WO2022208962A1 - Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition - Google Patents

Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition Download PDF

Info

Publication number
WO2022208962A1
WO2022208962A1 PCT/JP2021/039907 JP2021039907W WO2022208962A1 WO 2022208962 A1 WO2022208962 A1 WO 2022208962A1 JP 2021039907 W JP2021039907 W JP 2021039907W WO 2022208962 A1 WO2022208962 A1 WO 2022208962A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
resin composition
powder
composition
resin
Prior art date
Application number
PCT/JP2021/039907
Other languages
French (fr)
Japanese (ja)
Inventor
彩乃 佐藤
尭 稲垣
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2022208962A1 publication Critical patent/WO2022208962A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a magnesium oxide composition powder, a resin composition, a resin composition sheet, a laminated substrate and a reactive resin composition.
  • Magnesium oxide (MgO) powder which has excellent thermal conductivity, is being researched, developed, and used as an inorganic filler.
  • magnesium oxide powder reacts with water and changes to magnesium hydroxide, and also dissolves in acid. Therefore, by adjusting the chemical components and performing surface treatment, magnesium oxide that is imparted with water resistance and acid resistance has been developed (Patent Documents 2 to 4, Non-Patent Document 1).
  • magnesium oxide powder In order to improve the water resistance and acid resistance of magnesium oxide powder, it is effective to adjust the chemical composition of magnesium oxide powder and perform surface treatment. However, when the chemical components of the magnesium oxide powder are adjusted or the surface is treated, the high thermal conductivity of the magnesium oxide powder may deteriorate. Further improvements are required to sufficiently improve water resistance and acid resistance while maintaining the high thermal conductivity of magnesium oxide powder.
  • the present invention has been made in view of the above problems, and provides a magnesium oxide composition powder, a resin composition, a resin composition sheet, and a laminated substrate having high thermal conductivity and excellent water resistance and acid resistance. aim. Another object of the present invention is to provide a reactive resin composition that can produce a resin composition that has high thermal conductivity and excellent water resistance and acid resistance.
  • the present inventors have found that the surface of magnesium oxide particles is coated with an oxide layer containing crystalline SiO2 or a crystalline double oxide containing Si and Al. It was found that it is possible to improve water resistance and acid resistance while maintaining the high thermal conductivity of magnesium oxide powder. And the inventors have found that by using a magnesium oxide composition powder coated with an oxide layer containing crystalline SiO2 or a crystalline double oxide containing Si and Al, the thermal conductivity is high and the water resistance is high.
  • the present invention was completed by confirming that it is possible to obtain a resin composition, a resin composition sheet, a laminated substrate, and a reactive resin composition capable of producing the above-mentioned resin composition. let me That is, the present invention relates to the following inventions.
  • a magnesium oxide composition powder having magnesium oxide particles and an oxide layer covering at least part of the surface of the magnesium oxide particles, wherein the oxide layer contains crystalline SiO2 .
  • the oxide layer contains the crystalline SiO2 and an additive metal element other than Si, and the additive metal element is selected from the group consisting of alkali metals, alkaline earth metals, Al, Ti, and Zr.
  • a magnesium oxide composition comprising magnesium oxide particles and an oxide layer covering at least part of the surface of the magnesium oxide particles, wherein the oxide layer contains a crystalline multiple oxide containing Si and Al. powder.
  • the oxide layer contains the crystalline multiple oxide and an additive metal element other than Si and Al, and the additive metal element is selected from the group consisting of alkali metals, alkaline earth metals, Ti and Zr.
  • a reactive resin composition comprising a reactive curable resin composition and the magnesium oxide composition powder according to [1] to [7].
  • n is an integer of 2 to 40.
  • the present invention it is possible to provide a magnesium oxide composition powder, a resin composition, a resin composition sheet, and a laminated substrate that have high thermal conductivity and are excellent in water resistance and acid resistance. Moreover, the present invention makes it possible to provide a reactive resin composition that has high thermal conductivity and can produce a resin composition that is excellent in water resistance and acid resistance.
  • FIG. 1 is a cross-sectional view of a magnesium oxide composition powder according to one embodiment of the present invention.
  • FIG. 2 is a perspective view of a resin composition sheet according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the resin composition sheet shown in FIG. 2 taken along line III-III.
  • FIG. 4 is a perspective view of a laminated substrate according to one embodiment of the present invention. 5 is a cross-sectional view of the laminated substrate shown in FIG. 4 taken along the line VV.
  • the magnesium oxide composition powder according to the embodiment of the present invention is, for example, dispersed in an organic solvent or resin as an inorganic filler for a resin composition.
  • a resin composition, a resin composition sheet, and a laminated substrate according to embodiments of the present invention contain a resin and a magnesium oxide composition powder, and are used, for example, as materials for circuit boards of equipment.
  • the reactive resin composition contains a reactive curable resin composition and a magnesium oxide composition powder, and for example, a resin composition is produced by curing the reactive curable resin composition.
  • FIG. 1 is a cross-sectional view of a magnesium oxide composition powder according to one embodiment of the present invention.
  • Magnesium oxide composition powder 10 shown in FIG. 1 has magnesium oxide particles 11 , oxide layer 12 covering magnesium oxide particles 11 , and organic layer 13 covering oxide layer 12 .
  • the shape of the magnesium oxide particles 11 is not particularly limited.
  • the magnesium oxide particles 11 may be spherical, oval, cylindrical, or prismatic, for example.
  • the magnesium oxide particles 11 may have an average particle diameter (d50) of, for example, 1 ⁇ m or more and 50 ⁇ m or less, preferably 2 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size of magnesium oxide particles is a value measured by a laser diffraction scattering method.
  • the magnesium oxide particles 11 may have a specific surface area, for example, in the range of 0.1 m 2 /g or more and 10 m 2 /g or less, or in the range of 0.2 m 2 /g or more and 5 m 2 /g or less. It is preferable to be in
  • the oxide layer 12 comprises crystalline SiO2 .
  • crystalline SiO 2 contained in the oxide layer 12 include tridymite, cristobalite and quartz.
  • the oxide layer 12 may contain one of these crystalline SiO 2 alone, or may contain two or more of them.
  • the inclusion of crystalline SiO 2 in the oxide layer 12 can be confirmed, for example, by the X-ray diffraction pattern of the magnesium oxide composition powder 10 .
  • the oxide layer 12 is crystalline SiO 2 including.
  • the oxide layer 12 may contain additional metal elements other than Si. Moreover, the oxide layer 12 may contain additional metal elements other than Si and Al. Alkaline metals (Li, Na, K, Rb, Cs, Fr), alkaline earth metals (Ca, Sr, Ba, Ra), Al, Ti, Zr can be used as the additive metal element. These additive metal elements may be contained singly or in combination of two or more. The additive metal element may be, for example, either one or both of Li and Na.
  • the additive metal element in the oxide layer 12 may form an oxide, or may form a composite oxide together with Si in the oxide layer 12 .
  • the oxide layer 12 may contain a composite oxide containing Si and Al.
  • the oxide layer 12 may contain a crystalline multiple oxide composed of Si, Al, and O, may contain a crystalline multiple oxide composed of Si, Li, and O, or may include a crystal composed of Si, Na, and O.
  • may contain a crystalline mixed oxide may contain a crystalline mixed oxide consisting of Si, K and O, may contain a crystalline mixed oxide consisting of Si, Rb and O, may contain Si, Cs, It may contain a crystalline multiple oxide made of O, may contain a crystalline multiple oxide made of Si, Ca, and O, or may contain a crystalline multiple oxide made of Si, Ti, and O, A crystalline multiple oxide composed of Si, Zr, and O may also be included.
  • the content of the additive metal element in the oxide layer 12 or the content of the metal element other than Si in the oxide layer 12 may be, for example, 15 at % or less, and is in the range of 1 at % or more and 10 at % or less. is preferred.
  • the content of the additive metal element is a value where the total amount of silicon (Si), the additive metal element, and oxygen (O) in the oxide layer 12 is 100 at %.
  • the thickness of the oxide layer 12 may be, for example, within the range of 20 nm or more and 500 nm or less, preferably within the range of 50 nm or more and 200 nm or less, and particularly preferably within the range of 80 nm or more and 150 nm.
  • the organic layer 13 preferably contains an organic material having a group having an affinity for the oxide layer 12 and a group having an affinity for the organic solvent or resin in which the magnesium oxide composition powder 10 is dispersed.
  • Groups having an affinity for the oxide layer 12 include alkoxy groups, phosphonic acid groups, carboxylic acid groups, and sulfonic acid groups.
  • groups having an affinity for resins include epoxy groups, vinyl groups, acrylate groups, methacrylate groups, mercapto groups, amino groups, aryl groups, and alkyl groups.
  • the organic substance contained in the organic substance layer 13 may be, for example, one or both of phosphonic acid and a silane coupling agent.
  • the thickness of the organic layer 13 may be, for example, within the range of 0.5 nm or more and 10 nm or less.
  • the thickness of the organic layer 13 is preferably in the range of 0.5 nm or more and 5 nm or less.
  • the magnesium oxide composition powder 10 according to this embodiment can be produced, for example, as follows. First, the magnesium oxide powder, the SiO 2 source, and the additive metal element compound containing the additive metal element are mixed in a solvent to obtain a raw material mixture. Next, the raw material mixed liquid is dried to obtain a dried raw material mixture. Next, the dried raw material mixture is heat-treated. Then, the obtained heat-treated product is pulverized with a mill to obtain a powder. In this production method, crystalline SiO 2 is produced by heat treatment of the raw material mixture dried product. By including the additive metal element in the dried raw material mixture, crystalline SiO 2 can be generated by heat treatment at a lower temperature than when the additive metal element is not included. The temperature of the heat treatment of the dried raw material mixture may be, for example, within the range of 700° C. or higher and 1000° C. or lower.
  • the magnesium oxide composition powder 10 can also be produced as follows. First, the magnesium oxide powder and the SiO2 source are mixed to coat the surface of the magnesium oxide powder with the SiO2 source. Next, the SiO 2 source-coated magnesium oxide powder and the compound of the additional metal element are mixed to cause the additional metal element compound to adhere to the surface of the SiO 2 source-coated magnesium oxide powder. Then, the SiO 2 source-coated magnesium oxide powder to which the additive metal element compound is attached is heat-treated. Then, the obtained heat-treated product is pulverized with a mill to obtain a powder. In this production method, crystalline SiO 2 is produced by heat treatment of the SiO 2 source-coated magnesium oxide powder.
  • crystalline SiO 2 can be generated by heat treatment at a lower temperature than when the additive metal element is not attached.
  • the temperature of the heat treatment of the SiO 2 source-coated magnesium oxide powder may be, for example, within the range of 700° C. or higher and 1000° C. or lower.
  • organic silicon compounds such as alkoxysilanes, polysilazanes, and silicone oils can be used as the SiO2 source.
  • the additive metal element compound for example, carbonate, acetate, oxyacetate and organic compound can be used.
  • organic compounds include ALCH (aluminum ethyl acetoacetate diisopropylate).
  • the oxide layer 12 covering the magnesium oxide particles 11 contains crystalline SiO 2 or a crystalline multiple oxide containing Si and Al.
  • the crystalline double oxide may or may not contain crystalline SiO2 .
  • Crystalline double oxides such as crystalline SiO2 have high thermal conductivity and are chemically stable.
  • the crystalline double oxide contains Al and other metal elements (for example, at least one element selected from the group consisting of alkali metals, alkaline earth metals, Ti, and Zr), chemical stability is improved. can be further enhanced. Therefore, the magnesium oxide composition powder 10 according to the present embodiment has high thermal conductivity and excellent water resistance and acid resistance.
  • the magnesium oxide composition powder 10 according to the present embodiment when the oxide layer 12 contains the above-described additive metal element in an amount of 15 at% or less, the content of crystalline SiO 2 in the oxide layer 12 is becomes more likely to occur. Therefore, the thermal conductivity of the magnesium oxide composition powder 10 is higher, and the water resistance and acid resistance are further improved. Therefore, the magnesium oxide composition powder 10 of the present embodiment is suitable as an inorganic filler for circuit boards of equipment.
  • the magnesium oxide composition powder 10 when the additive metal element is either one or both of Li and Na, since these metal elements have small atomic weights, the magnesium oxide composition powder 10 During production, crystalline SiO 2 is likely to be generated, and the heat treatment temperature can be set to a lower temperature. By setting the heat treatment temperature to a low temperature, the magnesium oxide powder is less likely to be sintered, so the magnesium oxide composition powder 10 has a higher uniformity in particle size, and tends to improve dispersibility in organic solvents and resins. There is Furthermore, since crystalline SiO 2 is easily generated, the amount of the additive metal element used can be reduced.
  • the magnesium oxide composition powder 10 according to the present embodiment when coated with the organic layer 13, it has a high affinity for organic solvents and resins. Therefore, the magnesium oxide composition powder 10 has improved dispersibility in organic solvents and resins. Further, in the magnesium oxide composition powder 10 according to the present embodiment, when the organic layer 13 contains one or both of phosphonic acid and a silane coupling agent, these organic substances have a high affinity with the oxide layer 12. Therefore, the water resistance, acid resistance and dispersibility of the magnesium oxide composition powder 10 are further improved.
  • the invention is not limited to this example.
  • a part of the surface of the magnesium oxide particles 11 may be covered with the oxide layer 12 in order to bring the magnesium oxide particles 11 into direct contact with each other and improve the thermal conductivity.
  • the organic layer 13 may be scattered on the surface of the magnesium oxide particles 11 .
  • the organic layer 13 may not be provided on the surface of the magnesium oxide particles 11 depending on the application or the object in which the magnesium oxide composition powder 10 is dispersed.
  • the resin composition of the present embodiment includes a resin and the magnesium oxide composition powder of the present embodiment described above.
  • a resin for example, a cured product of a thermoplastic resin or a reaction-curable resin composition can be used.
  • the thermoplastic resin for example, polystyrene and acrylic resin can be used.
  • a cured product of the reaction-curable resin composition is a resin composition obtained by subjecting the reaction-curable resin composition to a curing reaction by applying energy such as heat or light from the outside.
  • the cured product of the reactive curable resin composition a cured product of the reactive curable resin composition containing an epoxy resin and a curing agent can be used. The reaction-curable resin composition will be described later.
  • the content of the magnesium oxide composition powder may be, for example, in the range of 10% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. It is preferably in the range of 50% by volume or more and 75% by volume or less.
  • the content of the magnesium oxide composition powder is 30% by volume or more, the effect of improving the thermal conductivity of the cured product of the resin composition becomes remarkable. Further, when the content of the magnesium oxide composition powder is 80% by volume or less, sufficient moldability can be obtained when molding a resin substrate using a cured product of the resin composition.
  • the resin composition of the present embodiment may contain inorganic powder other than the magnesium oxide composition powder.
  • inorganic powders include boron nitride powder, alumina powder, aluminum hydroxide powder, aluminum nitride powder and silica powder. These inorganic powders may contain one type alone, or may contain two or more types.
  • the content of the inorganic powder is the total amount with the magnesium oxide composition powder, and may be, for example, in the range of 20% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. more preferably in the range of 50% by volume or more and 75% by volume or less.
  • the resin composition of the present embodiment may contain optional components other than the components described above, if necessary.
  • Optional components include coupling agents such as silane coupling agents and titanate coupling agents, flame retardants such as halogens, plasticizers, and lubricants.
  • the resin composition of the present embodiment may contain a reinforcing material.
  • the stiffener may be insulating. As the insulating reinforcing material, for example, a glass cloth (glass cloth) made by knitting glass fibers into a cloth can be used.
  • the resin composition of the present embodiment can be produced, for example, by mixing a thermoplastic resin and magnesium oxide composition powder.
  • the resin composition of the present embodiment can also be produced by a method of mixing an uncured reactive curable resin composition and magnesium oxide composition powder and curing the resulting reactive resin composition. can.
  • the resin composition of the present embodiment contains the magnesium oxide composition powder of the present embodiment described above, it has high thermal conductivity and excellent water resistance and acid resistance. Therefore, the resin composition of the present embodiment is suitable as a material for circuit boards of equipment.
  • FIG. 2 is a perspective view of a resin composition sheet according to one embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the resin composition sheet shown in FIG. 2, taken along line III-III.
  • the resin composition sheet 20 shown in FIGS. 2 and 3 contains a core material 21 and a resin composition 23 impregnated in the core material 21 and covering both sides of the core material 21 .
  • the core material 21 is a glass cloth in which warp threads 21a made of glass and weft threads 21b made of glass are woven.
  • the resin composition 23 includes the resin 22 and the magnesium oxide composition powder 10.
  • the resin 22 for example, a cured product of a thermoplastic resin or a reaction-curable resin composition can be used.
  • the resin composition 23 is the resin composition of the present embodiment described above.
  • the resin composition sheet 20 using a thermoplastic resin as the resin 22 can be produced, for example, as follows. First, a raw material slurry containing a thermoplastic resin is prepared by dispersing the magnesium oxide composition powder 10 in a thermoplastic resin solution. Next, the core material 21 is impregnated with the thermoplastic resin-containing raw material slurry by a technique such as coating or immersion. Next, the solvent of the thermoplastic resin-containing raw material slurry impregnated in the core material 21 is removed by heating. The heating conditions for removing the solvent from the thermoplastic resin-containing raw material slurry can be, for example, about 60 to 150° C. for about 1 to 120 minutes, preferably about 70 to 120° C. for about 3 to 90 minutes. .
  • the resin composition sheet 20 using a cured product of a reaction-curable resin composition as the resin 22 can be produced, for example, as follows. First, a raw material slurry containing a reactive resin composition is prepared by dispersing the magnesium oxide composition powder 10 in a reactive resin composition. Next, the core material 21 is impregnated with the raw material slurry containing the reactive resin composition by a technique such as coating or dipping. Next, the solvent of the raw material slurry containing the reactive resin composition impregnated in the core material 21 is removed by heating. The heating conditions for removing the solvent from the raw material slurry containing the reactive resin composition may be, for example, 60 to 150° C. for about 1 to 120 minutes, and 70 to 120° C. for about 3 to 90 minutes. is preferred.
  • the reactive resin composition impregnated in the core material 21 is cured at the same time as the reactive resin composition-containing raw material slurry is heated to remove the solvent. After heating the raw material slurry containing the reactive resin composition to remove the solvent, the reactive resin composition impregnated in the core material 21 is cured under the same conditions as the heating for removing the solvent. good too.
  • the resin composition sheet 20 according to this embodiment contains the resin composition of this embodiment described above, it has high thermal conductivity and is excellent in water resistance and acid resistance. Therefore, the resin composition sheet 20 of the present embodiment is suitable as a material for circuit boards of equipment.
  • the resin composition sheet 20 is described using glass cloth as the core material 21 as an example, but the present invention is limited to this example. not something.
  • a woven fabric or non-woven fabric using fibers other than glass fibers can be used as the core material 21, a woven fabric or non-woven fabric using fibers other than glass fibers can be used.
  • fibers other than glass fibers carbon fibers, metal fibers, natural fibers and synthetic fibers can be used.
  • synthetic fibers include polyester fibers and polyamide fibers. These fibers may contain only one type, or may contain two or more types.
  • the resin composition sheet of the present invention may be formed only of a resin component without having a core material.
  • a metal foil such as copper foil may be laminated on the surface of the resin composition sheet.
  • [Laminate substrate] 4 is a perspective view of a layered substrate according to one embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the layered substrate shown in FIG. 4 taken along line VV.
  • a laminated substrate 30 is formed by laminating and integrating a plurality of resin composition sheets 20 shown in FIGS.
  • the laminated substrate 30 can be manufactured, for example, by a method of heating a plurality of resin composition sheets 20 in a superimposed state.
  • the resin 22 of the resin composition sheet 20 is a cured product of a reactive resin composition
  • the reactive resin composition of the resin composition sheet 20 before heating is in a semi-cured or uncured state, and the resin composition
  • the reactive resin composition may be cured when the sheets 20 are superimposed and heated.
  • the heating conditions for the plurality of resin composition sheets 20 can be, for example, 100 to 250° C. for about 1 to 300 minutes.
  • the pressurizing condition can be, for example, about 0.1 to 10 MPa. Pressurization is not essential when heating the plurality of resin composition sheets 20 . Moreover, the heating of the plurality of resin composition sheets 20 may be performed under reduced pressure or vacuum.
  • the laminated substrate 30 of the present embodiment has a high thermal conductivity because the resin composition sheets 20 are laminated. Therefore, the laminated substrate 30 of the present embodiment is suitable as a material for circuit boards of equipment.
  • the laminated substrate 30 an example in which a plurality of the resin composition sheets 20 shown in FIGS. 2 and 3 are laminated has been described. At least one of them may be the resin composition sheet of the present invention.
  • the laminated substrate of the present invention may be, for example, a metal-clad laminate having a metal layer on the upper surface and/or the lower surface.
  • various known metal layers can be appropriately selected and used as the metal layer.
  • a metal plate or metal foil made of metal such as copper, nickel, or aluminum can be used as the metal layer.
  • the thickness of the metal layer is not particularly limited, and can be, for example, about 3 to 150 ⁇ m.
  • a metal plate or a metal foil subjected to etching and/or perforation processing may be used.
  • the reactive resin composition of the present embodiment includes a reaction-curable resin composition and the magnesium oxide composition powder of the present embodiment described above.
  • a reaction-curable resin composition reacts and cures when energy such as heat or light is applied from the outside.
  • reaction-curable resin composition for example, an epoxy-based resin composition containing an epoxy resin and a curing agent may be used.
  • the epoxy resin composition may further contain a curing accelerator.
  • epoxy resins examples include 4,4'-biphenol diglycidyl ether, 3,3',5,5'-tetramethyl-4,4'-bis(glycidyloxy)-1,1'-biphenyl, triglycidyl Known epoxy compounds such as isocyanurate (TGI), triglycidyl-p-aminophenol, novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, tetraglycidyldiaminodiphenylmethane type epoxy resin are used. A commercially available epoxy resin may be used. These epoxy resins may contain only one type, or may contain two or more types.
  • a compound having a reactive group that reacts with the epoxy group of the epoxy resin can be used as the curing agent.
  • reactive groups include amino groups and phenolic hydroxyl groups.
  • Curing agents include, for example, p-phenylenediamine, 1,5-diaminonaphthalene, hydroquinone, 2,6-dihydroxynaphthalene, phloroglucinol, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-amino Benzoic acid, phenolic resins, polyamidoamines can be used. Also, a compound represented by the following general formula (1) can be used. These curing agents may be contained alone or in combination of two or more.
  • n is an integer of 2-40.
  • the curing agent using the compound represented by Formula (1) may contain two or more compounds in which n in Formula (1) is a different integer.
  • the compound represented by formula (1) is a chain compound having a skeleton containing a mesogenic group.
  • the position of the methyl group bonded to the benzene ring is not particularly limited.
  • the content of the epoxy resin and the curing agent in the reactive resin composition is, for example, based on the total number of moles of reactive groups of the curing agent contained in the reactive resin composition being 1 mol,
  • the total number of moles of epoxy groups in the resin is preferably in the range of 0.9 mol or more and 1.3 mol or less, and is in the range of 1.0 mol or more and 1.2 mol or less. is more preferred.
  • a basic organic compound with a high boiling point can be used as the curing accelerator.
  • curing accelerators include those having a boiling point of 200° C. or higher selected from tertiary amines, tertiary phosphines, 4-dimethylaminopyridine (DMAP), imidazoles, and the like.
  • DMAP 4-dimethylaminopyridine
  • imidazoles and the like.
  • 2-ethyl-4-methylimidazole (2E4MZ) and 1-(2-cyanoethyl)-2-phenylimidazole which are imidazole-based epoxy resin curing accelerators, are particularly used as curing accelerators for ease of handling. It is preferable to use
  • the content of the curing accelerator in the reactive resin composition is, for example, within the range of 0 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the content of the magnesium oxide composition powder may be, for example, in the range of 10% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. It is preferably within the range of 50% by volume or more and 75% by volume or less.
  • the reactive resin composition of the present embodiment may contain inorganic powder other than the magnesium oxide composition powder.
  • inorganic powders include boron nitride powder, alumina powder, aluminum hydroxide powder, aluminum nitride powder and silica powder. These inorganic powders may contain one type alone, or may contain two or more types.
  • the content of the inorganic powder is the total amount with the magnesium oxide composition powder, and may be, for example, in the range of 20% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. more preferably in the range of 50% by volume or more and 75% by volume or less.
  • the reactive resin composition of the present embodiment can be produced, for example, by mixing a reactive curable resin composition and magnesium oxide composition powder in a solvent and drying.
  • solvents include ketones such as acetone and methyl ethyl ketone (MEK); alcohols such as methanol, ethanol and isopropanol; aromatic compounds such as toluene and xylene; ethers such as tetrahydrofuran (THF) and 1,3-dioxolane; Examples include esters such as ethyl acetate and ⁇ -butyrolactone, and amides such as N,N-dimethylformamide (DMF) and N-methylpyrrolidone. These solvents may be used singly or in combination of two or more.
  • MEK acetone and methyl ethyl ketone
  • alcohols such as methanol, ethanol and isopropanol
  • aromatic compounds such as toluene and xylene
  • ethers such as
  • the reactive resin composition of the present embodiment includes the reaction-curable resin composition and the magnesium oxide composition powder of the present embodiment described above, curing the reaction-curable resin composition increases the thermal conductivity It is possible to produce a resin composition that has a high resistance to water and is excellent in water resistance and acid resistance.
  • the produced resin composition can be used, for example, as a material for circuit boards of electronic devices.
  • the reactive resin composition of the present embodiment when the reactive curable resin composition contains an epoxy resin and a curing agent, it is possible to obtain a resin composition that is chemically more stable and has excellent water resistance and acid resistance. . Furthermore, when the epoxy resin is triglycidyl isocyanurate and the curing agent is a chain compound having a skeleton containing a mesogenic group represented by the above general formula (1), the resin composition has a higher thermal conductivity. can get things. When the compound represented by the formula (1) is used as the curing agent, the rigidity is imparted to the cured product by the skeleton containing the mesogenic group of the curing agent, so the thermal conductivity of the resin composition (cured product) improves.
  • Example 1 A 100 mL eggplant flask was charged with 20 g of magnesium oxide powder (average particle diameter: 10 ⁇ m, specific surface area: 0.7 m 2 /g), 42.0 g of polysilazane solution with a concentration of 5% as a SiO 2 source, and acetic acid as an additive metal element compound. 0.106 g of lithium was added and mixed with stirring for 10 minutes to obtain a raw material mixture. Next, the raw material mixture was air-dried to remove the solvent to obtain a dried raw material. Next, the raw material mixed dried material was heated at 150° C. for 1 hour and then heat-treated at 800° C. for 6 hours. The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder.
  • Example 2 A magnesium oxide composition powder was obtained in the same manner as in Example 1.
  • the resulting magnesium oxide composition powder and a silane coupling agent KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.
  • IPA isopropyl alcohol
  • the amount of the silane coupling agent added was 5% by mass with respect to the magnesium oxide composition powder.
  • the solvent was then removed using a rotary evaporator, followed by drying at 120° C. for 30 minutes.
  • the magnesium oxide composition powder was surface-treated with a silane coupling agent.
  • Examples 3 to 5 A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that the amount of the 5% polysilazane solution and the type and amount of the additive metal element compound were changed as shown in Table 1 below. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 6 A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that 0.153 g of sodium carbonate was used as the additive metal element compound instead of lithium acetate.
  • Example 7 A magnesium oxide composition powder was obtained in the same manner as in Example 6. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 8 A magnesium oxide composition powder was obtained in the same manner as in Example 6. The obtained magnesium oxide composition powder and phenylphosphonic acid (PPA) were put into a dioxolane solvent and stirred and mixed for 30 minutes. The amount of PPA added was 5% by mass with respect to the magnesium oxide composition powder. The solvent was then removed using a rotary evaporator and then dried at 140° C. overnight. Thus, the magnesium oxide composition powder was surface-treated with PPA.
  • PPA phenylphosphonic acid
  • Example 9 to 17 A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that the type and amount of the additive metal element compound were changed as shown in Table 1 below. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 18 20 g of magnesium oxide powder and 42.0 g of a polysilazane solution having a concentration of 5% as a SiO 2 source were put into a 100 mL eggplant flask, and stirred and mixed for 10 minutes to obtain a mixed solution. The resulting mixture was air-dried to remove the solvent, and then heated at 150° C. for 1 hour to obtain SiO 2 source-coated magnesium oxide powder. Next, the obtained SiO 2 source-coated magnesium oxide powder and 3.360 g of an aqueous zirconium oxyacetate solution as an additive metal element compound were mixed and air-dried to remove the solvent (water). The SiO 2 source-coated magnesium oxide powder with zirconium oxyacetate attached was then heated at 150° C.
  • Example 2 The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder.
  • the resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 19 50 g of ethanol, 10 g of ion-exchanged water, 1 g of 28% by mass ammonia water, and 20 g of magnesium oxide powder were put into a 200 mL eggplant flask and stirred and mixed for 30 minutes. After that, TEOS (tetraethoxysilane) diluted with ethanol was added dropwise, and the mixture was further stirred and mixed for 2 hours to obtain a mixture. The resulting mixture was filtered and the solid collected was washed with ethanol, then dried at 70° C. for 1 hour and then heat-treated at 180° C. for 3 hours to obtain SiO 2 source-coated magnesium oxide powder. The resulting SiO 2 source coated magnesium oxide composition was mixed with 0.153 g of sodium carbonate.
  • TEOS tetraethoxysilane
  • the SiO 2 source-coated magnesium oxide powder with attached sodium carbonate was then heat-treated at 800° C. for 6 hours.
  • the obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder.
  • the resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 20 In a 100 mL eggplant flask, 20 g of magnesium oxide powder, 3 g of silicone oil (KF-96, manufactured by Shin-Etsu Chemical Co., Ltd.) as a SiO 2 source, 0.153 g of sodium carbonate as an additive metal element compound, and 20 mL of hexane were added. , and stirred and mixed for 10 minutes to obtain a raw material mixture. The resulting raw material mixture was air-dried to remove the solvent to obtain a dried raw material. Next, the raw material mixed dried material was heated at 150° C. for 1 hour and then heat-treated at 800° C. for 6 hours. The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • silicone oil KF-96, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 21 As the magnesium oxide powder, 20 g of magnesium oxide powder having an average particle size of 3 ⁇ m and a specific surface area of 1.4 m 2 /g was used, and 84.0 g of a polysilazane solution having a concentration of 5% was used. A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that 0.306 g of sodium carbonate was used instead. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 22 As the magnesium oxide powder, 20 g of magnesium oxide powder having an average particle size of 17 ⁇ m and a specific surface area of 0.5 m 2 /g was used, and 30.0 g of a polysilazane solution having a concentration of 5% was used. A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that 0.110 g of sodium carbonate was used instead. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 23 A magnesium oxide composition powder was obtained in the same manner as in Example 6, except that the blending amount of the 5% polysilazane solution and the blending amount of sodium carbonate were set to the amounts shown in Table 1 below.
  • Example 1 A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that sodium carbonate was not used.
  • Example 2 A magnesium oxide composition powder was obtained in the same manner as in Example 6, except that the blending amount of the 5% polysilazane solution and the blending amount of sodium carbonate were set to the amounts shown in Table 2 below.
  • Example 3 A magnesium oxide composition powder was obtained in the same manner as in Example 21 except that sodium carbonate was not used, and the obtained magnesium oxide composition powder was surface-treated with a silane coupling agent.
  • Example 4 A magnesium oxide composition powder was obtained in the same manner as in Example 22, except that sodium carbonate was not used, and the obtained magnesium oxide composition powder was surface-treated with a silane coupling agent.
  • the magnesium oxide composition powders obtained in Examples 1 to 23 and Comparative Examples 1 to 4 were subjected to EDS (energy dispersive X-ray) using an atomic resolution electron microscope (JEM-ARM300F GRAND ARM, manufactured by JEOL Ltd.) analysis) performed elemental mapping. As a result, it was confirmed that the magnesium oxide composition powder was coated with an oxide layer containing SiO2 .
  • EDS energy dispersive X-ray
  • JEM-ARM300F GRAND ARM atomic resolution electron microscope
  • the thickness, the presence or absence of crystalline SiO 2 , and the content of additive metal elements were measured by the following methods. Moreover, the presence or absence of an organic substance layer in the magnesium oxide composition powder was confirmed by the following method. Furthermore, the acid resistance (elution test), dispersibility (sedimentation test), and thermal conductivity of the magnesium oxide composition powder were measured by the following methods. The results are shown in Table 3 below. The acid resistance, dispersibility, and thermal conductivity were also measured for magnesium oxide powder (average particle size: 10 ⁇ m, specific surface area: 0.7 m 2 /g). The results are shown in Table 3 as Comparative Example 5.
  • Example 30 20 g of magnesium oxide powder, and the amounts of 5% polysilazane solution, sodium laurate, and ALCH shown in Table 1 were added to a 100 ml eggplant flask and mixed with stirring for 30 minutes. The resulting mixture was air-dried to remove the solvent, dried at 150° C. for 2 hours, and heat-treated at 800° C. for 6 hours. The magnesium oxide powder after treatment is pulverized with a mill and pulverized to a particle size similar to that of the raw material, and is coated with a crystalline double oxide containing at least one of silicon, aluminum, magnesium, and sodium. A coated MgO powder was obtained.
  • Example 31 A magnesium oxide composition powder obtained in the same manner as in Example 30 was surface-treated with a silane coupling agent in the same manner as in Example 2.
  • Example 6 A coated MgO powder coated with a crystalline multiple oxide was obtained in the same manner as in Example 30, except that lithium carbonate was used as the additive metal element compound instead of sodium laurate.
  • Presence or absence of crystalline SiO2 The presence or absence of crystalline SiO 2 was determined by detecting a diffraction peak derived from crystalline SiO 2 (tridymite, cristobalite, quartz) from an X-ray diffraction pattern measured using CuK ⁇ rays. If even one kind of diffraction peak derived from crystalline SiO 2 was detected, crystalline SiO 2 was judged to be “presence”. The X-ray diffraction pattern was measured using an X-ray diffractometer (Empyrean, manufactured by Malvern Panalytical).
  • Thermal conductivity Bisphenol A type epoxy resin (JER828, manufactured by Mitsubishi Chemical Co., Ltd.) 100 parts by weight, methylhydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.) 3 parts by weight, 2-ethyl-4-methylimidazole (2E4MZ, Shikoku Kasei Kogyo Co., Ltd.) was mixed with 3 parts by mass to obtain an epoxy resin composition.
  • the obtained epoxy resin composition and magnesium oxide composition powder were stirred and mixed at a volume ratio of 30:70 to obtain a reactive resin composition.
  • the reactive resin composition is vacuum degassed, processed into a sheet with a thickness of 1 mm using a hand press, and then heated at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour to form an epoxy resin.
  • a system resin composition sheet was obtained.
  • the thermal conductivity of the obtained epoxy resin composition sheet is obtained by measuring the density, specific heat, and thermal diffusivity of the epoxy resin composition sheet by the methods described below, and multiplying the obtained values. Calculated. Density was determined using the Archimedes method. The specific heat was obtained using a differential scanning calorimeter (DSC) (manufactured by Hitachi High-Tech Science Co., Ltd.). The thermal diffusivity was obtained using a xenon flash thermal diffusivity measurement device (manufactured by Advance Riko Co., Ltd.).
  • the magnesium oxide composition powders of Examples 1 to 23, in which the oxide layer contains crystalline SiO 2 are the magnesium oxide compositions of Comparative Examples 1 to 4, in which the oxide layer does not contain crystalline SiO 2 . It was confirmed that the thermal conductivity is higher than that of the powder. Moreover, it was confirmed that the magnesium oxide composition powders of Examples 1 to 22, in which the thickness of the oxide layer was 50 nm or more, were remarkably improved in acid resistance. Furthermore, it was confirmed that the magnesium oxide composition powders of Examples 2 to 5 and Examples 7 to 22 having organic layers had improved dispersibility.
  • Example 24 Polystyrene (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., density: 1.04-1.13 g/cm 3 ) and the magnesium oxide composition powder obtained in Example 7 were mixed at a volume ratio of 45:55. Mixed using a mortar and pestle. The obtained mixture and toluene were mixed and stirred to obtain a slurry. The obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain a polystyrene composition sheet with a thickness of 100 to 150 ⁇ m. The obtained polystyrene composition sheet was peeled off from the PET film. Ten polystyrene composition sheets were laminated. A polystyrene composition sheet laminate was obtained by pressing the obtained laminate with a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the laminate had a thickness of 1 mm.
  • Example 25 An acrylic resin molding material (Acrypet (registered trademark), manufactured by Mitsubishi Chemical Corporation) and the magnesium oxide composition powder obtained in Example 7 were mixed at a volume ratio of 45:55. The obtained mixture and toluene were mixed and stirred to obtain a slurry. The obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain an acrylic resin composition sheet with a thickness of 100 to 150 ⁇ m. The obtained acrylic resin composition sheet was peeled off from the PET film. Ten acrylic resin composition sheets were laminated. A methacrylic resin composition sheet laminate was obtained by pressing the resulting laminate with a hand press at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the laminate had a thickness of 1 mm.
  • a methacrylic resin composition sheet laminate was obtained by pressing the resulting laminate with a hand press at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the laminate had a thickness of 1 mm.
  • Example 26 Bisphenol A type epoxy resin (JER828, manufactured by Mitsubishi Chemical Corporation) and methylhydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.) are added to 1 mol of the total number of moles of phenolic hydroxyl groups of methylhydroquinone. The total number of moles of epoxy groups in the resin is mixed at a ratio of 1.0 mol, and 2-ethyl-4-methylimidazole (2E4MZ) (Shikoku Kasei Kogyo Co., Ltd.) is added to 100 parts by mass of bisphenol A epoxy resin. (manufactured by the company) was added and mixed to obtain an epoxy resin composition.
  • 2-ethyl-4-methylimidazole 2E4MZ
  • the obtained epoxy resin composition and the magnesium oxide composition powder obtained in Example 2 were stirred and mixed in THF (tetrahydrofuran) at a volume ratio of 45:55 to obtain a slurry.
  • the obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain an epoxy resin composition sheet with a thickness of 100 to 150 ⁇ m.
  • the obtained epoxy resin composition sheet was peeled off from the PET film.
  • Ten epoxy resin composition sheets were laminated.
  • the resulting laminate was pressed using a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the thickness would be 1 mm.
  • the epoxy resin composition was cured by heating at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour to obtain a cured epoxy resin sheet.
  • Example 27 A cured epoxy resin sheet was obtained in the same manner as in Example 26, except that the magnesium oxide composition powder obtained in Example 7 was used instead of the magnesium oxide composition powder obtained in Example 2. .
  • TGI Triglycidyl isocyanurate
  • Mn number average molecular weight
  • Mw mass average molecular weight
  • the obtained epoxy resin composition and the magnesium oxide composition powder obtained in Example 2 were stirred and mixed in THF (tetrahydrofuran) at a volume ratio of 45:55 to obtain a slurry.
  • the obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain an epoxy resin composition sheet with a thickness of 100 to 150 ⁇ m.
  • the obtained epoxy resin composition sheet was peeled off from the PET film.
  • Ten epoxy resin composition sheets were laminated.
  • the obtained laminate was pressed with a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so as to have a thickness of 1 mm.
  • the epoxy resin composition was cured by heating at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour to obtain an epoxy resin composition sheet.
  • THF tetrahydrofuran
  • Example 29 A cured epoxy resin sheet was obtained in the same manner as in Example 28, except that the magnesium oxide composition powder obtained in Example 7 was used instead of the magnesium oxide composition powder obtained in Example 2. .
  • Example 32 A bisphenol A type epoxy resin, methylhydroquinone, 2-ethyl-4-methylimidazole (2E4MZ), and the magnesium oxide powder obtained in Example 31 so that the filling rate was 55 vol% were added to THF and mixed with stirring. to obtain a slurry.
  • the resulting slurry was applied onto a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes.
  • the obtained resin sheet was peeled from the PET film and laminated to form a laminate.
  • the resulting laminate was pressed using a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so as to have a thickness of 1 mm, and then pressed at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour.
  • a resin cured product was obtained by heating for a period of time.
  • Example 33 A resin cured product was obtained in the same manner as in Example 32, except that triglycidyl isocyanurate was used as the resin instead of the bisphenol A type epoxy resin, and the compound of formula (1) was used instead of methylhydroquinone as the curing agent. Obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

This magnesium oxide composition powder includes magnesium oxide particles and an oxide layer covering at least part of the surface of the magnesium oxide particles, the oxide layer containing crystalline SiO2.

Description

酸化マグネシウム組成物粉末、樹脂組成物、樹脂組成物シート、積層基板及び反応性樹脂組成物Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate and reactive resin composition
 本発明は、酸化マグネシウム組成物粉末、樹脂組成物、樹脂組成物シート、積層基板及び反応性樹脂組成物に関する。
 本願は、2021年3月30日に、日本に出願された特願2021-057881号に基づき優先権を主張し、それらの内容をここに援用する。
TECHNICAL FIELD The present invention relates to a magnesium oxide composition powder, a resin composition, a resin composition sheet, a laminated substrate and a reactive resin composition.
This application claims priority based on Japanese Patent Application No. 2021-057881 filed in Japan on March 30, 2021, and the contents thereof are incorporated herein.
 自動車、産業機器等のパワーエレクトロニクスデバイス分野、発電機やモーター等の電力、電子機器分野のいずれにおいても、小型化・高出力化が進み、機器の内部から発生する熱が増大の一途をたどっている。このため、機器の内部から発生した熱をいかに効率よく機器外部に放熱させるかが重大な課題となっており、機器の回路基板等に用いられる絶縁材料には高放熱性が求められている。そこで、エポキシ樹脂などの樹脂材料に、電気絶縁性で高熱伝導率を有する無機フィラーを配合した有機/無機複合高熱伝導材料の開発が行われている(特許文献1)。 In the field of power electronics devices such as automobiles and industrial equipment, electric power such as generators and motors, and the field of electronic equipment, miniaturization and higher output are progressing, and the heat generated from the inside of the equipment is steadily increasing. there is For this reason, how to efficiently dissipate the heat generated inside the device to the outside of the device has become a serious issue, and high heat dissipation is required for the insulating materials used for the circuit boards and the like of the device. Therefore, an organic/inorganic composite high thermal conductive material is being developed in which an inorganic filler having electrical insulation and high thermal conductivity is mixed with a resin material such as epoxy resin (Patent Document 1).
 無機フィラーとして熱伝導率に優れる酸化マグネシウム(MgO)粉末が研究、開発、利用されている。しかしながら、酸化マグネシウム粉末は水と反応して水酸化マグネシウムに変化してしまうほか、酸に溶けてしまうという問題があった。そのため、化学成分の調整や表面処理を行うことで、耐水性、耐酸性を付与させた酸化マグネシウムが開発されている(特許文献2-4、非特許文献1)。 Magnesium oxide (MgO) powder, which has excellent thermal conductivity, is being researched, developed, and used as an inorganic filler. However, there is a problem that magnesium oxide powder reacts with water and changes to magnesium hydroxide, and also dissolves in acid. Therefore, by adjusting the chemical components and performing surface treatment, magnesium oxide that is imparted with water resistance and acid resistance has been developed (Patent Documents 2 to 4, Non-Patent Document 1).
特許第6074447号公報Japanese Patent No. 6074447 特開2001-115057号公報Japanese Patent Application Laid-Open No. 2001-115057 特開2013-56816号公報JP 2013-56816 A 特開2015-160781号公報JP 2015-160781 A
 酸化マグネシウム粉末の耐水性や耐酸性を向上させるために、酸化マグネシウム粉末の化学成分の調整や表面処理を行うことは有効である。しかしながら、酸化マグネシウム粉末の化学成分の調整や表面処理を行うと、酸化マグネシウム粉末が有する高い熱伝導率が低下するおそれがある。酸化マグネシウム粉末が有する高い熱伝導率を維持しつつ、耐水性や耐酸性を十分に向上させるには、さらなる改善が必要である。 In order to improve the water resistance and acid resistance of magnesium oxide powder, it is effective to adjust the chemical composition of magnesium oxide powder and perform surface treatment. However, when the chemical components of the magnesium oxide powder are adjusted or the surface is treated, the high thermal conductivity of the magnesium oxide powder may deteriorate. Further improvements are required to sufficiently improve water resistance and acid resistance while maintaining the high thermal conductivity of magnesium oxide powder.
 本発明は、上記課題に鑑みてなされたものであり、熱伝導率が高く、耐水性や耐酸性に優れる酸化マグネシウム組成物粉末、樹脂組成物、樹脂組成物シート、積層基板を提供することを目的とする。また、本発明は、熱伝導率が高く、耐水性や耐酸性に優れる樹脂組成物を生成することができる反応性樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a magnesium oxide composition powder, a resin composition, a resin composition sheet, and a laminated substrate having high thermal conductivity and excellent water resistance and acid resistance. aim. Another object of the present invention is to provide a reactive resin composition that can produce a resin composition that has high thermal conductivity and excellent water resistance and acid resistance.
 本発明者らは、上記課題を解決するために検討を重ねた結果、酸化マグネシウム粒子の表面を、結晶性SiOまたはSiとAlを含む結晶性複酸化物を含む酸化物層で被覆することによって、酸化マグネシウム粉末が有する高い熱伝導率を維持しつつ、耐水性や耐酸性を向上させることが可能となることを見出した。そして、本発明者らは、結晶性SiOまたはSiとAlを含む結晶性複酸化物を含む酸化物層で被覆された酸化マグネシウム組成物粉末を用いることによって、熱伝導率が高く、耐水性や耐酸性に優れる樹脂組成物、樹脂組成物シート、積層基板、及び上記の樹脂組成物を生成することができる反応性樹脂組成物を得ることが可能となることを確認して本発明を完成させた。すなわち、本発明は、以下の発明に関わる。 As a result of repeated studies to solve the above problems, the present inventors have found that the surface of magnesium oxide particles is coated with an oxide layer containing crystalline SiO2 or a crystalline double oxide containing Si and Al. It was found that it is possible to improve water resistance and acid resistance while maintaining the high thermal conductivity of magnesium oxide powder. And the inventors have found that by using a magnesium oxide composition powder coated with an oxide layer containing crystalline SiO2 or a crystalline double oxide containing Si and Al, the thermal conductivity is high and the water resistance is high. The present invention was completed by confirming that it is possible to obtain a resin composition, a resin composition sheet, a laminated substrate, and a reactive resin composition capable of producing the above-mentioned resin composition. let me That is, the present invention relates to the following inventions.
[1]酸化マグネシウム粒子と、前記酸化マグネシウム粒子の表面の少なくとも一部を被覆する酸化物層とを有し、前記酸化物層が、結晶性SiOを含む酸化マグネシウム組成物粉末。 [1] A magnesium oxide composition powder having magnesium oxide particles and an oxide layer covering at least part of the surface of the magnesium oxide particles, wherein the oxide layer contains crystalline SiO2 .
[2]前記酸化物層は、前記結晶性SiOと、Si以外の添加金属元素とを含み、前記添加金属元素は、アルカリ金属、アルカリ土類金属、Al、Ti、Zrからなる群より選ばれる少なくとも1種であり、前記酸化物層の前記添加金属元素の含有量が15at%以下である[1]に記載の酸化マグネシウム組成物粉末。 [2] The oxide layer contains the crystalline SiO2 and an additive metal element other than Si, and the additive metal element is selected from the group consisting of alkali metals, alkaline earth metals, Al, Ti, and Zr. The magnesium oxide composition powder according to [1], wherein the content of the additional metal element in the oxide layer is 15 at % or less.
[3]酸化マグネシウム粒子と、前記酸化マグネシウム粒子の表面の少なくとも一部を被覆する酸化物層とを有し、前記酸化物層が、SiとAlを含む結晶性複酸化物を含む酸化マグネシウム組成物粉末。 [3] A magnesium oxide composition comprising magnesium oxide particles and an oxide layer covering at least part of the surface of the magnesium oxide particles, wherein the oxide layer contains a crystalline multiple oxide containing Si and Al. powder.
[4]前記酸化物層は、前記結晶性複酸化物と、Si、Al以外の添加金属元素とを含み、前記添加金属元素は、アルカリ金属、アルカリ土類金属、Ti、Zrからなる群より選ばれる少なくとも1種類であり、前記酸化物層のSi以外の金属元素含有量が15at%以下である[3]に記載の酸化マグネシウム組成物粉末。 [4] The oxide layer contains the crystalline multiple oxide and an additive metal element other than Si and Al, and the additive metal element is selected from the group consisting of alkali metals, alkaline earth metals, Ti and Zr. The magnesium oxide composition powder according to [3], which is at least one selected and has a metal element content other than Si in the oxide layer of 15 at % or less.
[5]前記添加金属元素が、Li及びNaのいずれか一方又は両方である[2]または[4]に記載の酸化マグネシウム組成物粉末。 [5] The magnesium oxide composition powder according to [2] or [4], wherein the additive metal element is one or both of Li and Na.
[6]さらに、有機物層で被覆されている[1]~[5]に記載の酸化マグネシウム組成物粉末。 [6] The magnesium oxide composition powder according to [1] to [5], which is further coated with an organic layer.
[7]前記有機物層が、ホスホン酸及びシランカップリング剤のいずれか一方又は両方を含む、[6]に記載の酸化マグネシウム組成物粉末。 [7] The magnesium oxide composition powder according to [6], wherein the organic layer contains one or both of phosphonic acid and a silane coupling agent.
[8]樹脂と、[1]~[7]に記載の酸化マグネシウム組成物粉末とを含む樹脂組成物。 [8] A resin composition containing a resin and the magnesium oxide composition powder according to [1] to [7].
[9]前記樹脂が、エポキシ樹脂と硬化剤とを含む反応硬化性樹脂組成物の硬化物である[8]に記載の樹脂組成物。 [9] The resin composition according to [8], wherein the resin is a cured product of a reaction-curable resin composition containing an epoxy resin and a curing agent.
[10]さらに、ガラスクロスを含む[8]または[9]に記載の樹脂組成物。 [10] The resin composition according to [8] or [9], further comprising glass cloth.
[11][8]~[10]に記載の樹脂組成物を含む樹脂組成物シート。 [11] A resin composition sheet containing the resin composition according to [8] to [10].
[12]複数の樹脂基板が積層されてなり、前記複数の樹脂基板のうち、少なくとも一つが[11]に記載の樹脂組成物シートである積層基板。 [12] A laminated substrate obtained by laminating a plurality of resin substrates, wherein at least one of the plurality of resin substrates is the resin composition sheet according to [11].
[13]反応硬化性樹脂組成物と、[1]~[7]に記載の酸化マグネシウム組成物粉末とを含む反応性樹脂組成物。 [13] A reactive resin composition comprising a reactive curable resin composition and the magnesium oxide composition powder according to [1] to [7].
[14]反応硬化性樹脂組成物が、エポキシ樹脂と硬化剤とを含む[13]に記載の反応性樹脂組成物。 [14] The reactive resin composition according to [13], which contains an epoxy resin and a curing agent.
[15]前記エポキシ樹脂がトリグリシジルイソシアヌレートであって、前記硬化剤が下記の一般式(1)で表される化合物である[14]に記載の反応性樹脂組成物。 [15] The reactive resin composition according to [14], wherein the epoxy resin is triglycidyl isocyanurate and the curing agent is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)において、nは、2~40の整数である。) (In formula (1), n is an integer of 2 to 40.)
 本発明によれば、熱伝導率が高く、耐水性や耐酸性に優れる酸化マグネシウム組成物粉末、樹脂組成物、樹脂組成物シート、積層基板を提供することが可能となる。また、本発明は、熱伝導率が高く、耐水性や耐酸性に優れる樹脂組成物を生成することができる反応性樹脂組成物を提供することが可能となる。 According to the present invention, it is possible to provide a magnesium oxide composition powder, a resin composition, a resin composition sheet, and a laminated substrate that have high thermal conductivity and are excellent in water resistance and acid resistance. Moreover, the present invention makes it possible to provide a reactive resin composition that has high thermal conductivity and can produce a resin composition that is excellent in water resistance and acid resistance.
図1は、本発明の一実施形態に係る酸化マグネシウム組成物粉末の断面図である。FIG. 1 is a cross-sectional view of a magnesium oxide composition powder according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る樹脂組成物シートの斜視図である。FIG. 2 is a perspective view of a resin composition sheet according to one embodiment of the present invention. 図3は、図2に示す樹脂組成物シートのIII-III線断面図である。FIG. 3 is a cross-sectional view of the resin composition sheet shown in FIG. 2 taken along line III-III. 図4は、本発明の一実施形態に係る積層基板の斜視図である。FIG. 4 is a perspective view of a laminated substrate according to one embodiment of the present invention. 図5は、図4に示す積層基板のV-V線断面図である。5 is a cross-sectional view of the laminated substrate shown in FIG. 4 taken along the line VV.
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、図面に記載の各構成要素の寸法比率などは、実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施可能である。 The present invention will be described in detail below with appropriate reference to the drawings. In the drawings used in the following description, the features of the present invention may be shown enlarged for convenience in order to make it easier to understand the features of the present invention. Therefore, the dimensional ratio of each component described in the drawings may differ from the actual one. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications without changing the gist of the invention.
 本発明の実施形態に係る酸化マグネシウム組成物粉末は、例えば、樹脂組成物用の無機フィラーとして、有機溶媒や樹脂に分散されるものである。本発明の実施形態に係る樹脂組成物、樹脂組成物シート及び積層基板は、樹脂と酸化マグネシウム組成物粉末とを含み、例えば、機器の回路基板の材料として用いられるものである。反応性樹脂組成物は、反応硬化性樹脂組成物と酸化マグネシウム組成物粉末とを含み、例えば、反応硬化性樹脂組成物を硬化させることによって、樹脂組成物を生成するものである。 The magnesium oxide composition powder according to the embodiment of the present invention is, for example, dispersed in an organic solvent or resin as an inorganic filler for a resin composition. A resin composition, a resin composition sheet, and a laminated substrate according to embodiments of the present invention contain a resin and a magnesium oxide composition powder, and are used, for example, as materials for circuit boards of equipment. The reactive resin composition contains a reactive curable resin composition and a magnesium oxide composition powder, and for example, a resin composition is produced by curing the reactive curable resin composition.
[酸化マグネシウム組成物粉末]
 図1は、本発明の一実施形態に係る酸化マグネシウム組成物粉末の断面図である。
 図1に示す酸化マグネシウム組成物粉末10は、酸化マグネシウム粒子11と、酸化マグネシウム粒子11を被覆する酸化物層12と、酸化物層12を被覆する有機物層13とを有する。
[Magnesium oxide composition powder]
FIG. 1 is a cross-sectional view of a magnesium oxide composition powder according to one embodiment of the present invention.
Magnesium oxide composition powder 10 shown in FIG. 1 has magnesium oxide particles 11 , oxide layer 12 covering magnesium oxide particles 11 , and organic layer 13 covering oxide layer 12 .
 酸化マグネシウム粒子11の形状は、特に制限はない。酸化マグネシウム粒子11は、例えば、球形、楕円球形、円柱形、角柱形であってもよい。酸化マグネシウム粒子11は、平均粒子径(d50)が、例えば、1μm以上50μm以下の範囲内にあってもよく、2μm以上30μm以下の範囲内にあることが好ましい。酸化マグネシウム粒子の平均粒子径は、レーザー回折散乱法によって測定された値である。また、酸化マグネシウム粒子11は、比表面積が、例えば、0.1m/g以上10m/g以下の範囲内にあってもよく、0.2m/g以上5m/g以下の範囲内にあることが好ましい。 The shape of the magnesium oxide particles 11 is not particularly limited. The magnesium oxide particles 11 may be spherical, oval, cylindrical, or prismatic, for example. The magnesium oxide particles 11 may have an average particle diameter (d50) of, for example, 1 μm or more and 50 μm or less, preferably 2 μm or more and 30 μm or less. The average particle size of magnesium oxide particles is a value measured by a laser diffraction scattering method. Further, the magnesium oxide particles 11 may have a specific surface area, for example, in the range of 0.1 m 2 /g or more and 10 m 2 /g or less, or in the range of 0.2 m 2 /g or more and 5 m 2 /g or less. It is preferable to be in
 酸化物層12は、結晶性SiOを含む。酸化物層12に含まれる結晶性SiOの例としては、トリジマイト、クリストバライト、石英を挙げることができる。酸化物層12は、これらの結晶性SiOのうち1種を単独で含んでいてもよいし、2種以上を含んでいてもよい。酸化物層12が結晶性SiOを含むことは、例えば、酸化マグネシウム組成物粉末10のX線回折パターンによって確認することができる。酸化マグネシウム組成物粉末10のX線回折パターンにおいて、結晶性SiOに由来する回折ピークが、酸化マグネシウムのX線回折パターンに対して独立に検出された場合、酸化物層12は結晶性SiOを含む。CuKα線を用いて測定されたX線回折パターンにおいて、例えば、トリジマイト由来の回折ピークは2θ=20度に、クリストバライト由来の回折ピークは2θ=22度に、石英由来の回折ピークは2θ=27度に検出される。 The oxide layer 12 comprises crystalline SiO2 . Examples of crystalline SiO 2 contained in the oxide layer 12 include tridymite, cristobalite and quartz. The oxide layer 12 may contain one of these crystalline SiO 2 alone, or may contain two or more of them. The inclusion of crystalline SiO 2 in the oxide layer 12 can be confirmed, for example, by the X-ray diffraction pattern of the magnesium oxide composition powder 10 . In the X-ray diffraction pattern of the magnesium oxide composition powder 10, when diffraction peaks derived from crystalline SiO 2 are detected independently with respect to the X-ray diffraction pattern of magnesium oxide, the oxide layer 12 is crystalline SiO 2 including. In the X-ray diffraction pattern measured using CuKα rays, for example, the diffraction peak derived from tridymite is at 2θ = 20 degrees, the diffraction peak derived from cristobalite is at 2θ = 22 degrees, and the diffraction peak derived from quartz is at 2θ = 27 degrees. detected at
 酸化物層12は、Si以外の添加金属元素を含んでいてもよい。また、酸化物層12は、Si、Al以外の添加金属元素を含んでいてもよい。添加金属元素としては、アルカリ金属(Li、Na、K、Rb、Cs、Fr)、アルカリ土類金属(Ca、Sr、Ba、Ra)、Al、Ti、Zrを用いることができる。これらの添加金属元素は1種を単独で含有してもよいし、2種以上を含有してもよい。添加金属元素は、例えば、Li及びNaのいずれか一方又は両方であってもよい。酸化物層12中の添加金属元素は、酸化物を形成していてもよいし、酸化物層12中のSiと共に複酸化物を形成していてもよい。例えば、酸化物層12中に、SiとAlを含む複酸化物が含まれてもよい。 The oxide layer 12 may contain additional metal elements other than Si. Moreover, the oxide layer 12 may contain additional metal elements other than Si and Al. Alkaline metals (Li, Na, K, Rb, Cs, Fr), alkaline earth metals (Ca, Sr, Ba, Ra), Al, Ti, Zr can be used as the additive metal element. These additive metal elements may be contained singly or in combination of two or more. The additive metal element may be, for example, either one or both of Li and Na. The additive metal element in the oxide layer 12 may form an oxide, or may form a composite oxide together with Si in the oxide layer 12 . For example, the oxide layer 12 may contain a composite oxide containing Si and Al.
 酸化物層12は、Si、Al、Oからなる結晶性複酸化物を含んでもよいし、Si、Li、Oからなる結晶性複酸化物を含んでもよいし、Si、Na、Oからなる結晶性複酸化物を含んでもよいし、Si、K、Oからなる結晶性複酸化物を含んでもよいし、Si、Rb、Oからなる結晶性複酸化物を含んでもよいし、Si、Cs、Oからなる結晶性複酸化物を含んでもよいし、Si、Ca、Oからなる結晶性複酸化物を含んでもよいし、Si、Ti、Oからなる結晶性複酸化物を含んでもよいし、Si、Zr、Oからなる結晶性複酸化物を含んでもよい。 The oxide layer 12 may contain a crystalline multiple oxide composed of Si, Al, and O, may contain a crystalline multiple oxide composed of Si, Li, and O, or may include a crystal composed of Si, Na, and O. may contain a crystalline mixed oxide, may contain a crystalline mixed oxide consisting of Si, K and O, may contain a crystalline mixed oxide consisting of Si, Rb and O, may contain Si, Cs, It may contain a crystalline multiple oxide made of O, may contain a crystalline multiple oxide made of Si, Ca, and O, or may contain a crystalline multiple oxide made of Si, Ti, and O, A crystalline multiple oxide composed of Si, Zr, and O may also be included.
 酸化物層12の添加金属元素の含有量、または酸化物層12におけるSi以外の金属元素の含有量は、例えば、15at%以下であってもよく、1at%以上10at%以下の範囲内にあることが好ましい。添加金属元素の含有量は、酸化物層12のケイ素(Si)、添加金属元素、酸素(O)の合計量を100at%とした値である。 The content of the additive metal element in the oxide layer 12 or the content of the metal element other than Si in the oxide layer 12 may be, for example, 15 at % or less, and is in the range of 1 at % or more and 10 at % or less. is preferred. The content of the additive metal element is a value where the total amount of silicon (Si), the additive metal element, and oxygen (O) in the oxide layer 12 is 100 at %.
 酸化物層12の厚さは、例えば、20nm以上500nm以下の範囲内にあってもよく、50nm以上200nm以下の範囲内にあることが好ましく、80nm以上150nmの範囲内にあることが特に好ましい。 The thickness of the oxide layer 12 may be, for example, within the range of 20 nm or more and 500 nm or less, preferably within the range of 50 nm or more and 200 nm or less, and particularly preferably within the range of 80 nm or more and 150 nm.
 有機物層13は、酸化物層12に対して親和性を有する基と、酸化マグネシウム組成物粉末10を分散させる有機溶媒や樹脂に対して親和性を有する基とを有する有機物を含むことが好ましい。酸化物層12に対して親和性を有する基としては、アルコキシ基、ホスホン酸基、カルボン酸基、スルホン酸基を挙げることができる。樹脂に対して親和性を有する基としては、エポキシ基、ビニル基、アクリレート基、メタクリレート基、メルカプト基、アミノ基、アリール基、アルキル基を挙げることができる。有機物層13に含まれる有機物としては、例えば、ホスホン酸及びシランカップリング剤のいずれか一方又は両方であってもよい。 The organic layer 13 preferably contains an organic material having a group having an affinity for the oxide layer 12 and a group having an affinity for the organic solvent or resin in which the magnesium oxide composition powder 10 is dispersed. Groups having an affinity for the oxide layer 12 include alkoxy groups, phosphonic acid groups, carboxylic acid groups, and sulfonic acid groups. Examples of groups having an affinity for resins include epoxy groups, vinyl groups, acrylate groups, methacrylate groups, mercapto groups, amino groups, aryl groups, and alkyl groups. The organic substance contained in the organic substance layer 13 may be, for example, one or both of phosphonic acid and a silane coupling agent.
 有機物層13の厚さは、例えば、0.5nm以上10nm以下の範囲内にあってもよい。有機物層13の厚さは、0.5nm以上5nm以下の範囲内にあることが好ましい。 The thickness of the organic layer 13 may be, for example, within the range of 0.5 nm or more and 10 nm or less. The thickness of the organic layer 13 is preferably in the range of 0.5 nm or more and 5 nm or less.
 本実施形態に係る酸化マグネシウム組成物粉末10は、例えば、次のようにして製造することができる。
 まず、酸化マグネシウム粉末と、SiO源と、上記の添加金属元素を含む添加金属元素化合物とを溶媒中で混合して、原料混合液を得る。次いで原料混合液を乾燥して、原料混合乾燥物を得る。次いで、原料混合乾燥物を加熱処理する。そして、得られた加熱処理物を、ミルで解砕して粉末とする。この製造方法では、原料混合乾燥物の加熱処理によって結晶性SiOが生成する。原料混合乾燥物が添加金属元素を含むことによって、添加金属元素を含まない場合と比較して低温度での加熱処理によって結晶性SiOを生成させることができる。原料混合乾燥物の加熱処理の温度は、例えば、700℃以上1000℃以下の範囲内であってもよい。
The magnesium oxide composition powder 10 according to this embodiment can be produced, for example, as follows.
First, the magnesium oxide powder, the SiO 2 source, and the additive metal element compound containing the additive metal element are mixed in a solvent to obtain a raw material mixture. Next, the raw material mixed liquid is dried to obtain a dried raw material mixture. Next, the dried raw material mixture is heat-treated. Then, the obtained heat-treated product is pulverized with a mill to obtain a powder. In this production method, crystalline SiO 2 is produced by heat treatment of the raw material mixture dried product. By including the additive metal element in the dried raw material mixture, crystalline SiO 2 can be generated by heat treatment at a lower temperature than when the additive metal element is not included. The temperature of the heat treatment of the dried raw material mixture may be, for example, within the range of 700° C. or higher and 1000° C. or lower.
 また、酸化マグネシウム組成物粉末10は、次のようにしても製造することができる。まず、酸化マグネシウム粉末とSiO源とを混合して、酸化マグネシウム粉末の表面をSiO源で被覆する。次いで、SiO源被覆酸化マグネシウム粉末と添加金属元素の化合物とを混合して、添加金属元素化合物をSiO源被覆酸化マグネシウム粉末の表面に付着させる。次いで、添加金属元素化合物が付着したSiO源被覆酸化マグネシウム粉末を加熱処理する。そして、得られた加熱処理物を、ミルで解砕して粉末とする。この製造方法では、SiO源被覆酸化マグネシウム粉末の加熱処理によって結晶性SiOが生成する。SiO源に添加金属元素が付着していることによって、添加金属元素が付着していない場合と比較して低温度での加熱処理によって結晶性SiOを生成させることができる。SiO源被覆酸化マグネシウム粉末の加熱処理の温度は、例えば、700℃以上1000℃以下の範囲内であってもよい。 The magnesium oxide composition powder 10 can also be produced as follows. First, the magnesium oxide powder and the SiO2 source are mixed to coat the surface of the magnesium oxide powder with the SiO2 source. Next, the SiO 2 source-coated magnesium oxide powder and the compound of the additional metal element are mixed to cause the additional metal element compound to adhere to the surface of the SiO 2 source-coated magnesium oxide powder. Then, the SiO 2 source-coated magnesium oxide powder to which the additive metal element compound is attached is heat-treated. Then, the obtained heat-treated product is pulverized with a mill to obtain a powder. In this production method, crystalline SiO 2 is produced by heat treatment of the SiO 2 source-coated magnesium oxide powder. By attaching the additive metal element to the SiO 2 source, crystalline SiO 2 can be generated by heat treatment at a lower temperature than when the additive metal element is not attached. The temperature of the heat treatment of the SiO 2 source-coated magnesium oxide powder may be, for example, within the range of 700° C. or higher and 1000° C. or lower.
 酸化マグネシウム組成物粉末10の製造方法において、SiO源としては、例えば、アルコキシシラン、ポリシラザン、シリコーンオイルなどの有機ケイ素化合物を用いることができる。添加金属元素化合物としては、例えば、炭酸塩、酢酸塩、オキシ酢酸塩及び有機化合物を用いることができる。有機化合物の例としては、ALCH(アルミニウムエチルアセトアセテートジイソプロピレート)を挙げることができる。 In the method for producing the magnesium oxide composition powder 10, organic silicon compounds such as alkoxysilanes, polysilazanes, and silicone oils can be used as the SiO2 source. As the additive metal element compound, for example, carbonate, acetate, oxyacetate and organic compound can be used. Examples of organic compounds include ALCH (aluminum ethyl acetoacetate diisopropylate).
 本実施形態に係る酸化マグネシウム組成物粉末10は、酸化マグネシウム粒子11を被覆する酸化物層12が結晶性のSiO、またはSiとAlを含む結晶性複酸化物を含む。結晶性複酸化物は、結晶性SiOを含んでもよいし、含まなくてもよい。結晶性SiO等の結晶性複酸化物は、熱伝導性が高く、化学的に安定である。結晶性複酸化物にAlと他の金属元素(例えば、アルカリ金属、アルカリ土類金属、Ti、Zrからなる群より選ばれる少なくとも1種類の元素)を含有させた場合、化学的な安定性をさらに高めることができる。このため、本実施形態に係る酸化マグネシウム組成物粉末10は熱伝導率が高く、耐水性や耐酸性に優れる。 In the magnesium oxide composition powder 10 according to the present embodiment, the oxide layer 12 covering the magnesium oxide particles 11 contains crystalline SiO 2 or a crystalline multiple oxide containing Si and Al. The crystalline double oxide may or may not contain crystalline SiO2 . Crystalline double oxides such as crystalline SiO2 have high thermal conductivity and are chemically stable. When the crystalline double oxide contains Al and other metal elements (for example, at least one element selected from the group consisting of alkali metals, alkaline earth metals, Ti, and Zr), chemical stability is improved. can be further enhanced. Therefore, the magnesium oxide composition powder 10 according to the present embodiment has high thermal conductivity and excellent water resistance and acid resistance.
 また、本実施形態に係る酸化マグネシウム組成物粉末10において、酸化物層12が上記の添加金属元素を15at%以下となる量で含む場合は、酸化物層12内の結晶性SiOの含有量が多くなりやすくなる。このため、酸化マグネシウム組成物粉末10の熱伝導率がより高く、耐水性や耐酸性がより向上する。したがって、本実施形態の酸化マグネシウム組成物粉末10は、機器の回路基板用の無機フィラーとして好適である。 Further, in the magnesium oxide composition powder 10 according to the present embodiment, when the oxide layer 12 contains the above-described additive metal element in an amount of 15 at% or less, the content of crystalline SiO 2 in the oxide layer 12 is becomes more likely to occur. Therefore, the thermal conductivity of the magnesium oxide composition powder 10 is higher, and the water resistance and acid resistance are further improved. Therefore, the magnesium oxide composition powder 10 of the present embodiment is suitable as an inorganic filler for circuit boards of equipment.
 また、本実施形態に係る酸化マグネシウム組成物粉末10において、添加金属元素が、Li及びNaのいずれか一方又は両方である場合、これらの金属元素は原子量が小さいので、酸化マグネシウム組成物粉末10の製造に際して、結晶性SiOが生成しやすく、加熱処理温度をより低温度とすることが可能となる。加熱処理温度を低温度とすることにより、酸化マグネシウム粉末の焼結が起こりにくくなるので、酸化マグネシウム組成物粉末10は粒子径の均一性が高くなり、有機溶媒や樹脂に対する分散性が向上する傾向がある。さらに、結晶性SiOが生成しやすくなるので、添加金属元素の使用量を少なくすることができる。 Further, in the magnesium oxide composition powder 10 according to the present embodiment, when the additive metal element is either one or both of Li and Na, since these metal elements have small atomic weights, the magnesium oxide composition powder 10 During production, crystalline SiO 2 is likely to be generated, and the heat treatment temperature can be set to a lower temperature. By setting the heat treatment temperature to a low temperature, the magnesium oxide powder is less likely to be sintered, so the magnesium oxide composition powder 10 has a higher uniformity in particle size, and tends to improve dispersibility in organic solvents and resins. There is Furthermore, since crystalline SiO 2 is easily generated, the amount of the additive metal element used can be reduced.
 また、本実施形態に係る酸化マグネシウム組成物粉末10において、有機物層13で被覆されている場合は、有機溶媒や樹脂に対する親和性が高くなる。このため、酸化マグネシウム組成物粉末10は、有機溶媒や樹脂に対する分散性が向上する。また、本実施形態に係る酸化マグネシウム組成物粉末10において、有機物層13がホスホン酸及びシランカップリング剤のいずれか一方又は両方を含む場合、これらの有機物は酸化物層12との親和性が高いので、酸化マグネシウム組成物粉末10の耐水性、耐酸性及び分散性がより向上する。 In addition, when the magnesium oxide composition powder 10 according to the present embodiment is coated with the organic layer 13, it has a high affinity for organic solvents and resins. Therefore, the magnesium oxide composition powder 10 has improved dispersibility in organic solvents and resins. Further, in the magnesium oxide composition powder 10 according to the present embodiment, when the organic layer 13 contains one or both of phosphonic acid and a silane coupling agent, these organic substances have a high affinity with the oxide layer 12. Therefore, the water resistance, acid resistance and dispersibility of the magnesium oxide composition powder 10 are further improved.
 なお、本実施形態においては、酸化マグネシウム組成物粉末10として、図1に示すように、酸化物層12及び有機物層13がそれぞれ酸化マグネシウム粒子11の全体を被覆しているものを例に挙げて説明したが、本発明は、この例に限定されるものではない。例えば、酸化マグネシウム粒子11同士を直接接触させて熱伝導性を向上させるために、酸化マグネシウム粒子11の表面の一部を酸化物層12で被覆するようにしてもよい。また、有機物層13は、酸化マグネシウム粒子11の表面に点在させてもよい。さらに、有機物層13は、用途もしくは酸化マグネシウム組成物粉末10を分散させる対象物によっては、酸化マグネシウム粒子11の表面に設けなくてもよい。 In the present embodiment, as the magnesium oxide composition powder 10, as shown in FIG. Although explained, the invention is not limited to this example. For example, a part of the surface of the magnesium oxide particles 11 may be covered with the oxide layer 12 in order to bring the magnesium oxide particles 11 into direct contact with each other and improve the thermal conductivity. Also, the organic layer 13 may be scattered on the surface of the magnesium oxide particles 11 . Furthermore, the organic layer 13 may not be provided on the surface of the magnesium oxide particles 11 depending on the application or the object in which the magnesium oxide composition powder 10 is dispersed.
[樹脂組成物]
 本実施形態の樹脂組成物は、樹脂と、上述した本実施形態の酸化マグネシウム組成物粉末とを含む。樹脂としては、例えば、熱可塑性樹脂、反応硬化性樹脂組成物の硬化物を用いることができる。
 熱可塑性樹脂としては、例えば、ポリスチレン、アクリル樹脂を用いることができる。 反応硬化性樹脂組成物の硬化物は、外部から熱や光などのエネルギーを付与することにより、反応硬化性樹脂組成物を硬化反応させた樹脂組成物である。反応硬化性樹脂組成物の硬化物としては、エポキシ樹脂と硬化剤とを含む反応硬化性樹脂組成物の硬化物を用いることができる。反応硬化性樹脂組成物については後述する。
[Resin composition]
The resin composition of the present embodiment includes a resin and the magnesium oxide composition powder of the present embodiment described above. As the resin, for example, a cured product of a thermoplastic resin or a reaction-curable resin composition can be used.
As the thermoplastic resin, for example, polystyrene and acrylic resin can be used. A cured product of the reaction-curable resin composition is a resin composition obtained by subjecting the reaction-curable resin composition to a curing reaction by applying energy such as heat or light from the outside. As the cured product of the reactive curable resin composition, a cured product of the reactive curable resin composition containing an epoxy resin and a curing agent can be used. The reaction-curable resin composition will be described later.
 本実施形態の樹脂組成物において、酸化マグネシウム組成物粉末の含有量は、例えば、10体積%以上80体積%以下の範囲内にあってもよく、40体積%以上80体積%以下の範囲内にあることが好ましく、50体積%以上75体積%以下の範囲内にあることがより好ましい。酸化マグネシウム組成物粉末の含有量が30体積%以上であると、樹脂組成物の硬化物における熱伝導性向上効果が顕著となる。また、酸化マグネシウム組成物粉末の含有量が80体積%以下であると、樹脂組成物の硬化物を用いて樹脂基板を成形する際に十分な成形加工性が得られる。 In the resin composition of the present embodiment, the content of the magnesium oxide composition powder may be, for example, in the range of 10% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. It is preferably in the range of 50% by volume or more and 75% by volume or less. When the content of the magnesium oxide composition powder is 30% by volume or more, the effect of improving the thermal conductivity of the cured product of the resin composition becomes remarkable. Further, when the content of the magnesium oxide composition powder is 80% by volume or less, sufficient moldability can be obtained when molding a resin substrate using a cured product of the resin composition.
 本実施形態の樹脂組成物は、酸化マグネシウム組成物粉末以外の無機物粉末を含んでいてもよい。無機物粉末としては、窒化ホウ素粉末、アルミナ粉末、水酸化アルミニウム粉末、窒化アルミニウム粉末及びシリカ粉末等が挙げられる。こられの無機物粉末は、1種を単独で含有してもよいし、2種以上を含有してもよい。無機物粉末の含有量は、酸化マグネシウム組成物粉末との合計量で、例えば、20体積%以上80体積%以下の範囲内にあってもよく、40体積%以上80体積%以下の範囲内にあることが好ましく、50体積%以上75体積%以下の範囲内にあることがより好ましい。 The resin composition of the present embodiment may contain inorganic powder other than the magnesium oxide composition powder. Examples of inorganic powders include boron nitride powder, alumina powder, aluminum hydroxide powder, aluminum nitride powder and silica powder. These inorganic powders may contain one type alone, or may contain two or more types. The content of the inorganic powder is the total amount with the magnesium oxide composition powder, and may be, for example, in the range of 20% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. more preferably in the range of 50% by volume or more and 75% by volume or less.
 本実施形態の樹脂組成物は、必要に応じて、上述の成分以外の任意成分を含んでいてもよい。任意成分としては、シランカップリング剤、チタネートカップリング剤等のカップリング剤、ハロゲン等の難燃剤、可塑剤、並びに滑剤等が挙げられる。また、本実施形態の樹脂組成物は、補強材を含んでいてもよい。補強材は絶縁性であってもよい。絶縁性の補強材としては、例えば、ガラス繊維を布状に編んだガラスクロス(ガラス布)を用いることができる。 The resin composition of the present embodiment may contain optional components other than the components described above, if necessary. Optional components include coupling agents such as silane coupling agents and titanate coupling agents, flame retardants such as halogens, plasticizers, and lubricants. Moreover, the resin composition of the present embodiment may contain a reinforcing material. The stiffener may be insulating. As the insulating reinforcing material, for example, a glass cloth (glass cloth) made by knitting glass fibers into a cloth can be used.
 本実施形態の樹脂組成物は、例えば、熱可塑性樹脂と酸化マグネシウム組成物粉末とを混合することによって製造することができる。また、本実施形態の樹脂組成物は、未硬化の反応硬化性樹脂組成物と酸化マグネシウム組成物粉末とを混合して、得られた反応性樹脂組成物を硬化させる方法によっても製造することができる。 The resin composition of the present embodiment can be produced, for example, by mixing a thermoplastic resin and magnesium oxide composition powder. The resin composition of the present embodiment can also be produced by a method of mixing an uncured reactive curable resin composition and magnesium oxide composition powder and curing the resulting reactive resin composition. can.
 本実施形態の樹脂組成物は、上述した本実施形態の酸化マグネシウム組成物粉末を含むので、熱伝導率が高く、耐水性や耐酸性に優れる。したがって、本実施形態の樹脂組成物は、機器の回路基板の材料として好適である。 Since the resin composition of the present embodiment contains the magnesium oxide composition powder of the present embodiment described above, it has high thermal conductivity and excellent water resistance and acid resistance. Therefore, the resin composition of the present embodiment is suitable as a material for circuit boards of equipment.
[樹脂組成物シート]
 図2は、本発明の一実施形態に係る樹脂組成物シートの斜視図であり、図3は、図2に示す樹脂組成物シートのIII-III線断面図である。
 図2及び図3に示す樹脂組成物シート20は、芯材21と、芯材21に含侵されると共に芯材21の両面を被覆する樹脂組成物23とを含有する。芯材21は、ガラス製の縦糸21aとガラス製の横糸21bとを編み込んだガラスクロスとされている。
[Resin composition sheet]
2 is a perspective view of a resin composition sheet according to one embodiment of the present invention, and FIG. 3 is a cross-sectional view of the resin composition sheet shown in FIG. 2, taken along line III-III.
The resin composition sheet 20 shown in FIGS. 2 and 3 contains a core material 21 and a resin composition 23 impregnated in the core material 21 and covering both sides of the core material 21 . The core material 21 is a glass cloth in which warp threads 21a made of glass and weft threads 21b made of glass are woven.
 樹脂組成物23は、樹脂22、酸化マグネシウム組成物粉末10とを含む。樹脂22としては、例えば、熱可塑性樹脂、反応硬化性樹脂組成物の硬化物を用いることができる。樹脂組成物23は、上述した本実施形態の樹脂組成物である。 The resin composition 23 includes the resin 22 and the magnesium oxide composition powder 10. As the resin 22, for example, a cured product of a thermoplastic resin or a reaction-curable resin composition can be used. The resin composition 23 is the resin composition of the present embodiment described above.
 樹脂22として熱可塑性樹脂を用いた樹脂組成物シート20は、例えば、次のようにして製造することができる。
 まず、熱可塑性樹脂溶液に酸化マグネシウム組成物粉末10を分散した熱可塑性樹脂含有原料スラリーを用意する。次いで、芯材21に、塗布または浸漬などの手法によって、熱可塑性樹脂含有原料スラリーを含浸させる。次いで、芯材21に含侵させた熱可塑性樹脂含有原料スラリーの溶媒を加熱によって除去する。熱可塑性樹脂含有原料スラリーの溶媒を除去するための加熱条件は、例えば、60~150℃で1~120分間程度とすることができ、70~120℃で3~90分間程度とすることが好ましい。
The resin composition sheet 20 using a thermoplastic resin as the resin 22 can be produced, for example, as follows.
First, a raw material slurry containing a thermoplastic resin is prepared by dispersing the magnesium oxide composition powder 10 in a thermoplastic resin solution. Next, the core material 21 is impregnated with the thermoplastic resin-containing raw material slurry by a technique such as coating or immersion. Next, the solvent of the thermoplastic resin-containing raw material slurry impregnated in the core material 21 is removed by heating. The heating conditions for removing the solvent from the thermoplastic resin-containing raw material slurry can be, for example, about 60 to 150° C. for about 1 to 120 minutes, preferably about 70 to 120° C. for about 3 to 90 minutes. .
 樹脂22として反応硬化性樹脂組成物の硬化物を用いた樹脂組成物シート20は、例えば、次のようにして製造することができる。
 まず、反応性樹脂組成物に酸化マグネシウム組成物粉末10を分散した反応性樹脂組成物含有原料スラリーを用意する。次いで、芯材21に、塗布または浸漬などの手法によって、反応性樹脂組成物含有原料スラリーを含浸させる。次いで、芯材21に含侵させた反応性樹脂組成物含有原料スラリーの溶媒を加熱によって除去する。反応性樹脂組成物含有原料スラリーの溶媒を除去するための加熱条件は、例えば、60~150℃で1~120分間程度とすることができ、70~120℃で3~90分間程度とすることが好ましい。
The resin composition sheet 20 using a cured product of a reaction-curable resin composition as the resin 22 can be produced, for example, as follows.
First, a raw material slurry containing a reactive resin composition is prepared by dispersing the magnesium oxide composition powder 10 in a reactive resin composition. Next, the core material 21 is impregnated with the raw material slurry containing the reactive resin composition by a technique such as coating or dipping. Next, the solvent of the raw material slurry containing the reactive resin composition impregnated in the core material 21 is removed by heating. The heating conditions for removing the solvent from the raw material slurry containing the reactive resin composition may be, for example, 60 to 150° C. for about 1 to 120 minutes, and 70 to 120° C. for about 3 to 90 minutes. is preferred.
 反応性樹脂組成物含有原料スラリーの溶媒を除去するための加熱と同時に、芯材21に含浸させた反応性樹脂組成物を硬化させる。また、反応性樹脂組成物含有原料スラリーの溶媒を除去するための加熱の後に、溶媒を除去するための加熱と同様の条件で、芯材21に含浸させた反応性樹脂組成物を硬化させてもよい。 The reactive resin composition impregnated in the core material 21 is cured at the same time as the reactive resin composition-containing raw material slurry is heated to remove the solvent. After heating the raw material slurry containing the reactive resin composition to remove the solvent, the reactive resin composition impregnated in the core material 21 is cured under the same conditions as the heating for removing the solvent. good too.
 本実施形態に係る樹脂組成物シート20は、上述の本実施形態の樹脂組成物を含むため、熱伝導率が高く、耐水性や耐酸性に優れる。したがって、本実施形態の樹脂組成物シート20は、機器の回路基板の材料として好適である。 Since the resin composition sheet 20 according to this embodiment contains the resin composition of this embodiment described above, it has high thermal conductivity and is excellent in water resistance and acid resistance. Therefore, the resin composition sheet 20 of the present embodiment is suitable as a material for circuit boards of equipment.
 なお、本実施形態においては、樹脂組成物シート20として、図3に示すように、芯材21としてガラスクロスを用いたものを例に挙げて説明したが、本発明は、この例に限定されるものではない。例えば、芯材21として、ガラス繊維以外の繊維を用いた織布または不織布を用いることができる。ガラス繊維以外の繊維としては、炭素繊維、金属繊維、天然繊維及び合成繊維を用いることができる。合成繊維の例としては、ポリエステル繊維、ポリアミド繊維を挙げることができる。これらの繊維は、1種のみ含有してもよいし、2種以上含有してもよい。 In the present embodiment, as shown in FIG. 3, the resin composition sheet 20 is described using glass cloth as the core material 21 as an example, but the present invention is limited to this example. not something. For example, as the core material 21, a woven fabric or non-woven fabric using fibers other than glass fibers can be used. As fibers other than glass fibers, carbon fibers, metal fibers, natural fibers and synthetic fibers can be used. Examples of synthetic fibers include polyester fibers and polyamide fibers. These fibers may contain only one type, or may contain two or more types.
 また、本発明の樹脂組成物シートは、芯材を有さずに、樹脂成分のみで形成されているものであってもよい。さらに、樹脂組成物シートの表面上には、銅箔などの金属箔が積層されていてもよい。 In addition, the resin composition sheet of the present invention may be formed only of a resin component without having a core material. Furthermore, a metal foil such as copper foil may be laminated on the surface of the resin composition sheet.
[積層基板]
 図4は、本発明の一実施形態に係る積層基板の斜視図であり、図5は、図4に示す積層基板のV-V線断面図である。図4および図5に示されるように、積層基板30は、図2及び図3に示す樹脂組成物シート20が複数積層されて一体化されている。
[Laminate substrate]
4 is a perspective view of a layered substrate according to one embodiment of the present invention, and FIG. 5 is a cross-sectional view of the layered substrate shown in FIG. 4 taken along line VV. As shown in FIGS. 4 and 5, a laminated substrate 30 is formed by laminating and integrating a plurality of resin composition sheets 20 shown in FIGS.
 積層基板30は、例えば、複数枚の樹脂組成物シート20を重ね合わせた状態で、加熱する方法により製造できる。樹脂組成物シート20の樹脂22が反応性樹脂組成物の硬化物である場合は、加熱する前の樹脂組成物シート20の反応性樹脂組成物を半硬化もしくは未硬化の状態として、樹脂組成物シート20を重ね合わせた状態で加熱する際に、反応性樹脂組成物を硬化させてもよい。複数枚の樹脂組成物シート20の加熱条件は、例えば、100~250℃で1~300分間程度とすることができる。 The laminated substrate 30 can be manufactured, for example, by a method of heating a plurality of resin composition sheets 20 in a superimposed state. When the resin 22 of the resin composition sheet 20 is a cured product of a reactive resin composition, the reactive resin composition of the resin composition sheet 20 before heating is in a semi-cured or uncured state, and the resin composition The reactive resin composition may be cured when the sheets 20 are superimposed and heated. The heating conditions for the plurality of resin composition sheets 20 can be, for example, 100 to 250° C. for about 1 to 300 minutes.
 複数枚の樹脂組成物シート20を加熱する際には、必要に応じて加圧してもよい。加圧条件は、例えば、0.1~10MPa程度とすることができる。複数枚の樹脂組成物シート20を加熱する際に、加圧は必須ではない。また、複数枚の樹脂組成物シート20の加熱は、減圧または真空下で行ってもよい。 When heating the plurality of resin composition sheets 20, pressure may be applied as necessary. The pressurizing condition can be, for example, about 0.1 to 10 MPa. Pressurization is not essential when heating the plurality of resin composition sheets 20 . Moreover, the heating of the plurality of resin composition sheets 20 may be performed under reduced pressure or vacuum.
 本実施形態の積層基板30は、樹脂組成物シート20が積層されたものであるため、高い熱伝導率を有する。したがって、本実施形態の積層基板30は、機器の回路基板の材料として好適である。 The laminated substrate 30 of the present embodiment has a high thermal conductivity because the resin composition sheets 20 are laminated. Therefore, the laminated substrate 30 of the present embodiment is suitable as a material for circuit boards of equipment.
 本実施形態においては、積層基板30として、図2及び図3に示す樹脂組成物シート20が複数積層されたものを例に挙げて説明したが、本発明の積層基板は、複数の樹脂基板のうち、少なくとも一つが本発明の樹脂組成物シートであればよい。 In the present embodiment, as the laminated substrate 30, an example in which a plurality of the resin composition sheets 20 shown in FIGS. 2 and 3 are laminated has been described. At least one of them may be the resin composition sheet of the present invention.
 また、本発明の積層基板は、例えば、上面および/または下面に金属層を有する金属張り積層板とされていてもよい。この場合、金属層としては、各種公知のものを適宜選択して用いることができる。具体的には、金属層として、例えば、銅、ニッケル、アルミニウム等の金属からなる金属板または金属箔などを用いることができる。金属層の厚みは、特に限定されず、例えば、3~150μm程度とすることができる。金属層として、金属板または金属箔に、エッチング及び/又は穴開け加工が施されたものを用いてもよい。 Also, the laminated substrate of the present invention may be, for example, a metal-clad laminate having a metal layer on the upper surface and/or the lower surface. In this case, various known metal layers can be appropriately selected and used as the metal layer. Specifically, for example, a metal plate or metal foil made of metal such as copper, nickel, or aluminum can be used as the metal layer. The thickness of the metal layer is not particularly limited, and can be, for example, about 3 to 150 μm. As the metal layer, a metal plate or a metal foil subjected to etching and/or perforation processing may be used.
[反応性樹脂組成物]
 本実施形態の反応性樹脂組成物は、反応硬化性樹脂組成物と、上述した本実施形態の酸化マグネシウム組成物粉末とを含む。反応硬化性樹脂組成物は、外部から熱や光などのエネルギーを付与することにより、反応して硬化するものである。
[Reactive resin composition]
The reactive resin composition of the present embodiment includes a reaction-curable resin composition and the magnesium oxide composition powder of the present embodiment described above. A reaction-curable resin composition reacts and cures when energy such as heat or light is applied from the outside.
 反応硬化性樹脂組成物としては、例えば、エポキシ樹脂と硬化剤とを含むエポキシ系樹脂組成物を用いてもよい。エポキシ系樹脂組成物は、さらに硬化促進剤を含んでいてもよい。 As the reaction-curable resin composition, for example, an epoxy-based resin composition containing an epoxy resin and a curing agent may be used. The epoxy resin composition may further contain a curing accelerator.
 エポキシ樹脂としては、例えば、4,4’-ビフェノールジグリシジルエーテル、3,3’,5,5’-テトラメチル-4,4’-ビス(グリシジルオキシ)-1,1’-ビフェニル、トリグリシジルイソシアヌレート(TGI)、トリグリシジル-p-アミノフェノール、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂など公知のエポキシ化合物を用いることができ、市販のエポキシ樹脂を用いてもよい。これらのエポキシ樹脂は、1種のみ含有してもよいし、2種以上含有してもよい。 Examples of epoxy resins include 4,4'-biphenol diglycidyl ether, 3,3',5,5'-tetramethyl-4,4'-bis(glycidyloxy)-1,1'-biphenyl, triglycidyl Known epoxy compounds such as isocyanurate (TGI), triglycidyl-p-aminophenol, novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, tetraglycidyldiaminodiphenylmethane type epoxy resin are used. A commercially available epoxy resin may be used. These epoxy resins may contain only one type, or may contain two or more types.
 硬化剤としては、エポキシ樹脂のエポキシ基と反応する反応基を有する化合物を用いることができる。反応基の例としては、アミノ基、フェノール性水酸基を挙げることができる。硬化剤としては、例えば、p-フェニレンジアミン、1,5-ジアミノナフタレン、ヒドロキノン、2,6-ジヒドロキシナフタレン、フロログルシノール、4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-アミノ安息香酸、フェノール樹脂、ポリアミドアミンを用いることができる。また、下記の一般式(1)で表される化合物を用いることができる。これらの硬化剤は、1種のみ含有してもよいし、2種以上含有してもよい。 A compound having a reactive group that reacts with the epoxy group of the epoxy resin can be used as the curing agent. Examples of reactive groups include amino groups and phenolic hydroxyl groups. Curing agents include, for example, p-phenylenediamine, 1,5-diaminonaphthalene, hydroquinone, 2,6-dihydroxynaphthalene, phloroglucinol, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-amino Benzoic acid, phenolic resins, polyamidoamines can be used. Also, a compound represented by the following general formula (1) can be used. These curing agents may be contained alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)において、nは、2~40の整数である。なお、式(1)で表される化合物を用いた硬化剤は、式(1)のnが互いに異なる整数である化合物を2種以上含んでいてもよい。 In formula (1), n is an integer of 2-40. The curing agent using the compound represented by Formula (1) may contain two or more compounds in which n in Formula (1) is a different integer.
 式(1)で表される化合物は、メソゲン基を含む骨格を有する鎖状化合物である。式(1)で表される化合物に含まれる1つのメチル基で置換されたパラフェニレン基において、ベンゼン環に結合しているメチル基の位置は特に限定されない。 The compound represented by formula (1) is a chain compound having a skeleton containing a mesogenic group. In the paraphenylene group substituted with one methyl group contained in the compound represented by formula (1), the position of the methyl group bonded to the benzene ring is not particularly limited.
 反応性樹脂組成物のエポキシ樹脂と硬化剤との含有量は、例えば、反応性樹脂組成物に含まれる硬化剤の反応基の合計モル数を1モルとして、反応性樹脂組成物に含まれるエポキシ樹脂のエポキシ基の合計モル数が0.9モル以上1.3モル以下の範囲内となる割合であることが好ましく、1.0モル以上1.2モル以下の範囲内となる割合であることがより好ましい。 The content of the epoxy resin and the curing agent in the reactive resin composition is, for example, based on the total number of moles of reactive groups of the curing agent contained in the reactive resin composition being 1 mol, The total number of moles of epoxy groups in the resin is preferably in the range of 0.9 mol or more and 1.3 mol or less, and is in the range of 1.0 mol or more and 1.2 mol or less. is more preferred.
 硬化促進剤としては、高沸点の塩基性の有機化合物を用いることができる。具体的には、硬化促進剤として、3級アミン類、3級ホスフィン類、4-ジメチルアミノピリジン(DMAP)、イミダゾール類などから選ばれる沸点が200℃以上のものなどが挙げられる。これらの中でも特に、取り扱いのしやすさから硬化促進剤として、イミダゾール系エポキシ樹脂硬化促進剤である2-エチル-4-メチルイミダゾール(2E4MZ)、1-(2-シアノエチル)-2-フェニルイミダゾールを用いることが好ましい。反応性樹脂組成物の硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、例えば、0質量部以上5質量部以下の範囲内である。 A basic organic compound with a high boiling point can be used as the curing accelerator. Specific examples of curing accelerators include those having a boiling point of 200° C. or higher selected from tertiary amines, tertiary phosphines, 4-dimethylaminopyridine (DMAP), imidazoles, and the like. Among these, 2-ethyl-4-methylimidazole (2E4MZ) and 1-(2-cyanoethyl)-2-phenylimidazole, which are imidazole-based epoxy resin curing accelerators, are particularly used as curing accelerators for ease of handling. It is preferable to use The content of the curing accelerator in the reactive resin composition is, for example, within the range of 0 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
 本実施形態の反応性樹脂組成物において、酸化マグネシウム組成物粉末の含有量は、例えば、10体積%以上80体積%以下の範囲内にあってもよく、40体積%以上80体積%以下の範囲内にあることが好ましく、50体積%以上75体積%以下の範囲内にあることがより好ましい。 In the reactive resin composition of the present embodiment, the content of the magnesium oxide composition powder may be, for example, in the range of 10% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. It is preferably within the range of 50% by volume or more and 75% by volume or less.
 本実施形態の反応性樹脂組成物は、酸化マグネシウム組成物粉末以外の無機物粉末を含んでいてもよい。無機物粉末としては、窒化ホウ素粉末、アルミナ粉末、水酸化アルミニウム粉末、窒化アルミニウム粉末及びシリカ粉末等が挙げられる。こられの無機物粉末は、1種を単独で含有してもよいし、2種以上を含有してもよい。無機物粉末の含有量は、酸化マグネシウム組成物粉末との合計量で、例えば、20体積%以上80体積%以下の範囲内にあってもよく、40体積%以上80体積%以下の範囲内にあることが好ましく、50体積%以上75体積%以下の範囲内にあることがより好ましい。 The reactive resin composition of the present embodiment may contain inorganic powder other than the magnesium oxide composition powder. Examples of inorganic powders include boron nitride powder, alumina powder, aluminum hydroxide powder, aluminum nitride powder and silica powder. These inorganic powders may contain one type alone, or may contain two or more types. The content of the inorganic powder is the total amount with the magnesium oxide composition powder, and may be, for example, in the range of 20% by volume or more and 80% by volume or less, or in the range of 40% by volume or more and 80% by volume or less. more preferably in the range of 50% by volume or more and 75% by volume or less.
 本実施形態の反応性樹脂組成物は、例えば、反応硬化性樹脂組成物と、酸化マグネシウム組成物粉末とを溶媒中で混合し、乾燥することによって製造することができる。溶媒としては、アセトン、メチルエチルケトン(MEK)等のケトン類、メタノール、エタノール、イソプロパノール等のアルコール類、トルエン、キシレン等の芳香族化合物類、テトラヒドロフラン(THF)、1,3-ジオキソラン等のエーテル類、酢酸エチル、γ-ブチロラクトン等のエステル類、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン等のアミド類などが挙げられる。これらの溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The reactive resin composition of the present embodiment can be produced, for example, by mixing a reactive curable resin composition and magnesium oxide composition powder in a solvent and drying. Examples of solvents include ketones such as acetone and methyl ethyl ketone (MEK); alcohols such as methanol, ethanol and isopropanol; aromatic compounds such as toluene and xylene; ethers such as tetrahydrofuran (THF) and 1,3-dioxolane; Examples include esters such as ethyl acetate and γ-butyrolactone, and amides such as N,N-dimethylformamide (DMF) and N-methylpyrrolidone. These solvents may be used singly or in combination of two or more.
 本実施形態の反応性樹脂組成物は、反応硬化性樹脂組成物と、上述した本実施形態の酸化マグネシウム組成物粉末とを含むので、反応硬化性樹脂組成物を硬化させることによって、熱伝導率が高く、耐水性や耐酸性に優れる樹脂組成物を生成することができる。生成した樹脂組成物は、例えば、電子機器の回路基板の材料として利用することができる。 Since the reactive resin composition of the present embodiment includes the reaction-curable resin composition and the magnesium oxide composition powder of the present embodiment described above, curing the reaction-curable resin composition increases the thermal conductivity It is possible to produce a resin composition that has a high resistance to water and is excellent in water resistance and acid resistance. The produced resin composition can be used, for example, as a material for circuit boards of electronic devices.
 本実施形態の反応性樹脂組成物において、反応硬化性樹脂組成物が、エポキシ樹脂と硬化剤とを含む場合は、化学的により安定で耐水性や耐酸性に優れる樹脂組成物を得ることができる。さらに、エポキシ樹脂がトリグリシジルイソシアヌレートであって、硬化剤が上記の一般式(1)で表されるメソゲン基を含む骨格を有する鎖状化合物である場合は、より熱伝導率が高い樹脂組成物を得ることができる。硬化剤として、式(1)で表される化合物を用いた場合、硬化剤のメソゲン基を含む骨格によって、硬化物に剛直性が付与されるため、樹脂組成物(硬化物)の熱伝導性が向上する。 In the reactive resin composition of the present embodiment, when the reactive curable resin composition contains an epoxy resin and a curing agent, it is possible to obtain a resin composition that is chemically more stable and has excellent water resistance and acid resistance. . Furthermore, when the epoxy resin is triglycidyl isocyanurate and the curing agent is a chain compound having a skeleton containing a mesogenic group represented by the above general formula (1), the resin composition has a higher thermal conductivity. can get things. When the compound represented by the formula (1) is used as the curing agent, the rigidity is imparted to the cured product by the skeleton containing the mesogenic group of the curing agent, so the thermal conductivity of the resin composition (cured product) improves.
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. , substitutions, and other modifications are possible.
 次に、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
 100mLのナスフラスコに、酸化マグネシウム粉末(平均粒子径:10μm、比表面積:0.7m/g)20gと、SiO源として濃度5%のポリシラザン溶液42.0gと、添加金属元素化合物として酢酸リチウム0.106gとを投入し、10分間攪拌混合して原料混合液を得た。次いで、原料混合液を風乾し、溶媒を除去して原料乾燥物を得た。次いで、原料混合乾燥物を、150℃で1時間加熱した後、800℃で6時間加熱処理した。得られた加熱処理物をミルで解砕して、酸化マグネシウム組成物粉末を得た。
[Example 1]
A 100 mL eggplant flask was charged with 20 g of magnesium oxide powder (average particle diameter: 10 μm, specific surface area: 0.7 m 2 /g), 42.0 g of polysilazane solution with a concentration of 5% as a SiO 2 source, and acetic acid as an additive metal element compound. 0.106 g of lithium was added and mixed with stirring for 10 minutes to obtain a raw material mixture. Next, the raw material mixture was air-dried to remove the solvent to obtain a dried raw material. Next, the raw material mixed dried material was heated at 150° C. for 1 hour and then heat-treated at 800° C. for 6 hours. The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder.
[実施例2]
 実施例1と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末とシランカップリング剤(KBM-403、信越化学工業株式会社製)とを、イソプロピルアルコール(IPA)水溶液溶媒(IPA/水=9/1(体積比))に投入し、一晩攪拌混合した。シランカップリング剤の添加量は、酸化マグネシウム組成物粉末に対して5質量%とした。その後、ロータリーエバポレーターを用いて溶媒を除去し、次いで120℃で30分間乾燥した。こうして、酸化マグネシウム組成物粉末をシランカップリング剤で表面処理した。
[Example 2]
A magnesium oxide composition powder was obtained in the same manner as in Example 1. The resulting magnesium oxide composition powder and a silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) were added to an isopropyl alcohol (IPA) aqueous solution solvent (IPA/water = 9/1 (volume ratio)). and mixed with stirring overnight. The amount of the silane coupling agent added was 5% by mass with respect to the magnesium oxide composition powder. The solvent was then removed using a rotary evaporator, followed by drying at 120° C. for 30 minutes. Thus, the magnesium oxide composition powder was surface-treated with a silane coupling agent.
[実施例3~5]
 5%ポリシラザン溶液の配合量、及び添加金属元素化合物の種類と配合量を、下記の表1に示すように変えたこと以外は、実施例1と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Examples 3 to 5]
A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that the amount of the 5% polysilazane solution and the type and amount of the additive metal element compound were changed as shown in Table 1 below. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例6]
 添加金属元素化合物として、酢酸リチウムの代わりに炭酸ナトリウム0.153gを用いたこと以外は、実施例1と同様にして酸化マグネシウム組成物粉末を得た。
[Example 6]
A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that 0.153 g of sodium carbonate was used as the additive metal element compound instead of lithium acetate.
[実施例7]
 実施例6と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を実施例2と同様にして、シランカップリング剤で表面処理した。
[Example 7]
A magnesium oxide composition powder was obtained in the same manner as in Example 6. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例8]
 実施例6と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末と、フェニルホスホン酸(PPA)とをジオキソラン溶媒に投入し、30分間攪拌混合した。PPAの添加量は、酸化マグネシウム組成物粉末に対して5質量%とした。その後、ロータリーエバポレーターを用いて溶媒を除去し、次いで140℃で一晩乾燥した。こうして、酸化マグネシウム組成物粉末をPPAで表面処理した。
[Example 8]
A magnesium oxide composition powder was obtained in the same manner as in Example 6. The obtained magnesium oxide composition powder and phenylphosphonic acid (PPA) were put into a dioxolane solvent and stirred and mixed for 30 minutes. The amount of PPA added was 5% by mass with respect to the magnesium oxide composition powder. The solvent was then removed using a rotary evaporator and then dried at 140° C. overnight. Thus, the magnesium oxide composition powder was surface-treated with PPA.
[実施例9~17]
 添加金属元素化合物の種類と配合量を、下記の表1に示すように変えたこと以外は、実施例1と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Examples 9 to 17]
A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that the type and amount of the additive metal element compound were changed as shown in Table 1 below. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例18]
 100mLのナスフラスコに、酸化マグネシウム粉末20gと、SiO源として濃度5%のポリシラザン溶液42.0gとを投入し、10分間攪拌混合して混合液を得た。得られた混合液を風乾して溶媒を除去し、次いで150℃で1時間加熱してSiO源被覆酸化マグネシウム粉末を得た。次いで、得られたSiO源被覆酸化マグネシウム粉末と、添加金属元素化合物としてオキシ酢酸ジルコニウム水溶液3.360gとを混合し、風乾して、溶媒(水)を除去した。次いで、オキシ酢酸ジルコニウムが付着したSiO源被覆酸化マグネシウム粉末を、150℃で1時間加熱した後、800℃で6時間加熱処理した。得られた加熱処理物をミルで解砕して、酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Example 18]
20 g of magnesium oxide powder and 42.0 g of a polysilazane solution having a concentration of 5% as a SiO 2 source were put into a 100 mL eggplant flask, and stirred and mixed for 10 minutes to obtain a mixed solution. The resulting mixture was air-dried to remove the solvent, and then heated at 150° C. for 1 hour to obtain SiO 2 source-coated magnesium oxide powder. Next, the obtained SiO 2 source-coated magnesium oxide powder and 3.360 g of an aqueous zirconium oxyacetate solution as an additive metal element compound were mixed and air-dried to remove the solvent (water). The SiO 2 source-coated magnesium oxide powder with zirconium oxyacetate attached was then heated at 150° C. for 1 hour and then heat-treated at 800° C. for 6 hours. The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例19]
 200mLのナスフラスコに、エタノール50gと、イオン交換水10gと、28質量%アンモニア水1gと、酸化マグネシウム粉末20gとを投入し、30分間攪拌混合した。その後、エタノールで希釈したTEOS(テトラエトキシシラン)を滴下し、さらに2時間攪拌混合して混合物を得た。得られた混合物をろ過して回収した固形物を、エタノールで洗浄し、次いで70℃で1時間乾燥した後、180℃で3時間加熱処理して、SiO源被覆酸化マグネシウム粉末を得た。得られたSiO源被覆酸化マグネシウム組成物と、炭酸ナトリウム0.153gとを混合した。次いで、炭酸ナトリウムが付着したSiO源被覆酸化マグネシウム粉末を、800℃で6時間加熱処理した。得られた加熱処理物をミルで解砕して、酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Example 19]
50 g of ethanol, 10 g of ion-exchanged water, 1 g of 28% by mass ammonia water, and 20 g of magnesium oxide powder were put into a 200 mL eggplant flask and stirred and mixed for 30 minutes. After that, TEOS (tetraethoxysilane) diluted with ethanol was added dropwise, and the mixture was further stirred and mixed for 2 hours to obtain a mixture. The resulting mixture was filtered and the solid collected was washed with ethanol, then dried at 70° C. for 1 hour and then heat-treated at 180° C. for 3 hours to obtain SiO 2 source-coated magnesium oxide powder. The resulting SiO 2 source coated magnesium oxide composition was mixed with 0.153 g of sodium carbonate. The SiO 2 source-coated magnesium oxide powder with attached sodium carbonate was then heat-treated at 800° C. for 6 hours. The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例20]
 100mLのナスフラスコに、酸化マグネシウム粉末20gと、SiO源としてシリコーンオイル(KF-96、信越化学工業株式会社製)3g、添加金属元素化合物として炭酸ナトリウム0.153gと、ヘキサン20mLとを投入し、10分間攪拌混合して原料混合物を得た。得られた原料混合物を風乾して、溶媒を除去して原料乾燥物を得た。次いで、原料混合乾燥物を、150℃で1時間加熱した後、800℃で6時間加熱処理した。得られた加熱処理物をミルで解砕して、酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Example 20]
In a 100 mL eggplant flask, 20 g of magnesium oxide powder, 3 g of silicone oil (KF-96, manufactured by Shin-Etsu Chemical Co., Ltd.) as a SiO 2 source, 0.153 g of sodium carbonate as an additive metal element compound, and 20 mL of hexane were added. , and stirred and mixed for 10 minutes to obtain a raw material mixture. The resulting raw material mixture was air-dried to remove the solvent to obtain a dried raw material. Next, the raw material mixed dried material was heated at 150° C. for 1 hour and then heat-treated at 800° C. for 6 hours. The obtained heat-treated product was pulverized with a mill to obtain a magnesium oxide composition powder. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例21]
 酸化マグネシウム粉末として、平均粒子径が3μmで、比表面積が1.4m/gの酸化マグネシウム粉末を20g用い、濃度5%のポリシラザン溶液を84.0g用い、添加金属元素化合物として、酢酸リチウムの代わりに炭酸ナトリウム0.306gを用いたこと以外は、実施例1と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Example 21]
As the magnesium oxide powder, 20 g of magnesium oxide powder having an average particle size of 3 μm and a specific surface area of 1.4 m 2 /g was used, and 84.0 g of a polysilazane solution having a concentration of 5% was used. A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that 0.306 g of sodium carbonate was used instead. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例22]
 酸化マグネシウム粉末として、平均粒子径が17μmで、比表面積が0.5m/gの酸化マグネシウム粉末を20g用い、濃度5%のポリシラザン溶液を30.0g用い、添加金属元素化合物として、酢酸リチウムの代わりに炭酸ナトリウム0.110gを用いたこと以外は、実施例1と同様にして酸化マグネシウム組成物粉末を得た。得られた酸化マグネシウム組成物粉末を、実施例2と同様にして、シランカップリング剤で表面処理した。
[Example 22]
As the magnesium oxide powder, 20 g of magnesium oxide powder having an average particle size of 17 μm and a specific surface area of 0.5 m 2 /g was used, and 30.0 g of a polysilazane solution having a concentration of 5% was used. A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that 0.110 g of sodium carbonate was used instead. The resulting magnesium oxide composition powder was surface-treated with a silane coupling agent in the same manner as in Example 2.
[実施例23]
 5%ポリシラザン溶液の配合量と、炭酸ナトリウムの配合量を、下記の表1に示す量としたこと以外は、実施例6と同様にして酸化マグネシウム組成物粉末を得た。
[Example 23]
A magnesium oxide composition powder was obtained in the same manner as in Example 6, except that the blending amount of the 5% polysilazane solution and the blending amount of sodium carbonate were set to the amounts shown in Table 1 below.
[比較例1]
 炭酸ナトリウムを用いなかったこと以外は、実施例1と同様にして酸化マグネシウム組成物粉末を得た。
[Comparative Example 1]
A magnesium oxide composition powder was obtained in the same manner as in Example 1, except that sodium carbonate was not used.
[比較例2]
 5%ポリシラザン溶液の配合量と、炭酸ナトリウムの配合量を、下記の表2に示す量としたこと以外は、実施例6と同様にして酸化マグネシウム組成物粉末を得た。
[Comparative Example 2]
A magnesium oxide composition powder was obtained in the same manner as in Example 6, except that the blending amount of the 5% polysilazane solution and the blending amount of sodium carbonate were set to the amounts shown in Table 2 below.
[比較例3]
 炭酸ナトリウムを用いなかったこと以外は、実施例21と同様にして酸化マグネシウム組成物粉末を得て、得られた酸化マグネシウム組成物粉末をシランカップリング剤で表面処理した。
[Comparative Example 3]
A magnesium oxide composition powder was obtained in the same manner as in Example 21 except that sodium carbonate was not used, and the obtained magnesium oxide composition powder was surface-treated with a silane coupling agent.
[比較例4]
 炭酸ナトリウムを用いなかったこと以外は、実施例22と同様にして酸化マグネシウム組成物粉末を得て、得られた酸化マグネシウム組成物粉末をシランカップリング剤で表面処理した。

[Comparative Example 4]
A magnesium oxide composition powder was obtained in the same manner as in Example 22, except that sodium carbonate was not used, and the obtained magnesium oxide composition powder was surface-treated with a silane coupling agent.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[評価]
 実施例1~23、比較例1~4で得られた酸化マグネシウム組成物粉末を、原子分解能電子顕微鏡(JEM-ARM300F GRAND ARM、日本電子株式会社製)を用いて、EDS(エネルギー分散型X線分析)により元素マッピングを行った。その結果、酸化マグネシウム組成物粉末は、SiOを含む酸化物層で被覆されていることが確認された。
[evaluation]
The magnesium oxide composition powders obtained in Examples 1 to 23 and Comparative Examples 1 to 4 were subjected to EDS (energy dispersive X-ray) using an atomic resolution electron microscope (JEM-ARM300F GRAND ARM, manufactured by JEOL Ltd.) analysis) performed elemental mapping. As a result, it was confirmed that the magnesium oxide composition powder was coated with an oxide layer containing SiO2 .
 実施例1~23、比較例1~4で得られた酸化マグネシウム組成物粉末の酸化物層について、厚さ、結晶性SiOの有無、添加金属元素の含有量を下記の方法により測定した。また、酸化マグネシウム組成物粉末の有機物層の有無を、下記の方法により確認した。さらに、酸化マグネシウム組成物粉末の耐酸性(溶出試験)、分散性(沈降試験)、熱伝導率を下記の方法より測定した。その結果を、下記の表3に示す。なお、耐酸性、分散性、熱伝導率は、酸化マグネシウム粉末(平均粒子径:10μm、比表面積:0.7m/g)についても測定した。その結果を、比較例5として表3に示す。 For the oxide layers of the magnesium oxide composition powders obtained in Examples 1 to 23 and Comparative Examples 1 to 4, the thickness, the presence or absence of crystalline SiO 2 , and the content of additive metal elements were measured by the following methods. Moreover, the presence or absence of an organic substance layer in the magnesium oxide composition powder was confirmed by the following method. Furthermore, the acid resistance (elution test), dispersibility (sedimentation test), and thermal conductivity of the magnesium oxide composition powder were measured by the following methods. The results are shown in Table 3 below. The acid resistance, dispersibility, and thermal conductivity were also measured for magnesium oxide powder (average particle size: 10 μm, specific surface area: 0.7 m 2 /g). The results are shown in Table 3 as Comparative Example 5.
[実施例30]
 酸化マグネシウム粉末20gと、表1に記載の量の5%ポリシラザン溶液、ラウリン酸ナトリウム、およびALCHを100mlナスフラスコへ添加し、30分間の攪拌混合を行った。得られた混合物を風乾して溶媒を飛ばした後に、150℃で2時間乾燥させ、800℃で6時間の加熱処理を行った。処理後の酸化マグネシウム粉末をミルで解砕して原料と同程度の粒径に粉砕することで、ケイ素、アルミニウム、マグネシウム、およびナトリウムのうち少なくとも一つを含む結晶性複酸化物によって被覆された被覆MgO粉末を得た。
[Example 30]
20 g of magnesium oxide powder, and the amounts of 5% polysilazane solution, sodium laurate, and ALCH shown in Table 1 were added to a 100 ml eggplant flask and mixed with stirring for 30 minutes. The resulting mixture was air-dried to remove the solvent, dried at 150° C. for 2 hours, and heat-treated at 800° C. for 6 hours. The magnesium oxide powder after treatment is pulverized with a mill and pulverized to a particle size similar to that of the raw material, and is coated with a crystalline double oxide containing at least one of silicon, aluminum, magnesium, and sodium. A coated MgO powder was obtained.
[実施例31]
 実施例30と同様にして得た酸化マグネシウム組成物粉末を、実施例2と同様にシランカップリング剤で表面処理した。
[Example 31]
A magnesium oxide composition powder obtained in the same manner as in Example 30 was surface-treated with a silane coupling agent in the same manner as in Example 2.
[比較例6]
 添加金属元素化合物として、ラウリン酸ナトリウムの代わりに炭酸リチウムを用いたこと以外は、実施例30と同様にして、結晶性複酸化物によって被覆された被覆MgO粉末を得た。
[Comparative Example 6]
A coated MgO powder coated with a crystalline multiple oxide was obtained in the same manner as in Example 30, except that lithium carbonate was used as the additive metal element compound instead of sodium laurate.
(酸化物層の厚さ)
 酸化マグネシウム組成物粉末に対して、EDSを用いて、Mg及びSiの元素マッピングを行った。O(酸素)は、検出しないように設定した。取得された元素マップ像のMgとSiのX線強度プロファイルにおいて、SiのX線強度がMgのX線強度よりも大きい範囲を酸化物層として、その厚さを計測した。酸化物層の厚さは、3個の粒子について行った。表3に記載した値は、その平均値である。
(thickness of oxide layer)
Elemental mapping of Mg and Si was performed on the magnesium oxide composition powder using EDS. O (oxygen) was set not to be detected. In the X-ray intensity profiles of Mg and Si in the acquired elemental map image, the thickness of the oxide layer was measured in the range where the X-ray intensity of Si was greater than the X-ray intensity of Mg. The thickness of the oxide layer was carried out on three particles. The values listed in Table 3 are the average values.
(結晶性SiOの有無)
 結晶性SiOの有無は、CuKα線を用いて測定されたX線回折パターンから結晶性SiO(トリジマイト、クリストバライト、石英)に由来する回折ピークが検出されるか否かによって判定した。結晶性SiOに由来する回折ピークが1種でも検出された場合は、結晶性SiOを「有」とした。X線回折パターンは、X線回折装置(Empyrean、Malvern Panalytical社製)を用いて測定した。
(Presence or absence of crystalline SiO2 )
The presence or absence of crystalline SiO 2 was determined by detecting a diffraction peak derived from crystalline SiO 2 (tridymite, cristobalite, quartz) from an X-ray diffraction pattern measured using CuKα rays. If even one kind of diffraction peak derived from crystalline SiO 2 was detected, crystalline SiO 2 was judged to be “presence”. The X-ray diffraction pattern was measured using an X-ray diffractometer (Empyrean, manufactured by Malvern Panalytical).
(添加金属元素の含有量)
試料0.1gを秤量し、これに8mLの硝酸水溶液(硝酸/水=2/1(体積比))と2mLのフッ酸とを加え、マイクロウェーブ試料分解装置(Multiwave3000、Anton Paar社製)を用いて、200℃で30分間加熱処理して溶解させた。得られた溶液に、純水を加えて20gに定容した後、ICP-AES(ICPS-8100CL、島津製作所社製)を用いて検量線法によって、マグネシウムと添加金属元素の含有量を定量した。
(Content of additive metal element)
0.1 g of sample was weighed, 8 mL of nitric acid aqueous solution (nitric acid/water = 2/1 (volume ratio)) and 2 mL of hydrofluoric acid were added thereto, and a microwave sample decomposition device (Multiwave 3000, manufactured by Anton Paar) was used. was used and heat-treated at 200° C. for 30 minutes to dissolve. Pure water was added to the obtained solution to adjust the volume to 20 g, and then the contents of magnesium and added metal elements were quantified by the calibration curve method using ICP-AES (ICPS-8100CL, manufactured by Shimadzu Corporation). .
(有機物層の有無)
 酸化マグネシウム組成物粉末の表面の赤外吸収スペクトルを測定した。赤外吸収スペクトルの測定は、FT-IR(Nicolet iS50、サーモフィッシャー社製)を用い、拡散反射法により行った。赤外吸収スペクトルからシランカップリング剤もしくはホスホン酸に起因するピークが検出された場合は、有機物層を「有」とした。
(Presence or absence of organic layer)
An infrared absorption spectrum of the surface of the magnesium oxide composition powder was measured. The infrared absorption spectrum was measured by a diffuse reflection method using FT-IR (Nicolet iS50, manufactured by Thermo Fisher). When a peak attributed to the silane coupling agent or phosphonic acid was detected from the infrared absorption spectrum, the organic layer was evaluated as "present".
(耐酸性(溶出試験))
 pHを5に調製した硫酸水溶液10mLに、酸化マグネシウム組成物粉末を0.5g添加し、10分攪拌を行った。攪拌後の硫酸水溶液のpHをpHメーターで測定して、その値を酸化マグネシウム組成物粉末の酸性溶液に対する溶出性とした。pHが低いことは、酸化マグネシウムが酸に溶出しにくいこと、すなわち耐酸性に優れることを表す。
(Acid resistance (elution test))
0.5 g of magnesium oxide composition powder was added to 10 mL of an aqueous sulfuric acid solution adjusted to pH 5, and the mixture was stirred for 10 minutes. The pH of the sulfuric acid aqueous solution after stirring was measured with a pH meter, and the value was defined as the dissolution property of the magnesium oxide composition powder in an acidic solution. A low pH indicates that magnesium oxide is less likely to dissolve in an acid, that is, it has excellent acid resistance.
(分散性(沈降試験))
 沈降管として、20mLの(有栓)メスシリンダーを用いた。この沈降管に、酸化マグネシウム組成物粉末を0.5g、ジオキソランを20mL量り取り、攪拌しながら10分間超音波分散処理を行った。次いで、沈降管を栓で封止した後、沈降管を水平な面に静置させたと同時に時間の計測を開始し、静置5分後の気液界面から完全に澄明な液相と懸濁が認められる液相との界面までの距離を目視での沈降距離として測定した。沈降距離の測定に際して、界面の読み取りを容易とするために黒色背景の前に沈降管を設置した。沈降距離が大きいほど分散性に優れることを表す。
(Dispersibility (sedimentation test))
A 20 mL (stoppered) graduated cylinder was used as a sedimentation tube. 0.5 g of the magnesium oxide composition powder and 20 mL of dioxolane were weighed into this sedimentation tube and subjected to ultrasonic dispersion treatment for 10 minutes while stirring. Next, after sealing the sedimentation tube with a stopper, the sedimentation tube was allowed to stand still on a horizontal surface, and at the same time, time measurement was started. The distance to the interface with the liquid phase at which the is observed was measured as the visual sedimentation distance. When measuring sedimentation distances, the sedimentation tube was placed in front of a black background to facilitate reading of the interface. A larger sedimentation distance indicates better dispersibility.
(熱伝導率)
 ビスフェノールA型エポキシ樹脂(JER828、三菱ケミカル株式会社製)100質量部に対して、メチルヒドロキノン(東京化成工業株式会社製)3質量部と、2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業株式会社製)3質量部とを混合してエポキシ系樹脂組成物を得た。得られたエポキシ系樹脂組成物と、酸化マグネシウム組成物粉末とを体積比で30:70の割合で攪拌混合して、反応性樹脂組成物を得た。次いで、反応性樹脂組成物を真空脱気し、ハンドプレス機で厚さ1mmのシート状に加工した後、120℃で1時間、150℃で1時間、180℃で1時間加熱することでエポキシ系樹脂組成物シートを得た。
(Thermal conductivity)
Bisphenol A type epoxy resin (JER828, manufactured by Mitsubishi Chemical Co., Ltd.) 100 parts by weight, methylhydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.) 3 parts by weight, 2-ethyl-4-methylimidazole (2E4MZ, Shikoku Kasei Kogyo Co., Ltd.) was mixed with 3 parts by mass to obtain an epoxy resin composition. The obtained epoxy resin composition and magnesium oxide composition powder were stirred and mixed at a volume ratio of 30:70 to obtain a reactive resin composition. Next, the reactive resin composition is vacuum degassed, processed into a sheet with a thickness of 1 mm using a hand press, and then heated at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour to form an epoxy resin. A system resin composition sheet was obtained.
 得られたエポキシ系樹脂組成物シートの熱伝導率は、エポキシ系樹脂組成物シートの密度と、比熱と、熱拡散率とを以下に示す方法によりそれぞれ測定し、得られた値を乗じることにより算出した。
 密度は、アルキメデス法を用いて求めた。
 比熱は、示差走査熱量計(DSC)(株式会社日立ハイテクサイエンス社製)を用いて求めた。
 熱拡散率は、キセノンフラッシュ熱拡散率測定装置(アドバンス理工株式会社製)を用いて求めた。
The thermal conductivity of the obtained epoxy resin composition sheet is obtained by measuring the density, specific heat, and thermal diffusivity of the epoxy resin composition sheet by the methods described below, and multiplying the obtained values. Calculated.
Density was determined using the Archimedes method.
The specific heat was obtained using a differential scanning calorimeter (DSC) (manufactured by Hitachi High-Tech Science Co., Ltd.).
The thermal diffusivity was obtained using a xenon flash thermal diffusivity measurement device (manufactured by Advance Riko Co., Ltd.).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3の結果から、酸化物層が結晶性SiOを含む実施例1~23の酸化マグネシウム組成物粉末は、酸化物層が結晶性SiOを含まない比較例1~4の酸化マグネシウム組成物粉末と比較して熱伝導率が高いことが確認された。また、酸化物層の厚さが50nm以上である実施例1~22の酸化マグネシウム組成物粉末は、耐酸性が顕著に向上することが確認された。さらに、有機物層を有する実施例2~5及び実施例7~22の酸化マグネシウム組成物粉末は分散性が向上することが確認された。 From the results in Table 3, the magnesium oxide composition powders of Examples 1 to 23, in which the oxide layer contains crystalline SiO 2 , are the magnesium oxide compositions of Comparative Examples 1 to 4, in which the oxide layer does not contain crystalline SiO 2 . It was confirmed that the thermal conductivity is higher than that of the powder. Moreover, it was confirmed that the magnesium oxide composition powders of Examples 1 to 22, in which the thickness of the oxide layer was 50 nm or more, were remarkably improved in acid resistance. Furthermore, it was confirmed that the magnesium oxide composition powders of Examples 2 to 5 and Examples 7 to 22 having organic layers had improved dispersibility.
[実施例24]
 ポリスチレン(富士フイルム和光純薬株式会社製、密度:1.04-1.13g/cm)と、実施例7で得られた酸化マグネシウム組成物粉末とを、体積比で45:55の割合で乳鉢と乳棒を用いて混合した。得られた混合物とトルエンとを混合して、攪拌混合してスラリーを得た。得られたスラリーをPETフィルム上に塗布し、100℃で5分、120℃で10分間乾燥して、厚さ100~150μmのポリスチレン組成物シートを得た。得られたポリスチレン組成物シートをPETフィルムから剥離した。ポリスチレン組成物シート10枚を積層した。得られた積層体を厚さが1mmになるように、ハンドプレス機を用いて温度100℃、圧力10MPa、3分間プレスすることにより、ポリスチレン組成物シート積層体を得た。
[Example 24]
Polystyrene (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., density: 1.04-1.13 g/cm 3 ) and the magnesium oxide composition powder obtained in Example 7 were mixed at a volume ratio of 45:55. Mixed using a mortar and pestle. The obtained mixture and toluene were mixed and stirred to obtain a slurry. The obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain a polystyrene composition sheet with a thickness of 100 to 150 μm. The obtained polystyrene composition sheet was peeled off from the PET film. Ten polystyrene composition sheets were laminated. A polystyrene composition sheet laminate was obtained by pressing the obtained laminate with a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the laminate had a thickness of 1 mm.
[実施例25]
 アクリル樹脂成形材料(アクリペット(登録商標)、三菱ケミカル株式会社製)と、実施例7で得られた酸化マグネシウム組成物粉末とを、体積比で45:55の割合で混合した。得られた混合物とトルエンとを混合して、攪拌混合してスラリーを得た。得られたスラリーをPETフィルム上に塗布し、100℃で5分、120℃で10分間乾燥して、厚さ100~150μmのアクリル樹脂組成物シートを得た。得られたアクリル樹脂組成物シートをPETフィルムから剥離した。アクリル樹脂組成物シート10枚を積層した。得られた積層体を厚さが1mmになるように、ハンドプレス機を用いて温度100℃、圧力10MPa、3分間プレスすることにより、メタクリル樹脂組成物シート積層体を得た。
[Example 25]
An acrylic resin molding material (Acrypet (registered trademark), manufactured by Mitsubishi Chemical Corporation) and the magnesium oxide composition powder obtained in Example 7 were mixed at a volume ratio of 45:55. The obtained mixture and toluene were mixed and stirred to obtain a slurry. The obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain an acrylic resin composition sheet with a thickness of 100 to 150 μm. The obtained acrylic resin composition sheet was peeled off from the PET film. Ten acrylic resin composition sheets were laminated. A methacrylic resin composition sheet laminate was obtained by pressing the resulting laminate with a hand press at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the laminate had a thickness of 1 mm.
[実施例26]
 ビスフェノールA型エポキシ樹脂(JER828、三菱ケミカル株式会社製)と、メチルヒドロキノン(東京化成工業株式会社製)とを、メチルヒドロキノンのフェノール性水酸基の合計モル数を1モルに対して、ビスフェノールA型エポキシ樹脂のエポキシ基の合計モル数が1.0モルとなる割合で混合し、さらに、ビスフェノールA型エポキシ樹脂100質量部に対して、2-エチル-4-メチルイミダゾール(2E4MZ)(四国化成工業株式会社製)3質量部を加えて、混合してエポキシ系樹脂組成物を得た。得られたエポキシ系樹脂組成物と、実施例2で得られた酸化マグネシウム組成物粉末とを、体積比で45:55の割合で、THF(テトラヒドロフラン)中で攪拌混合してスラリーを得た。得られたスラリーをPETフィルム上に塗布し、100℃で5分、120℃で10分間乾燥して、厚さ100~150μmのエポキシ系樹脂組成物シートを得た。得られたエポキシ系樹脂組成物シートをPETフィルムから剥離した。エポキシ系樹脂組成物シート10枚を積層した。得られた積層体を厚さが1mmになるように、ハンドプレス機を用いて温度100℃、圧力10MPa、3分間プレスした。次いで120℃で1時間、150℃で1時間、180℃で1時間加熱して、エポキシ系樹脂組成物を硬化させて、エポキシ樹脂硬化物シートを得た。
[Example 26]
Bisphenol A type epoxy resin (JER828, manufactured by Mitsubishi Chemical Corporation) and methylhydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.) are added to 1 mol of the total number of moles of phenolic hydroxyl groups of methylhydroquinone. The total number of moles of epoxy groups in the resin is mixed at a ratio of 1.0 mol, and 2-ethyl-4-methylimidazole (2E4MZ) (Shikoku Kasei Kogyo Co., Ltd.) is added to 100 parts by mass of bisphenol A epoxy resin. (manufactured by the company) was added and mixed to obtain an epoxy resin composition. The obtained epoxy resin composition and the magnesium oxide composition powder obtained in Example 2 were stirred and mixed in THF (tetrahydrofuran) at a volume ratio of 45:55 to obtain a slurry. The obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain an epoxy resin composition sheet with a thickness of 100 to 150 μm. The obtained epoxy resin composition sheet was peeled off from the PET film. Ten epoxy resin composition sheets were laminated. The resulting laminate was pressed using a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so that the thickness would be 1 mm. Then, the epoxy resin composition was cured by heating at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour to obtain a cured epoxy resin sheet.
[実施例27]
 実施例2で得られた酸化マグネシウム組成物粉末の代わりに、実施例7で得られた酸化マグネシウム組成物粉末を用いたこと以外は、実施例26と同様にしてエポキシ樹脂硬化物シートを得た。
[Example 27]
A cured epoxy resin sheet was obtained in the same manner as in Example 26, except that the magnesium oxide composition powder obtained in Example 7 was used instead of the magnesium oxide composition powder obtained in Example 2. .
[実施例28]
 トリグリシジルイソシアヌレート(TGI)(日産化学株式会社製)と、上記の一般式(1)の化合物(数平均分子量(Mn)=2500、質量平均分子量(Мw)=5800)とを、一般式(1)の化合物100質量部に対して、TGIが15質量部となる割合で混合し、さらに、TGI100質量部に対して、2E4MZ(四国化成工業株式会社製)3質量部を加えて、混合してエポキシ系樹脂組成物を得た。得られたエポキシ系樹脂組成物と、実施例2で得られた酸化マグネシウム組成物粉末とを、体積比で45:55の割合で、THF(テトラヒドロフラン)中で攪拌混合してスラリーを得た。得られたスラリーをPETフィルム上に塗布し、100℃で5分、120℃で10分間乾燥して、厚さ100~150μmのエポキシ系樹脂組成物シートを得た。得られたエポキシ系樹脂組成物シートをPETフィルムから剥離した。エポキシ系樹脂組成物シート10枚を積層した。得られた積層体を厚さが1mmになるように、ハンドプレス機を用いて温度100℃、圧力10MPa、3分間プレスした。次いで120℃で1時間、150℃で1時間、180℃で1時間加熱して、エポキシ系樹脂組成物を硬化させて、エポキシ系樹脂組成物シートを得た。
[Example 28]
Triglycidyl isocyanurate (TGI) (manufactured by Nissan Chemical Co., Ltd.) and the compound of the general formula (1) (number average molecular weight (Mn) = 2500, mass average molecular weight (Mw) = 5800), the general formula ( 1) To 100 parts by mass of the compound of 1), TGI is mixed at a ratio of 15 parts by mass, and 3 parts by mass of 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.) is added to 100 parts by mass of TGI and mixed. to obtain an epoxy resin composition. The obtained epoxy resin composition and the magnesium oxide composition powder obtained in Example 2 were stirred and mixed in THF (tetrahydrofuran) at a volume ratio of 45:55 to obtain a slurry. The obtained slurry was applied on a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes to obtain an epoxy resin composition sheet with a thickness of 100 to 150 μm. The obtained epoxy resin composition sheet was peeled off from the PET film. Ten epoxy resin composition sheets were laminated. The obtained laminate was pressed with a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so as to have a thickness of 1 mm. Then, the epoxy resin composition was cured by heating at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour to obtain an epoxy resin composition sheet.
 なお、一般式(1)の化合物(Мn=2500、Мw=5800)は、次のようにして合成した。
 メチルヒドロキノン0.405モルと、α、α‘-ジクロロ-p-キシレン0.345モルとを、3口フラスコに量りとり、テトラヒドロフラン(THF)1Lに溶解させて混合溶液を得た。混合溶液を窒素気流中でリフラックス(還流)させて、混合溶液中の溶存酸素を除去した。次いで、混合溶液に、α、α‘-ジクロロ-p-キシレンの2倍の物質量(モル数)の水酸化ナトリウムを含む水酸化ナトリウム50%水溶液を加え、12時間リフラックス状態を保ち反応させた後、室温まで放冷した。反応終了後、得られた反応溶液に塩酸を加えて、反応溶液をpH4~6に調整した。その後、反応液に水を注いで30分間撹拌し、生成した沈殿物をろ過で回収した。回収した沈殿物をメチルエチルケトン(МEK)1Lで洗浄、ろ過して不溶分を回収し、12時間以上真空乾燥し、一般式(1)の化合物を得た。
The compound of general formula (1) (Mn=2500, Mw=5800) was synthesized as follows.
0.405 mol of methylhydroquinone and 0.345 mol of α,α'-dichloro-p-xylene were weighed into a three-necked flask and dissolved in 1 L of tetrahydrofuran (THF) to obtain a mixed solution. The mixed solution was refluxed in a nitrogen stream to remove dissolved oxygen in the mixed solution. Next, to the mixed solution, a 50% aqueous solution of sodium hydroxide containing twice the amount (number of moles) of sodium hydroxide as that of α,α'-dichloro-p-xylene was added, and the mixture was allowed to react while maintaining the reflux state for 12 hours. After that, it was allowed to cool to room temperature. After completion of the reaction, hydrochloric acid was added to the obtained reaction solution to adjust the reaction solution to pH 4-6. After that, water was poured into the reaction solution, the mixture was stirred for 30 minutes, and the formed precipitate was collected by filtration. The collected precipitate was washed with 1 L of methyl ethyl ketone (МEK), filtered to collect insoluble matter, and vacuum-dried for 12 hours or more to obtain the compound of general formula (1).
[実施例29]
 実施例2で得られた酸化マグネシウム組成物粉末の代わりに、実施例7で得られた酸化マグネシウム組成物粉末を用いたこと以外は、実施例28と同様にしてエポキシ樹脂硬化物シートを得た。
[Example 29]
A cured epoxy resin sheet was obtained in the same manner as in Example 28, except that the magnesium oxide composition powder obtained in Example 7 was used instead of the magnesium oxide composition powder obtained in Example 2. .
[実施例32]
 ビスフェノールA型エポキシ樹脂、メチルヒドロキノン、2-エチル-4-メチルイミダゾール(2E4MZ)と、充填率が55vol%になるように実施例31で得られた酸化マグネシウム粉末を、THFに添加し、攪拌混合を行いスラリーを得た。得られたスラリーをPETフィルム上に塗布し、100℃で5分、120℃で10分乾燥させた。得られた樹脂シートをPETフィルムから剥離して積層し、積層体とした。得られた積層体を厚さが1mmになるように、ハンドプレス機を用いて温度100℃、圧力10MPa、3分間プレスし、その後120℃で1時間、150℃で1時間、180℃で1時間加熱することで樹脂硬化物を得た。
[Example 32]
A bisphenol A type epoxy resin, methylhydroquinone, 2-ethyl-4-methylimidazole (2E4MZ), and the magnesium oxide powder obtained in Example 31 so that the filling rate was 55 vol% were added to THF and mixed with stirring. to obtain a slurry. The resulting slurry was applied onto a PET film and dried at 100° C. for 5 minutes and 120° C. for 10 minutes. The obtained resin sheet was peeled from the PET film and laminated to form a laminate. The resulting laminate was pressed using a hand press machine at a temperature of 100° C. and a pressure of 10 MPa for 3 minutes so as to have a thickness of 1 mm, and then pressed at 120° C. for 1 hour, 150° C. for 1 hour, and 180° C. for 1 hour. A resin cured product was obtained by heating for a period of time.
[実施例33]
 樹脂としてビスフェノールA型エポキシ樹脂の代わりにトリグリシジルイソシアヌレートを用い、硬化剤としてメチルヒドロキノンの代わりに式(1)の化合物を用いたこと以外は、実施例32と同様にして、樹脂硬化物を得た。
[Example 33]
A resin cured product was obtained in the same manner as in Example 32, except that triglycidyl isocyanurate was used as the resin instead of the bisphenol A type epoxy resin, and the compound of formula (1) was used instead of methylhydroquinone as the curing agent. Obtained.
[評価]
 実施例24~29で得られた積層体の熱伝導率を測定した。熱伝導率は、積層の密度と、比熱と、熱拡散率とを上記の方法によりそれぞれ測定し、得られた値を乗じることにより算出した。その結果を、下記の表4に示す。
[evaluation]
The thermal conductivity of the laminates obtained in Examples 24-29 was measured. The thermal conductivity was calculated by measuring the laminate density, specific heat, and thermal diffusivity by the above methods and multiplying the obtained values. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4の結果から、酸化物層が結晶性SiOを含む酸化マグネシウム組成物粉末を用いた樹脂組成物は高い熱伝導率を有することが確認された。特に、TGIと上記の一般式(1)で表される化合物とを含むエポキシ系樹脂組成物の硬化物は高い熱伝導率を有することが確認された。 From the results in Table 4, it was confirmed that the resin composition using the magnesium oxide composition powder whose oxide layer contains crystalline SiO 2 has high thermal conductivity. In particular, it was confirmed that the cured product of the epoxy resin composition containing TGI and the compound represented by the general formula (1) has high thermal conductivity.
10…酸化マグネシウム組成物粉末、11…酸化マグネシウム粒子、12…酸化物層、13…有機物層、20…樹脂組成物シート、21…芯材、21a…縦糸、21b…横糸、22…樹脂、23…樹脂組成物、30…積層基板 DESCRIPTION OF SYMBOLS 10... Magnesium oxide composition powder, 11... Magnesium oxide particles, 12... Oxide layer, 13... Organic layer, 20... Resin composition sheet, 21... Core material, 21a... Warp, 21b... Weft, 22... Resin, 23 ... Resin composition, 30 ... Laminated substrate

Claims (15)

  1.  酸化マグネシウム粒子と、前記酸化マグネシウム粒子の表面の少なくとも一部を被覆する酸化物層とを有し、前記酸化物層が、結晶性SiOを含む酸化マグネシウム組成物粉末。 A magnesium oxide composition powder comprising magnesium oxide particles and an oxide layer covering at least part of the surface of said magnesium oxide particles, said oxide layer containing crystalline SiO2 .
  2.  前記酸化物層は、前記結晶性SiOと、Si以外の添加金属元素とを含み、前記添加金属元素は、アルカリ金属、アルカリ土類金属、Al、Ti、Zrからなる群より選ばれる少なくとも1種であり、前記酸化物層の前記添加金属元素の含有量が15at%以下である請求項1に記載の酸化マグネシウム組成物粉末。 The oxide layer contains the crystalline SiO2 and an additive metal element other than Si, and the additive metal element is at least one selected from the group consisting of alkali metals, alkaline earth metals, Al, Ti, and Zr. 2. The magnesium oxide composition powder according to claim 1, wherein the content of said additive metal element in said oxide layer is 15 at % or less.
  3.  酸化マグネシウム粒子と、前記酸化マグネシウム粒子の表面の少なくとも一部を被覆する酸化物層とを有し、前記酸化物層が、SiとAlを含む結晶性複酸化物を含む酸化マグネシウム組成物粉末。 A magnesium oxide composition powder having magnesium oxide particles and an oxide layer covering at least part of the surface of the magnesium oxide particles, wherein the oxide layer contains a crystalline composite oxide containing Si and Al.
  4.  前記酸化物層は、前記結晶性複酸化物と、Si、Al以外の添加金属元素とを含み、前記添加金属元素は、アルカリ金属、アルカリ土類金属、Ti、Zrからなる群より選ばれる少なくとも1種類であり、前記酸化物層のSi以外の金属元素含有量が15at%以下である請求項3に記載の酸化マグネシウム組成物粉末。 The oxide layer contains the crystalline multiple oxide and an additive metal element other than Si and Al, and the additive metal element is at least selected from the group consisting of alkali metals, alkaline earth metals, Ti and Zr. 4. The magnesium oxide composition powder according to claim 3, wherein there is one type and the content of metal elements other than Si in the oxide layer is 15 at % or less.
  5.  前記添加金属元素が、Li及びNaのいずれか一方又は両方である請求項2または4のいずれかに記載の酸化マグネシウム組成物粉末。 The magnesium oxide composition powder according to any one of claims 2 and 4, wherein the additive metal element is either one or both of Li and Na.
  6.  さらに、有機物層で被覆されている請求項1~請求項5のいずれか1項に記載の酸化マグネシウム組成物粉末。 The magnesium oxide composition powder according to any one of claims 1 to 5, which is further coated with an organic layer.
  7.  前記有機物層が、ホスホン酸及びシランカップリング剤のいずれか一方又は両方を含む、請求項6に記載の酸化マグネシウム組成物粉末。 The magnesium oxide composition powder according to claim 6, wherein the organic layer contains one or both of phosphonic acid and a silane coupling agent.
  8.  樹脂と、請求項1~請求項7のいずれか1項に記載の酸化マグネシウム組成物粉末とを含む樹脂組成物。 A resin composition containing a resin and the magnesium oxide composition powder according to any one of claims 1 to 7.
  9.  前記樹脂が、エポキシ樹脂と硬化剤とを含む反応硬化性樹脂組成物の硬化物である請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the resin is a cured product of a reaction-curable resin composition containing an epoxy resin and a curing agent.
  10.  さらに、ガラスクロスを含む請求項8または請求項9に記載の樹脂組成物。 The resin composition according to claim 8 or 9, further comprising glass cloth.
  11.  請求項8~請求項10のいずれか1項に記載の樹脂組成物を含む樹脂組成物シート。 A resin composition sheet containing the resin composition according to any one of claims 8 to 10.
  12.  複数の樹脂基板が積層されてなり、前記複数の樹脂基板のうち、少なくとも一つが請求項11に記載の樹脂組成物シートである積層基板。 A laminated substrate formed by laminating a plurality of resin substrates, wherein at least one of the plurality of resin substrates is the resin composition sheet according to claim 11.
  13.  反応硬化性樹脂組成物と、請求項1~請求項7のいずれか1項に記載の酸化マグネシウム組成物粉末とを含む反応性樹脂組成物。 A reactive resin composition comprising a reactive curable resin composition and the magnesium oxide composition powder according to any one of claims 1 to 7.
  14.  反応硬化性樹脂組成物が、エポキシ樹脂と硬化剤とを含む請求項13に記載の反応性樹脂組成物。 The reactive resin composition according to claim 13, wherein the reactive curable resin composition contains an epoxy resin and a curing agent.
  15.  前記エポキシ樹脂がトリグリシジルイソシアヌレートであって、前記硬化剤が下記の一般式(1)で表される化合物である請求項14に記載の反応性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、nは、2~40の整数である。)
    15. The reactive resin composition according to claim 14, wherein the epoxy resin is triglycidyl isocyanurate and the curing agent is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), n is an integer of 2 to 40.)
PCT/JP2021/039907 2021-03-30 2021-10-28 Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition WO2022208962A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057881A JP2024069741A (en) 2021-03-30 2021-03-30 Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition
JP2021-057881 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022208962A1 true WO2022208962A1 (en) 2022-10-06

Family

ID=83458330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039907 WO2022208962A1 (en) 2021-03-30 2021-10-28 Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition

Country Status (2)

Country Link
JP (1) JP2024069741A (en)
WO (1) WO2022208962A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307107A (en) * 1987-06-09 1988-12-14 Asahi Glass Co Ltd Highly heat conductive magnesia based powder
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
JP2012116715A (en) * 2010-12-02 2012-06-21 Shin Kobe Electric Mach Co Ltd Method for producing magnesium oxide powder, method for producing thermosetting resin composition, and method for producing prepreg and laminate
JP2012212791A (en) * 2011-03-31 2012-11-01 Tdk Corp Magnetic sheet
JP2017122029A (en) * 2016-01-07 2017-07-13 協和化学工業株式会社 Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same
WO2020203444A1 (en) * 2019-03-29 2020-10-08 Tdk株式会社 Compound, resin composition and polymerization product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307107A (en) * 1987-06-09 1988-12-14 Asahi Glass Co Ltd Highly heat conductive magnesia based powder
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
JP2012116715A (en) * 2010-12-02 2012-06-21 Shin Kobe Electric Mach Co Ltd Method for producing magnesium oxide powder, method for producing thermosetting resin composition, and method for producing prepreg and laminate
JP2012212791A (en) * 2011-03-31 2012-11-01 Tdk Corp Magnetic sheet
JP2017122029A (en) * 2016-01-07 2017-07-13 協和化学工業株式会社 Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same
WO2020203444A1 (en) * 2019-03-29 2020-10-08 Tdk株式会社 Compound, resin composition and polymerization product

Also Published As

Publication number Publication date
JP2024069741A (en) 2024-05-22

Similar Documents

Publication Publication Date Title
JP5330910B2 (en) Resin composition and use thereof
KR101756691B1 (en) Insulating sheet, circuit board, and process for production of insulating sheet
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
TW201927689A (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
US20160130187A1 (en) Resin-impregnated boron nitride sintered body and use for same
JP5447355B2 (en) Method for producing thermosetting resin composition, method for producing prepreg and laminate
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
KR20110042184A (en) Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
JP2007224269A (en) Prepreg for heat- and press-molding, and laminated board
JP6835685B2 (en) Thermosetting materials and cured products
JP2017128476A (en) Composite filler and thermosetting material
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP2011094005A (en) Method for producing epoxy resin composition, method for manufacturing prepreg and method for manufacturing laminated board and wiring board
JP2012116715A5 (en)
JP2021155586A (en) Epoxy resin prepolymer, method for producing epoxy resin prepolymer, epoxy resin composition, resin sheet, cured resin, and laminated substrate
WO2022208962A1 (en) Magnesium oxide composition powder, resin composition, resin composition sheet, laminated substrate, and reactive resin composition
JP4919976B2 (en) Composite materials, fillers, and high thermal conductivity members
JP5263076B2 (en) Magnesium oxide powder production method, thermosetting resin composition, prepreg and laminate production method
KR101573372B1 (en) Low temperature cureable conductive paste composition and method thereof
JP6560599B2 (en) Thermosetting sheet, cured product sheet and laminate
JP2011046760A5 (en)
JP2011032296A (en) Epoxy resin composition, b-stage film, laminated film, copper-clad laminate, and multilayer substrate
JP2010090182A (en) Flame-retardant epoxy resin composition, prepreg, laminate sheet, and wiring board
KR101479484B1 (en) Thermally conductive and electrically insulate material and preparation method thereof
JP2012188632A (en) Insulating material, and layered structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP