充填材は、電気絶縁性を有していればよく、例えば、窒化ホウ素、アルミナ、シリカ、酸化チタン、窒化アルミニウム、窒化ケイ素、水酸化アルミニウム、タルク等であり、特に限定するものではない。なお、無機充填材の熱伝導率が20W/m・K以上であることが好ましい。これにより、樹脂成形物の熱伝導率をさらに向上させることができる。また、平均粒径d2を、0.1μm≦d2≦50μmの範囲とする。平均粒径d2が0.1μmより小さいと、無機充填材と樹脂との接触点が増えるため、無機充填材と樹脂との界面が熱抵抗となり、熱伝導率が向上しない。また、50μmより大きいと、吸湿しやすくなるため、耐湿特性(特に、吸湿した後の絶縁性)が低下する。   In the second method for producing a thermosetting resin composition according to the present invention, the magnesium oxide powder produced by the above method and a part of the magnesium oxide powder are replaced with an inorganic filler other than magnesium oxide, Mix. The inorganic filler may have electrical insulation, and is, for example, boron nitride, alumina, silica, titanium oxide, aluminum nitride, silicon nitride, aluminum hydroxide, talc, etc., and is not particularly limited. The thermal conductivity of the inorganic filler is preferably 20 W / m · K or more. Thereby, the thermal conductivity of the resin molded product can be further improved. Further, the average particle diameter d2 is in the range of 0.1 μm ≦ d2 ≦ 50 μm. If the average particle diameter d2 is smaller than 0.1 μm, the contact point between the inorganic filler and the resin increases, the interface between the inorganic filler and the resin becomes a thermal resistance, and the thermal conductivity is not improved. On the other hand, if it is larger than 50 μm, moisture absorption is likely to occur, whereby the moisture resistance (in particular, the insulation after moisture absorption) is reduced.

上記酸化マグネシウム粉末が、カップリング剤又は分散剤にて表面処理を施されたものであると、耐湿特性が向上するため好ましい。カップリング剤は、シラン系カップリング剤、チタネート系カップリング剤等であり、また、分散剤は、リン酸エステル類等であり、特に限定するものではない。これらの処理は、簡易な工程を追加することで、実施することができる。   It is preferable that the magnesium oxide powder is surface-treated with a coupling agent or a dispersing agent, because the moisture resistance is improved. The coupling agent is a silane coupling agent, a titanate coupling agent or the like, and the dispersing agent is a phosphoric acid ester or the like and is not particularly limited. These processes can be implemented by adding simple steps.

そして、第1の熱硬化性樹脂組成物の製造法は、熱硬化性樹脂固形分と酸化マグネシウム粉末を合わせた体積中に、酸化マグネシウム粉末の含有量が、20〜80体積%となるように混合する。酸化マグネシウム粉末の含有量が20体積%より少ないと、樹脂組成物の熱伝導性が充分に得られない。また、80体積%より多いと、樹脂組成物の粘度が上がりすぎるため、シート状に付形したり、シート状繊維基材に含浸することができず、外観の均一なプリプレグを製造することはできない。   Then, in the first method for producing a thermosetting resin composition, the content of the magnesium oxide powder is 20 to 80% by volume in the total volume of the thermosetting resin solid content and the magnesium oxide powder. Mix. If the content of the magnesium oxide powder is less than 20% by volume, the thermal conductivity of the resin composition can not be sufficiently obtained. Further, if it is more than 80% by volume, the viscosity of the resin composition will be too high, so it can not be shaped into a sheet or impregnated into a sheet-like fiber substrate, and a prepreg having a uniform appearance can be produced Can not.

また、第2の熱硬化性樹脂組成物の製造法は、熱硬化性樹脂固形分と酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填とを合わせた体積中に、酸化マグネシウム粉末の含有量が5〜50体積%となるように、酸化マグネシウム粉末と前記無機充填材の総含有量が20〜80体積%となるように混合する。酸化マグネシウム粉末の含有量を5〜50体積%とすることにより、充分な耐湿特性、加工性及び熱伝導性を確保することができる。また、酸化マグネシウム粉末と無機充填材の総含有量が20体積%より少ないと、樹脂組成物の熱伝導性が充分に得られない。また、80体積%より多いと、樹脂組成物の粘度が上がりすぎるため、外観の均一なプリプレグを製造することはできない。   In the second method for producing a thermosetting resin composition, the content of the magnesium oxide powder is 5 in the combined volume of the thermosetting resin solid content, the magnesium oxide powder, and the inorganic filling other than the magnesium oxide powder. It mixes so that the total content of magnesium oxide powder and the said inorganic filler may be 20-80 volume% so that it may become 50 volume%. By setting the content of the magnesium oxide powder to 5 to 50% by volume, sufficient moisture resistance, processability and thermal conductivity can be ensured. In addition, when the total content of the magnesium oxide powder and the inorganic filler is less than 20% by volume, the thermal conductivity of the resin composition can not be sufficiently obtained. On the other hand, if the amount is more than 80% by volume, the viscosity of the resin composition is too high, so that a prepreg having a uniform appearance can not be produced.

上記の酸化マグネシウム粉末、無機充填材と熱硬化性樹脂組成物を混練・混合してワニスを調製する際、熱硬化性樹脂組成物に酸化マグネシウム粉末、無機充填材を添加していくと、酸化マグネシウム粉末、無機充填材のチキソ性および凝集性のため、ワニスの粘度が増大する。そこで、強力なせん断力を発生する分散機を選択することで、酸化マグネシウム粉末、無機充填材の分散性がよくなりワニスの粘度も低下するため、80体積%までの酸化マグネシウム粉末、無機充填材の添加が可能となる。強力なせん断力を発生する分散機は、例えば、ボールミル、ビーズミル、三本ロールミルやその原理を応用した分散機などが挙げられる。   When preparing the varnish by kneading and mixing the above-mentioned magnesium oxide powder, inorganic filler and thermosetting resin composition, when magnesium oxide powder and inorganic filler are added to the thermosetting resin composition, oxidation is caused. The thixotropic and cohesive nature of the magnesium powder, mineral filler, increases the viscosity of the varnish. Therefore, by selecting a disperser that generates a strong shear force, the dispersibility of the magnesium oxide powder and the inorganic filler is improved and the viscosity of the varnish is also reduced, so magnesium oxide powder up to 80% by volume, inorganic filler Can be added. Examples of dispersers that generate strong shear force include ball mills, bead mills, triple roll mills, and dispersers to which the principle is applied.

本発明を実施するに当り、プリプレグの製造は、一般的に行なわれている製造法を適用することができる。例えば、酸化マグネシウム粉末、無機充填材を含む熱硬化性樹脂組成物のワニスをシート状繊維基材に含浸し加熱による乾燥をして、半硬化状態とする。   In the practice of the present invention, the production of a prepreg can be carried out by a commonly used production method. For example, a varnish of a thermosetting resin composition containing a magnesium oxide powder and an inorganic filler is impregnated into a sheet-like fiber substrate and dried by heating to obtain a semi-cured state.

本発明に使用できるシート状繊維基材は、ガラス繊維や有機繊維の織布や不織布であり、特に限定するものではない。例えば、ガラス繊維織布を使用することができる。ガラスの種類は強度や電気特性が良好なEガラスが好ましい。また、ワニスを含浸するシート状繊維基材は、目空き量の大きいものが好ましいため、開繊処理をされていないガラス繊維織布を使用するのがよい。また、ガラス繊維不織布基材も使用することができ、特に限定するものではない。
なお、目空き量とは、ガラス繊維織布を上から見たときに現われる、ガラス繊維糸の経糸と緯糸で囲まれた空隙部分ひと升目の面積である。また、開繊処理とは、前記の経糸・緯糸には、多数のフィラメントを撚り合わせて一本の糸として用いられているが、この一本の糸のフィラメント間を広げて間隔を開ける(ばらけさせる)ことである。
The sheet-like fiber base material that can be used in the present invention is a woven fabric or non-woven fabric of glass fiber or organic fiber, and is not particularly limited. For example, glass fiber woven fabric can be used. The type of glass is preferably E glass having good strength and electrical characteristics. Moreover, since the sheet-like fiber base material which impregnates a varnish has a large amount of open spaces, it is preferable to use the glass fiber woven fabric which is not opened. Moreover, a glass fiber non-woven fabric substrate can also be used, and it is not particularly limited.
The open volume is the area of the first mesh area of the void portion surrounded by the warp and weft of the glass fiber yarn, which appears when the glass fiber woven fabric is viewed from above. In addition, with the fiber opening treatment, a large number of filaments are twisted and used as one yarn for the above-mentioned warp and weft, but the filaments of this one yarn are spread to open a space ( It is important to

別のプリプレグの製造法は、前記ワニスを離型性のフィルム等に塗布し加熱による乾燥をして、半硬化状態とする。離型性のフィルムは、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリスチレン等の離型性のよいフィルムである。これら離型性のフィルムに前記ワニスを塗布して半硬化状態とした後に離型性のフィルムをはがして使用する。別の形態では、離型性のフィルムとして銅箔やアルミニウム箔等の金属箔を使用する。これに前記ワニスを塗布して半硬化状態とした後、そのまま金属板や金属箔に貼り付けるが、特に限定するものではない。   In another method of producing a prepreg, the varnish is applied to a releasable film or the like and dried by heating to obtain a semi-cured state. The releasable film is a film having good releasability such as polyethylene terephthalate, polyethylene, polypropylene, polystyrene and the like. The above-mentioned varnish is applied to the film of the releasability to make it semi-cured, and then the film of releasability is peeled off and used. In another form, metal foils, such as copper foil and aluminum foil, are used as a film of releasability. Although the said varnish is apply | coated to this and it makes it semi-hardened state, it affixes on a metal plate or metal foil as it is, but it does not specifically limit.

プリプレグの層を加熱加圧成形して絶縁層とする際に、銅箔ないし銅板をプリプレグの層に重ねて成形し一体に接着することができる。酸化マグネシウム粉末と無機充填材の総含有量を上述した80体積%以下にすれば、銅箔ないし銅板との接着性に特に問題となるところはない。当該プリプレグは、予め準備したプリント配線板同士を重ねて一体化し多層プリント配線板とするときの接着層として使用することもできる。
本発明に係るプリプレグにより形成した絶縁層を備えたプリント配線板は、実装部品や制御回路から発生した熱が絶縁層を介して反対面に配置した銅箔ないし銅板に伝わり熱放散される。
When the layer of the prepreg is heated and pressed to form the insulating layer, a copper foil or a copper plate can be overlaid on the layer of the prepreg and formed and integrally bonded. If the total content of the magnesium oxide powder and the inorganic filler is 80% by volume or less as described above, there is no problem in adhesion to the copper foil or the copper plate. The said prepreg can also be used as an adhesive layer at the time of piling up and integrating previously prepared printed wiring boards, and setting it as a multilayer printed wiring board.
In the printed wiring board provided with the insulating layer formed of the prepreg according to the present invention, the heat generated from the mounted parts and the control circuit is transmitted to the copper foil or copper plate disposed on the opposite surface through the insulating layer and dissipated.

本発明に使用する熱硬化性樹脂は、例えば、エポキシ樹脂モノマと硬化剤とから生成されたものを用いることができる。エポキシ樹脂モノマは、ビスフェノールA型エポキシ、ビスフェノールF型エポキシやその誘導体などの一般的なエポキシ樹脂モノマや、ターフェニル型エポキシ、ビフェニル型エポキシなどの液晶性エポキシ樹脂モノマはいずれも使用できる。なお、液晶性エポキシ樹脂モノマを使用すると、樹脂成形物の熱伝導率が向上するため好ましい。その中でも、(式1)で示されるような分子構造式のビフェニル骨格あるいはビフェニル誘導体の骨格をもち、1分子中に2個以上のエポキシ基をもつエポキシ樹脂モノマは熱伝導率が向上するためより好ましい。   As the thermosetting resin used in the present invention, for example, one produced from an epoxy resin monomer and a curing agent can be used. As the epoxy resin monomer, any of general epoxy resin monomers such as bisphenol A epoxy, bisphenol F epoxy and derivatives thereof and liquid crystalline epoxy resin monomers such as terphenyl epoxy and biphenyl epoxy can be used. Use of a liquid crystalline epoxy resin monomer is preferable because the thermal conductivity of the resin molded product is improved. Among them, epoxy resin monomers having a biphenyl skeleton or biphenyl derivative skeleton having a molecular structural formula as shown in (Formula 1) and having two or more epoxy groups in one molecule are more improved because the thermal conductivity is improved. preferable.

Figure 2012116715
Figure 2012116715

さらに好ましくは、上記(式1)においてRが水素である、(式2)で示される分子構造式のものを選択する。ビフェニル基がより配列しやすいため、熱伝導率をより高くすることができる。また、ビフェニル骨格あるいはビフェニル誘導体の骨格は同一分子内に2つ以上あってもよい。   More preferably, the molecular structural formula represented by (Formula 2) in which R is hydrogen in the above (formula 1) is selected. Because the biphenyl groups are more easily arranged, the thermal conductivity can be further increased. In addition, two or more biphenyl skeletons or skeletons of biphenyl derivatives may be present in the same molecule.

Figure 2012116715
Figure 2012116715

エポキシ樹脂モノマに配合する硬化剤は、エポキシ樹脂モノマの硬化反応を進行させるために従来用いられている硬化剤を使用することができる。例えば、フェノール類又はその化合物、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体などが挙げられる。また、硬化促進剤は、エポキシ樹脂モノマとフェノール類又はその化合物、アミン類またはその化合物との重縮合反応を進行させるために従来用いられている硬化促進剤を使用することができる。例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などが挙げられる。   As a curing agent to be added to the epoxy resin monomer, a curing agent conventionally used to advance the curing reaction of the epoxy resin monomer can be used. For example, phenols or compounds thereof, amine compounds or derivatives thereof, acid anhydrides, imidazoles or derivatives thereof and the like can be mentioned. Further, as a curing accelerator, a curing accelerator which is conventionally used to advance a polycondensation reaction between an epoxy resin monomer and a phenol or compounds thereof, an amine or a compound thereof can be used. For example, triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof and the like can be mentioned.

エポキシ樹脂モノマと硬化剤、酸化マグネシウム粉末、無機充填材、硬化促進剤を配合したエポキシ樹脂組成物には、必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を含むことができる。また、必要に応じて溶剤を使用することができる。これらの使用が、樹脂成形物の熱伝導性に影響を与えることはない。   The epoxy resin composition containing an epoxy resin monomer and a curing agent, magnesium oxide powder, an inorganic filler, and a curing accelerator can optionally contain a flame retardant, a diluent, a plasticizer, a coupling agent, etc. . Moreover, a solvent can be used as needed. Their use does not affect the thermal conductivity of the resin molding.

本発明に係るプリプレグを、電気絶縁層を構成するためのプリプレグ層の全部又は一部の層として用い、これを加熱加圧成形した絶縁層を備えたプリント配線板は、熱伝導率が向上するので、高温雰囲気下での使用が想定される自動車機器用のプリント配線板や、パソコン等の高密度実装プリント配線板に好適である。   The printed wiring board provided with the insulating layer obtained by using the prepreg according to the present invention as a whole or a part of the prepreg layer for forming the electrical insulating layer and heating and pressing it improves the thermal conductivity. Therefore, it is suitable for a printed wiring board for automobile devices that is expected to be used in a high temperature atmosphere, and a printed wiring board for high density mounting such as a personal computer.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail by showing examples according to the present invention. In the following Examples and Comparative Examples, "parts" means "parts by mass". Further, the present invention is not limited to the present embodiment unless it deviates from the gist of the present invention.

実施例1
酸化マグネシウム粉末を、次のようにして準備した。まず、海水に水酸化カルシウムを加えて水酸化マグネシウムを析出させる。これを濾過することにより分離した水酸化マグネシウムを焼成することで原料となる酸化マグネシウムの1次粒子を製造する。そして、この原料となる酸化マグネシウムを焼成することにより、酸化マグネシウム粉末を製造する。このとき、原料となる酸化マグネシウム中のシリカ含有量は1質量%、焼成温度は1700℃、得られた酸化マグネシウム粉末の平均粒径は、20μmである。なお、原料となる酸化マグネシウム中のシリカ含有量は、海水中の珪酸の量により調整した。また、平均粒径は、日機装株式会社製「マイクロトラックSPA−7997型」を用いて測定した。
Example 1
Magnesium oxide powder was prepared as follows. First, calcium hydroxide is added to seawater to precipitate magnesium hydroxide. By filtering this, the separated magnesium hydroxide is calcined to produce primary particles of magnesium oxide as a raw material. And magnesium oxide powder is manufactured by baking the magnesium oxide used as this raw material. At this time, the content of silica in magnesium oxide as a raw material is 1% by mass, the firing temperature is 1700 ° C., and the average particle diameter of the obtained magnesium oxide powder is 20 μm. In addition, the silica content in magnesium oxide used as a raw material was adjusted with the quantity of the silicic acid in seawater. Moreover, the average particle diameter was measured using Nikkiso Co., Ltd. "Microtrac SPA-7997 type".

まず、エポキシ樹脂モノマ成分としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「EP828」,エポキシ当量185)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
次に、硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)25部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
First, 100 parts of bisphenol A type epoxy resin ("EP 828" made by Japan Epoxy Resin, epoxy equivalent 185) is prepared as an epoxy resin monomer component, and this is dissolved in 100 parts of methyl isobutyl ketone (made by Wako Pure Chemical Industries, Ltd.) at 100 ° C. , Returned to room temperature.
Next, 25 parts of 1,5-diaminonaphthalene ("1,5-DAN" manufactured by Wako Pure Chemical Industries, Ltd .; amine equivalent 40) is prepared as a curing agent, and 100 parts of this is added to 100 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) Melted at ° C and allowed to return to room temperature.

上記のエポキシ樹脂モノマ溶液と硬化剤溶液を混合・撹拌して均一なワニスを作製し、この混合物(熱硬化性樹脂ワニス)に、上記の酸化マグネシウム粉末340部(熱硬化性樹脂固形分と酸化マグネシウム粉末を合わせた体積中の46体積%に相当、以下体積%のみ表記する)およびメチルイソブチルケトン(和光純薬製)67部を加えて混練し、エポキシ樹脂ワニスを調製した。   The above epoxy resin monomer solution and curing agent solution are mixed and stirred to prepare a uniform varnish, and to this mixture (thermosetting resin varnish), 340 parts of the above magnesium oxide powder (thermosetting resin solid content and oxidation) An epoxy resin varnish was prepared by adding and corresponding to 46% by volume of the combined volume of magnesium powder, and the following volume%) and 67 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.).

上記のエポキシ樹脂ワニスを、厚さ100μmのガラス繊維不織布基材に含浸し加熱による乾燥をして半硬化状態のプリプレグを得た。
作製したプリプレグ4枚とその両側に厚さ18μmの銅箔(福田金属製「CF−T9C」)を配置し、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、厚さ0.8mmの銅張り積層板を得た。
The above epoxy resin varnish was impregnated into a glass fiber non-woven fabric substrate having a thickness of 100 μm and dried by heating to obtain a semi-cured prepreg.
Four prepregs prepared and a copper foil with a thickness of 18 μm ("CF-T9C" made by Fukuda Metal) are placed on both sides, and heat and pressure are formed for 90 minutes under conditions of temperature 175 ° C and pressure 4MPa to integrate A 0.8 mm copper-clad laminate was obtained.

実施例1で得た銅張り積層板について厚さ方向の熱伝導率、耐湿絶縁性、ドリル加工性を測定した結果を、エポキシ樹脂組成物の配合組成と共に表1にまとめて示す。なお、エポキシ樹脂組成物の配合組成は、各成分の固形分の合計体積を100体積%としたときの値を記載した。測定方法は、以下に示すとおりである。
厚さ方向の熱伝導率:銅張り積層板の銅箔をエッチングにより除去した後、50mm×120mmの板状試料を切り出し、プローブ法に準拠して室温で測定した。
耐湿絶縁性:銅張り積層板の銅箔をエッチング加工し、導体幅150μm、導体間隔150μmのくし型パターンを形成した。この試料を85℃−85%の恒温恒湿槽中に入れ、導体間に50Vの電圧をかけた。そして、500時間経過後に導体間の絶縁抵抗を測定した。そのとき1.0×109Ω以上であれば「○」、1.0×10Ω未満であれば「×」の評価とした。
ドリル加工性:銅張り積層板に、φ1.0mmのドリルを使用して、孔明けを3000穴行なった。その孔明けの前と後にドリル刃の面積を測定し、孔明け前のドリル刃の面積を100%としたときの孔明け後のドリル刃の面積を、孔明け後の摩耗量とした。孔明け後の摩耗量が20%未満であれば「○」、20%以上であれば「×」の評価とした。
なお、上記評価の「○」は「良好」、「×」は「不良」を意味する。
The thermal conductivity in the thickness direction, the moisture-proof insulation, and the drillability of the copper-clad laminate obtained in Example 1 were measured. The results are shown in Table 1 together with the composition of the epoxy resin composition. In addition, the compounding composition of the epoxy resin composition described the value when the total volume of solid content of each component is 100 volume%. The measuring method is as follows.
Thermal conductivity in the thickness direction: After removing the copper foil of the copper-clad laminate by etching, a plate-like sample of 50 mm × 120 mm was cut out and measured at room temperature according to the probe method.
Moisture-proof insulation: The copper foil of a copper-clad laminate was etched to form a comb-shaped pattern having a conductor width of 150 μm and a conductor spacing of 150 μm. The sample was placed in a constant temperature and humidity chamber at 85 ° C. and 85%, and a voltage of 50 V was applied between the conductors. After 500 hours, the insulation resistance between the conductors was measured. At that time, if it is 1.0 × 10 9 Ω or more, “○”, and if it is less than 1.0 × 10 9 Ω, it was evaluated as “×”.
Drillability: A copper-clad laminate was subjected to 3,000 holes using a drill of φ 1.0 mm. The area of the drill bit was measured before and after the drilling, and the area of the drill bit after drilling when the area of the drill bit before drilling was 100% was taken as the wear amount after drilling. When the wear amount after drilling was less than 20%, the evaluation was "o", and when it was 20% or more, the evaluation was "x".
In addition, "(circle)" of the said evaluation means "good" and "x" means "defect."

実施例1においては、積層板の厚さ方向の熱伝導率が3.5W/m・Kであり、積層板の耐湿絶縁性、ドリル加工性共に良好であった。   In Example 1, the thermal conductivity in the thickness direction of the laminate was 3.5 W / m · K, and both the moisture-proof insulation and the drillability of the laminate were good.

比較例1
実施例1において、シリカ膜を形成していない酸化マグネシウム粉末として、汎用の酸化マグネシウム(協和化学製「3320」,平均粒径20μm)をシランカップリング剤処理したものを用いる以外は実施例1と同様にしてプリプレグおよび銅張り積層板を得た。
比較例1においては、酸化マグネシウム粉末のシランカップリング剤による表面処理だけでは充分でなく、積層板の耐湿絶縁性が悪化した。
Comparative Example 1
Example 1 and Example 1 except that general-purpose magnesium oxide ("3320" manufactured by Kyowa Chemical Co., Ltd., average particle diameter 20 μm) treated with a silane coupling agent is used as magnesium oxide powder not having a silica film formed thereon. In the same manner, a prepreg and a copper-clad laminate were obtained.
In Comparative Example 1, the surface treatment of the magnesium oxide powder with the silane coupling agent was not sufficient, and the moisture-proof insulation of the laminate deteriorated.

比較例2
実施例1において、酸化マグネシウム粉末の代わりに、アルミナ(デンカ製「DAW−10」,平均粒径10μm)を46体積%使用する以外は実施例1と同様にしてプリプレグおよび銅張り積層板を得た。
比較例2においては、積層板の厚さ方向の熱伝導率と耐湿絶縁性は実施例1とほぼ同等であったが、ドリル加工性が悪化した。
Comparative example 2
A prepreg and a copper-clad laminate were obtained in the same manner as in Example 1 except that 46% by volume of alumina ("DAW-10" made by Denka, average particle diameter 10 μm) was used instead of magnesium oxide powder in Example 1. The
In Comparative Example 2, although the thermal conductivity in the thickness direction of the laminate and the moisture-proof insulation were substantially the same as in Example 1, the drillability deteriorated.

実施例2
実施例1において、「EP828」の代わりに、ビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)を用いる以外は実施例1と同様にしてプリプレグおよび銅張り積層板を得た。尚、「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマと分子構造式(式2)において、m=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
この積層板の厚さ方向の熱伝導率は5.7W/m・Kと大きく向上した。
Example 2
A prepreg and a copper-clad laminate were prepared in the same manner as in Example 1 except that instead of "EP 828", an epoxy resin monomer having a biphenyl skeleton ("YL 6121 H" made by Japan Epoxy Resin, epoxy equivalent 175) was used. Obtained. Incidentally, “YL 6121 H” is an epoxy resin monomer where R = —CH 3 , n = 0.1 in the molecular structural formula (formula 1) described above, and m = 0.1 in the molecular structural formula (formula 2) An epoxy resin monomer containing an equimolar amount of the epoxy resin monomer.
The thermal conductivity of this laminate in the thickness direction was greatly improved to 5.7 W / m · K.

実施例3、4
実施例2において、原料となる酸化マグネシウム中のシリカ含有量を、それぞれ表1に示すように変えて焼成した酸化マグネシウム粉末を使用する以外は、実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
これら積層板の厚さ方向の熱伝導率を測定した結果、シリカ含有量が増加すると積層板の厚さ方向の熱伝導率は若干低下したものの、良好な値であった。
Examples 3 and 4
A prepreg and a copper-clad laminate are prepared in the same manner as in Example 2 except that a magnesium oxide powder is used which is calcined by changing the content of silica in the raw material magnesium oxide as shown in Table 1 in Example 2. I got
As a result of measuring the thermal conductivity in the thickness direction of these laminates, when the silica content increased, the thermal conductivity in the thickness direction of the laminate decreased slightly, but it was a good value.

比較例3、4
実施例2において、原料となる酸化マグネシウム中のシリカ含有量を、それぞれ表3に示すように変えて焼成した酸化マグネシウム粉末を使用する以外は、実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
これら積層板の厚さ方向の熱伝導率及び耐湿絶縁性を測定した結果、シリカ含有量が0.1質量%(比較例3)では、溶融したシリカが酸化マグネシウム粉末の表面を充分に覆うことができず、積層板の耐湿絶縁性が低下した。また、シリカの含有量が7.5質量%(比較例4)では、酸化マグネシウム粉末の表面を覆うシリカ膜の厚みが厚くなるため、シリカ膜が熱抵抗になり、積層板の厚さ方向の熱伝導率が2.8W/m・Kと実施例2より大きく悪化した。
Comparative Examples 3 and 4
A prepreg and a copper-clad laminate are prepared in the same manner as in Example 2 except that a magnesium oxide powder is used which is calcined by changing the content of silica in the raw material magnesium oxide as shown in Table 3 in Example 2. I got
As a result of measuring the thermal conductivity and the moisture-proof insulation in the thickness direction of these laminates, in the case where the silica content is 0.1% by mass (Comparative Example 3), the fused silica sufficiently covers the surface of the magnesium oxide powder. And the moisture-proof insulation of the laminate was reduced. In addition, in the case where the content of silica is 7.5% by mass (Comparative Example 4), the thickness of the silica film covering the surface of the magnesium oxide powder is increased, so the silica film becomes a thermal resistance, and the thickness direction of the laminate is The thermal conductivity was much worse than that of Example 2 at 2.8 W / m · K.

実施例5
実施例2において、酸化マグネシウム粉末の焼成温度を1800℃にした酸化マグネシウム粉末を使用する以外は、実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
実施例5においては、積層板の厚さ方向の熱伝導率、耐湿絶縁性、ドリル加工性共に良好であった。
Example 5
A prepreg and a copper-clad laminate were obtained in the same manner as in Example 2 except that a magnesium oxide powder was used in which the sintering temperature of the magnesium oxide powder was set to 1800 ° C. in Example 2.
In Example 5, the thermal conductivity in the thickness direction of the laminate, the moisture-proof insulation, and the drillability were all good.

比較例5、6
実施例2において、酸化マグネシウム粉末の焼成温度をそれぞれ1500℃(比較例5)、1900℃(比較例6)にした酸化マグネシウム粉末を使用する以外は、実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
焼成温度が1500℃(比較例5)では、酸化マグネシウム中のシリカが溶融しないため、シリカ膜が酸化マグネシウム粉末の表面を覆うことができず、積層板の耐湿絶縁性が悪化した。また、焼成温度が1900℃(比較例6)では、溶融したシリカが揮発してしまい、酸化マグネシウム粉末表面にシリカ膜を形成することができず、積層板の耐湿絶縁性が悪化した。
Comparative Examples 5 and 6
A prepreg and a copper-clad in the same manner as in Example 2 except that magnesium oxide powder in which the calcination temperature of the magnesium oxide powder is made 1500 ° C. (Comparative Example 5) and 1900 ° C. (Comparative Example 6) in Example 2 is used. I got a laminate.
At a firing temperature of 1500 ° C. (Comparative Example 5), the silica in the magnesium oxide was not melted, so the silica film could not cover the surface of the magnesium oxide powder, and the moisture-proof insulation of the laminate deteriorated. In addition, at a firing temperature of 1900 ° C. (Comparative Example 6), the fused silica was volatilized, and a silica film could not be formed on the surface of the magnesium oxide powder, and the moisture-proof insulation of the laminate deteriorated.

実施例6、7
実施例2において、酸化マグネシウム粉末の平均粒径をそれぞれ10μm(実施例6)、80μm(実施例7)にした酸化マグネシウム粉末を使用する以外は実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
実施例6、7においては、積層板の厚さ方向の熱伝導率、耐湿絶縁性、ドリル加工性共に良好であった。
Examples 6, 7
A prepreg and a copper-clad laminate were prepared in the same manner as in Example 2 except that magnesium oxide powders having an average particle diameter of 10 μm (Example 6) and 80 μm (Example 7) in Example 2 were used. I got
In Examples 6 and 7, the thermal conductivity in the thickness direction of the laminate, the moisture-proof insulation, and the drillability were all good.

比較例7、8
実施例2において、酸化マグネシウム粉末の平均粒径をそれぞれ5μm(比較例7)、100μm(比較例8)にした酸化マグネシウム粉末を使用する以外は実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
平均粒径が5μm(比較例7)では、粒径が小さいため、積層板の厚さ方向の熱伝導率が悪化した。また、平均粒径が100μm(比較例8)では、粒径が大きいため、積層板の耐湿絶縁性が悪化した。
Comparative Examples 7 and 8
A prepreg and a copper-clad laminate in the same manner as in Example 2 except that magnesium oxide powders having an average particle diameter of 5 μm (Comparative Example 7) and 100 μm (Comparative Example 8) in Example 2 are used. I got
When the average particle diameter is 5 μm (Comparative Example 7), the particle diameter is small, so the thermal conductivity in the thickness direction of the laminate is deteriorated. Moreover, in 100 micrometers (comparative example 8) of average particle diameter, since the particle diameter is large, the moisture-proof insulation of the laminated board deteriorated.

実施例8、9
実施例2において、酸化マグネシウム粉末の含有量をそれぞれ20体積%(実施例8)、80体積%(実施例9)にしたエポキシ樹脂ワニスを使用する以外は実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
酸化マグネシウム粉末の含有量が20体積%(実施例8)では、積層板の厚さ方向の熱伝導率が若干低下したものの、良好な値であった。また、酸化マグネシウム粉末の含有量が80体積%(実施例9)では、積層板の厚さ方向の熱伝導率が大きく向上し、また耐湿絶縁性、ドリル加工性も良好であった。
Examples 8 and 9
A prepreg and copper in the same manner as in Example 2 except that an epoxy resin varnish in which the content of magnesium oxide powder is made to be 20% by volume (Example 8) and 80% by volume (Example 9) in Example 2 is used. A tension laminate was obtained.
When the content of the magnesium oxide powder was 20% by volume (Example 8), although the thermal conductivity in the thickness direction of the laminate slightly decreased, it was a good value. In addition, when the content of the magnesium oxide powder was 80% by volume (Example 9), the thermal conductivity in the thickness direction of the laminated board was greatly improved, and the moisture insulation resistance and the drillability were also good.

比較例9、10
実施例2において、酸化マグネシウム粉末の含有量をそれぞれ15体積%(比較例9)、85体積%(比較例10)にしたエポキシ樹脂ワニスを使用する以外は実施例2と同様にしてプリプレグおよび銅張り積層板を得た。
酸化マグネシウム粉末の含有量が15体積%(比較例9)では、積層板の厚さ方向の熱伝導率が大きく低下した。また、酸化マグネシウム粉末の含有量が85体積%(比較例10)では、ワニスの粘度が高くなり、ガラス繊維不織布基材に均一に含浸できなかったため、積層板は得られなかった。
Comparative Examples 9 and 10
A prepreg and copper are prepared in the same manner as in Example 2 except that an epoxy resin varnish in which the content of magnesium oxide powder is made 15 volume% (Comparative Example 9) and 85 volume% (Comparative Example 10) in Example 2 is used. A tension laminate was obtained.
When the content of the magnesium oxide powder was 15% by volume (Comparative Example 9), the thermal conductivity in the thickness direction of the laminate decreased significantly. Further, when the content of the magnesium oxide powder was 85% by volume (Comparative Example 10), the viscosity of the varnish was high, and the glass fiber non-woven fabric substrate could not be uniformly impregnated, so that a laminate was not obtained.

実施例10〜12
実施例2において、酸化マグネシウム粉末の含有量を半分に減らして23体積%とする。そして、残りの半分を、酸化マグネシウム粉末以外の無機充填材として、アルミナ(実施例10)、水酸化アルミニウム(実施例11)、シリカ(実施例12)のそれぞれとし、その含有量を23体積%としたエポキシ樹脂ワニスを使用する。それ以外は、実施例2と同様にしてプリプレグおよび銅張り積層板を得た。なお、使用した酸化マグネシウム粉末以外の無機充填材は、下記のとおりである。
アルミナ (熱伝導率:30W/m・K、平均粒径:20μm)
水酸化アルミニウム(熱伝導率:3W/m・K、平均粒径:10μm)
シリカ (熱伝導率:1W/m・K、平均粒径:20μm)
これら積層板の厚さ方向の熱伝導率を測定した結果、酸化マグネシウム(熱伝導率:35W/m・K)より熱伝導率の低い水酸化アルミニウム(実施例11)やシリカ(実施例12)の配合では、積層板の厚さ方向の熱伝導率は若干低下したものの、良好な値であった。また、積層板の耐湿絶縁性やドリル加工性も良好であった。
Examples 10 to 12
In Example 2, the content of magnesium oxide powder is halved to 23 volume%. And the remaining half is made into each of alumina (Example 10), aluminum hydroxide (Example 11), and silica (Example 12) as inorganic fillers other than magnesium oxide powder, and the content is 23 volume% Use epoxy resin varnish. A prepreg and a copper-clad laminate were obtained in the same manner as in Example 2 except the above. In addition, inorganic fillers other than the used magnesium oxide powder are as follows.
Alumina (thermal conductivity: 30 W / m · K, average particle size: 20 μm)
Aluminum hydroxide (thermal conductivity: 3 W / m · K, average particle size: 10 μm)
Silica (thermal conductivity: 1 W / m · K, average particle size: 20 μm)
As a result of measuring the heat conductivity of the thickness direction of these laminated plates, aluminum hydroxide (Example 11) and silica (Example 12) whose heat conductivity is lower than magnesium oxide (heat conductivity: 35 W / m · K) The thermal conductivity in the thickness direction of the laminate slightly decreased, but it was a good value. Moreover, the moisture-proof insulation of a laminated board and drill processability were also favorable.

比較例11、12
実施例10において、アルミナの平均粒径をそれぞれ0.05μm(比較例11)、60μm(比較例12)にしたアルミナを使用する以外は、実施例10と同様にしてプリプレグおよび銅張り積層板を得た。
アルミナの平均粒径が0.05μm(比較例11)では、粒径が小さいため、積層板の厚さ方向の熱伝導率が3.0W/m・Kと実施例10より大きく悪化した。また、アルミナの平均粒径が60μm(比較例12)では、粒径が大きいため、積層板の耐湿絶縁性やドリル加工性が悪化した。
Comparative Examples 11 and 12
A prepreg and a copper-clad laminate were prepared in the same manner as in Example 10 except that alumina having an average particle diameter of 0.05 μm (Comparative Example 11) and 60 μm (Comparative Example 12) in Example 10 was used. Obtained.
When the average particle size of alumina is 0.05 μm (Comparative Example 11), the thermal conductivity in the thickness direction of the laminate is 3.0 W / m · K, which is much worse than Example 10, because the particle size is small. In addition, in the case where the average particle diameter of alumina is 60 μm (Comparative Example 12), the particle diameter is large, and thus the moisture insulation resistance and the drillability of the laminate are deteriorated.

実施例13
実施例10において、酸化マグネシウム粉末の含有量を5体積%、アルミナの含有量を15体積%(酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量を20体積%)としたエポキシ樹脂ワニスを使用する以外は、実施例10と同様にしてプリプレグおよび銅張り積層板を得た。
酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量が20体積%では、積層板の厚さ方向の熱伝導率が若干低下したものの、良好な値であった。
Example 13
In Example 10, an epoxy resin containing 5 vol% of magnesium oxide powder and 15 vol% of alumina (total content of magnesium oxide powder and inorganic filler other than magnesium oxide powder is 20 vol%) A prepreg and a copper-clad laminate were obtained in the same manner as in Example 10 except that a varnish was used.
When the total content of the magnesium oxide powder and the inorganic filler other than the magnesium oxide powder was 20% by volume, although the thermal conductivity in the thickness direction of the laminate slightly decreased, it was a good value.

実施例14
実施例10において、酸化マグネシウム粉末の含有量を50体積%、アルミナの含有量を30体積%(酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量を80体積%)としたエポキシ樹脂ワニスを使用する以外は、実施例10と同様にしてプリプレグおよび銅張り積層板を得た。
酸化マグネシウム粉末と無機充填材の総含有量が80体積%では、積層板の厚さ方向の熱伝導率が大きく向上し、また耐湿絶縁性、ドリル加工性も良好であった。
Example 14
In Example 10, an epoxy resin containing 50% by volume of magnesium oxide powder and 30% by volume of alumina (80% by volume of magnesium oxide powder and inorganic filler other than magnesium oxide powder) A prepreg and a copper-clad laminate were obtained in the same manner as in Example 10 except that a varnish was used.
When the total content of the magnesium oxide powder and the inorganic filler was 80% by volume, the thermal conductivity in the thickness direction of the laminate significantly improved, and the moisture insulation resistance and the drillability were also good.

比較例13
実施例10において、酸化マグネシウム粉末の含有量を5体積%、アルミナの含有量を10体積%(酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量を15体積%)としたエポキシ樹脂ワニスを使用する以外は、実施例10と同様にしてプリプレグおよび銅張り積層板を得た。
酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量が15体積%では、積層板の厚さ方向の熱伝導率が大きく低下した。
Comparative Example 13
In Example 10, an epoxy resin containing 5 vol% of magnesium oxide powder and 10 vol% of alumina (total content of magnesium oxide powder and inorganic filler other than magnesium oxide powder is 15 vol%) A prepreg and a copper-clad laminate were obtained in the same manner as in Example 10 except that a varnish was used.
When the total content of the magnesium oxide powder and the inorganic filler other than the magnesium oxide powder is 15% by volume, the thermal conductivity in the thickness direction of the laminated board is significantly reduced.

比較例14
実施例10において、酸化マグネシウム粉末の含有量を50体積%、アルミナの含有量を35体積%(酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量を85体積%)としたエポキシ樹脂ワニスを使用する以外は、実施例10と同様にしてプリプレグおよび銅張り積層板を得た。
酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量が85体積%では、ワニスの粘度が高くなり、ガラス繊維不織布基材に均一に含浸できなかったため、積層板は得られなかった。
Comparative Example 14
In Example 10, an epoxy resin containing 50% by volume of magnesium oxide powder and 35% by volume of alumina (85% by volume of magnesium oxide powder and inorganic filler other than magnesium oxide powder) A prepreg and a copper-clad laminate were obtained in the same manner as in Example 10 except that a varnish was used.
When the total content of the magnesium oxide powder and the inorganic filler other than the magnesium oxide powder is 85% by volume, the viscosity of the varnish is high, and the glass fiber non-woven fabric substrate can not be uniformly impregnated.

Figure 2012116715
Figure 2012116715

Figure 2012116715
Figure 2012116715

Figure 2012116715
Figure 2012116715

Figure 2012116715
Figure 2012116715

表1〜4から明らかなように、本発明で使用する酸化マグネシウム粉末の製造は、シリカ含有量が1〜6質量%である酸化マグネシウムを原料として使用し、この酸化マグネシウムを1650℃〜1800℃で焼成することにより、耐湿特性、加工性に優れかつ熱伝導性が良好な絶縁層を製造することができることが理解できる(実施例2〜5と比較例3〜6の対照)。比較例3では、酸化マグネシウムのシリカ含有量が少ないため、耐湿絶縁性が低下している。比較例4では、酸化マグネシウムのシリカ含有量が多いため、積層板の厚さ方向の熱伝導率が低下している。また、比較例5では、酸化マグネシウムの焼成温度が低いため、積層板の耐湿絶縁性が低下している。比較例6では、酸化マグネシウムの焼成温度が高いため、積層板の耐湿絶縁性が低下している。 As apparent from Table 1-4, manufacture of magnesium oxide powder used in the present invention, magnesium oxide silica content is 1-6 wt% was used as starting material, the magnesium oxide 1650 ° C. to 1800 It can be understood that the insulating layer having excellent moisture resistance and processability and good thermal conductivity can be produced by baking at .degree. C. (control of Examples 2 to 5 and Comparative Examples 3 to 6). In Comparative Example 3, the moisture-proof insulation property is lowered because the silica content of magnesium oxide is small. In Comparative Example 4, since the silica content of magnesium oxide is large, the thermal conductivity in the thickness direction of the laminate is lowered. Further, in Comparative Example 5, since the firing temperature of magnesium oxide is low, the moisture-proof insulation of the laminate is lowered. In the comparative example 6, since the calcination temperature of magnesium oxide is high, the moisture-proof insulation of a laminated board is falling.

また、本発明に係る第1の熱硬化性樹脂組成物の製造法は、上記の方法により製造された酸化マグネシウム粉末を熱硬化性樹脂と混合し、前記酸化マグネシウム粉末の平均粒径及び含有量を特定することにより、耐湿特性、加工性に優れかつ熱伝導性が良好な熱硬化性樹脂組成物を得ることができることが理解できる(実施例2、6〜9と比較例7〜10の対照)。比較例7では、酸化マグネシウム粉末の平均粒径が小さいため、積層板の厚さ方向の熱伝導率が低下している。比較例8では、酸化マグネシウム粉末の平均粒径が大きいため、積層板の耐湿絶縁性が低下している。また、比較例9では、酸化マグネシウム粉末の含有量が少ないため、積層板の厚さ方向の熱伝導率が低下している。比較例10では、酸化マグネシウム粉末の含有量が多いため、樹脂組成物の粘度が高くなり、シート状繊維基材に均一に含浸することができず、外観の均一なプリプレグを製造することができなかった。   Moreover, the manufacturing method of the 1st thermosetting resin composition which concerns on this invention mixes the magnesium oxide powder manufactured by said method with a thermosetting resin, The average particle diameter and content of the said magnesium oxide powder It can be understood that a thermosetting resin composition excellent in moisture resistance characteristics, processability and thermal conductivity can be obtained by specifying (Control of Example 2, 6 to 9 and Comparative Examples 7 to 10). ). In Comparative Example 7, since the average particle diameter of the magnesium oxide powder is small, the thermal conductivity in the thickness direction of the laminate is reduced. In Comparative Example 8, since the average particle diameter of the magnesium oxide powder is large, the moisture insulation resistance of the laminate is lowered. Moreover, in Comparative Example 9, since the content of the magnesium oxide powder is small, the thermal conductivity in the thickness direction of the laminate is lowered. In Comparative Example 10, since the content of the magnesium oxide powder is large, the viscosity of the resin composition is high, and the sheet-like fiber substrate can not be uniformly impregnated, and a prepreg having a uniform appearance can be produced. It was not.

さらに、本発明に係る第2の熱硬化性樹脂組成物の製造法は、上記の方法により製造された酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材を混合し、前記酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の平均粒径及び含有量を特定することにより、耐湿特性、加工性に優れかつ熱伝導性が良好な絶縁層を製造することができる熱硬化性樹脂組成物を得ることができることが理解できる(実施例10〜14と比較例11〜14の対照)。比較例11では、酸化マグネシウム粉末以外の無機充填材の平均粒径が小さいため、厚さ方向の熱伝導率が低下している。比較例12では、酸化マグネシウム粉末以外の無機充填材の平均粒径が大きいため、耐湿絶縁性が低下している。比較例13では、酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量が少ないため、厚さ方向の熱伝導率が低下している。比較例14では、酸化マグネシウム粉末と酸化マグネシウム粉末以外の無機充填材の総含有量が多いため、樹脂組成物の粘度が高くなり、シート状繊維基材に均一に含浸することができず、外観の均一なプリプレグを製造することができなかった。   Furthermore, the manufacturing method of the 2nd thermosetting resin composition concerning the present invention mixes inorganic fillers other than magnesium oxide powder and magnesium oxide powder manufactured by the above-mentioned method, and said magnesium oxide powder and magnesium oxide A thermosetting resin composition capable of producing an insulating layer having excellent moisture resistance and processability and good thermal conductivity by specifying the average particle size and content of an inorganic filler other than powder. (Controls of Examples 10 to 14 and Comparative Examples 11 to 14). In Comparative Example 11, since the average particle size of the inorganic filler other than the magnesium oxide powder is small, the thermal conductivity in the thickness direction is lowered. In Comparative Example 12, since the average particle size of the inorganic filler other than the magnesium oxide powder is large, the moisture insulation resistance is lowered. In Comparative Example 13, since the total content of the magnesium oxide powder and the inorganic filler other than the magnesium oxide powder is small, the thermal conductivity in the thickness direction is lowered. In Comparative Example 14, since the total content of the magnesium oxide powder and the inorganic filler other than the magnesium oxide powder is large, the viscosity of the resin composition becomes high, and the sheet-like fiber substrate can not be impregnated uniformly. Uniform prepreg could not be manufactured.

Claims (7)

酸化マグネシウム粉末を含む熱硬化性樹脂組成物の製造法であって、
前記酸化マグネシウム粉末は、シリカ含有量が1〜6質量%である酸化マグネシウムを原料として使用し、この酸化マグネシウムを1650℃〜1800℃で焼成することにより、酸化マグネシウム粉末の表面にシリカ膜を形成したものであり、かつ、平均粒径d1が、10μm≦d1≦80μmの範囲であり、
熱硬化性樹脂固形分と酸化マグネシウム粉末を合わせた体積中に、前記酸化マグネシウム粉末の含有量が20〜80体積%となるように混合することを特徴とする熱硬化性樹脂組成物の製造法。
A process for producing a thermosetting resin composition comprising magnesium oxide powder,
The magnesium oxide powder uses magnesium oxide having a silica content of 1 to 6% by mass as a raw material, and forms a silica film on the surface of the magnesium oxide powder by firing the magnesium oxide at 1650 ° C. to 1800 ° C. And the average particle diameter d1 is in the range of 10 μm ≦ d1 ≦ 80 μm.
A method for producing a thermosetting resin composition comprising mixing the thermosetting resin solid content and the magnesium oxide powder so that the content of the magnesium oxide powder is 20 to 80% by volume in the combined volume of the solid content of the thermosetting resin and the magnesium oxide powder. .
前記酸化マグネシウム粉末の一部を酸化マグネシウム粉末以外の無機充填材に置換え、
前記無機充填材は、平均粒径d2が、0.1μm≦d2≦50μmの範囲であり、
熱硬化性樹脂固形分と酸化マグネシウム粉末と無機充填材を合わせた体積中に、前記酸化マグネシウム粉末の含有量が5〜50体積%、無機充填材の含有量が15〜30体積%となるように混合することを特徴とする請求項記載の熱硬化性樹脂組成物の製造法。
Replacing a part of the magnesium oxide powder with an inorganic filler other than the magnesium oxide powder,
The inorganic filler has an average particle diameter d2 in the range of 0.1 μm ≦ d2 ≦ 50 μm,
The content of the magnesium oxide powder is 5 to 50% by volume, and the content of the inorganic filler is 15 to 30% by volume in the total volume of the thermosetting resin solid content, the magnesium oxide powder and the inorganic filler. preparation of the thermosetting resin composition of claim 1, wherein the mixing.
前記酸化マグネシウム粉末が、カップリング剤又は分散剤にて表面処理を施されたものであることを特徴とする請求項又は記載の熱硬化性樹脂組成物の製造法。 The method for producing a thermosetting resin composition according to claim 1 or 2 , wherein the magnesium oxide powder is subjected to surface treatment with a coupling agent or a dispersing agent. 熱硬化性樹脂組成物が、(式1)で示す分子構造に代表される、液晶性エポキシ樹脂モノマを配合したエポキシ樹脂組成物であることを特徴とする請求項のいずれかに記載の熱硬化性樹脂組成物の製造法。
Figure 2012116715
The thermosetting resin composition according to any one of claims 1 to 3 , wherein the thermosetting resin composition is an epoxy resin composition containing a liquid crystalline epoxy resin monomer represented by the molecular structure represented by (Formula 1). Of the thermosetting resin composition of
Figure 2012116715
(式1)においてRが水素である、(式2)で示す分子構造の液晶性エポキシ樹脂モノマを配合したエポキシ樹脂組成物であることを特徴とする請求項記載の熱硬化性樹脂組成物の製造法。
Figure 2012116715
5. A thermosetting resin composition according to claim 4 , which is an epoxy resin composition containing a liquid crystalline epoxy resin monomer having a molecular structure represented by (formula 2), wherein R is hydrogen in (formula 1). Manufacturing method.
Figure 2012116715
請求項のいずれかに記載の方法により製造された熱硬化性樹脂組成物をシート状に形成し、これを加熱して乾燥することを特徴とするプリプレグの製造法。 A method for producing a prepreg, comprising forming the thermosetting resin composition produced by the method according to any one of claims 1 to 5 into a sheet, heating it and drying it. 請求項記載の方法により製造されたプリプレグを、電気絶縁層を構成するためのプリプレグ層の全部又は一部の層として使用し加熱加圧成形することを特徴とする積層板の製造法。 A method for producing a laminate, wherein the prepreg produced by the method according to claim 6 is used as a whole or a part of a prepreg layer for forming an electrical insulating layer, and heat and pressure are formed.
JP2010268924A 2010-12-02 2010-12-02 Method for producing thermosetting resin composition, method for producing prepreg and laminate Expired - Fee Related JP5447355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010268924A JP5447355B2 (en) 2010-12-02 2010-12-02 Method for producing thermosetting resin composition, method for producing prepreg and laminate
CN2011100473213A CN102485804A (en) 2010-12-02 2011-02-23 Manufacturing method of magnesium oxide powder, manufacturing method of thermoset resin composition, manufacturing method of prepreg and overlapped plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268924A JP5447355B2 (en) 2010-12-02 2010-12-02 Method for producing thermosetting resin composition, method for producing prepreg and laminate

Publications (3)

Publication Number Publication Date
JP2012116715A JP2012116715A (en) 2012-06-21
JP2012116715A5 true JP2012116715A5 (en) 2012-08-23
JP5447355B2 JP5447355B2 (en) 2014-03-19

Family

ID=46151379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268924A Expired - Fee Related JP5447355B2 (en) 2010-12-02 2010-12-02 Method for producing thermosetting resin composition, method for producing prepreg and laminate

Country Status (2)

Country Link
JP (1) JP5447355B2 (en)
CN (1) CN102485804A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972179B2 (en) * 2013-01-15 2016-08-17 タテホ化学工業株式会社 Coated magnesium oxide powder and method for producing the same
JP6322794B2 (en) * 2014-03-12 2018-05-16 株式会社東芝 Electrical insulation materials and molded electrical equipment
JP6300020B2 (en) * 2014-06-16 2018-03-28 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board, and magnesium oxide
CN110475749A (en) * 2017-03-28 2019-11-19 宇部材料工业株式会社 Coated magnesium oxide particle and its manufacturing method and heat conductive resin composition
CN110204858A (en) * 2018-02-28 2019-09-06 中国电力科学研究院有限公司 Low temperature resistant insulation high thermal conductivity impregnated material of one kind and preparation method thereof
WO2020203711A1 (en) * 2019-03-29 2020-10-08 タテホ化学工業株式会社 Spherical magnesium oxide, manufacturing method thereof, thermal conductive filler and resin composition
US11884553B2 (en) * 2020-12-25 2024-01-30 Ube Material Industries, Ltd. Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder
WO2022208962A1 (en) * 2021-03-30 2022-10-06 Tdk株式会社 Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465880A (en) * 1974-07-02 1977-03-02 Quigley Co Manufacture of magnesia
JPS61283648A (en) * 1985-06-11 1986-12-13 Sumitomo Bakelite Co Ltd Highly thermal conductive epoxy resin molding material
US4677026A (en) * 1985-07-17 1987-06-30 Ube Industries, Ltd. Resin composition for sealing electronic parts, and hydration-resistant magnesia powder and process for preparation thereof
JPS62296303A (en) * 1986-06-16 1987-12-23 新日本化学工業株式会社 Magnesia sintered powder for electric insulation
JPS63315515A (en) * 1987-06-19 1988-12-23 Ube Ind Ltd Granulated magnesia substance and production thereof
JP2786191B2 (en) * 1987-08-14 1998-08-13 旭硝子株式会社 Method for producing magnesium oxide powder
JP2645086B2 (en) * 1988-06-23 1997-08-25 日本化学工業株式会社 Silica-coated magnesium hydroxide and method for producing the same
JP2731854B2 (en) * 1989-02-10 1998-03-25 協和化学工業株式会社 Method for producing high hydration resistant and high fluidity magnesium oxide
JPH0379666A (en) * 1989-08-22 1991-04-04 Showa Denko Kk Polyamide-based resin composition
CN100343325C (en) * 2000-08-18 2007-10-17 长春人造树脂厂股份有限公司 Fire-retarded epoxy resin composition, its preparing method and use
CN1117699C (en) * 2000-11-03 2003-08-13 清华大学 Preparation of high temperature resisting electrothermal insulating magnesia material
JP4046491B2 (en) * 2001-07-24 2008-02-13 タテホ化学工業株式会社 Method for producing double oxide-coated magnesium oxide
KR100785197B1 (en) * 2003-10-03 2007-12-11 다테호 가가쿠 고교 가부시키가이샤 Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
JP5010112B2 (en) * 2004-07-26 2012-08-29 新神戸電機株式会社 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JP2006036868A (en) * 2004-07-26 2006-02-09 Shin Kobe Electric Mach Co Ltd Prepreg, laminate and printed wiring board
JP4315895B2 (en) * 2004-12-01 2009-08-19 タテホ化学工業株式会社 Phosphorus-containing coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
JP4273099B2 (en) * 2005-07-29 2009-06-03 黒崎播磨株式会社 Spraying material for repairing electric furnace lining for steelmaking and method for repairing spraying of electric furnace lining for steelmaking using the same
JP4793277B2 (en) * 2007-02-14 2011-10-12 新神戸電機株式会社 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
JP5056620B2 (en) * 2008-06-30 2012-10-24 新神戸電機株式会社 Wiring board

Similar Documents

Publication Publication Date Title
JP5447355B2 (en) Method for producing thermosetting resin composition, method for producing prepreg and laminate
JP2012116715A5 (en)
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
CN102516718B (en) Resin composition and metal-based copper-clad plate using resin composition as heat conducting insulation layer
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
WO2012150661A1 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
JP7055279B2 (en) Surface-roughened hexagonal boron nitride particles and their manufacturing methods, as well as compositions, resin sheets, prepregs, metal leaf-clad laminates, printed wiring boards
JP6481494B2 (en) Inorganic filler-containing cured epoxy resin and laminate using the same
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
WO2005007742A1 (en) Resin composition for printed wiring board, prepreg, laminate and printed wiring board using the same
CN103992622A (en) Halogen-free resin composition, prepreg prepared from halogen-free resin composition and laminated board prepared from halogen-free resin composition and used for printed circuit
CN110461937B (en) Resin composition, resin sheet, cured resin product, resin substrate, and laminated substrate
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JP2018115334A (en) Epoxy resin material and multilayer substrate
CN105131597B (en) A kind of halogen-free resin composition and use its prepreg and laminate for printed circuits
JP4793277B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
JP4479659B2 (en) Insulating layer manufacturing method
JP5263076B2 (en) Magnesium oxide powder production method, thermosetting resin composition, prepreg and laminate production method
JP2011046760A5 (en)
JP5423590B2 (en) Thermosetting resin composition, prepreg and laminate
CN103897406A (en) Insulating film for printed circuit board having improved thermal conductivity, manufacturing method thereof, and printed circuit board using the same
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP5729336B2 (en) Epoxy compound, resin composition, resin sheet, laminate and printed wiring board
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
JP2015229772A (en) Production and production method of heat-conductive paste