JP2012111823A - Heat dissipating grease composition - Google Patents

Heat dissipating grease composition Download PDF

Info

Publication number
JP2012111823A
JP2012111823A JP2010261040A JP2010261040A JP2012111823A JP 2012111823 A JP2012111823 A JP 2012111823A JP 2010261040 A JP2010261040 A JP 2010261040A JP 2010261040 A JP2010261040 A JP 2010261040A JP 2012111823 A JP2012111823 A JP 2012111823A
Authority
JP
Japan
Prior art keywords
heat
grease composition
heat dissipating
dissipating grease
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261040A
Other languages
Japanese (ja)
Other versions
JP5542280B2 (en
Inventor
Koji Saito
浩二 斉藤
Masaaki Ogawa
正顕 小川
Hisayuki Osawa
久幸 大澤
Setsuo Sasaki
節夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Yushi Co Ltd
Toyota Motor Corp
Original Assignee
Kyodo Yushi Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Yushi Co Ltd, Toyota Motor Corp filed Critical Kyodo Yushi Co Ltd
Priority to JP2010261040A priority Critical patent/JP5542280B2/en
Publication of JP2012111823A publication Critical patent/JP2012111823A/en
Application granted granted Critical
Publication of JP5542280B2 publication Critical patent/JP5542280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop and provide a heat dissipating grease composition that has higher thermal conductivity than conventional products and is in a semisolid state and easy to apply.SOLUTION: The heat dissipating grease composition is provided, which contains a substrate comprising metal that includes gallium (Ga), indium (In) and/or tin (Sn) and has a melting point under normal pressure of 16°C or less, and a fine powdered filler comprising metal uniformly dispersed in the substrate, and which has consistency in the range of 200-400.

Description

本発明は、熱伝導率が高く、放熱性に優れた放熱グリース組成物に関する。   The present invention relates to a heat dissipating grease composition having high thermal conductivity and excellent heat dissipation.

自動車や電気製品の電子機器において使用される部材の中には、インバータのような電源制御用パワーモジュール又はコンピュータのCPUのように、その使用中に発熱を伴うものがある。熱による電子機器の機能障害を回避し、その性能を維持するためには、発生した熱を速やかに電子機器外に放出する必要がある。それ故、通常はヒートシンクのような放熱部材が電子機器内に設置されている。また、発熱部材と放熱部材との間には、通常、放熱グリースが塗布され、放熱部材で発生した熱を放熱部材へ効率的に伝導し、放熱を促進する役目を担っている。   Some members used in automobiles and electronic appliances such as electric appliances generate heat during use, such as power modules for power control such as inverters or CPUs of computers. In order to avoid the functional failure of the electronic device due to heat and maintain its performance, it is necessary to quickly release the generated heat to the outside of the electronic device. Therefore, a heat radiating member such as a heat sink is usually installed in the electronic device. In addition, a heat radiation grease is usually applied between the heat generating member and the heat radiating member, and the heat generated in the heat radiating member is efficiently conducted to the heat radiating member, thereby promoting the heat radiation.

従来の一般に使用されている放熱グリースは、そのほとんどがシリコーン油のような有機ケイ素化合物又はポリαオレフィン油のような炭化水素系合成油等に、酸化亜鉛又は酸化アルミニウム等の金属酸化物や、窒化ホウ素、窒化珪素又は窒化アルミニウム等の無機窒化物から構成される熱伝導率の高い微粉末充填剤を分散させて半固体状にしたものである。しかし、電子機器の性能向上や、小型・高密度実装化が急速に進み、電子機器における発熱量もそれに伴い急速に増大している。それ故、電子機器の性能維持には、より熱伝導率の高い放熱グリースの開発が不可欠となっている。   Most of the conventional heat-dissipating greases are generally used in organosilicon compounds such as silicone oils or hydrocarbon-based synthetic oils such as poly-alpha olefin oils, metal oxides such as zinc oxide or aluminum oxide, A fine powder filler having a high thermal conductivity composed of an inorganic nitride such as boron nitride, silicon nitride or aluminum nitride is dispersed into a semi-solid state. However, the performance improvement of electronic devices and the progress of miniaturization and high-density mounting are rapidly progressing, and the amount of heat generated in electronic devices is rapidly increasing accordingly. Therefore, the development of heat dissipating grease with higher thermal conductivity is indispensable for maintaining the performance of electronic equipment.

放熱グリースにおける熱伝導率の向上は、通常、前記微粉末充填剤の含有量を増加することによって対応している。しかし、微粉末充填剤の添加による最大熱伝導率は、5W/(mK)程度であり、それ以上の向上は望めない。   The improvement of the thermal conductivity in the heat dissipating grease is usually dealt with by increasing the content of the fine powder filler. However, the maximum thermal conductivity by adding the fine powder filler is about 5 W / (mK), and further improvement cannot be expected.

上記問題点を解決するために、新たに熱伝導率の高い液体である液体金属を成分とする放熱剤も開発されている。例えば、ガリウム、インジウム、スズの合金からなる液体金属で構成され、ヒートシンク用放熱剤として市販されているLIQUID Pro(独:Cool Laboratory社製)が挙げられる。この液体金属の熱伝導率は、20W/(mK)以上もあり、一般的な放熱グリースのそれと比較すると格段に高い。しかし、一般に液体金属は、表面張力が非常に高く、そのままでは液滴となって転がり落ちてしまうため、塗布性が悪いという問題がある。それ故、液体金属をグリース状化する試みがなされている。   In order to solve the above-described problems, a heat radiating agent containing a liquid metal, which is a liquid having a high thermal conductivity, as a component has been newly developed. For example, LIQUID Pro (manufactured by Cool Laboratory) made of a liquid metal made of an alloy of gallium, indium, and tin and marketed as a heat sink heat sink is available. The thermal conductivity of this liquid metal is 20 W / (mK) or more, which is much higher than that of general heat dissipating grease. However, in general, a liquid metal has a very high surface tension, and as it is, the liquid metal rolls and drops, so that there is a problem that the coating property is poor. Attempts have therefore been made to grease liquid metals.

特許文献1〜4には、液体金属を使用した放熱グリースが開示されている。しかし、これらの放熱グリースは、従来の放熱グリースの基材の一つであったシリコーン油に液体金属を添加したものであって、液体金属を基材とするものではなく、熱伝導率の向上には限界があった。   Patent Documents 1 to 4 disclose heat dissipating grease using liquid metal. However, these thermal greases are made by adding a liquid metal to silicone oil, which is one of the base materials of conventional thermal grease, and are not based on a liquid metal. There were limits.

特許文献5〜7には、放熱を目的とする低融点液体金属(ガリウム、インジウム、スズの合金を含む)を基材とする放熱グリースが開示されている。しかし、その充填剤の種類は、特許文献5がタングステン、モリブデン、シリコン、特許文献6が窒化ホウ素、アルミナ、窒化アルミニウム、そして特許文献7がセラミック粉末に留まり、また特許文献6以外は、熱伝導率についての具体的な検証がなされておらず、さらに特許文献6に記載の放熱グリースの熱伝導率も8W/(mK)に過ぎないため、熱伝導率が高いとは言い難かった。   Patent Documents 5 to 7 disclose a heat dissipating grease based on a low melting point liquid metal (including an alloy of gallium, indium and tin) for the purpose of heat dissipation. However, the types of fillers are tungsten, molybdenum, silicon in Patent Document 5, boron nitride, alumina, aluminum nitride in Patent Document 6, and ceramic powder in Patent Document 7; Specific verification of the rate has not been made, and furthermore, the thermal conductivity of the heat dissipating grease described in Patent Document 6 is only 8 W / (mK), so it was difficult to say that the thermal conductivity was high.

特開平7-207160JP-A-7-207160 特開平8-53664JP-A-8-53664 特開2003-176414JP2003-176414 特開2007-106809JP2007-106809 特開平03-071992JP 03-071992 特開2001-329068JP2001-329068 特開2004-071816JP2004-071816

従来品よりも熱伝導率が高く、かつ半固体状で塗布しやすい放熱グリース組成物の提供を目的とする。   An object of the present invention is to provide a heat dissipating grease composition that has a higher thermal conductivity than conventional products and that is semisolid and easy to apply.

本発明者らは、鋭意研究を重ね、常圧下での融点が16℃以下である金属、すなわち液体金属を基材とし、それに微粉末充填剤を添加して均一に分散させ、所定のちょう度を有する半固体状にすることによって、高熱伝導率を維持し、液体金属の塗布困難性を解決した放熱グリース組成物を開発するに至った。本発明は、当該新たに開発された放熱グリース組成物に基づくものであり、以下を提供する。
(1)ガリウム(Ga)、インジウム(In)及び/又はスズ(Sn)を含み、常圧下での融点が16℃以下である合金、及び平均粒径が0.01μm〜20μmであり、かつ2〜40重量%で包含される、金属からなる微粉末充填剤を含有し、そのちょう度が200〜400の範囲内にある放熱グリース組成物。
(2)金属が銀、銅又はその組合せである、(1)に記載の放熱グリース組成物。
(3)(1)又は(2)に記載の放熱グリース組成物を発熱部材とそれに近接した放熱部材の間隙に充填した電子機器。
The inventors of the present invention have made extensive studies and made a metal having a melting point of 16 ° C. or lower under normal pressure, that is, a liquid metal as a base material, and added a fine powder filler to uniformly disperse it, to a predetermined consistency. As a result, a heat dissipating grease composition that maintains high thermal conductivity and solves the difficulty of applying liquid metal has been developed. The present invention is based on the newly developed thermal grease composition and provides the following.
(1) an alloy containing gallium (Ga), indium (In) and / or tin (Sn), having a melting point of 16 ° C. or less under normal pressure, and an average particle size of 0.01 μm to 20 μm, and 2 to A heat dissipating grease composition containing a fine powder filler made of a metal, which is included at 40% by weight, and having a consistency of 200 to 400.
(2) The heat dissipating grease composition according to (1), wherein the metal is silver, copper, or a combination thereof.
(3) An electronic apparatus in which the heat dissipating grease composition according to (1) or (2) is filled in a gap between a heat generating member and a heat dissipating member adjacent thereto.

本発明によれば、熱伝導率が高く、かつ半固体状で塗布しやすい放熱グリース組成物を提供することができる。   According to the present invention, it is possible to provide a heat dissipating grease composition having a high thermal conductivity and being easy to apply in a semi-solid state.

本発明の電子機器によれば、発熱部材から発生した熱の冷却性に優れ、発熱による電子機器の機能障害及び寿命の短縮化の改善、及び電子機器本体のさらなる小型化及び電子機器内の各部材の高密度な実装化が可能となる。   According to the electronic device of the present invention, the heat generated from the heat generating member is excellent in cooling, the functional failure of the electronic device due to heat generation and the improvement of the shortening of the life, the further downsizing of the electronic device main body, and each in the electronic device High-density mounting of members is possible.

1.放熱グリース組成物
1−1.概要
本発明の第1の実施形態は、放熱グリース組成物に関する。一般に「グリース」とは、基油に増ちょう剤を分散させて半固体又は固体化したものと定義されるが、本発明において「グリース」とは、基油に相当する液体金属に、増ちょう剤に相当する微粉末充填剤を均一に分散させて、ペースト状又はゼリー状の半固体にした物質をいう。「放熱グリース」とは、前述のように、主として、電子機器内において発熱部材と放熱部材との間に充填され、発熱部材で発生した熱を放熱部材に効率的に伝導するグリースをいう。本発明の放熱グリース組成物は、高い熱伝導率を有し、また適度なちょう度により部材への塗布が容易な特徴を有する。
1. Thermal grease composition 1-1. Outline The first embodiment of the present invention relates to a thermal grease composition. In general, “grease” is defined as a semi-solid or solidified dispersion of a thickener in base oil. In the present invention, “grease” refers to a liquid metal corresponding to base oil. A fine powder filler corresponding to the agent is uniformly dispersed to form a paste or jelly-like semi-solid. As described above, the “heat dissipating grease” is mainly a grease that is filled between the heat generating member and the heat dissipating member in the electronic device and efficiently conducts heat generated by the heat generating member to the heat dissipating member. The heat dissipating grease composition of the present invention has a high thermal conductivity and has a characteristic that it can be easily applied to a member with an appropriate consistency.

1−2.構成
本発明の放熱グリース組成物は、その構成成分として、常圧下での融点が16℃以下である合金、及びそれに均一に分散した微粉末充填剤を含有する。以下、それぞれについて説明をする。
1-2. Configuration The heat dissipating grease composition of the present invention contains, as its constituent components, an alloy having a melting point of 16 ° C. or less under normal pressure, and a fine powder filler uniformly dispersed therein. Each will be described below.

1−2−1.常圧下での融点が16℃以下である合金
本発明において「常圧下での融点が16℃以下である合金」とは、常温(16℃より高い温度)常圧下では液体の性状で存在する、いわゆる液体金属と呼ばれる金属合金をいう(本明細書では、以下、しばしば「液体金属」と表現する)。本発明において「常圧」とは、一般的な環境下における標準的気圧であり、通常、1気圧(1013.25hpa)付近、例えば、630hpa〜1020hpaにおける気圧が該当する。
1-2-1. An alloy having a melting point of 16 ° C. or lower under normal pressure In the present invention, an “alloy having a melting point of 16 ° C. or lower under normal pressure” means a liquid property at room temperature (a temperature higher than 16 ° C.) and normal pressure. It refers to a metal alloy called a so-called liquid metal (hereinafter, often referred to as “liquid metal” in this specification). In the present invention, “normal pressure” is a standard atmospheric pressure under a general environment, and usually corresponds to an atmospheric pressure in the vicinity of 1 atm (1013.25 hpa), for example, 630 hpa to 1020 hpa.

本発明の液体金属は、複数の金属からなる合金からなる。このような性質を有する合金には、例えば、ガリウム(Ga)、インジウム(In)及び/又はスズ(Sn)を含む合金が挙げられる。さらにビスマスを含んでいてもよい。より好ましくはガリウム、インジウム及びスズからなる合金である。ガリウム、インジウム及びスズからなる合金における各金属の重量比は、常圧下での融点が16℃以下であれば、特に限定はしない。好ましくは、その重量比が64.2〜68.5:20.6〜21.5:15.2〜10.0(ただし、各重量比の総計が100を超えないものとする)の場合である。   The liquid metal of the present invention is made of an alloy composed of a plurality of metals. Examples of the alloy having such properties include an alloy containing gallium (Ga), indium (In), and / or tin (Sn). Furthermore, bismuth may be included. More preferred is an alloy made of gallium, indium and tin. The weight ratio of each metal in the alloy composed of gallium, indium and tin is not particularly limited as long as the melting point under normal pressure is 16 ° C. or lower. Preferably, the weight ratio is 64.2 to 68.5: 20.6 to 21.5: 15.2 to 10.0 (provided that the sum of the weight ratios does not exceed 100).

液体金属は、本発明の放熱グリース組成物の基材(ベース)として使用される。すなわち、液体金属は、本発明の放熱グリース組成物の媒体となる成分であって、後述する微粉末充填剤等をはじめとする他の成分を包含する液体成分をいう。それ故、従来の放熱グリースにおいて基材として用いられていた基油、例えば、ポリシロキサン(シリコーン油、シリコーンゴムを含む)や炭化水素系合成油は、本発明の放熱グリース組成物の必須の構成成分ではない。   The liquid metal is used as a base material (base) of the heat dissipating grease composition of the present invention. That is, the liquid metal is a component that serves as a medium of the heat dissipating grease composition of the present invention and includes other components such as a fine powder filler described later. Therefore, base oils used as a base material in conventional heat-dissipating grease, such as polysiloxane (including silicone oil and silicone rubber) and hydrocarbon-based synthetic oil, are essential components of the heat-dissipating grease composition of the present invention. It is not an ingredient.

1−2−2.微粉末充填剤
本発明において「微粉末充填剤」とは、液体金属に硬さを付与し得る粉末状の微粒子物質をいう。本発明における微粉末充填剤は、液体金属中に均一に分散可能で、その混合組成物がグリース状の半固体形態を呈するものが好ましい。また、本発明の放熱グリース組成物が高い熱伝導性を維持するためには、微粉末充填剤も熱伝導性の高い物質であることが好ましい。したがって、本発明において好適な微粉末充電剤は、金属の微粉末である。
1-2-2. Fine powder filler In the present invention, the “fine powder filler” refers to a powdery fine particle substance capable of imparting hardness to a liquid metal. The fine powder filler in the present invention is preferably one that can be uniformly dispersed in a liquid metal and the mixed composition exhibits a grease-like semi-solid form. In order to maintain high thermal conductivity of the heat dissipating grease composition of the present invention, the fine powder filler is also preferably a substance having high thermal conductivity. Therefore, the fine powder charging agent suitable in the present invention is a fine metal powder.

微粉末充填剤として使用可能な金属には、例えば、マグネシウム、アルミニウム、ケイ素、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、銀、ロジウム、イリジウム、白金、金、タリウム、又はビスマス等が挙げられる。また、2種以上の金属の合金であってもよい。ただし、上記例示のうちアルミニウムについては、液体金属がガリウムを包含する場合には本発明の微粉末充填剤には適さない。ガリウムがアルミニウムを腐食させてしまうためである。また、ベリリウム、鉛、カドミウム、砒素、テルル、アンチモン、バリウムのような人体に対して毒性を示す金属又はラジウム、フランシウム、ポロニウム、テクネチウムのような放射性を有する金属、並びにそれらの酸化物及び無機化合物は、微粉末充填剤として好ましくない。   Examples of metals that can be used as a fine powder filler include magnesium, aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, Hafnium, tantalum, tungsten, rhenium, osmium, silver, rhodium, iridium, platinum, gold, thallium, bismuth, or the like can be given. Moreover, the alloy of 2 or more types of metals may be sufficient. However, among the above examples, aluminum is not suitable for the fine powder filler of the present invention when the liquid metal contains gallium. This is because gallium corrodes aluminum. Also, metals that are toxic to the human body such as beryllium, lead, cadmium, arsenic, tellurium, antimony, barium or radioactive metals such as radium, francium, polonium, technetium, and oxides and inorganic compounds thereof Is not preferred as a fine powder filler.

本発明の放熱グリース組成物において、微粉末充填剤は、前述したように高い熱伝導率、具体的には50W/(mK)以上、より好ましくは100W/(mK)以上、さらに好ましくは200W/(mK)以上、一層好ましくは400W/(mK)の熱伝導率を有する金属(合金を含む)の微粉末である。具体的には、例えば、熱伝導率が100W/(mK)以上のコバルト、亜鉛、モリブデン、ルテニウム、ロジウム、タングステン、イリジウム、銅、銀、金等が挙げられる。好ましくは、熱伝導率が300W/(mK)以上の銅、銀及び/又は金である。熱伝導率及びコスト面を考慮した場合、特に好ましくは、熱伝導率が400W/(mK)以上の銅及び/又は銀である。アルミニウムは、熱伝導率が200W/(mK)を越えるが、前述の理由から、液体金属にガリウムを包含する場合には、不適である。   In the heat dissipating grease composition of the present invention, the fine powder filler has a high thermal conductivity as described above, specifically 50 W / (mK) or more, more preferably 100 W / (mK) or more, more preferably 200 W / It is a fine powder of metals (including alloys) having a thermal conductivity of (mK) or more, more preferably 400 W / (mK). Specific examples include cobalt, zinc, molybdenum, ruthenium, rhodium, tungsten, iridium, copper, silver, gold, and the like having a thermal conductivity of 100 W / (mK) or more. Preferably, it is copper, silver and / or gold having a thermal conductivity of 300 W / (mK) or more. In consideration of thermal conductivity and cost, copper and / or silver having a thermal conductivity of 400 W / (mK) or more is particularly preferable. Aluminum has a thermal conductivity exceeding 200 W / (mK), but for the reasons described above, it is not suitable when gallium is included in the liquid metal.

微粉末充填剤の平均粒径は、0.01〜20μmの範囲内であることが好ましい。より好ましくは0.05〜10μmの範囲内、さらに好ましくは0.1〜5μmの範囲内である。これは、微粉末充填剤の平均粒径が20μmを超えると、液体金属と混練しても均質な半固体状にはならず、平滑に塗布することが困難となるためである。平均粒径の下限は特に限定はしないものの、0.01μmよりも小さくするには技術的困難性を伴い、また製造コストが高くなる等の問題を生じ得るからである。   The average particle size of the fine powder filler is preferably in the range of 0.01 to 20 μm. More preferably, it exists in the range of 0.05-10 micrometers, More preferably, it exists in the range of 0.1-5 micrometers. This is because when the average particle size of the fine powder filler exceeds 20 μm, even if kneaded with a liquid metal, it does not become a homogeneous semi-solid and it is difficult to apply smoothly. This is because the lower limit of the average particle diameter is not particularly limited, but if it is smaller than 0.01 μm, there are technical difficulties, and problems such as an increase in manufacturing cost may occur.

微粉末充填剤は、放熱グリース組成物のちょう度が後述する数値の範囲内となるように適宜勘案して、前記液体金属に加えればよい。ちょう度を所望の数値範囲内にする微粉末充填剤の量は、放熱グリース組成物に使用する液体金属及び微粉末充填剤の種類・組成及び性質によって異なるが、通常は、微粉末充填剤が放熱グリース組成物の2〜40重量%、5〜30重量%又は8〜20重量%で含有されていればよい。   The fine powder filler may be added to the liquid metal in consideration of the consistency of the heat dissipating grease composition within a numerical range described later. The amount of fine powder filler that brings the consistency to the desired numerical range depends on the type, composition and properties of the liquid metal and fine powder filler used in the heat dissipating grease composition. It may be contained at 2 to 40% by weight, 5 to 30% by weight or 8 to 20% by weight of the heat dissipating grease composition.

本発明の放熱グリース組成物において、微粉末充填剤は、前記液体金属中に均一に分散されていることが望ましい。通常は、液体金属と微粉末充填剤を混合後、公知技術によって十分に混練することで、この条件を達成し得る。   In the heat dissipating grease composition of the present invention, it is desirable that the fine powder filler is uniformly dispersed in the liquid metal. Usually, after mixing a liquid metal and a fine powder filler, this condition can be achieved by sufficiently kneading by a known technique.

1−2−3.任意成分
本実施形態の放熱グリース組成物は、必須の構成成分である前記液体金属及び微粉末充填剤に加えて、任意の成分を包含することができる。任意成分としては、例えば、金属酸化物、窒化物、それら以外の無機化合物、有機化合物、又はその組合せが挙げられる。
1-2-3. Optional Components In addition to the liquid metal and fine powder filler that are essential components, the heat dissipating grease composition of the present embodiment can include optional components. Examples of the optional component include metal oxides, nitrides, other inorganic compounds, organic compounds, or combinations thereof.

金属酸化物には、例えば、前記「1−2−2.微粉末充填剤」で例示した金属の酸化物等が挙げられる。また、窒化物には、例えば、窒化アルミニウム、窒化ホウ素、窒化ガリウム、又は窒化ケイ素等が挙げられる。さらに、金属、金属酸化物及び窒化物以外の無機化合物には、例えば、炭化ケイ素、グラファイト(黒鉛)、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、タルク、マイカ、セリサイト、ベントナイト、又はヘクトライト等が挙げられる。有機化合物には、例えば、プラスチック等が挙げられる。   Examples of the metal oxide include oxides of metals exemplified in the above “1-2-2. Fine powder filler”. Examples of the nitride include aluminum nitride, boron nitride, gallium nitride, and silicon nitride. Furthermore, inorganic compounds other than metals, metal oxides and nitrides include, for example, silicon carbide, graphite (graphite), calcium carbonate, magnesium carbonate, zinc carbonate, talc, mica, sericite, bentonite, or hectorite. Can be mentioned. Examples of the organic compound include plastics.

放熱グリース組成物における任意成分の量は、放熱グリース組成物の高熱伝導率を低減しない範囲であれば特に限定はしないが、通常は、極微量、例えば、放熱グリース組成物の0.1〜1重量%以下である。また二以上の任意成分が包含されていてもよい   The amount of the optional component in the heat dissipating grease composition is not particularly limited as long as it does not reduce the high thermal conductivity of the heat dissipating grease composition, but it is usually extremely small, for example, 0.1 to 1% by weight of the heat dissipating grease composition. It is as follows. Two or more optional components may be included.

1−3.特性
本発明の放熱グリース組成物は、ちょう度が所定の範囲内であり、かつ高い熱伝導率を有する。以下、本発明の放熱グリース組成物の特性であるちょう度及び熱伝導率について説明をする。
1-3. Characteristics The heat-radiating grease composition of the present invention has a consistency within a predetermined range and a high thermal conductivity. Hereinafter, the consistency and thermal conductivity which are the characteristics of the heat dissipating grease composition of the present invention will be described.

1−3−1.ちょう度
本発明の放熱グリース組成物は、ちょう度が200〜400の範囲内にあることを特徴とする。
1-3-1. Consistency The heat dissipating grease composition of the present invention is characterized in that the consistency is in the range of 200 to 400.

「ちょう度」とは、グリースのような半固体物質の硬さを表す基本物性値である。本発明におけるちょう度は、JIS K2220の7号で規定される測定方法による測定値に基づいて算出されたグリースの外観的な硬さを表す値で、混和ちょう度を意味する。規定の混和器に被検グリースを入れ、25℃下で規定重量の円錐がそのグリースに5秒間で貫入した侵入深度から算出され、その値が大きいほど軟らかいグリースであることを意味する。   “Consistency” is a basic physical property value representing the hardness of a semi-solid substance such as grease. The consistency in the present invention is a value representing the external hardness of the grease calculated on the basis of the measurement value defined by the measurement method defined in No. 7 of JIS K2220, and means the penetration consistency. The test grease is put in a specified mixer, and the cone of the specified weight is calculated from the penetration depth when the grease penetrates into the grease in 5 seconds at 25 ° C. The larger the value, the softer the grease.

本発明の放熱グリース組成物のちょう度は、200〜400、好ましくは200〜398、より好ましくは200〜395である。このちょう度は、前述のように液体金属に対する微粉末充填剤の充填量によって調節することができる。   The consistency of the heat dissipating grease composition of the present invention is 200 to 400, preferably 200 to 398, more preferably 200 to 395. This consistency can be adjusted by the filling amount of the fine powder filler to the liquid metal as described above.

1−3−2.熱伝導率
本発明の放熱グリース組成物は、従来の放熱グリースと比較して高い熱伝導率を有することを特徴とする。熱伝導率は、本発明の放熱グリース組成物の構成成分である液体金属や微粉末充填剤の種類及び/又は性質等によって決定される。本発明においては、10W/(mK)以上、15W/(mK)以上又は20W/(mK)以上の熱伝導率を有することが好ましい。基材である液体金属と微粉末充填剤のいずれにも、熱伝導率の高い物質を用いることで、本発明の放熱グリースは、高熱伝導率を獲得し得る。それ故、特に好ましい微粉末充填剤は、前述のように銅及び/又は銀である。
1-3-2. Thermal conductivity The heat dissipating grease composition of the present invention is characterized by having a high heat conductivity as compared with a conventional heat dissipating grease. The thermal conductivity is determined by the type and / or nature of the liquid metal or fine powder filler that is a constituent of the heat dissipating grease composition of the present invention. In the present invention, it is preferable to have a thermal conductivity of 10 W / (mK) or more, 15 W / (mK) or more, or 20 W / (mK) or more. By using a material having high thermal conductivity for both the liquid metal and the fine powder filler as the base material, the heat dissipating grease of the present invention can obtain high thermal conductivity. Therefore, a particularly preferred fine powder filler is copper and / or silver as described above.

1−4.効果
本実施形態の放熱グリース組成物によれば、液体金属を基材に用いることで従来の放熱グリースと比較して格段に高い熱伝導性を実現できる。また、金属からなる微粉末充填剤を液体金属に均一に分散させて所定のちょう度を獲得することで、従来の液体金属を基材とする放熱グリースで問題となっていた塗布困難性を解決し、所望の部材へ平滑かつ容易に塗布することが可能となる。
1-4. Effect According to the heat dissipating grease composition of the present embodiment, by using a liquid metal as a base material, it is possible to realize a much higher thermal conductivity than a conventional heat dissipating grease. In addition, the fine powder filler made of metal is uniformly dispersed in the liquid metal to obtain a predetermined consistency, thereby solving the difficulty of application that has been a problem with conventional heat release grease based on liquid metal. And it becomes possible to apply | coat smoothly and easily to a desired member.

本実施形態の放熱グリース組成物を電子機器に用いれば、その良好な塗布性及び高熱伝導率によって、発熱部材の効率的な冷却が可能となる。   If the heat dissipating grease composition of this embodiment is used in an electronic device, the heat generating member can be efficiently cooled due to its good coating property and high thermal conductivity.

2.電子機器
2−1.概要
本発明の第2の実施形態は、電子機器に関する。本実施形態によれば、発熱部材から発生した熱の冷却性に優れた電子機器の提供が可能となる。
2. 2. Electronic Device 2-1. Overview The second embodiment of the present invention relates to an electronic device. According to the present embodiment, it is possible to provide an electronic apparatus that is excellent in cooling of heat generated from the heat generating member.

2−2.構成
本実施形態の電子機器は、少なくとも発熱部材とそれに近接した放熱部材を有し、その両部材の間隙に実施形態1の放熱グリース組成物を充填した構成を有する。これにより、放熱グリース組成物を介して発熱部材と放熱部材とは接触した状態となる。
2-2. Configuration The electronic device of the present embodiment has at least a heat generating member and a heat radiating member adjacent to the heat generating member, and has a configuration in which the gap between the two members is filled with the heat radiating grease composition of the first embodiment. Thereby, the heat generating member and the heat radiating member come into contact with each other through the heat radiating grease composition.

本発明において「電子機器」とは、インバータ回路のような電源制御用パワーモジュールやCPUのような演算処理回路によって電子制御される機器全般をいう。例えば、パソコン、自動車、電子制御された家電(例えば、エアコン、冷蔵庫、電子レンジ)、通信機(例えば、携帯電話、無線機)、又は音響機器(例えば、オーディオアンプ)等が挙げられる。   In the present invention, the “electronic device” refers to all devices electronically controlled by a power control module such as an inverter circuit or an arithmetic processing circuit such as a CPU. For example, a personal computer, an automobile, an electronically controlled home appliance (for example, an air conditioner, a refrigerator, a microwave oven), a communication device (for example, a mobile phone, a wireless device), an acoustic device (for example, an audio amplifier), or the like can be given.

「発熱部材」とは、電子機器内に設置され、通電によって発熱する部材をいう。本実施形態においては、特に、自然対流による放熱では十分な冷却が不可能な程の多量の熱を発生する部材がその対象となる。例えば、前述のインバータ回路やCPUがその代表として挙げられる。   “Heat generating member” refers to a member that is installed in an electronic device and generates heat when energized. In this embodiment, in particular, a member that generates a large amount of heat that cannot be sufficiently cooled by heat radiation by natural convection is an object. For example, the above-described inverter circuit and CPU are typical examples.

「放熱部材」とは、発熱部材で発生した熱を受け取り、電子機器外部に熱を放散することで発熱部材を、ひいては電子機器自体を冷却する部材をいう。例えば、ヒートシンクが挙げられる。一般に、放熱部材は、熱抵抗の小さい材質によって構成され、放熱効率を高めるために表面積を大きくして板状又は棒状の放熱フィンを多数有していることが多いが、本実施形態の放熱部材も同様の材質からなり、また同様の形態を有していてもよい。発熱部材によって、自然冷却のみでも十分な熱拡散効果を有する場合、又は熱拡散のためにファンで強制冷却を必要とする場合があるが、いずれの場合の放熱部材も本実施形態の対象となる。また、発熱部材から熱を受け取り、外部にその熱を放散することができるのであれば、ヒートシンクのような放熱専用の部材である必要はなく、例えば、電子機器の筐体が放熱部材として機能してもよい。   The “heat dissipating member” refers to a member that receives heat generated by the heat generating member and dissipates the heat to the outside of the electronic device, thereby cooling the heat generating member and thus the electronic device itself. An example is a heat sink. In general, the heat radiating member is made of a material having a small thermal resistance, and has a large surface area in order to increase the heat radiating efficiency, and has many plate-shaped or rod-shaped heat radiating fins. Are made of the same material and may have the same form. Depending on the heat generating member, even if natural cooling alone has a sufficient heat diffusion effect, or forced cooling with a fan may be required for heat diffusion, the heat radiating member in either case is also a target of this embodiment. . In addition, if heat can be received from the heat generating member and the heat can be dissipated to the outside, it is not necessary to be a heat radiating member such as a heat sink. For example, the housing of an electronic device functions as a heat radiating member. May be.

放熱グリース組成物の充填量は、発熱部材とそれに近接する放熱部材間の間隙の大きさ及び面積に応じて適宜定めればよい。効率的な熱伝導のために両部材が放熱グリース組成物を介して完全に接触できるように、すなわち、両部材間に気層が存在しないように完全に充填されることが好ましい。   The filling amount of the heat dissipating grease composition may be appropriately determined according to the size and area of the gap between the heat generating member and the heat dissipating member adjacent thereto. For efficient heat conduction, it is preferable that the two members are completely filled so that they can be completely contacted with each other via the heat dissipating grease composition, that is, there is no air layer between the two members.

2−3.効果
本実施形態の電子機器は、実施形態1の放熱グリース組成物を介して前記発熱部材と放熱部材が接触した構造を有する。それ故、発熱部材で発生した熱は、高熱伝導率を有する放熱グリース組成物によって直ちに放熱部材へと伝導され、そこで大気中に放散される。これによって、発熱部材は、効率的に冷却される。
2-3. Effect The electronic device of the present embodiment has a structure in which the heat generating member and the heat radiating member are in contact with each other through the heat radiating grease composition of the first embodiment. Therefore, the heat generated in the heat generating member is immediately conducted to the heat radiating member by the heat radiating grease composition having high thermal conductivity, and is dissipated in the atmosphere there. Thereby, the heat generating member is efficiently cooled.

したがって、本実施形態の電子機器によれば、発熱部材から発生した熱の冷却性に優れ、発熱による電子機器の機能障害及び寿命の短縮化の改善、及び電子機器本体の小型化及び電子機器内の各部材の高密度な実装化が可能となる。   Therefore, according to the electronic device of the present embodiment, the heat generated from the heat generating member is excellently cooled, the electronic device malfunction due to heat generation and the improvement of shortening of the life, the downsizing of the electronic device main body and the electronic device inside These members can be mounted with high density.

以下の実施例において、本発明の放熱グリース組成物を具体的に説明する。ただし、ここで挙げる具体的条件は、単なる一例に過ぎず、本発明の範囲をなんら制限するものではない。   In the following examples, the heat dissipating grease composition of the present invention will be specifically described. However, the specific conditions listed here are merely examples, and do not limit the scope of the present invention.

<材料>
(1)基材
(a)液体金属LM-1: ガリウム:インジウム:スズが64.2:20.6:15.2で混合された合金で、常温、常圧で液体の性質を有する。全ての実施例及び一部の比較例の放熱グリース組成物の基材として用いた(表1参照)。
<Material>
(1) Substrate (a) Liquid metal LM-1: An alloy in which gallium: indium: tin is mixed at 64.2: 20.6: 15.2, and has liquid properties at room temperature and pressure. It was used as a base material for the heat dissipating grease compositions of all Examples and some Comparative Examples (see Table 1).

(b)PAO 10: ポリ-α-オレフィン油で、100℃において10mm2/sの動粘度を示す。一部の比較例の放熱グリース組成物の基材として用いた(表1参照)。
(2)微粉末充填剤
・実施例:銀粉(平均粒径0.4μm)又は銅粉(平均粒径0.7μm、20μm又は30μm)
・比較例:銅粉(平均粒径0.7μm、20μm又は30μm)又は酸化亜鉛(平均粒径0.7μm)
(B) PAO 10: Poly-α-olefin oil, which exhibits a kinematic viscosity of 10 mm 2 / s at 100 ° C. It was used as a base material for heat radiation grease compositions of some comparative examples (see Table 1).
(2) Fine powder filler Example: Silver powder (average particle size 0.4 μm) or copper powder (average particle size 0.7 μm, 20 μm or 30 μm)
Comparative example: copper powder (average particle size 0.7 μm, 20 μm or 30 μm) or zinc oxide (average particle size 0.7 μm)

<方法>
(1)放熱グリース組成物の製造
上記材料の基材及び微粉末充填剤を表1に記載の重量比で混合し、メノウ乳鉢で混練して微粉末充填剤を十分に均一分散させて製造した。
<Method>
(1) Manufacture of heat-dissipating grease composition The base material and fine powder filler of the above materials were mixed at a weight ratio shown in Table 1, and kneaded in an agate mortar to produce a fine powder filler sufficiently uniformly dispersed. .

Figure 2012111823
Figure 2012111823

製造した各放熱グリースを用いて、実施例及び比較例の各放熱グリース組成物における、熱伝導率、塗布性、ちょう度及び外観について検証した。   Using each of the manufactured heat dissipating greases, the thermal conductivity, coating properties, consistency and appearance of each heat dissipating grease composition of Examples and Comparative Examples were verified.

(2)熱伝導率の測定
各実施例及び比較例の放熱グリース組成物の熱伝導率は、ホットディスク法で測定した。すなわち、一定時間に一定電流を流して試験体(実施例及び比較例の放熱グリース組成物)を加熱し、電気抵抗の時間変化を測定した後、その測定結果から熱伝導率を算出した。
(2) Measurement of thermal conductivity The thermal conductivity of the heat dissipating grease composition of each example and comparative example was measured by a hot disk method. That is, a constant current was allowed to flow for a certain period of time to heat the test specimens (heat dissipating grease compositions of Examples and Comparative Examples), and the change in electrical resistance with time was measured, and then the thermal conductivity was calculated from the measurement results.

(3)塗布性
塗布性は、ガラス板上に50μmの厚さのスペーサーを固定し、ガラス板上に放熱グリース組成物を樹脂製ヘラで塗布し、平滑に塗布できるか否かで評価した。
(3) Applicability The applicability was evaluated by whether a spacer having a thickness of 50 μm was fixed on a glass plate, and the heat-dissipating grease composition was applied on the glass plate with a resin spatula, so that it could be applied smoothly.

(4)ちょう度
前述のように、JIS K2220の7号で規定される測定方法で得られた測定値から混和ちょう度を算出した。
(4) Consistency As described above, the blending consistency was calculated from the measurement values obtained by the measurement method defined in JIS K2220 No. 7.

(5)外観
放熱グリースを流動させて、目視により粘性のある「グリース状」か粘性のない「液状」かを判断した。微粉末充填剤が液体金属に均一に分散されていない場合には、「不均一」とした。
(5) Appearance The heat-dissipating grease was flowed, and it was visually determined whether it was “greasy” with viscosity or “liquid” with no viscosity. When the fine powder filler was not uniformly dispersed in the liquid metal, it was determined as “non-uniform”.

<結果>
結果を表1に示し、以下、それぞれについて検討する。
<Result>
The results are shown in Table 1 and will be discussed below.

(比較例1)
液体金属のみを使用した場合には、熱伝導率は27W/(mK)と高かったが、完全な液状であり、またその表面張力のため塗布ができなかった。
(Comparative Example 1)
When only liquid metal was used, the thermal conductivity was as high as 27 W / (mK), but it was completely liquid and could not be applied due to its surface tension.

(比較例2及び4)
液体金属の基材に、平均粒径が30μmの銅粉を微粉末充填剤として10重量%で混合した場合(比較例2)、及び液体金属の基材に、平均粒径が20μmの銅粉を微粉末充填剤として50重量%で混合した場合(比較例4)、いずれも微粉末充填剤が液体金属中に均一に分散せず、平滑に塗布できなかった。
(Comparative Examples 2 and 4)
When copper powder with an average particle size of 30 μm is mixed as a fine powder filler in a liquid metal substrate at 10 wt% (Comparative Example 2), and copper powder with an average particle size of 20 μm is mixed with a liquid metal substrate Were mixed as fine powder fillers at 50% by weight (Comparative Example 4), the fine powder fillers were not uniformly dispersed in the liquid metal and could not be applied smoothly.

(比較例3)
液体金属の基材に、平均粒径0.7μmの酸化亜鉛粉を微粉末充填剤として10重量%で混合した場合、塗布性に問題はなかったが、熱伝導率が8W/(mK)にしか達しなかった。金属以外の微粉末充填剤を使用した場合、十分に高い熱伝導率が得られないと思われる。
(Comparative Example 3)
When zinc oxide powder with an average particle size of 0.7 μm was mixed as a fine powder filler in a liquid metal substrate at 10% by weight, there was no problem in coating properties, but the thermal conductivity was only 8 W / (mK). Did not reach. When a fine powder filler other than metal is used, it seems that a sufficiently high thermal conductivity cannot be obtained.

(比較例5)
従来の放熱グリースで使用されていたPAO 10を基材に、平均粒径0.7μmの銅粉を微粉末充填剤として87.5重量%で混合した場合、塗布性に問題はなかったが、熱伝導率がわずか1W/(mK)であった。
(Comparative Example 5)
When PAO 10 used in conventional thermal grease was mixed with 87.5% by weight of copper powder with an average particle size of 0.7μm as a fine powder filler, there was no problem in applicability, but thermal conductivity Was only 1 W / (mK).

(実施例1及び5)
液体金属の基材に、平均粒径が0.4μmの銀粉を微粉末充填剤として10重量%で混合した場合(実施例1)、及び2重量%で混合した場合(実施例5)、いずれの場合も微粉末充填剤は液体金属中に均一に分散し、10 W/(mK)以上の良好な熱伝導性と塗布性を示した。
(Examples 1 and 5)
When a silver powder having an average particle size of 0.4 μm is mixed as a fine powder filler in a liquid metal substrate at 10% by weight (Example 1), and when mixed at 2% by weight (Example 5), In some cases, the fine powder filler was uniformly dispersed in the liquid metal, and showed good thermal conductivity and coatability of 10 W / (mK) or more.

(実施例2〜4)
液体金属の基材に、平均粒径が0.7μmの銅粉を微粉末充填剤として10若しくは15重量%で混合した場合(それぞれ実施例2及び3)又は20μmの銅粉を40重量%で混合した場合(実施例4)には、いずれの場合も微粉末充填剤は、液体金属中に均一に分散し、15W/(mK)以上の非常に良好な熱伝導性と塗布性を示した。比較例4の結果と比較すると、平均粒径が20μmの銅粉を使用しても、微粉末充填剤が40重量%以下であれば、液体金属中に均一に分散し得ることが明らかとなった。
(Examples 2 to 4)
When copper powder with an average particle size of 0.7 μm is mixed as a fine powder filler in a liquid metal substrate at 10 or 15 wt% (Examples 2 and 3 respectively), or 20 μm copper powder is mixed at 40 wt% In each case (Example 4), the fine powder filler was uniformly dispersed in the liquid metal, and showed very good thermal conductivity and applicability of 15 W / (mK) or more. Comparing with the result of Comparative Example 4, it is clear that even when copper powder having an average particle diameter of 20 μm is used, if the fine powder filler is 40% by weight or less, it can be uniformly dispersed in the liquid metal. It was.

以上の結果から、ちょう度が200〜400の範囲内にある放熱グリース組成物が塗布容易性を示すことが判明した。また、微粉末充填剤の平均粒径が20μmを超えないことや40重量%で放熱グリース組成物に包含されることが、平滑な塗布を行なう上で必要であることも明らかになった。さらに、基材を液体金属とし、また微粉末充填剤を好ましくは金属、より好ましくは銀又は銅にすることで、従来の放熱グリースと比較して格段に高い熱伝導率を達成し得ることも立証された。   From the above results, it was found that the heat dissipating grease composition having a consistency of 200 to 400 exhibits ease of application. It has also been clarified that the average particle size of the fine powder filler does not exceed 20 μm and that it is included in the heat dissipating grease composition at 40% by weight for smooth coating. Furthermore, when the base material is a liquid metal and the fine powder filler is preferably a metal, more preferably silver or copper, a heat conductivity that is significantly higher than that of a conventional heat-release grease can be achieved. Proven.

Claims (3)

ガリウム(Ga)、インジウム(In)及び/又はスズ(Sn)を含み、常圧下での融点が16℃以下である合金、及び
平均粒径が0.01μm〜20μmであり、2〜40重量%で包含される、金属からなる微粉末充填剤
を含有し、ちょう度が200〜400の範囲内にある放熱グリース組成物。
An alloy containing gallium (Ga), indium (In) and / or tin (Sn), having a melting point of 16 ° C. or less under normal pressure, and an average particle size of 0.01 μm to 20 μm, 2 to 40% by weight A heat dissipating grease composition containing a fine powder filler made of metal and having a consistency of 200 to 400.
金属が銀、銅、又はその組合せである、請求項1に記載の放熱グリース組成物。   The heat dissipating grease composition according to claim 1, wherein the metal is silver, copper, or a combination thereof. 請求項1又は2に記載の放熱グリース組成物を発熱部材とそれに近接した放熱部材の間隙に充填した電子機器。   An electronic device in which the heat-dissipating grease composition according to claim 1 is filled in a gap between a heat-generating member and a heat-dissipating member adjacent thereto.
JP2010261040A 2010-11-24 2010-11-24 Thermal grease composition Expired - Fee Related JP5542280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261040A JP5542280B2 (en) 2010-11-24 2010-11-24 Thermal grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261040A JP5542280B2 (en) 2010-11-24 2010-11-24 Thermal grease composition

Publications (2)

Publication Number Publication Date
JP2012111823A true JP2012111823A (en) 2012-06-14
JP5542280B2 JP5542280B2 (en) 2014-07-09

Family

ID=46496406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261040A Expired - Fee Related JP5542280B2 (en) 2010-11-24 2010-11-24 Thermal grease composition

Country Status (1)

Country Link
JP (1) JP5542280B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388769A (en) * 2021-06-11 2021-09-14 东莞市兆科电子材料科技有限公司 Slurry alloy heat conduction material
JP2021139017A (en) * 2020-03-06 2021-09-16 東京エレクトロン株式会社 Substrate treatment apparatus and substrate treatment method
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
CN115427509A (en) * 2020-04-17 2022-12-02 信越化学工业株式会社 Heat conductive silicone composition
JP7417696B1 (en) 2022-08-01 2024-01-18 千住金属工業株式会社 metal and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371992A (en) * 1989-08-03 1991-03-27 Internatl Business Mach Corp <Ibm> Liquid metal matrix thermal paste and its manufacture
JPH0853664A (en) * 1994-08-10 1996-02-27 Fujitsu Ltd Thermally conductive material and its production, method for cooling electronic part, method for cooling circuit board, and method for mounting electronic part
JP2004071816A (en) * 2002-08-06 2004-03-04 Fujitsu Ltd Cooling structure and its manufacturing method, cooling method, and heat conduction medium
JP2004146795A (en) * 2002-10-24 2004-05-20 Bergquist Co:The Thermal interface pad utilizing low-melting metal with retention matrix
JP2008184549A (en) * 2007-01-30 2008-08-14 Momentive Performance Materials Japan Kk Manufacturing method for heat-releasing material
JP2010095730A (en) * 2010-01-18 2010-04-30 Shin-Etsu Chemical Co Ltd Curable organopolysiloxane composition and semiconductor apparatus
JP3171885U (en) * 2011-06-14 2011-11-24 ▲らい▼ 界榮 Heat dissipation structure with Mg-Al alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371992A (en) * 1989-08-03 1991-03-27 Internatl Business Mach Corp <Ibm> Liquid metal matrix thermal paste and its manufacture
JPH0853664A (en) * 1994-08-10 1996-02-27 Fujitsu Ltd Thermally conductive material and its production, method for cooling electronic part, method for cooling circuit board, and method for mounting electronic part
JP2004071816A (en) * 2002-08-06 2004-03-04 Fujitsu Ltd Cooling structure and its manufacturing method, cooling method, and heat conduction medium
JP2004146795A (en) * 2002-10-24 2004-05-20 Bergquist Co:The Thermal interface pad utilizing low-melting metal with retention matrix
JP2008184549A (en) * 2007-01-30 2008-08-14 Momentive Performance Materials Japan Kk Manufacturing method for heat-releasing material
JP2010095730A (en) * 2010-01-18 2010-04-30 Shin-Etsu Chemical Co Ltd Curable organopolysiloxane composition and semiconductor apparatus
JP3171885U (en) * 2011-06-14 2011-11-24 ▲らい▼ 界榮 Heat dissipation structure with Mg-Al alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
JP2021139017A (en) * 2020-03-06 2021-09-16 東京エレクトロン株式会社 Substrate treatment apparatus and substrate treatment method
JP7442347B2 (en) 2020-03-06 2024-03-04 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
CN115427509A (en) * 2020-04-17 2022-12-02 信越化学工业株式会社 Heat conductive silicone composition
CN115427509B (en) * 2020-04-17 2024-05-03 信越化学工业株式会社 Thermally conductive silicone composition
CN113388769A (en) * 2021-06-11 2021-09-14 东莞市兆科电子材料科技有限公司 Slurry alloy heat conduction material
CN113388769B (en) * 2021-06-11 2022-07-08 东莞市兆科电子材料科技有限公司 Slurry alloy heat conduction material
JP7417696B1 (en) 2022-08-01 2024-01-18 千住金属工業株式会社 metal and electronic equipment

Also Published As

Publication number Publication date
JP5542280B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN108192576B (en) Liquid metal thermal interface material and preparation method and application thereof
JP4933094B2 (en) Thermally conductive silicone grease composition
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
TWI648388B (en) Compressible thermal interface material
KR102108902B1 (en) Heat conductive silicone composition, heat conductive layer, and semiconductor device
JP5542280B2 (en) Thermal grease composition
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP3290127B2 (en) Heat conductive silicone rubber composition and heat dissipation sheet comprising the heat conductive silicone rubber composition
JP6574967B2 (en) Silicone composition
JP2004533705A (en) Interface materials and their production and use
KR102601088B1 (en) Thermal conductive silicone grease composition
JP6866877B2 (en) Low heat resistance silicone composition
JP2005154532A (en) Heat-dissipating silicone grease composition
JP2007106809A (en) Heat-conductive grease composition
JP2007070492A (en) Heat conductive grease, adhesive and elastomer composition, and cooling device
JP2010155870A (en) Thermally conductive compound and method for producing the same
JP2008222776A (en) Heat-conductive silicone grease composition
JP2004091743A (en) Thermal conductive grease
JP3891969B2 (en) Thermally conductive grease
JP7379940B2 (en) thermally conductive composition
WO2021079714A1 (en) Thermally conductive silicone composition and production method therefor
JP2012052137A (en) Heat conductive silicone grease composition
JP2007214224A (en) Electronic device with excellent heat dissipation and method of manufacturing same
JP2020059842A (en) Heat radiating grease composition and electronic apparatus
JP2000095896A (en) Powder for addition to resin, and resin composition and heat-releasing spacer using the powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140506

R151 Written notification of patent or utility model registration

Ref document number: 5542280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees