JP2010095730A - Curable organopolysiloxane composition and semiconductor apparatus - Google Patents

Curable organopolysiloxane composition and semiconductor apparatus Download PDF

Info

Publication number
JP2010095730A
JP2010095730A JP2010007990A JP2010007990A JP2010095730A JP 2010095730 A JP2010095730 A JP 2010095730A JP 2010007990 A JP2010007990 A JP 2010007990A JP 2010007990 A JP2010007990 A JP 2010007990A JP 2010095730 A JP2010095730 A JP 2010095730A
Authority
JP
Japan
Prior art keywords
component
composition
heat
group
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010007990A
Other languages
Japanese (ja)
Other versions
JP4913874B2 (en
Inventor
Akihiro Endo
晃洋 遠藤
Kunihiko Yoshida
邦彦 美田
Akio Nakano
昭生 中野
Kunihiro Yamada
邦弘 山田
Hiroaki Kizaki
弘明 木崎
Hiroaki Tezuka
裕昭 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010007990A priority Critical patent/JP4913874B2/en
Publication of JP2010095730A publication Critical patent/JP2010095730A/en
Application granted granted Critical
Publication of JP4913874B2 publication Critical patent/JP4913874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for forming a layer that is arranged between a heat build-up electronic part and a radiating member and has excellent thermal conductivity. <P>SOLUTION: The curable organopolysiloxane composition includes (A) 100 pts.mass of an organopolysiloxane containing two or more alkenyl groups bonded to a silicon atom in one molecule, (B) an organohydrogenpolysiloxane containing two or more hydrogen atoms bonded to a silicon atom in one molecule in an amount to give 0.1-5.0 hydrogen atoms bonded to silicon atoms in the component based on one alkenyl group in the component (A), (C) 300-5,000 pts.mass of gallium and/or its alloy having a melting point of 0-70°C, (D) 0-1,000 pts.mass of a heat-conductive filler having an average particle diameter of 0.1-100 μm, (E) an effective amount of a platinum-based catalyst, and (F) an effective amount of an addition reaction controller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硬化性オルガノポリシロキサン組成物、その製造方法、その硬化物、該硬化物の熱伝導性層としての使用、該熱伝導性層を有する半導体装置、および該半導体装置の製造方法に関する。   The present invention relates to a curable organopolysiloxane composition, a production method thereof, a cured product thereof, use of the cured product as a thermally conductive layer, a semiconductor device having the thermally conductive layer, and a method of producing the semiconductor device. .

プリント配線基板上に実装される発熱性電子部品、例えば、CPU等のICパッケージは、使用時の発熱による温度上昇によって性能が低下したり破損したりすることがあるため、従来、ICパッケージと放熱フィンを有する放熱部材との間に、熱伝導性が良好な熱伝導性シートを配置したり、熱伝導性グリースを適用して、前記ICパッケージ等から生じる熱を効率よく放熱部材に伝導して放熱させることが実施されている。しかしながら、電子部品等の高性能化に伴い、その発熱量が益々増加する傾向にあり、従来のものよりも更に熱伝導性に優れた材料・部材の開発が求められている。   Heat-generating electronic components mounted on a printed circuit board, for example, IC packages such as CPUs, may suffer performance degradation or damage due to temperature rise due to heat generation during use. A heat conductive sheet with good thermal conductivity is arranged between the fin and the heat dissipation member, or heat conductive grease is applied to efficiently conduct the heat generated from the IC package etc. to the heat dissipation member. It is implemented to dissipate heat. However, as the performance of electronic parts and the like increases, the amount of generated heat tends to increase more and more, and development of materials and members that are more excellent in thermal conductivity than conventional ones is required.

従来の熱伝導性シートは、手軽にマウント・装着することができるという作業・工程上の利点を有する。また、熱伝導性グリースの場合は、CPU、放熱部材等の表面の凹凸に影響されることなく、前記凹凸に追随して、前記両者間に隙間を生じせしめることなく、前記両者を密着させることができ、界面熱抵抗が小さいという利点がある。しかし、熱伝導性シートおよび熱伝導性グリースは、ともに熱伝導性を付与するため熱伝導性充填剤を配合して得られるが、熱伝導性シートの場合は、その製造工程における作業性・加工性に支障をきたさないようにするために、また、熱伝導性グリースの場合は、発熱性電子部品等へシリンジ等を用いて塗工する際の作業性に問題が生じないように、そのみかけ粘度の上限を一定限度に抑制する必要があるために、いずれの場合においても熱伝導性充填剤の配合量の上限は制限され、十分な熱伝導性効果が得られないという欠点があった。   The conventional heat conductive sheet has an advantage in work and process that it can be easily mounted and mounted. Further, in the case of thermally conductive grease, the two are closely contacted without following the unevenness without being affected by the unevenness of the surface of the CPU, heat radiating member, etc., without causing a gap between the two. There is an advantage that the interfacial thermal resistance is small. However, both the heat conductive sheet and the heat conductive grease are obtained by blending a heat conductive filler in order to impart heat conductivity. In the case of a heat conductive sheet, workability and processing in the manufacturing process are obtained. In the case of thermally conductive grease, the appearance of the heat-existing electronic components should be avoided so as not to cause problems when applying to the heat-generating electronic parts using a syringe. Since it is necessary to suppress the upper limit of the viscosity to a certain limit, in any case, the upper limit of the blending amount of the heat conductive filler is limited, and there is a drawback that a sufficient heat conductive effect cannot be obtained.

そこで、熱伝導性ペースト内に低融点金属を配合する方法(特許文献1、特許文献2))、液体金属を三相複合体中に固定し、安定化する働きをする粒状材料(特許文献3)等が提案されている。しかしながら、これら低融点金属を用いた熱伝導性材料は、塗工部以外の部品を汚染し、また、長時間にわたって使用すると油状物が漏出してくる等の問題があった。   Therefore, a method of blending a low melting point metal in the heat conductive paste (Patent Document 1, Patent Document 2), a granular material that functions to fix and stabilize the liquid metal in the three-phase composite (Patent Document 3). ) Etc. have been proposed. However, these thermally conductive materials using low-melting point metals have problems such as contamination of parts other than the coated part and leakage of oil when used for a long time.

特開平7−207160号公報JP-A-7-207160 特開平8−53664号公報JP-A-8-53664 特開2002−121292号公報JP 2002-121292 A

上記従来技術を踏まえ、本発明の主たる目的は、熱伝導特性に優れた材料が必要にして十分な量配合され、かつ前記材料が微粒子の状態で樹脂成分からなるマトリックス中に、均一に分散した硬化性オルガノポリシロキサン組成物を得ることにある。また、該硬化性オルガノポリシロキサン組成物を製造する方法を提供することにある。   In light of the above-described prior art, the main object of the present invention is to blend a sufficient amount of a material having excellent heat conduction characteristics, and to disperse the material uniformly in a matrix composed of resin components in the form of fine particles. The object is to obtain a curable organopolysiloxane composition. Moreover, it is providing the method of manufacturing this curable organopolysiloxane composition.

また、本発明の目的は、該硬化性オルガノポリシロキサン組成物を、従来の熱伝導性グリースと同様に、発熱性電子部品と放熱部材との間に挟まれるように配置し、前記部品または部材の表面の凹凸に追随して隙間を生じせしめることなく、かつ、加熱処理により架橋された硬化物からなる熱伝導性層としての使用を提供することにある。更に、本発明の目的は、発熱性電子部品と放熱部材とが前記熱伝導性層を介して接合された放熱性能に優れた半導体装置およびその製造方法を提供することにある。   Another object of the present invention is to dispose the curable organopolysiloxane composition so as to be sandwiched between a heat-generating electronic component and a heat-dissipating member, as in the case of conventional heat-conductive grease. It is intended to provide a use as a thermally conductive layer made of a cured product that is crosslinked by heat treatment without causing a gap by following the irregularities on the surface. Furthermore, the objective of this invention is providing the semiconductor device excellent in the heat dissipation performance in which the exothermic electronic component and the heat radiating member were joined via the said heat conductive layer, and its manufacturing method.

発明者等は、上記目的を達成すべく鋭意検討した結果、熱伝導特性に優れた材料として、低融点のガリウムおよび/またはその合金を選択し、これを付加反応硬化型のオルガノポリシロキサン組成物に配合することにより、前記ガリウムおよび/またはその合金が微粒子状態で均一に分散した組成物が得られるとの知見を得た。   As a result of intensive studies to achieve the above object, the inventors have selected low melting point gallium and / or an alloy thereof as a material having excellent heat conduction characteristics, and used this as an addition reaction curable organopolysiloxane composition. It was found that a composition in which the gallium and / or its alloy were uniformly dispersed in a fine particle state can be obtained by blending into the composition.

更に、前記組成物を加熱処理して硬化物とする工程において、液状の前記ガリウムおよび/またはその合金同士が凝集して粒径の大きな液状粒子を形成すると同時に、該液状粒子同士が連結して連なった一種の経路を形成すること、また、樹脂成分の硬化により形成される架橋網状体中に、前記経路状の構造が固定・保持されるとの知見を得た。   Further, in the step of heat-treating the composition to obtain a cured product, the liquid gallium and / or its alloy are aggregated to form liquid particles having a large particle size, and at the same time, the liquid particles are connected to each other. The present inventors have found that the path-like structure is fixed and held in a cross-linked network formed by forming a continuous type of path and curing of the resin component.

そして、前記のとおりにして得られる硬化物を発熱性電子部品と放熱部材との間に挟まれるように層状に配置することにより、熱抵抗が低い熱伝導性層として使用することができ、前記熱性電子部品の稼動時に発生する熱を、前記のとおりの構造に固定・保持されたガリウムおよび/またはその合金を含む前記熱伝導性層を経由して、速やかに放熱部材に伝導し、放熱特性に優れた半導体製品が得られるとの知見を得て、これらの知見に基づき、本発明を完成させるに至った。   And by arranging the cured product obtained as described above in a layered manner so as to be sandwiched between the exothermic electronic component and the heat radiating member, it can be used as a heat conductive layer having a low thermal resistance, Heat generated during the operation of the thermal electronic component is quickly conducted to the heat radiating member via the heat conductive layer containing gallium and / or its alloy fixed and held in the structure as described above. Based on these findings, the present invention has been completed.

即ち、本発明は、第一に、
(A)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサン: 100質量部、
(B)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン: 前記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1〜5.0個となる量、
(C)融点が0〜70℃の、ガリウムおよび/またはその合金: 300〜5000質量部、
(D)平均粒径が0.1〜100μmの熱伝導性充填剤: 0〜1000質量部
(E)白金系触媒: 有効量、並びに
(F)付加反応制御剤: 有効量
を含む硬化性オルガノポリシロキサン組成物を提供する。
That is, the present invention firstly
(A) Organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom: One alkenyl group in the component (A) bonded to a silicon atom in the component An amount such that the number of hydrogen atoms is 0.1 to 5.0,
(C) Gallium and / or its alloy having a melting point of 0 to 70 ° C .: 300 to 5000 parts by mass,
(D) Thermally conductive filler having an average particle size of 0.1 to 100 μm: 0 to 1000 parts by mass (E) Platinum-based catalyst: effective amount, and (F) addition reaction control agent: curable organo containing effective amount A polysiloxane composition is provided.

本発明は、第二に、該組成物の製造方法を提供する。
本発明は、第三に、該組成物の熱伝導性硬化物を提供する。
本発明は、第四に、該熱伝導性硬化物の発熱性電子部品と放熱部材との間に挟まれて配置される熱伝導性層としての使用を提供する。
本発明は、第五に、発熱性電子部品と、放熱部材と、該熱伝導性層とを有してなる半導体装置を提供する。
本発明は、第六に、該半導体装置の製造方法を提供する。
Secondly, the present invention provides a method for producing the composition.
Thirdly, the present invention provides a thermally conductive cured product of the composition.
Fourthly, the present invention provides use of the thermally conductive cured product as a thermally conductive layer disposed between a heat generating electronic component and a heat radiating member.
Fifth, the present invention provides a semiconductor device comprising a heat-generating electronic component, a heat radiating member, and the heat conductive layer.
Sixth, the present invention provides a method for manufacturing the semiconductor device.

本発明の硬化性オルガノポリシロキサン組成物は、硬化前においてはグリース状またはペースト状であるので、ICパッケージ等の発熱性電子部品上に塗工する際の作業性が良好であり、更に放熱部材を圧接させる際に、両者の表面の凹凸に追従して、両者間に隙間を生じることなく両者を密着できることから、界面熱抵抗が生じることがない。   Since the curable organopolysiloxane composition of the present invention is in the form of a grease or paste before curing, it has good workability when applied onto a heat-generating electronic component such as an IC package, and further a heat dissipation member When press-contacting the two, they can follow the unevenness of the surfaces of the two and can be brought into close contact with each other without generating a gap therebetween, so that no interfacial thermal resistance is generated.

また、付加反応による樹脂成分の硬化に際する加熱処理工程において、本発明の組成物に含まれるガリウムおよび/またはその合金の液状微粒子は凝集して粒径の大きな液状粒子を形成するとともに、該液状粒子は互いに連結して連なり一種の経路を形成し、樹脂成分の硬化により形成される3次元架橋網状体中に、前記経路状の構造が固定・保持されることから、発熱性電子部品から生じる熱を速やかに放熱部材に伝導することができるため、従来の熱伝導性シートまたは熱伝導性グリースよりも、高い放熱効果を確実に発揮することができる。そして、半導体装置に組み込まれた本発明組成物の硬化物からなる熱伝導性層に含まれ前記経路を形成しているガリウムおよび/またはその合金は、硬化樹脂の3次元架橋網状体中に固定・保持されていることから、従来の熱伝導性グリースの場合に問題とされた他の部品を汚染したり、また、経時的に油状物が漏出してくることがない。従って、半導体装置の信頼性を更に向上させることができる。   Further, in the heat treatment step for curing the resin component by addition reaction, liquid fine particles of gallium and / or an alloy thereof contained in the composition of the present invention aggregate to form liquid particles having a large particle size, and Liquid particles are connected to each other to form a kind of path, and the path-like structure is fixed and held in a three-dimensional cross-linked network formed by curing of the resin component. Since the generated heat can be quickly conducted to the heat radiating member, a higher heat radiating effect can be surely exhibited than the conventional heat conductive sheet or heat conductive grease. And the gallium and / or its alloy which are contained in the heat conductive layer which consists of the hardened | cured material of this invention incorporated in the semiconductor device and forms the said path | route are fixed in the three-dimensional bridge | crosslinking network body of hardened resin.・ Because it is held, it will not contaminate other parts which are problematic in the case of conventional thermal conductive grease, and oil will not leak over time. Therefore, the reliability of the semiconductor device can be further improved.

本発明の組成物を適用する半導体装置の1例を示す縦断面概略図である。It is a longitudinal section schematic diagram showing an example of a semiconductor device to which the composition of the present invention is applied.

[硬化性オルガノポリシロキサン組成物]
<(A)オルガノポリシロキサン>
本発明組成物の(A)成分は、ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンであり、本発明の付加反応硬化系における主剤(ベースポリマー)である。
このオルガノポリシロキサンは液状であれば、その分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状が挙げられるが、特に好ましくは直鎖状である。
[Curable organopolysiloxane composition]
<(A) Organopolysiloxane>
The component (A) of the composition of the present invention is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is the main agent (base polymer) in the addition reaction curing system of the present invention.
The molecular structure of the organopolysiloxane is not limited as long as it is liquid, and examples thereof include a straight chain, a branched chain, and a partially branched straight chain, and a linear chain is particularly preferable.

前記アルケニル基としては、例えば、ビニル基、アリル基、1−ブテニル基、1−へキセニル基等が挙げられる。これらの中でも、汎用性が高いビニル基が好ましい。このアルケニル基は、分子鎖末端のケイ素原子、また分子鎖途中のケイ素原子の何れに結合していてもよいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。   Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group. Among these, a vinyl group having high versatility is preferable. This alkenyl group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, but the silicon atom at the end of the molecular chain is used to make the resulting cured product flexible. It is preferable that it is bonded only to.

(A)成分中のアルケニル基以外のケイ素原子に結合する基としては、例えば、非置換または置換の一価炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基;クロロメチル基、3,3,3-トリフルオロプロピル基、3−クロロプロピル基等のハロゲン化アルキル基等が挙げられる。そして、合成面および経済性の点から、これらのうち、90%以上がメチル基であることが好ましい。   Examples of the group bonded to the silicon atom other than the alkenyl group in the component (A) include an unsubstituted or substituted monovalent hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group and other alkyl groups; cyclopentyl group, cyclohexyl group and other cycloalkyl groups; phenyl group, tolyl group, xylyl group, naphthyl group and other aryl groups; benzyl group Aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group; halogenated alkyl groups such as chloromethyl group, 3,3,3-trifluoropropyl group and 3-chloropropyl group. Of these, 90% or more are preferably methyl groups from the viewpoint of synthesis and economy.

また、このオルガノポリシロキサンの25℃における粘度は、通常、0.05〜100Pa・s、特に好ましくは0.5〜50Pa・sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなり、また、高すぎると得られる組成物の伸展性が悪くなる場合がある。   The viscosity of this organopolysiloxane at 25 ° C. is usually in the range of 0.05 to 100 Pa · s, particularly preferably 0.5 to 50 Pa · s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor.

このようなオルガノポリシロキサンの好適な具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端メチルジビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端ジメチルビニルシロキシ封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。
この(A)成分のオルガノポリシロキサンは、1種単独でも、例えば粘度が異なる2種以上を組み合わせても使用することができる。
Preferable specific examples of such organopolysiloxanes include dimethylvinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, methyldivinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, and dimethylvinylsiloxy-capped dimethylsiloxane having molecular chains at both ends. -A methylphenylsiloxane copolymer etc. are mentioned.
The organopolysiloxane of component (A) can be used singly or in combination of two or more having different viscosities.

<(B)オルガノハイドロジェンポリシロキサン>
本発明組成物の(B)成分は、ケイ素原子に結合した水素原子(以下、「SiH」という)を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサンであり、上記(A)成分の架橋剤として作用するものである。即ち、この(B)成分中のSiHが、後記(E)成分の白金系触媒の作用により、(A)成分中のアルケニル基とヒドロシリル化反応により付加して、架橋結合を有する3次元網状構造を有する架橋硬化物を与える。
<(B) Organohydrogenpolysiloxane>
Component (B) of the composition of the present invention is an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms (hereinafter referred to as “SiH”) in one molecule. It acts as a crosslinking agent. That is, the SiH in the component (B) is added by the hydrosilylation reaction with the alkenyl group in the component (A) by the action of the platinum catalyst of the component (E) described later, and has a three-dimensional network structure having a crosslink. A cross-linked cured product having

(B)成分中の水素原子以外のケイ素原子に結合する基としては、例えば、アルケニル基以外の非置換または置換の一価炭化水素基であり、(A)成分について例示したものと同様の基が挙げられる。中でも、合成面および経済性の点から、メチル基であることが好ましい。
また、このオルガノハイドロジェンポリシロキサンの構造としては、直鎖状、分岐状および環状のいずれであってもよい。
また、このオルガノハイドロジェンポリシロキサンの構造としては、直鎖状、分岐状および環状のいずれであってもよい。
(B) As a group couple | bonded with silicon atoms other than a hydrogen atom in a component, it is an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group, for example, The group similar to what was illustrated about (A) component Is mentioned. Among these, a methyl group is preferable from the viewpoint of synthesis and economy.
In addition, the structure of the organohydrogenpolysiloxane may be linear, branched or cyclic.
In addition, the structure of the organohydrogenpolysiloxane may be linear, branched or cyclic.

(B)成分のオルガノハイドロジェンポリシロキサンの公的な具体例としては、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジエンシロキシ基封鎖メチルフエニルポリシロキサン等が挙げられる。また、(B)成分のオルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を組み合わせても使用することができる。   (B) Component specific examples of the organohydrogenpolysiloxane include molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer Copolymer, dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer blocked at both ends of molecular chain, dimethylpolysiloxane / blocked at both ends of molecular chain, dimethylpolysiloxy group blocked at both ends of molecular chain Siloxane / methylhydrogensiloxane copolymer, dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylphenylsiloxane copolymer, both ends of the molecular chain dimethylhigh Rojienshirokishi group-blocked methyl phenylalanine polysiloxane and the like. Moreover, the organohydrogenpolysiloxane of the component (B) can be used singly or in combination of two or more.

(B)成分の配合量は、上記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1〜5.0個となる量であり、好ましくは0.5〜3.0個となる量である。前記個数が0.1個未満であると、十分な網状構造が形成されないので、硬化後に必要とされる硬さが得られず、更に、後記(C)成分を固定・保持することが困難となる。逆に、5.0個を越えると得られる硬化物の物性の経時変化が大きくなり、保存安定性が悪化する場合がある。   The blending amount of the component (B) is such that the number of hydrogen atoms bonded to silicon atoms in the component is 0.1 to 5.0 with respect to one alkenyl group in the component (A). Yes, and preferably in an amount of 0.5 to 3.0. If the number is less than 0.1, a sufficient network structure is not formed, so that the required hardness after curing cannot be obtained, and furthermore, it is difficult to fix and hold the component (C) described later. Become. On the other hand, if the number exceeds 5.0, the change over time in the physical properties of the resulting cured product becomes large, and the storage stability may deteriorate.

<(C)ガリウムおよび/またはその合金>
本発明組成物の(C)成分は、融点が0〜70℃の、ガリウムおよび/またはその合金である。該(C)成分は、本発明組成物から得られる硬化物に良好な熱伝導性を付与するために配合される成分であり、この成分の配合が本発明の特徴をなすものである。
<(C) Gallium and / or its alloy>
Component (C) of the composition of the present invention is gallium and / or an alloy thereof having a melting point of 0 to 70 ° C. The component (C) is a component that is blended in order to impart good thermal conductivity to the cured product obtained from the composition of the present invention, and the blending of this component is a feature of the present invention.

この(C)成分の融点は、上記のとおり、0〜70℃の範囲とすることが必要である。本発明組成物を調製した後に、その組成物に含まれる各成分の分散状態を保持するため、長期保存および輸送時には、約−30〜−10℃、好ましくは−25〜−15℃の低温状態とする必要があるが、前記融点が0℃未満であると、前記のとおりに長期保存および輸送する際に、液状微粒子同士が凝集しやすくなり、組成物の調製時の状態を保持することが比較的困難となる。また、逆に、70℃を越えると組成物調製工程において速やかに融解しないため、作業性に劣る結果となる。よって、前記のとおり、0〜70℃の範囲とすることが、取り扱い上必要な条件であるとともに適切な範囲である。特に、15〜50℃の範囲内のものが、本発明組成物の調製が容易であり、前記長期保存および輸送時の取扱いが簡便であることから、また、組成物の硬化に際する加熱処理条件下で、該(C)成分の液状微粒子の凝集・連結による熱伝導性の経路の形成が容易であることから、より好ましい。   As described above, the melting point of the component (C) needs to be in the range of 0 to 70 ° C. After preparing the composition of the present invention, a low temperature state of about −30 to −10 ° C., preferably −25 to −15 ° C. during long-term storage and transportation in order to maintain the dispersion state of each component contained in the composition. However, when the melting point is less than 0 ° C., liquid fine particles are likely to aggregate during long-term storage and transportation as described above, and the state at the time of preparation of the composition can be maintained. Relatively difficult. On the other hand, if it exceeds 70 ° C., it does not melt quickly in the composition preparation step, resulting in poor workability. Therefore, as described above, the range of 0 to 70 ° C. is an appropriate range as well as a condition necessary for handling. In particular, those within the range of 15 to 50 ° C. are easy to prepare the composition of the present invention, and easy to handle at the time of long-term storage and transportation. It is more preferable because it is easy to form a heat conductive path by agglomeration and connection of the liquid fine particles of the component (C) under the conditions.

金属ガリウムの融点は29.8℃である。また、代表的なガリウム合金としては、例えば、ガリウム−インジウム合金;例えば、Ga−In(質量比=75.4:24.6、融点=15.7℃)、ガリウム−スズ合金、ガリウム−スズ−亜鉛合金;例えば、Ga−Sn−Zn(質量比=82:12:6、融点=17℃)、ガリウム−インジウム−スズ合金;例えば、Ga−In−Sn(質量比=21.5:16.0:62.5、融点=10.7℃)、ガリウム−インジウム−ビスマス−スズ合金;例えば、Ga−In−Bi−Sn(質量比=9.4:47.3:24.7:18.6、融点=48.0℃)等が挙げられる。
この(C)成分は1種単独でも2種以上を組み合わせても使用することができる。
The melting point of metallic gallium is 29.8 ° C. Examples of typical gallium alloys include gallium-indium alloys; for example, Ga-In (mass ratio = 75.4: 24.6, melting point = 15.7 ° C.), gallium-tin alloys, gallium-tin. -Zinc alloy; for example, Ga-Sn-Zn (mass ratio = 82: 12: 6, melting point = 17 ° C.), gallium-indium-tin alloy; for example, Ga-In-Sn (mass ratio = 21.5: 16) 0.0: 62.5, melting point = 10.7 ° C.), gallium-indium-bismuth-tin alloy; for example, Ga—In—Bi—Sn (mass ratio = 9.4: 47.3: 24.7: 18) .6, melting point = 48.0 ° C.).
This component (C) can be used alone or in combination of two or more.

未硬化状態の本発明組成物中に存在するガリウムおよび/またはその合金の液状微粒子または固体微粒子の形状は、略球状であり、不定形のものが含まれていてもよい。また、その平均粒径が、通常、0.1〜100μm、特に5〜50μmであることが好ましい。前記平均粒径が小さすぎると組成物の粘度が高くなりすぎるため、伸展性が乏しいものとなるので塗工作業性に問題があり、また、逆に大きすぎると組成物が不均一となるため発熱性電子部品等への薄膜状の塗布が困難となる。なお、前記形状および平均粒径、更に組成物中での分散状態は、上記のとおり、組成物調製後に速やかに低温下で保存されることから、発熱性電子部品等への塗工工程まで維持することができる。   The shape of the liquid fine particles or solid fine particles of gallium and / or an alloy thereof present in the composition of the present invention in an uncured state is substantially spherical and may include an irregular shape. Moreover, it is preferable that the average particle diameter is 0.1-100 micrometers normally, especially 5-50 micrometers. If the average particle size is too small, the viscosity of the composition will be too high, and the extensibility will be poor, so there will be a problem in coating workability, and conversely if it is too large, the composition will be non-uniform. It becomes difficult to apply a thin film to exothermic electronic components. The shape and average particle size, as well as the dispersion state in the composition, are maintained at a low temperature immediately after preparation of the composition as described above. can do.

この(C)成分の配合量は、上記(A)成分100質量部に対して、300〜5000質量部であり、特に好ましくは500〜3000質量部である。前記配合量が300質量部未満であると、液状組成物の粘度が低すぎて、実質上、グリース状とはならず、発熱性電子部品等へ必要な厚さの熱伝導層を形成するための塗工が困難となるとともに、十分な熱伝導性を有する硬化物層を得ることができない。また、逆に、多すぎると該(C)成分を上記(A)成分等中に分散させて混合し、均一組成物とすることが困難となり、また、組成物の粘度が高すぎるものとなるため、やはり伸展性があるグリース状のものとして組成物を得ることができないという問題がある。   The blending amount of the component (C) is 300 to 5000 parts by mass, particularly preferably 500 to 3000 parts by mass with respect to 100 parts by mass of the component (A). When the blending amount is less than 300 parts by mass, the viscosity of the liquid composition is too low, so that it does not substantially become grease-like and forms a heat conductive layer having a necessary thickness on a heat-generating electronic component or the like. However, it is difficult to obtain a cured product layer having sufficient thermal conductivity. On the other hand, if the amount is too large, it is difficult to disperse and mix the component (C) in the component (A) and the like to obtain a uniform composition, and the viscosity of the composition is too high. Therefore, there is a problem that the composition cannot be obtained as a grease-like one that is also extensible.

<(D)熱伝導性充填剤>
本発明組成物には、必要に応じて、前記(C)成分とともに、従来から公知の熱伝導性シートまたは熱伝導性グリースに配合される(D)熱伝導性充填剤を、追加して配合することができる。この(D)成分を配合した場合には、本発明組成物を加熱処理して硬化物を得る際に、液状の前記(C)成分の微粒子が凝集して粒径の大きな液状粒子を形成すると同時に、前記(C)成分の液状粒子同士のみならず、前記(C)成分の液状粒子が該(D)成分とも連結することによって、一種の熱伝導性の経路が硬化物の架橋網状体中に固定・保持されて形成されることになる。
<(D) Thermally conductive filler>
If necessary, the composition of the present invention is additionally blended with the component (C) and (D) a heat conductive filler which is blended in a conventionally known heat conductive sheet or heat conductive grease. can do. When the component (D) is blended, when the composition of the present invention is heat-treated to obtain a cured product, the liquid fine particles of the component (C) aggregate to form liquid particles having a large particle size. At the same time, not only the liquid particles of the component (C) but also the liquid particles of the component (C) are connected to the component (D), so that a kind of heat conductive path is formed in the crosslinked network of the cured product. It is fixed and held on the surface.

この(D)成分としては、熱伝導率が良好なものであれば特に限定されず、従来から公知のものを全て使用することができ、例えば、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化硼素粉末、窒化アルミニウム粉末、窒化珪素粉末、銅粉末、銀粉末、ダイヤモンド粉末、ニッケル粉末、亜鉛粉末、ステンレス粉末、カーボン粉末等が挙げられる。また、この(D)成分は1種単独でも2種以上を組み合わせても使用することができる。   The component (D) is not particularly limited as long as it has a good thermal conductivity, and any conventionally known one can be used. For example, aluminum powder, zinc oxide powder, alumina powder, boron nitride Examples thereof include powder, aluminum nitride powder, silicon nitride powder, copper powder, silver powder, diamond powder, nickel powder, zinc powder, stainless steel powder, and carbon powder. Further, the component (D) can be used alone or in combination of two or more.

但し、アルミニウムのようにガリウムとの反応性が高いものを用いると、組成物を調製する際の配合混練時に凝集して、均一な配合が困難となる場合がある。この場合には、先ず(C)成分の液状微粒子の(A)成分中への均一な分散が終了し、(C)成分が(A)成分により被覆された状態となった後に、(D)成分を加えて配合混練を行えばよい。こうすることによって(D)成分の凝集を防ぐことができる。   However, when a material having high reactivity with gallium such as aluminum is used, it may aggregate during mixing and kneading when preparing the composition, and uniform mixing may be difficult. In this case, after the uniform dispersion of the liquid fine particles of the component (C) in the component (A) is completed and the component (C) is covered with the component (A), (D) What is necessary is just to mix and knead | mix a component. By doing so, aggregation of the component (D) can be prevented.

(D)成分の平均粒径としては、通常、0.1〜100μm、好ましくは1〜20μmの範囲内とするのがよい。前記平均粒径が小さすぎると、得られる組成物の粘度が高くなりすぎるので伸展性の乏しいものとなる。また、逆に大きすぎると、均一な組成物を得ることが困難となる。   The average particle size of the component (D) is usually 0.1 to 100 μm, preferably 1 to 20 μm. If the average particle size is too small, the resulting composition will have too high a viscosity, resulting in poor extensibility. On the other hand, if it is too large, it is difficult to obtain a uniform composition.

この(D)成分を用いる場合、その配合量は、上記(A)成分100質量部に対して、1000質量部以下であり、特に好ましくは500質量部以下とするのがよい。前記配合量が1000質量部を越えると、得られる組成物は伸展性が乏しいものとなる。更に、硬化時の加熱処理条件下において該(D)成分の上記(C)成分による連結が不十分となるとともに、(C)成分の液状微粒子の凝集自体も阻害してしまうために、所望の熱伝導性の経路の形成が困難となることから、本発明組成物から得られる硬化物層の放熱性能が低下する。   When using this (D) component, the compounding quantity is 1000 mass parts or less with respect to 100 mass parts of said (A) component, Most preferably, it is good to set it as 500 mass parts or less. When the blending amount exceeds 1000 parts by mass, the resulting composition has poor extensibility. Furthermore, the coupling of the component (D) with the component (C) becomes insufficient under the heat treatment conditions during curing, and the aggregation itself of the liquid fine particles of the component (C) is also inhibited. Since it becomes difficult to form a thermally conductive path, the heat dissipation performance of the cured product layer obtained from the composition of the present invention is lowered.

<(E)白金系触媒>
本発明組成物の(E)成分の白金系触媒は、上記(A)成分中のアルケニル基と上記(B)成分中のSiHとの付加反応を促進し、本発明組成物から3次元網状状態の架橋硬化物を与えるために配合される成分である。
<(E) Platinum-based catalyst>
The platinum-based catalyst of the component (E) of the composition of the present invention promotes the addition reaction between the alkenyl group in the component (A) and SiH in the component (B), and the three-dimensional network state from the composition of the present invention. It is a component mix | blended in order to give the crosslinked hardened | cured material of.

この(E)成分としては、通常のヒドロシリル化反応に用いられる公知のものを全て使用することができ、例えば、白金金属(白金黒)、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金配位化合物等が挙げられる。成分(E)の配合量は、本発明組成物を硬化させるに必要な有効量であればよく、特に制限されないが、例えば、白金原子として(A)成分の質量に対して、通常、0.1〜500ppm程度とするのがよい。   As the component (E), all known compounds used in ordinary hydrosilylation reactions can be used. For example, platinum metal (platinum black), chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, Examples include platinum coordination compounds. The compounding amount of the component (E) is not particularly limited as long as it is an effective amount necessary for curing the composition of the present invention. For example, the amount of the component (E) is usually 0. It is good to be about 1-500 ppm.

<(F)付加反応制御剤>
本発明組成物の(F)成分の付加反応制御剤は、室温における上記白金系触媒の作用にヒドロシリル化反応を抑制し、本発明組成物の可使時間(シェルフライフ、ポットライフ)を確保して、発熱性電子部品等への塗工作業に支障をきたさないように配合される成分である。
<(F) Addition reaction control agent>
The addition reaction control agent of the component (F) of the composition of the present invention suppresses the hydrosilylation reaction due to the action of the platinum catalyst at room temperature, and ensures the pot life (shelf life, pot life) of the composition of the present invention. Thus, it is a component that is blended so as not to hinder the coating work on the exothermic electronic components.

この(F)成分としては、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て使用することができ、例えば、1−エチニル−1−シクロヘキサノール、3-ブチン−1−オール等のアセチレン化合物や、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が挙げられる。   As the component (F), all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. For example, 1-ethynyl-1-cyclohexanol, 3-butyne-1 Examples include acetylene compounds such as ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.

この(F)成分との配合量は、上記(E)成分の使用量によっても異なり、一概にいえないが、ヒドロシリル化反応の進行を抑制することができる有効量であればよく、特に制限されない。例えば、(A)成分100質量部に対して、通常、0.001〜5質量部程度とすることがよい。(F)成分の配合量が少なすぎれば、十分な可使時間を確保することができず、また、多すぎると本発明組成物の硬化性が低下する。なお、この(F)成分は、組成物中への分散性を向上させるため、必要に応じて、トルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。   The blending amount with the component (F) varies depending on the amount of the component (E) used, and cannot be generally specified, but is not particularly limited as long as it is an effective amount capable of suppressing the progress of the hydrosilylation reaction. . For example, it is usually preferable that the amount is about 0.001 to 5 parts by mass with respect to 100 parts by mass of the component (A). If the amount of component (F) is too small, sufficient pot life cannot be ensured, and if it is too large, the curability of the composition of the present invention will decrease. In addition, in order to improve the dispersibility in a composition, this (F) component can also be used by diluting with organic solvents, such as toluene, xylene, and isopropyl alcohol, as needed.

<(G)表面処理剤>
本発明組成物には、組成物調製時に(C)成分のガリウムおよび/またはその合金を疎水化処理し、前記(C)成分の液状粒子の(A)成分のオルガノポリシロキサンとの濡れ性を向上させ、前記(C)成分が微粒子として、前記(A)成分からなるマトリックス中に均一に分散させることを目的として、必要に応じ(G)表面処理剤(ウエッター)を配合することができる。
また、この(G)成分は、上記(D)成分の熱伝導性充填剤を用いる場合に、同様にその表面の濡れ性を向上させて、その均一分散性を良好なものとする作用をも有する。
<(G) Surface treatment agent>
In the composition of the present invention, the gallium of component (C) and / or its alloy is hydrophobized at the time of preparing the composition, and the wetness of the liquid particles of component (C) with the organopolysiloxane of component (A) is improved. For the purpose of improving and uniformly dispersing the component (C) as fine particles in the matrix composed of the component (A), a (G) surface treatment agent (wetter) can be blended as necessary.
The component (G) also has the effect of improving the surface wettability and improving the uniform dispersibility when the thermally conductive filler of the component (D) is used. Have.

(G)成分としては、例えば、(G-1)下記一般式(1):
1 2 Si(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15、好ましくは8〜14のアルキル基であり、R2は独立に非置換または置換の炭素原子数1〜8、好ましくは1〜6の1価炭化水素基であり、R3は独立に炭素原子数1〜6、好ましくは1〜4のアルキル基であり、aは1〜3の整数、好ましくは1であり、bは0〜2の整数であり、a+bの和は1〜3の整数である。)
で表されるアルコキシシラン化合物が挙げられる。
As the component (G), for example, (G-1) the following general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
(Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, preferably 8 to 14 carbon atoms, and R 2 is independently an unsubstituted or substituted carbon atom having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms. A monovalent hydrocarbon group, R 3 is independently an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, a is an integer of 1 to 3, preferably 1, and b is 0 to 2 And the sum of a + b is an integer of 1 to 3.)
The alkoxysilane compound represented by these is mentioned.

上記式中のR1としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素原子数が6未満であると上記(C)成分および(D)成分の濡れ性の向上が充分でなく、15を超えると該(G-1)成分のオルガノシランが常温で固化するので、取り扱いが不便な上、得られた組成物の低温特性が低下する。 Examples of R 1 in the above formula include hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and the like. When the number of carbon atoms is less than 6, the improvement of the wettability of the component (C) and the component (D) is not sufficient, and when it exceeds 15, the organosilane of the component (G-1) is solidified at room temperature. In addition to being inconvenient to handle, the low temperature properties of the resulting composition are reduced.

また、上記R2としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2−(ノナフルオロブチル)エチル基、2−(へプタデカフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられる。これらの中では、特に、メチル基、エチル基が好ましい。 Examples of R 2 include alkyl groups such as a methyl group, ethyl group, propyl group, hexyl group, and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group and allyl group; Aryl groups such as phenyl and tolyl groups; aralkyl groups such as 2-phenylethyl and 2-methyl-2-phenylethyl; 3,3,3-trifluoropropyl and 2- (nonafluorobutyl) ethyl And halogenated hydrocarbon groups such as 2- (heptadecafluorooctyl) ethyl group and p-chlorophenyl group. Among these, a methyl group and an ethyl group are particularly preferable.

また、上記R3としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基が挙げられる。これらの中では、特に、メチル基、エチル基が好ましい。 Moreover, as said R < 3 >, alkyl groups, such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, are mentioned, for example. Among these, a methyl group and an ethyl group are particularly preferable.

この(G-1)成分の好適な具体例としては、下記のものを挙げることができる。
13Si(OCH)1021Si(OCH)
1225Si(OCH)1225Si(OC)
1021Si(CH)(OCH)
1021Si(C)(OCH)
1021Si(CH)(OC)
1021Si(CH=CH)(OCH)
1021Si(CHCHCF)(OCH)
Preferable specific examples of the component (G-1) include the following.
C 6 H 13 Si (OCH 3 ) 3 C 10 H 21 Si (OCH 3 ) 3
C 12 H 25 Si (OCH 3 ) 3 C 12 H 25 Si (OC 2 H 5 ) 3
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2
C 10 H 21 Si (C 6 H 5) (OCH 3) 2
C 10 H 21 Si (CH 3 ) (OC 2 H 5) 2
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2
C 10 H 21 Si (CH 2 CH 2 CF 3) (OCH 3) 2

なお、この(G-1)成分は1種単独でも2種以上を組み合わせても使用することができる。また、その配合量は、(A)成分100質量部に対して、0.01〜10質量部、より好ましくは0.1〜5質量部である。前記配合量が多すぎると、ウェッター効果が増大することがなく不経済であり、多少揮発性があるので開放系で放置しておくと本発明組成物が徐々に硬くなってしまう場合がある。   In addition, this (G-1) component can be used even if single 1 type also combines 2 or more types. Moreover, the compounding quantity is 0.01-10 mass parts with respect to 100 mass parts of (A) component, More preferably, it is 0.1-5 mass parts. If the amount is too large, the wetter effect does not increase, which is uneconomical and somewhat volatile. If left in an open system, the composition of the present invention may gradually become hard.

上記(G-1)成分以外の(G)成分として、(G-2)下記一般式(2):   As (G) component other than the above (G-1) component, (G-2) the following general formula (2):

Figure 2010095730
(2)
(式中、R3は独立に炭素原子数1〜6、好ましくは1〜4のアルキル基であり、cは5〜100、好ましくは10〜60の整数である。)
で表される分子鎖の片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンが挙げられる。
Figure 2010095730
(2)
(In the formula, R 3 is independently an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and c is an integer of 5 to 100, preferably 10 to 60.)
Dimethylpolysiloxane in which one end of a molecular chain represented by the formula is blocked with a trialkoxysilyl group.

上記式中のR3としては、上記一般式(1)中のR3と同じである。
なお、この(G-2)成分は1種単独でも2種以上を組み合わせても使用することができる。また、その配合量は、(A)成分100質量部に対して、0.01〜20質量部、より好ましくは0.1〜10質量部である。前記配合量が多すぎると、得られる硬化物の耐熱性が低下する傾向がでてくる。
(G)成分の表面処理剤として、上記(G-1)成分と(G-2)成分とを組み合わせて使用しても差し支えない。
R 3 in the above formula is the same as R 3 in the general formula (1).
The component (G-2) can be used alone or in combination of two or more. Moreover, the compounding quantity is 0.01-20 mass parts with respect to 100 mass parts of (A) component, More preferably, it is 0.1-10 mass parts. When there is too much the said compounding quantity, the heat resistance of the hardened | cured material obtained will tend to fall.
As the surface treatment agent for the component (G), the component (G-1) and the component (G-2) may be used in combination.

<その他の配合成分>
本発明組成物には、上記各成分に加えて、本発明の目的・効果を損ねない範囲で、更に他の成分を配合しても差し支えない。例えば、酸化鉄、酸化セリウム等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤等を配合することができる。
<Other ingredients>
In addition to the above-mentioned components, other components may be added to the composition of the present invention as long as the objects and effects of the present invention are not impaired. For example, a heat resistance improver such as iron oxide or cerium oxide; a viscosity modifier such as silica; a colorant or the like can be blended.

<組成物の粘度>
本発明組成物は、後述のとおり、発熱性電子部品の表面に適用され、これに放熱部材を圧接した後、加熱処理することにより硬化して、熱伝導性層を形成する。この際、作業性を良好とするために、本発明組成物はグリース状である必要がある。
<Viscosity of composition>
As will be described later, the composition of the present invention is applied to the surface of the heat-generating electronic component, and after heat-contacting the heat-dissipating member, the composition is cured by heat treatment to form a heat conductive layer. At this time, in order to improve workability, the composition of the present invention needs to be in the form of grease.

例えば、本発明組成物はシリンジ内に収納され、該シリンジからCPU等の発熱性電子部品の表面に塗布されて被覆層が形成され、これに放熱部材が圧接される。従って、本発明組成物の粘度は、通常、10〜1000Pa・s、特に50〜400Pa・sであることが好ましい。前記粘度が低すぎると前記塗布時に液垂れが生じて、作業上問題となる場合がある。また、逆に、高すぎると、シリンジからの押し出しが困難となるため、塗布作業の効率が悪くなる場合がある。   For example, the composition of the present invention is housed in a syringe, applied from the syringe onto the surface of a heat-generating electronic component such as a CPU to form a coating layer, and a heat radiating member is press-contacted thereto. Accordingly, the viscosity of the composition of the present invention is usually 10 to 1000 Pa · s, preferably 50 to 400 Pa · s. If the viscosity is too low, dripping may occur during the application, which may cause a problem in work. On the other hand, if it is too high, extrusion from the syringe becomes difficult, and the efficiency of the coating operation may be deteriorated.

[本発明組成物の調製]
本発明の硬化性オルガノポリシロキサン組成物は、
(i)前記(A)成分と前記(C)成分と、場合により前記(D)成分と、場合により前記(G-1)成分と、場合により前記(G-2)成分とを、40〜120℃、好ましくは50〜100℃の範囲内の温度であり、かつ、前記(C)成分の融点以上である温度で混練して均一な混合物を得る工程;
(ii)混練を停止して、前記温度を前記(C)成分の融点未満にまで冷却させる工程;および
(iii)前記(B)成分と前記(E)成分と前記(F)成分と、場合により他の成分とを、追加して、前記(C)成分の融点未満の温度で混練して均一な混合物を得る工程
を含む製造方法によって得ることができる。
前記製造方法においては、加熱手段、および必要に応じて冷却手段を備えたコンディショニングミキサー、プラネタリーミキサー等の攪拌・混練機を使用する。
[Preparation of composition of the present invention]
The curable organopolysiloxane composition of the present invention comprises
(i) the component (A), the component (C), optionally the component (D), optionally the component (G-1), and optionally the component (G-2), A step of obtaining a uniform mixture by kneading at a temperature of 120 ° C., preferably 50 to 100 ° C., and at a temperature not lower than the melting point of the component (C);
(ii) stopping kneading and cooling the temperature to below the melting point of the component (C); and
(iii) The (B) component, the (E) component, the (F) component, and optionally other components are added and kneaded uniformly at a temperature below the melting point of the (C) component. It can be obtained by a production method including a step of obtaining a mixture.
In the manufacturing method, a stirring / kneading machine such as a conditioning mixer or a planetary mixer provided with a heating means and, if necessary, a cooling means is used.

前記(i)工程において、(C)成分のガリウムおよび/またはその合金の液状物は、微粒子の状態で(A)成分からなるマトリックス中に均一に分散される。混練時の温度、前記攪拌・混練機の攪拌翼の回転速度等を調節することにより、前記微粒子の平均粒径を所望のものに適宜調整することができる。   In the step (i), the liquid material of the gallium and / or its alloy as the component (C) is uniformly dispersed in the matrix composed of the component (A) in the form of fine particles. By adjusting the temperature at the time of kneading, the rotational speed of the stirring blade of the stirring / kneading machine, etc., the average particle size of the fine particles can be adjusted appropriately to a desired one.

前記工程(ii)における降温操作乃至冷却操作は速やかに行われることが好ましい。該工程(ii)において、(A)成分からなるマトリックス中に均一に分散された液状微粒子状態の(C)成分は、その平均粒径および前記分散状態を保持して固化する。   The temperature lowering operation or the cooling operation in the step (ii) is preferably performed promptly. In the step (ii), the component (C) in the liquid fine particle state uniformly dispersed in the matrix comprising the component (A) is solidified while maintaining the average particle size and the dispersed state.

前記工程(iii)もできるだけ短時間で終了させることが好ましい。該工程(iii)の終了時点において、(C)成分の固化した微粒子の前記平均粒径および分散状態に、実質上、変化が生じることはない。そして、該工程(iii)の終了後は、生成した組成物を容器内に収容し、速やかに約−30〜−10℃、好ましくは−25〜−15℃の温度の冷凍庫、冷凍室等で保存するのがよい。また、その輸送等においても冷凍設備を備えた車両等を用いるのがよい。このように低温下で保管・輸送することにより、例えば長期間の保存によっても、本発明組成物の組成および分散状態を安定して保持することができる。   The step (iii) is also preferably completed in as short a time as possible. At the end of the step (iii), the average particle diameter and dispersion state of the solidified fine particles of the component (C) are not substantially changed. And after completion | finish of this process (iii), the produced | generated composition is accommodated in a container, About 30--10 degreeC rapidly, Preferably it is -25--15 degreeC in the freezer, freezer compartment, etc. It is good to save. Further, it is preferable to use a vehicle or the like equipped with a refrigeration facility for the transportation. By storing and transporting at a low temperature as described above, the composition and dispersion state of the composition of the present invention can be stably maintained even after long-term storage, for example.

[半導体装置への適用]
上記本発明組成物を用いて放熱特性に優れた半導体装置、即ち、発熱性電子部品と、放熱部材と、上記本発明組成物の硬化物からなる熱伝導性層とを有してなる半導体装置であって、前記発熱性電子部品と前記放熱部材とが前記熱伝導性層を介して接合されている半導体装置を得ることができる。
[Application to semiconductor devices]
A semiconductor device having excellent heat dissipation characteristics using the composition of the present invention, that is, a semiconductor device having a heat-generating electronic component, a heat dissipation member, and a thermally conductive layer made of a cured product of the composition of the present invention. Thus, a semiconductor device in which the exothermic electronic component and the heat radiating member are bonded via the thermally conductive layer can be obtained.

前記半導体装置は、
(a)前記発熱性電子部品の表面に、前記組成物を塗布して、前記表面に前記組成物からなる被覆層を形成させる工程、
(b)前記被覆層に前記放熱部材を圧接して固定させる工程、および
(c)得られた構造体を80〜180℃で処理して、前記被覆層を硬化させて前記熱伝導性層とする工程
を含む製造方法によって得ることができる。
The semiconductor device includes:
(a) applying the composition to the surface of the exothermic electronic component to form a coating layer made of the composition on the surface;
(b) a step of pressing and fixing the heat radiating member to the coating layer; and
(c) It can be obtained by a production method including a step of treating the obtained structure at 80 to 180 ° C. to cure the coating layer to form the heat conductive layer.

前記半導体装置およびその製造方法について、図1を参照しながら説明する。なお、図1に記載の装置は、本発明組成物の半導体装置への適用の1例を示したものにすぎず、本発明に係る半導体装置を図1に記載のものに限定するとの趣旨ではない。   The semiconductor device and the manufacturing method thereof will be described with reference to FIG. The device shown in FIG. 1 is merely an example of application of the composition of the present invention to a semiconductor device, and the semiconductor device according to the present invention is limited to that shown in FIG. Absent.

先ず、冷凍保存状態の本発明組成物を室温に放置して自然に解凍させてグリース状とする。次に、シリンジ等の塗工用具内に液状の本発明組成物を収納させる。
発熱性電子部品、例えば、図1に記載のプリント配線基板3上に実装された発熱性電子部品であるCPU等のICパッケージ2の表面に、シリンジ等から本発明組成物を塗布(ディスペンス)して被覆層1を形成させる。その上に、放熱部材、例えば、通常、アルミニニウム製の放熱フィンを有する放熱部材4を配置し、クランプ5を用いて、放熱部材4を被覆層1を介してICパッケージ2に圧接して固定させる。
First, the composition of the present invention in a frozen storage state is allowed to stand at room temperature and naturally thawed to form a grease. Next, the liquid composition of the present invention is housed in a coating tool such as a syringe.
A composition of the present invention is applied (dispensed) from a syringe or the like onto the surface of an IC package 2 such as a CPU which is a heat generating electronic component mounted on the printed circuit board 3 shown in FIG. Thus, the coating layer 1 is formed. A heat dissipating member, for example, a heat dissipating member 4 having a heat dissipating fin made of aluminum, for example, is disposed thereon, and the heat dissipating member 4 is pressed and fixed to the IC package 2 through the covering layer 1 using a clamp 5. Let

この際に、ICパッケージ2と放熱部材4とに挟まれて存在する被覆層1の厚さが、通常、5〜100μm、特に好ましくは10〜30μmとなるように、クランプ5を調整または選択するのがよい。前記厚さが薄すぎると、前記圧接に際し、ICパッケージ2および放熱部材4への本発明組成物の追随性が不十分となり、前記両者間に隙間が生じるおそれがある。また、逆に、厚すぎると熱抵抗が大きくなるので十分な放熱効果を得ることができない。   At this time, the clamp 5 is adjusted or selected so that the thickness of the coating layer 1 existing between the IC package 2 and the heat radiating member 4 is usually 5 to 100 μm, particularly preferably 10 to 30 μm. It is good. When the thickness is too thin, the followability of the composition of the present invention to the IC package 2 and the heat radiating member 4 becomes insufficient at the time of the pressure contact, and there is a possibility that a gap is formed between the two. On the other hand, if the thickness is too large, the thermal resistance increases, so that a sufficient heat dissipation effect cannot be obtained.

次いで、上記のとおりに構成された装置を、リフロー炉等の加熱装置内を通過させて、本発明組成物からなる被覆層1を硬化させて熱伝導性層とする。この硬化に要する温度条件は、80〜180℃であり、特に好ましくは100〜150℃である。前記温度が80℃未満であると硬化が不十分となり、逆に180℃を越える高温では、電子部品や基材が劣化するおそれがある。   Next, the apparatus configured as described above is passed through a heating apparatus such as a reflow furnace, and the coating layer 1 made of the composition of the present invention is cured to form a heat conductive layer. The temperature condition required for this curing is 80 to 180 ° C, particularly preferably 100 to 150 ° C. When the temperature is less than 80 ° C., curing becomes insufficient. Conversely, when the temperature is higher than 180 ° C., the electronic component or the substrate may be deteriorated.

前記硬化時の温度条件に昇温する過程で、本発明組成物中の(C)成分のガリウムおよび/またはその合金の液状微粒子は互いに凝集して粒径の大きな液状粒子を形成すると同時に、前記液状粒子同士が互いに連結して連なった一種の経路を形成する。また、本発明組成物中に上記(D)成分の熱伝導性充填剤が配合されている場合は、前記(C)成分の液状粒子は該(D)成分とも連結して同様に連なった一種の経路を形成する。
更に、前記(C)成分の液状粒子は、接するICパッケージ2および放熱部材4の表面にも融着する。従って、ICパッケージ2と放熱部材4とは、前記(C)成分の液状粒子(および前記(D)成分の熱伝導性充填剤)が連結して連なった一種の経路を介して、実質上、一体的に連続している熱伝導性に富んだものとなる。また、前記経路状の構造は、(A)成分および(B)成分の付加反応により形成される硬化物の3次元架橋網状体中に、固定・保持される。
In the process of raising the temperature to the temperature condition at the time of curing, the liquid fine particles of the component (C) gallium and / or its alloy in the composition of the present invention aggregate together to form liquid particles having a large particle size, The liquid particles are connected to each other to form a kind of path. In addition, when the thermally conductive filler of the component (D) is blended in the composition of the present invention, the liquid particles of the component (C) are connected to the component (D) and are similarly connected. Form the path.
Furthermore, the liquid particles of the component (C) are also fused to the surfaces of the IC package 2 and the heat radiating member 4 that are in contact therewith. Therefore, the IC package 2 and the heat radiating member 4 are substantially connected through a kind of path in which the liquid particles of the component (C) (and the thermally conductive filler of the component (D)) are connected and connected. It becomes one that is continuous and rich in thermal conductivity. The path-like structure is fixed and held in a three-dimensional crosslinked network of a cured product formed by the addition reaction of the component (A) and the component (B).

また、上記のとおりにして得られた半導体装置を稼動・使用する場合、ICパッケージ等の発熱性電子部品はその表面温度が、通常、60〜120℃程度の高温となる。この発熱に対し、本発明組成物の硬化物からなる熱伝導性層は、上記のとおり高い熱伝導性を示し、従来の熱伝導性シートや熱伝導性グリースに比較してより放熱特性に優れるという顕著に優れた作用・効果を奏するものである。そして、半導体装置の長期連続稼動・使用によっても、前記熱伝導性層に含まれ前記経路を形成している(C)成分のガリウムおよび/またはその合金は、硬化物の3次元架橋網状体中に固定・保持されていることため、熱伝導性層から漏出することがない。   Further, when the semiconductor device obtained as described above is operated and used, the surface temperature of the heat-generating electronic component such as an IC package is usually about 60 to 120 ° C. With respect to this heat generation, the heat conductive layer made of the cured product of the composition of the present invention exhibits high heat conductivity as described above, and is more excellent in heat dissipation characteristics than conventional heat conductive sheets and heat conductive grease. It has the remarkably excellent action and effect. Even when the semiconductor device is continuously operated and used for a long period of time, the gallium and / or its alloy (C) contained in the thermally conductive layer and forming the path is contained in the three-dimensional crosslinked network of the cured product. Since it is fixed and held on the surface, it does not leak from the heat conductive layer.

更に、この熱伝導性層はタック性を有しており、放熱部材がずれた場合であっても、また、長期使用時においても安定した柔軟性を有し、発熱性電子部品および放熱部材から剥がれたりすることがない。   Furthermore, this heat conductive layer has tackiness and has a stable flexibility even when the heat radiating member is displaced, or even when used for a long time, from the heat generating electronic component and the heat radiating member. It will not peel off.

なお、予め本発明組成物から所望の厚さのシート状硬化物を作製し、これを従来の熱伝導性シートと同様に発熱性電子部品と放熱部材との間に介在させることによっても、同様な効果を得ることができる。その他、熱伝導性および耐熱性が必要とされる他の装置等の部品として、本発明組成物の硬化物のシート等を適宜使用することもできる。   It is also possible to prepare a sheet-like cured product having a desired thickness from the composition of the present invention in advance and interpose it between the heat-generating electronic component and the heat-dissipating member in the same manner as a conventional heat-conductive sheet Effects can be obtained. In addition, a sheet of a cured product of the composition of the present invention can be used as appropriate as a part of another device or the like that requires thermal conductivity and heat resistance.

以下、実施例を掲げて本発明をさらに詳述するが、本発明はこれによって限定されるものではない。
下記実施例および比較例において用いられる(A)〜(G)成分を下記に示す。
EXAMPLES Hereinafter, although an Example is hung up and this invention is further explained in full detail, this invention is not limited by this.
The components (A) to (G) used in the following examples and comparative examples are shown below.

(A)成分:
25℃における粘度が下記のとおりである両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン;
(A-1)粘度:0.6Pa・s
(A-2)粘度:3.0Pa・s
(A-3)粘度:10.0Pa・s
(A-4)粘度:30.0Pa・s
(A) component:
A dimethylpolysiloxane having a viscosity at 25 ° C. as shown below and having both ends blocked with dimethylvinylsilyl groups;
(A-1) Viscosity: 0.6 Pa · s
(A-2) Viscosity: 3.0 Pa · s
(A-3) Viscosity: 10.0 Pa · s
(A-4) Viscosity: 30.0 Pa · s

(B)成分:
(B-1)下記構造式で表されるオルガノハイドロジェンポリシロキサン
(B) component:
(B-1) Organohydrogenpolysiloxane represented by the following structural formula

Figure 2010095730
Figure 2010095730

(C)成分:
(C-1)金属ガリウム〔融点=29.8℃〕
(C-2)Ga−In合金
〔質量比=75.4:24.6、融点=15.7℃〕
(C-3)Ga−In−Bi−Sn合金
〔質量比=9.4:47.3:24.7:18.6、融点=48.0℃〕
(C-4)金属インジウム〔融点=156.2℃〕<比較用>
(C) component:
(C-1) Metallic gallium [melting point = 29.8 ° C.]
(C-2) Ga-In alloy
[Mass ratio = 75.4: 24.6, melting point = 15.7 ° C.]
(C-3) Ga-In-Bi-Sn alloy
[Mass ratio = 9.4: 47.3: 24.7: 18.6, melting point = 48.0 ° C.]
(C-4) Metal indium [melting point = 156.2 ° C.] <For comparison>

(D)成分:
(D-1):アルミニウム粉末〔平均粒径:1.5μm〕
(D-2):酸化亜鉛粉末〔平均粒径:1.0μm〕
(D-3):銅粉末〔平均粒径:110.2μm〕<比較用>
(D) component:
(D-1): Aluminum powder [average particle size: 1.5 μm]
(D-2): Zinc oxide powder [average particle size: 1.0 μm]
(D-3): Copper powder [Average particle diameter: 110.2 μm] <For comparison>

(E)成分:
白金−ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン(両末端がジメチルビニルシリル基で封鎖されたもの、粘度:0.6Pa・s)溶液〔白金原子含有量:1質量%〕
(E) component:
Dimethylpolysiloxane of platinum-divinyltetramethyldisiloxane complex (both ends are blocked with dimethylvinylsilyl groups, viscosity: 0.6 Pa · s) solution [platinum atom content: 1% by mass]

(F)成分:
(F-1)1−エチニル−1−シクロヘキサノールの50質量%トルエン溶液
(G)成分:
(G-1)構造式:C1021Si(OCH) で表されるオルガノシラン
(G-2)下記構造式:
(F) component:
(F-1) 50% by mass toluene solution of 1-ethynyl-1-cyclohexanol (G) Component:
(G-1) Structural formula: Organosilane represented by C 10 H 21 Si (OCH 3 ) 3 (G-2) Structural formula:

Figure 2010095730
で表される片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
Figure 2010095730
One-terminal trimethoxysilyl-blocked dimethylpolysiloxane represented by

[実施例1〜20、比較例1〜5]
<組成物の調製>
表1〜表4に記載の組成および量の各成分を用い、次のとおりにして、組成物を調製した。
[Examples 1-20, Comparative Examples 1-5]
<Preparation of composition>
Using the components having the compositions and amounts described in Tables 1 to 4, compositions were prepared as follows.

内容積250ミリリットルのコンディショニングミキサー(株式会社シンキー製、商品名:あわとり練太郎)に、(A)成分、(C)成分、場合により(D)成分および場合により(G)成分を加え、70℃に昇温し該温度を維持し、5分間混練した。次いで、混練を停止し、実施例1〜6、実施例14〜20、および比較例1〜5においては、25℃になるまで冷却した。また、実施例7〜13においては、10℃になるまで冷却した。
次に、(B)成分、(E)成分および(F)成分を加え、前記各温度を維持し、均一になるように混練して各組成物を調製した。
このようにして得られた各組成物(但し、比較例1および比較例2のものを除く)の25℃における粘度(Pa・s)を、マルコム粘度計(株式会社マルコム、型式;PC−1T)を用いて測定した。測定結果を表1〜表4に示す。
(A) component, (C) component, optionally (D) component and optionally (G) component are added to a conditioning mixer (trade name: Ariori Nertaro, manufactured by Shinky Co., Ltd.) having an internal volume of 250 ml. The temperature was raised to 0 ° C. and the temperature was maintained, and kneading was performed for 5 minutes. Then, kneading | mixing was stopped and it cooled until it became 25 degreeC in Examples 1-6, Examples 14-20, and Comparative Examples 1-5. Moreover, in Examples 7-13, it cooled until it became 10 degreeC.
Next, the component (B), the component (E) and the component (F) were added, and the respective temperatures were maintained and kneaded so as to be uniform to prepare each composition.
The viscosity (Pa · s) at 25 ° C. of each composition thus obtained (excluding those of Comparative Example 1 and Comparative Example 2) was measured using a Malcolm viscometer (Malcom Co., Ltd., model: PC-1T). ). The measurement results are shown in Tables 1 to 4.

<硬化物の調製>
上記で得られた各組成物(但し、比較例1および比較例2のものを除く)を、標準アルミプレートの全面に塗布し、他の標準アルミプレートを重ねて、約175.5kPa(1.80kgf/cm2)の圧力をかけて3層構造体を得た。次いで、電気炉内で125℃にまで昇温し該温度を1時間保持して各組成物を硬化させ、その後室温になるまで放置して冷却し、熱抵抗測用試料を調製した。
<Preparation of cured product>
Each composition obtained above (excluding those of Comparative Example 1 and Comparative Example 2) was applied to the entire surface of a standard aluminum plate, and another standard aluminum plate was stacked thereon to obtain about 175.5 kPa (1. A three-layer structure was obtained by applying a pressure of 80 kgf / cm 2 ). Next, the temperature was raised to 125 ° C. in an electric furnace and the temperature was maintained for 1 hour to cure each composition, and then allowed to cool to room temperature to prepare a sample for measuring thermal resistance.

得られた各試料の厚さを測定し、標準アルミプレートの既知の厚さを差し引くことによって、硬化した各組成物の厚さを算出した。なお、上記各試料の厚さの測定に際しては、マイクロメーター(株式会社ミツトヨ、型式;M820−25VA)を用いた。硬化した各組成物の厚さを表1〜表4に示す。   The thickness of each cured sample was measured, and the thickness of each cured composition was calculated by subtracting the known thickness of the standard aluminum plate. Note that a micrometer (Mitutoyo Corporation, model; M820-25VA) was used for measuring the thickness of each sample. Tables 1 to 4 show the thickness of each cured composition.

<熱抵抗の測定>
上記各試料を用いて、硬化した各組成物の熱抵抗(mm2-K/W)を熱抵抗測定器(ホロメトリックス社製マイクロフラッシュ)を用いて測定した。測定結果を表1〜表4に示す。
<Measurement of thermal resistance>
Using each of the above samples, the thermal resistance (mm 2 -K / W) of each cured composition was measured using a thermal resistance measuring instrument (Microflash manufactured by Holometrix). The measurement results are shown in Tables 1 to 4.

<半導体装置への適用>
上記各実施例1〜20で得られた組成物の0.2gを、2cm×2cmのCPUの表面に塗布し被覆層を形成させた。該被覆層に放熱部材を重ねて、上記硬化物の調製と同様にして圧接し、硬化させて、10〜40μmの厚さの熱伝導性層を介して前記CPUと放熱部材が接合されている半導体装置を得た。これらの各装置をホストコンピューター、パーソナルコンピュータ等に組み込み、稼動させたところ、CPUの発熱温度は約100℃であったが、何れの装置の場合も長時間にわたって安定した熱伝導および放熱が可能であり、過熱蓄積によるCPUの性能低下、破損等が防止できた。よって、本発明組成物の硬化物の採用により、半導体装置の信頼性が向上することが確認できた。
<Application to semiconductor devices>
0.2 g of the composition obtained in each of the above Examples 1 to 20 was applied to the surface of a 2 cm × 2 cm CPU to form a coating layer. The heat radiating member is stacked on the coating layer, pressed and cured in the same manner as in the preparation of the cured product, and the CPU and the heat radiating member are bonded via a heat conductive layer having a thickness of 10 to 40 μm. A semiconductor device was obtained. When these devices were installed and operated in a host computer, personal computer, etc., the heat generation temperature of the CPU was about 100 ° C, but in any case, stable heat conduction and heat dissipation are possible for a long time. Yes, it was possible to prevent CPU performance degradation and damage due to overheat accumulation. Therefore, it was confirmed that the reliability of the semiconductor device was improved by employing the cured product of the composition of the present invention.

Figure 2010095730

(注)SiH/Vi=(A)成分中のビニル基1個に対する(B)成分中のSiHの個数(以下、同様)
Figure 2010095730

(Note) SiH / Vi = number of SiH in component (B) relative to one vinyl group in component (A) (hereinafter the same)

Figure 2010095730
Figure 2010095730

Figure 2010095730
Figure 2010095730

Figure 2010095730

(注)比較例1および比較例2では、何れの場合もグリース状の均一な組成物を得ることはできなかった。
Figure 2010095730

(Note) In Comparative Examples 1 and 2, a grease-like uniform composition could not be obtained in any case.

1.硬化性組成物層(熱伝導性層)
2.ICパッケージ
3.プリント配線基板
4.放熱部材
5.クランプ
1. Curable composition layer (thermally conductive layer)
2. IC package3. 3. Printed wiring board 4. Heat dissipation member Clamp

Claims (7)

(A)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサン: 100質量部、
(B)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン: 前記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1〜5.0個となる量、
(C)融点が0〜70℃の、ガリウムおよび/またはその合金: 300〜5000質量部、
(D)平均粒径が0.1〜100μmの熱伝導性充填剤: 0〜1000質量部
(E)白金系触媒: 有効量、並びに
(F)付加反応制御剤: 有効量
を含む硬化性オルガノポリシロキサン組成物であって、
(i)前記(A)成分と前記(C)成分と、場合により前記(D)成分とを、40〜120℃の範囲内の温度であり、かつ、前記(C)成分の融点以上である温度で混練して均一な混合物を得る工程;
(ii)混練を停止して、前記温度を前記(C)成分の融点未満にまで冷却させる工程;および
(iii)前記(B)成分と前記(E)成分と前記(F)成分と、場合により他の成分とを、追加して、前記(C)成分の融点未満の温度で混練して均一な混合物を得る工程
を含む製造方法で得られた前記硬化性オルガノポリシロキサン組成物。
(A) Organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom: One alkenyl group in the component (A) bonded to a silicon atom in the component An amount such that the number of hydrogen atoms is 0.1 to 5.0,
(C) Gallium and / or its alloy having a melting point of 0 to 70 ° C .: 300 to 5000 parts by mass,
(D) Thermally conductive filler having an average particle size of 0.1 to 100 μm: 0 to 1000 parts by mass (E) Platinum-based catalyst: effective amount, and (F) addition reaction control agent: curable organo containing effective amount A polysiloxane composition comprising:
(i) The component (A), the component (C), and optionally the component (D) are at a temperature in the range of 40 to 120 ° C. and not lower than the melting point of the component (C). Kneading at a temperature to obtain a uniform mixture;
(ii) stopping kneading and cooling the temperature to below the melting point of the component (C); and
(iii) The (B) component, the (E) component, the (F) component, and optionally other components are added and kneaded uniformly at a temperature below the melting point of the (C) component. The said curable organopolysiloxane composition obtained by the manufacturing method including the process of obtaining a mixture.
前記組成物が、更に、(G-1)下記一般式(1):
1 2 Si(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換または置換の炭素原子数1〜8の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、a+bの和は1〜3の整数である。)
で表されるアルコキシシラン化合物を、0.01〜10質量部含み、前記(i)の工程で、前記(A)成分と前記(C)成分と、場合により前記(D)成分と、前記(G-1)成分とを、40〜120℃の範囲内の温度であり、かつ、前記(C)成分の融点以上である温度で混練して均一な混合物を得る、請求項1に記載の組成物。
The composition further comprises (G-1) the following general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 3 is independently Is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, and the sum of a + b is an integer of 1 to 3.)
In the step (i), the component (A), the component (C), and optionally the component (D), The composition according to claim 1, wherein the component G-1) is kneaded at a temperature within the range of 40 to 120 ° C and at a temperature equal to or higher than the melting point of the component (C) to obtain a uniform mixture. object.
前記組成物が、更に、(G-2)下記一般式(2):
Figure 2010095730
(2)
(式中、R3は独立に炭素原子数1〜6のアルキル基であり、cは5〜100の整数である。)
で表される分子鎖の片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンを、0.01〜20質量部含み、前記(i)の工程で、前記(A)成分と前記(C)成分と、場合により前記(D)成分と、場合により前記(G-1)成分と、前記(G−2)成分とを、40〜120℃の範囲内の温度であり、かつ、前記(C)成分の融点以上である温度で混練して均一な混合物を得る、請求項1または請求項2に記載の組成物。
The composition further comprises (G-2) the following general formula (2):
Figure 2010095730
(2)
(In the formula, R 3 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
In the step (i), the component (A) and the component (C) are contained in 0.01 to 20 parts by mass of dimethylpolysiloxane in which one end of a molecular chain represented by formula (I) is blocked with a trialkoxysilyl group. The component, optionally the component (D), optionally the component (G-1), and the component (G-2) are at a temperature in the range of 40 to 120 ° C., and the component (C The composition according to claim 1 or 2, which is kneaded at a temperature equal to or higher than the melting point of the component to obtain a uniform mixture.
請求項1〜請求項3のいずれか1項に記載の組成物を、80〜180℃で処理して得られた熱伝導性硬化物。   The heat conductive hardened | cured material obtained by processing the composition of any one of Claims 1-3 at 80-180 degreeC. 請求項4に記載の熱伝導性硬化物の、発熱性電子部品と放熱部材との間に挟まれて配置される熱伝導性層としての使用。   Use of the thermally conductive cured product according to claim 4 as a thermally conductive layer disposed between a heat generating electronic component and a heat radiating member. 発熱性電子部品と、放熱部材と、請求項1〜請求項3のいずれか1項に記載の組成物の硬化物からなる熱伝導性層とを有してなる半導体装置であって、前記発熱性電子部品と前記放熱部材とが前記熱伝導性層を介して接合されている半導体装置。   A semiconductor device comprising a heat-generating electronic component, a heat radiating member, and a thermally conductive layer made of a cured product of the composition according to claim 1, wherein the heat generation A semiconductor device in which a conductive electronic component and the heat dissipating member are joined via the thermally conductive layer. 請求項6に記載の半導体装置の製造方法であって、
(a)前記発熱性電子部品の表面に、請求項1〜請求項3のいずれか1項に記載の組成物を塗布して、前記表面に前記組成物からなる被覆層を形成させる工程、
(b)前記被覆層に前記放熱部材を圧接して固定させる工程、および
(c)得られた構造体を80〜180℃で処理して、前記被覆層を硬化させて前記熱伝導性層とする工程
を含む製造方法。
A method of manufacturing a semiconductor device according to claim 6,
(a) applying the composition according to any one of claims 1 to 3 to a surface of the exothermic electronic component to form a coating layer made of the composition on the surface;
(b) a step of pressing and fixing the heat radiating member to the coating layer; and
(c) The manufacturing method including the process of processing the obtained structure at 80-180 degreeC, hardening the said coating layer, and setting it as the said heat conductive layer.
JP2010007990A 2010-01-18 2010-01-18 Curable organopolysiloxane composition and semiconductor device Expired - Lifetime JP4913874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007990A JP4913874B2 (en) 2010-01-18 2010-01-18 Curable organopolysiloxane composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007990A JP4913874B2 (en) 2010-01-18 2010-01-18 Curable organopolysiloxane composition and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003347802A Division JP4551074B2 (en) 2003-10-07 2003-10-07 Curable organopolysiloxane composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010095730A true JP2010095730A (en) 2010-04-30
JP4913874B2 JP4913874B2 (en) 2012-04-11

Family

ID=42257616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007990A Expired - Lifetime JP4913874B2 (en) 2010-01-18 2010-01-18 Curable organopolysiloxane composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4913874B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004468A (en) * 2010-06-21 2012-01-05 Mitsubishi Electric Corp Method for manufacturing semiconductor module unit
JP2012111823A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Heat dissipating grease composition
WO2022230600A1 (en) * 2021-04-28 2022-11-03 信越化学工業株式会社 Curable organopolysiloxane composition and semiconductor device
CN115427509A (en) * 2020-04-17 2022-12-02 信越化学工业株式会社 Heat conductive silicone composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783128B2 (en) 2012-04-24 2015-09-24 信越化学工業株式会社 Heat curing type heat conductive silicone grease composition
WO2014115456A1 (en) 2013-01-22 2014-07-31 信越化学工業株式会社 Heat conductive silicone composition, heat conductive layer, and semiconductor device
JP5898139B2 (en) 2013-05-24 2016-04-06 信越化学工業株式会社 Thermally conductive silicone composition
JP5947267B2 (en) 2013-09-20 2016-07-06 信越化学工業株式会社 Silicone composition and method for producing thermally conductive silicone composition
JP6149831B2 (en) 2014-09-04 2017-06-21 信越化学工業株式会社 Silicone composition
JP6260519B2 (en) 2014-11-25 2018-01-17 信越化学工業株式会社 Method for storing and curing one-component addition-curable silicone composition
KR102203924B1 (en) 2016-10-31 2021-01-18 다우 도레이 캄파니 리미티드 One component curable thermally conductive silicone grease composition and electronic/electronic parts
CN111601853B (en) 2018-01-15 2022-05-13 信越化学工业株式会社 Silicone composition
JP6977869B2 (en) 2018-03-23 2021-12-08 信越化学工業株式会社 Silicone composition
JP6959950B2 (en) 2019-03-04 2021-11-05 信越化学工業株式会社 Non-curable thermally conductive silicone composition
JP7388550B2 (en) 2020-05-22 2023-11-29 信越化学工業株式会社 Thermally conductive silicone composition, method for producing the same, and semiconductor device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1003482A (en) * 1961-12-04 1965-09-02 Philips Electronic Associated Improvements in and relating to methods of joining a metal conductor to a semiconduct or body
US4147669A (en) * 1977-03-28 1979-04-03 Rockwell International Corporation Conductive adhesive for providing electrical and thermal conductivity
JPH07207160A (en) * 1994-01-11 1995-08-08 Toshiba Silicone Co Ltd Silicone composition and its production
US5445308A (en) * 1993-03-29 1995-08-29 Nelson; Richard D. Thermally conductive connection with matrix material and randomly dispersed filler containing liquid metal
JPH0853664A (en) * 1994-08-10 1996-02-27 Fujitsu Ltd Thermally conductive material and its production, method for cooling electronic part, method for cooling circuit board, and method for mounting electronic part
JPH1030059A (en) * 1996-05-14 1998-02-03 Toray Dow Corning Silicone Co Ltd Electroconductive silicone rubber composition and electroconductive silicone rubber
US6022487A (en) * 1995-01-14 2000-02-08 Daume; Jochen Heat-transfer concentrate, method of manufacturing it and its use as well as a latent-heat accumulator making use of the concentrate
JP2001503471A (en) * 1997-02-07 2001-03-13 ロックタイト コーポレーション Conductive resin composition
JP2001513946A (en) * 1997-03-06 2001-09-04 オアメット コーポレイション Vertical interconnect electronic assemblies and compositions useful therein
JP2001329068A (en) * 2000-04-05 2001-11-27 Bergquist Co:The Manufacturing method of thermal conductive compound by crosslinking particle cluster of liquid metal
JP2002121292A (en) * 2000-10-17 2002-04-23 Bergquist Co:The Method for producing heat conductive compound by using liquid metal-crosslinked particle cluster
US6395647B1 (en) * 1999-09-02 2002-05-28 Micron Technology, Inc. Chemical treatment of semiconductor substrates
EP1291913A2 (en) * 2001-09-05 2003-03-12 The Bergquist Company Morphing fillers and thermal interface materials
JP2003176414A (en) * 2001-12-11 2003-06-24 Shin Etsu Chem Co Ltd Thermally conductive silicone composition, cured product thereof and method for laying the same, and heat- releasing structure for semiconductor device using the same
WO2003052818A1 (en) * 2001-12-14 2003-06-26 Dow Corning Corporation Thermally conductive phase change materials
US20030187116A1 (en) * 2000-04-05 2003-10-02 The Bergquist Company Thermal interface pad utilizing low melting metal with retention matrix
US20040262740A1 (en) * 2003-06-30 2004-12-30 Matayabas James C. Polymer solder hybrid interface material with improved solder filler particle size and microelectronic package application

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1003482A (en) * 1961-12-04 1965-09-02 Philips Electronic Associated Improvements in and relating to methods of joining a metal conductor to a semiconduct or body
US4147669A (en) * 1977-03-28 1979-04-03 Rockwell International Corporation Conductive adhesive for providing electrical and thermal conductivity
US5445308A (en) * 1993-03-29 1995-08-29 Nelson; Richard D. Thermally conductive connection with matrix material and randomly dispersed filler containing liquid metal
JPH07207160A (en) * 1994-01-11 1995-08-08 Toshiba Silicone Co Ltd Silicone composition and its production
JPH0853664A (en) * 1994-08-10 1996-02-27 Fujitsu Ltd Thermally conductive material and its production, method for cooling electronic part, method for cooling circuit board, and method for mounting electronic part
US6022487A (en) * 1995-01-14 2000-02-08 Daume; Jochen Heat-transfer concentrate, method of manufacturing it and its use as well as a latent-heat accumulator making use of the concentrate
JPH1030059A (en) * 1996-05-14 1998-02-03 Toray Dow Corning Silicone Co Ltd Electroconductive silicone rubber composition and electroconductive silicone rubber
JP2001503471A (en) * 1997-02-07 2001-03-13 ロックタイト コーポレーション Conductive resin composition
JP2001513946A (en) * 1997-03-06 2001-09-04 オアメット コーポレイション Vertical interconnect electronic assemblies and compositions useful therein
US6395647B1 (en) * 1999-09-02 2002-05-28 Micron Technology, Inc. Chemical treatment of semiconductor substrates
JP2001329068A (en) * 2000-04-05 2001-11-27 Bergquist Co:The Manufacturing method of thermal conductive compound by crosslinking particle cluster of liquid metal
US20030187116A1 (en) * 2000-04-05 2003-10-02 The Bergquist Company Thermal interface pad utilizing low melting metal with retention matrix
JP2002121292A (en) * 2000-10-17 2002-04-23 Bergquist Co:The Method for producing heat conductive compound by using liquid metal-crosslinked particle cluster
EP1291913A2 (en) * 2001-09-05 2003-03-12 The Bergquist Company Morphing fillers and thermal interface materials
JP2003234586A (en) * 2001-09-05 2003-08-22 Bergquist Co:The Morphing filler and thermal interface material
JP2003176414A (en) * 2001-12-11 2003-06-24 Shin Etsu Chem Co Ltd Thermally conductive silicone composition, cured product thereof and method for laying the same, and heat- releasing structure for semiconductor device using the same
WO2003052818A1 (en) * 2001-12-14 2003-06-26 Dow Corning Corporation Thermally conductive phase change materials
US20040262740A1 (en) * 2003-06-30 2004-12-30 Matayabas James C. Polymer solder hybrid interface material with improved solder filler particle size and microelectronic package application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004468A (en) * 2010-06-21 2012-01-05 Mitsubishi Electric Corp Method for manufacturing semiconductor module unit
JP2012111823A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Heat dissipating grease composition
CN115427509A (en) * 2020-04-17 2022-12-02 信越化学工业株式会社 Heat conductive silicone composition
CN115427509B (en) * 2020-04-17 2024-05-03 信越化学工业株式会社 Thermally conductive silicone composition
WO2022230600A1 (en) * 2021-04-28 2022-11-03 信越化学工業株式会社 Curable organopolysiloxane composition and semiconductor device

Also Published As

Publication number Publication date
JP4913874B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4551074B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP4634891B2 (en) Thermally conductive silicone grease composition and cured product thereof
JP6079792B2 (en) Thermally conductive silicone composition, thermally conductive layer and semiconductor device
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
JP5898139B2 (en) Thermally conductive silicone composition
JP6042307B2 (en) Curable heat conductive resin composition, method for producing the composition, cured product of the composition, method for using the cured product, semiconductor device having a cured product of the composition, and method for producing the semiconductor device
TWI622624B (en) Polyoxonium composition and method for producing thermal conductive polyphosphonium composition
WO2018079309A1 (en) Thermally-conductive silicone composition
WO2019198424A1 (en) Heat-conductive silicone composition and cured product thereof
WO2016056286A1 (en) Semiconductor device including heat-conductive silicone grease
WO2022230600A1 (en) Curable organopolysiloxane composition and semiconductor device
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
WO2024084897A1 (en) Curable organopolysiloxane composition and semiconductor device
WO2024048335A1 (en) Thermally conductive silicone composition
WO2023132192A1 (en) Highly thermally conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

EXPY Cancellation because of completion of term