WO2016056286A1 - Semiconductor device including heat-conductive silicone grease - Google Patents

Semiconductor device including heat-conductive silicone grease Download PDF

Info

Publication number
WO2016056286A1
WO2016056286A1 PCT/JP2015/070583 JP2015070583W WO2016056286A1 WO 2016056286 A1 WO2016056286 A1 WO 2016056286A1 JP 2015070583 W JP2015070583 W JP 2015070583W WO 2016056286 A1 WO2016056286 A1 WO 2016056286A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
silicone grease
conductive silicone
semiconductor device
thermally conductive
Prior art date
Application number
PCT/JP2015/070583
Other languages
French (fr)
Japanese (ja)
Inventor
山田 邦弘
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2016056286A1 publication Critical patent/WO2016056286A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Definitions

  • the present invention relates to a semiconductor device using a thermally conductive silicone grease composition having excellent thermal conductivity.
  • Patent Documents 1 and 2 methods using a liquid silicone rubber composition as a potting agent or an adhesive have been proposed (Patent Documents 1 and 2).
  • the composition after curing is very hard, it cannot follow the silicon chip warp that occurs during CPU operation and peels off from the base material, etc., resulting in an increase in thermal resistance over time, and the desired heat dissipation performance. There were problems such as being unable to obtain.
  • Patent Documents 3 and 4 materials having flexibility even after curing have been developed.
  • the heat generation of the CPU is very large, the heat dissipation performance of these is not sufficient.
  • a method of dispersing gallium or a gallium alloy or the like in silicone has been proposed in order to enhance the heat dissipation performance (Patent Documents 5 and 6), but gallium is oxidized under high temperature and high humidity. It was not practical because it was easy to progress and performance deteriorated over time.
  • An object of the present invention is to provide a highly reliable semiconductor device using a thermally conductive silicone grease composition that overcomes the above-described drawbacks and can continuously obtain a good heat dissipation effect even under high temperature and high humidity. To do.
  • the inventors of the present invention can prevent the heat conductive silicone grease composition from being deteriorated if the heat conductive silicone grease composition is configured to be blocked from the outside air.
  • the present invention has been completed by finding that a highly reliable semiconductor product that continuously exhibits a good heat dissipation effect even under high temperature and high humidity can be obtained.
  • the present invention provides a semiconductor device using the following thermally conductive silicone grease composition.
  • a semiconductor device in which a thermally conductive silicone grease composition is disposed between a heat-generating electronic component and a heat radiating member, wherein the thermally conductive silicone grease composition is shielded from outside air.
  • a semiconductor device A curable resin composition other than the thermally conductive silicone grease composition is disposed on the outer periphery of the thermally conductive silicone grease composition, and a substrate to which a heat-generating electronic component is connected, and heat dissipation The semiconductor device according to [1], wherein the semiconductor device is disposed between the members.
  • the thermally conductive silicone grease composition comprises: (A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom in one molecule: Hydrogen bonded to a silicon atom in the component for one alkenyl group in the component (A) The amount that the number of atoms is 0.1-5.0, (C) Gallium having a melting point of 0 to 70 ° C.
  • (G-2) the following general formula (2): R 3 c R 4 d Si (OR 5 ) 4-cd (2) Wherein R 3 is independently an alkyl group having 6 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently And an alkyl group having 1 to 6 carbon atoms, c is an integer of 1 to 3, d is an integer of 0 to 2, and the sum of c + d is an integer of 1 to 3.) The semiconductor device according to [4], wherein the alkoxysilane compound represented by the formula (A) is contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A).
  • the semiconductor device of the present invention can provide a high reliability because a good heat dissipation effect can be obtained continuously even under high temperature and high humidity.
  • FIG. 4 is an elevation view of FIG. 3. It is a figure which shows the heat radiating member (surface) used for this invention. It is a figure which shows the heat radiating member (back surface) used for this invention. It is sectional drawing of the heat radiating member of FIG. It is a figure of the semiconductor device which mounted the heat radiating member on the board
  • FIG. 9 is an elevation view of FIG. 8. It is the figure which looked at the cross section of FIG. 8 from the horizontal direction. It is a figure before assembling the apparatus used for an Example. It is a figure after assembling the apparatus used for an Example. It is detailed sectional drawing of the semiconductor device of this invention.
  • the present invention relates to a semiconductor device in which a thermally conductive silicone grease composition is disposed between a heat-generating electronic component and a heat dissipation member, wherein the thermally conductive silicone grease composition is shielded from the outside air.
  • a curable resin composition other than the thermally conductive silicone grease composition is disposed on the outer periphery of the thermally conductive silicone grease composition, and an exothermic electronic component is provided. What is arrange
  • the curable resin composition is arranged so as to surround the heat-generating electronic component without interruption, the thermally conductive silicone grease composition is shielded from the outside air in combination with the substrate and the heat radiating member. To do.
  • the thermally conductive silicone grease composition is placed on a heat-generating electronic component, and the curable resin before curing so as to surround the heat-generating electronic component seamlessly.
  • An example is a method in which after the composition is applied on a substrate, a heat radiating member is placed on the exothermic electronic component and the applied curable resin composition before curing, and then heated at 80 to 180 ° C.
  • FIGS. 1 to 10 are diagrams for explaining necessary parts or manufacturing steps for explaining the present invention in detail, and are simplified, and a specific semiconductor device of the present invention is shown in FIG. 13 will be described later.
  • FIG. 1 is a plan view of a semiconductor device in which a silicon die 11 is mounted on a substrate 12.
  • FIG. 2 is an elevation view of the semiconductor device of FIG.
  • FIG. 3 shows a curable resin composition different from the thermally conductive silicone grease composition 13 in which a thermally conductive silicone grease composition 13 is applied onto the silicon die 11 and the silicon die 11 is surrounded without any breaks. It is a figure of the state which apply
  • the thermal conductive silicone grease 13 and the curable resin composition 14 are applied by applying silicone resin in a container such as a syringe and extruding the silicone resin from the needle tip of the syringe using air pressure or nitrogen pressure. Application is preferred. By using dispense application, the amount of silicone resin applied can be precisely controlled.
  • the thermally conductive silicone grease composition 13 and the curable resin composition 14 are preferably applied by dispensing application, but the application method is not particularly limited.
  • FIG. 4 is an elevation view of FIG.
  • the height after application of the curable resin composition 14 must be at least higher than the silicon die 11 at all points. This is because in the next step, when the heat-dissipating member such as a heat spreader is covered, if the height of the cured resin composition 14 is not higher than that of the silicon die 11, the curable resin composition 14 is physically This is because it is difficult to block the outside air because it does not contact both the substrate 12 and the heat dissipation member.
  • 5 and 6 show the heat spreader 15 of the heat radiating member used in the present invention. 5 and 6 show the same heat spreader 15.
  • FIG. 6 is a reverse view of FIG. Although the X plane in FIG. 5 is flat, the Y plane in FIG.
  • FIG. 6 is a plane that is one step lower than the edge portion 16.
  • the Y surface side is a surface in contact with the heat conductive silicone grease composition 13 and the curable resin composition 14.
  • FIG. 7 is a cross-sectional view of FIG.
  • the height of the edge portion 16 is preferably equal to or slightly higher than the height of the silicon die 11 from the substrate 12.
  • the material of the sheet spreader 15 of the heat radiating member is preferably copper, and more preferably the surface is coated with nickel.
  • the heat spreader 15 as the heat radiating member is covered with the heat conductive silicone grease composition 13 and the curable resin composition 14 so as to cover the whole, and is pressed from above, and then 80 to 180 ° C. Heat with. By this heating, the heat conductive silicone composition 13 and the curable resin composition 14 are cured.
  • the adhesive material 17 as shown in FIG. 9 is a view of FIG. 8 viewed from the side, and FIG. 10 is a view of the cross-sectional view of FIG. 8 viewed from the side. Further, front and rear perspective views of the heat spreader are shown in FIGS. 11 and 12, respectively.
  • FIG. 14 A cross-sectional view of the finished product is shown in FIG. Since the curable resin composition 14 physically suppresses or reduces the entry of water vapor, oxidation of gallium or a gallium alloy contained in the heat conductive silicone grease composition 13 can be suppressed.
  • the thermally conductive silicone grease composition used in the present invention preferably contains (A) component, (B) component, (C) component, (D) component, (E) component and (G) component.
  • A component, (B) component, (C) component, (D) component, (E) component and (G) component.
  • the component (A) of the composition used in the present invention is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is a main agent (base polymer) in an addition reaction curing system. If this organopolysiloxane is liquid, its molecular structure is not limited. For example, it may be linear, branched, partially branched, etc. is there.
  • alkenyl group examples include a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group.
  • a vinyl group having high versatility is preferable.
  • This alkenyl group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, but in order to make the resulting cured product flexible, It is preferable that it is bonded only to.
  • the viscosity of this organopolysiloxane at 25 ° C. is preferably in the range of 0.05 to 100 Pa ⁇ s, particularly preferably in the range of 0.1 to 50 Pa ⁇ s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor. This viscosity can be measured using a spiral viscometer PC-ITL (manufactured by Malcolm).
  • organopolysiloxanes include dimethylvinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, methyldivinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, and dimethylvinylsiloxy-capped dimethylsiloxane having molecular chains at both ends.
  • -A methylphenylsiloxane copolymer etc. are mentioned.
  • the organopolysiloxane of component (A) can be used alone or in combination of two or more having different viscosities.
  • Component (B) of the composition used in the present invention is an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms (hereinafter referred to as “SiH groups”) in one molecule.
  • SiH groups silicon atoms
  • organohydrogenpolysiloxane of component (B) include molecular chain both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer.
  • the organohydrogenpolysiloxane of the component (B) can be used singly or in combination of two or more.
  • the blending amount of the component (B) is such that the number of hydrogen atoms bonded to silicon atoms in the component is 0.1 to 5.0 with respect to one alkenyl group in the component (A).
  • the amount is preferably 0.5 to 3.0. If the number is less than 0.1, a sufficient network structure is not formed, so that the required hardness after curing cannot be obtained, and it is difficult to fix and hold the component (C) described later. Become. On the other hand, when the number exceeds 5.0, the change over time in the physical properties of the obtained cured product increases, and the storage stability may deteriorate.
  • the component (C) of the composition used in the present invention is gallium and / or an alloy thereof having a melting point of 0 to 70 ° C.
  • the component (C) is a component that is blended in order to impart good thermal conductivity to the cured product obtained from the composition used in the present invention, and the use of the composition blended with this component is used in the present invention. This is a characteristic of a semiconductor device.
  • the melting point of the component (C) needs to be in the range of 0 to 70 ° C. as described above. This is because, after preparing the composition used in the present invention, the dispersion state of each component contained in the composition is maintained, so that it is about ⁇ 30 to ⁇ 10 ° C., preferably about ⁇ 25 during long-term storage and transportation. Although it is necessary to maintain a low temperature state of -15 ° C., when the melting point is less than 0 ° C., liquid fine particles tend to aggregate during long-term storage and transportation as described above. It is relatively difficult to maintain this state. On the other hand, when the temperature exceeds 70 ° C., the composition is not rapidly melted in the preparation process, resulting in poor workability.
  • the range of 0 to 70 ° C. is an appropriate range as well as a necessary condition for handling.
  • those having a melting point in the range of 15 to 50 ° C. are more preferable because preparation of the composition used in the present invention is easy and handling during the long-term storage and transportation is simple.
  • the inside is more preferable.
  • This component (C) can be used alone or in combination of two or more.
  • the shape of the liquid fine particles or solid fine particles of gallium and / or an alloy thereof present in the composition used in the present invention in an uncured state is usually substantially spherical, but may include irregular shapes. .
  • the average particle diameter is usually 0.1 to 100 ⁇ m, preferably 5 to 50 ⁇ m. If the average particle size is too small, the viscosity of the composition will be too high, and the extensibility will be poor, so there will be a problem in coating workability, and conversely if it is too large, the composition will be non-uniform. It may be difficult to apply a thin film to exothermic electronic components.
  • the average particle diameter is a volume-based cumulative average diameter, which is measured by a laser scattering method [Microtrack MT3300EX (manufactured by Nikkiso Co., Ltd.)].
  • the amount of component (C) is 1,000 to 20,000 parts by weight, preferably 3,000 to 17,000 parts by weight, particularly preferably 100 parts by weight of component (A). Is from 5,000 to 1,5000.
  • the blending amount is less than 1,000 parts by mass, the thermal conductivity is lowered, and when the composition is thick, sufficient heat dissipation performance cannot be obtained.
  • the amount is more than 20,000 parts by mass, it is difficult to obtain a uniform composition, and the viscosity of the composition becomes too high, so that the composition cannot be obtained as an extensible grease. There is.
  • a heat conductive filler to be blended in a conventionally known heat conductive sheet or heat conductive grease can be blended. If the amount is more than 1,000 parts by mass, the viscosity of the composition becomes high, and there is a problem that the composition cannot be obtained as a grease-like material having extensibility.
  • the range is 000 parts by mass, and preferably 50 to 500 parts by mass.
  • the component (D) is not particularly limited as long as it has a good thermal conductivity, and any conventionally known one can be used.
  • aluminum powder, zinc oxide powder, alumina powder, boron nitride examples thereof include powder, aluminum nitride powder, silicon nitride powder, copper powder, diamond powder, nickel powder, zinc powder, stainless steel powder, and carbon powder.
  • the component (D) can be used alone or in combination of two or more.
  • the uniform dispersion of the liquid fine particles of the component (C) in the mixed liquid component of the components (A) and (G) is completed, and the component (C) is converted into the components (A) and (G).
  • the component (D) After being in a state of being coated with the component mixture, the component (D) may be added and blended and kneaded. By doing so, aggregation of the component (D) can be prevented.
  • the average particle diameter of the component (D) is in the range of 0.1 to 100 ⁇ m, preferably in the range of 1 to 20 ⁇ m. If the average particle size is too small, the resulting composition will have too high a viscosity, resulting in poor extensibility. On the other hand, if it is too large, it is difficult to obtain a uniform composition.
  • This average particle diameter is a volume-based cumulative average diameter and is measured by a laser scattering method [Microtrack MT3300EX (manufactured by Nikkiso Co., Ltd.)].
  • the platinum-based catalyst of the component (E) of the composition used in the present invention promotes the addition reaction between the alkenyl group in the component (A) and SiH in the component (B), and the composition used in the present invention. It is a component blended to give a cross-linked cured product in a three-dimensional network state.
  • the component (E) all known compounds used in ordinary hydrosilylation reactions can be used.
  • platinum metal platinum black
  • chloroplatinic acid platinum-olefin complex
  • platinum-alcohol complex examples include platinum coordination compounds.
  • the compounding quantity of a component should just be an effective amount required in order to harden the composition used for this invention, although it does not specifically limit, For example, normally with respect to the mass of (A) component as a platinum atom. 0.1 to 500 ppm is preferable.
  • the addition reaction control agent for the component (F) of the composition used in the present invention is a component that is blended as necessary, and the hydrosilylation reaction is suppressed by the action of the platinum-based catalyst at room temperature, and the composition used in the present invention. It is a component that is blended so as to ensure the pot life (shelf life, pot life) and to prevent the coating work on the heat-generating electronic parts and the like.
  • component (F) all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used.
  • addition reaction control agents used in ordinary addition reaction curable silicone compositions.
  • 1-ethynyl-1-cyclohexanol, 3-butyne-1 -Acetylene compounds such as ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds and the like.
  • the blending amount of the component (F) varies depending on the amount of the component (E) used and cannot be generally specified, but is not particularly limited as long as it is an effective amount capable of suppressing the progress of the hydrosilylation reaction. For example, it is usually preferably about 0.001 to 5 parts by mass with respect to 100 parts by mass of component (A). If the amount of component (F) is too small, sufficient pot life may not be ensured, and if too large, the curability of the composition used in the present invention may decrease. In addition, in order to improve the dispersibility in a composition, this (F) component can also be used by diluting with organic solvents, such as toluene, xylene, and isopropyl alcohol, as needed.
  • organic solvents such as toluene, xylene, and isopropyl alcohol
  • the composition used in the present invention comprises hydrophobizing the component (C) gallium and / or its alloy during preparation of the composition, and the component (A) liquid particle organopolysiloxane (C) And (G) a polysiloxane represented by the following general formula (1) for the purpose of uniformly dispersing the component (C) as fine particles in a matrix composed of the component (A). It is preferable to mix as a surface treatment agent.
  • the component (G) also has the function of improving the wettability of the surface of the thermally conductive filler of the component (D) and improving the uniform dispersibility.
  • the component (G) the following general formula (1): Wherein R 1 is the same or different monovalent hydrocarbon group, R 2 is an alkyl group, an alkenyl group or an acyl group, a is an integer of 5 to 100, and b is 1 to 3 (It is an integer.) And a polysiloxane having one end of a molecular chain blocked with a hydrolyzable group, and a kinematic viscosity at 25 ° C. of 10 to 10,000 mm 2 / s. The kinematic viscosity is a value measured with an Ostwald viscometer.
  • the blending amount of the (G) component is more than 500 parts by mass with respect to 100 parts by mass of the (A) component, there is a problem that the finished composition is difficult to cure because the (A) component is relatively decreased. If the composition used in the present invention is not cured, after the grease is applied to the IC package, the adhesion may be shifted and the performance may be significantly lowered. Accordingly, the blending amount of the component (G) is in the range of 0 to 500 parts by mass, preferably 50 to 200 parts by mass.
  • the following alkoxysilane may be blended as part of the component (G).
  • G-2 The following general formula (2): R 3 c R 4 d Si (OR 5 ) 4-cd (2) Wherein R 3 is independently an alkyl group having 6 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently And an alkyl group having 1 to 6 carbon atoms, c is an integer of 1 to 3, d is an integer of 0 to 2, and the sum of c + d is an integer of 1 to 3.)
  • R 3 in the general formula (2) examples include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group.
  • the number of carbon atoms is less than 6, the wettability of the component (C) and the component (D) is not sufficiently improved, and when it exceeds 15, the organosilane of the component (G-2) is solidified at room temperature. In addition to being inconvenient to handle, the low temperature properties of the resulting composition are reduced.
  • R 4 includes, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group and an octyl group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; a vinyl group and an allyl group Alkenyl groups such as phenyl group, tolyl group and the like; aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (nano And halogenated hydrocarbon groups such as a fluorobutyl) ethyl group, a 2- (heptadecafluorooctyl) ethyl group, and a p-chlorophenyl group.
  • a methyl group and an ethyl group are particularly preferable.
  • R 5 for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an alkyl group such as hexyl group.
  • a methyl group and an ethyl group are particularly preferable.
  • Preferable specific examples of the component (G-2) include the following. C 6 H 13 Si (OCH 3 ) 3 C 10 H 21 Si (OCH 3 ) 3 C 12 H 25 Si (OCH 3 ) 3 C 12 H 25 Si (OC 2 H 5 ) 3 C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 C 10 H 21 Si (C 6 H 5) (OCH 3) 2 C 10 H 21 Si (CH 3 ) (OC 2 H 5) 2 C 10 H 21 Si (CH ⁇ CH 2 ) (OCH 3 ) 2 C 10 H 21 Si (CH 2 CH 2 CF 3) (OCH 3) 2
  • This component (G-2) can be used alone or in combination of two or more.
  • the blending amount is 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
  • the blending amount is too large, the wetter effect does not increase and it is uneconomical. Since it is somewhat volatile, the composition used in the present invention gradually becomes harder if left in an open system. There is.
  • the composition used in the present invention is applied to the surface of the heat-generating electronic component, and after heat-contacting the heat-dissipating member, the composition is cured by heat treatment to form a heat conductive layer. At this time, in order to improve workability, the composition used in the present invention needs to be in the form of grease.
  • the composition used in the present invention is accommodated in a syringe, applied from the syringe onto the surface of a heat-generating electronic component such as a CPU, and a coating layer is formed, and a heat radiating member is pressed against this.
  • the absolute viscosity at 25 ° C. of the composition used in the present invention is preferably 10 to 1,000 Pa ⁇ s, and particularly preferably 50 to 400 Pa ⁇ s. If the absolute viscosity is too low, dripping may occur during the application, which may cause a problem in operation. On the other hand, if the absolute viscosity is too high, extrusion from the syringe becomes difficult, and the efficiency of the coating operation may be deteriorated. This viscosity can be measured with a spiral viscometer PC-ITL (Malcom Co., Ltd.).
  • the thermally conductive silicone grease composition used in the present invention is: (I) When the component (A), the component (C), the component (D), the component (G) and the component (G-2) are included, the temperature of the component is in the range of 40 to 120 ° C.
  • a stirring / kneading machine such as a conditioning mixer or a planetary mixer provided with a heating means and, if necessary, a cooling means can be used.
  • the liquid material of gallium and / or its alloy as the component (C) and the thermally conductive filler as the component (D) are the components (A) and (G), or (A) It is uniformly dispersed in a mixed solution of the component, the component (G) and the component (G-2).
  • the temperature lowering operation or the cooling operation in the step (ii) is performed promptly.
  • the component (C) in the state solidifies while maintaining its average particle diameter and the dispersed state.
  • the step (iii) is also completed in as short a time as possible.
  • the produced composition is accommodated in a container, and quickly, a freezer having a temperature of about ⁇ 30 to ⁇ 10 ° C., preferably about ⁇ 25 to ⁇ 15 ° C., a freezer, etc.
  • a freezer having a temperature of about ⁇ 30 to ⁇ 10 ° C., preferably about ⁇ 25 to ⁇ 15 ° C., a freezer, etc.
  • a freezer having a temperature of about ⁇ 30 to ⁇ 10 ° C., preferably about ⁇ 25 to ⁇ 15 ° C., a freezer, etc.
  • a freezer having a temperature of about ⁇ 30 to ⁇ 10 ° C., preferably about ⁇ 25 to ⁇ 15 ° C., a freezer, etc.
  • the binder resin used in the curable resin composition used in the present invention is not particularly limited to silicone, but silicone is preferable from the viewpoint of heat resistance and stress relaxation.
  • the curable resin composition is cured by a hydrosilylation reaction, it is composed of the same component (A), component (B), component (E) and filler as the thermally conductive silicone resin composition.
  • the component (G) and / or the component (F) may be contained, but the component (C) must not be contained.
  • the blending ratio of the component (B) and the component (E) to the component (A) used for the curable resin is the same as that of the thermally conductive silicone grease composition. Even when the component (G) and / or the component (F) is contained, the ratio to the component (A) is the same as that of the thermally conductive silicone grease composition.
  • the above curable resin composition preferably contains 5 to 90% by volume of filler in the composition. If the filler is less than 5% by volume, water vapor entering from the surroundings may not be sufficiently prevented, and if it exceeds 90% by volume, the fluidity of the curable resin composition is lost.
  • the content of the filler is preferably 10 to 80% by volume, more preferably 15 to 70% by volume.
  • the filler used in the curable resin composition may be the same as the component (D) used in the above-described thermally conductive silicone resin composition, or may be surface-treated fumed silica.
  • the surface treatment agent for the surface-treated fumed silica for example, chlorosilane, silazane, and siloxane are effective.
  • Specific examples of the surface treatment agent include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, hexamethyldisilazane, octamethylcyclotetrasiloxane, ⁇ , ⁇ -trimethylsilyldimethylpolysiloxane, and the like.
  • the specific surface area (BET method) of the surface-treated fumed silica is preferably 50 m 2 / g or more, more preferably 100 to 500 m 2 / g.
  • the specific surface area is less than 50 m 2 / g, the viscosity of the composition may increase.
  • the method for producing the curable resin composition used in the present invention may be any conventional method for producing a silicone grease composition, and is not particularly limited.
  • the above (A), (B), (E) and filler, and other components as necessary Trimix, Twinwin, Planetary Mixer (all are mixers manufactured by Inoue Mfg. Co., Ltd., registered) (Trademark), Ultramixer (mixer manufactured by Mizuho Industry Co., Ltd., registered trademark), Hibis Dispermix (mixer manufactured by Tokushu Kika Kogyo Co., Ltd., registered trademark), etc., and mixing for 30 minutes to 4 hours Can be manufactured. If necessary, mixing may be performed while heating at a temperature in the range of 50 to 150 ° C.
  • the absolute viscosity measured at 25 ° C. is preferably 10 to 600 Pa ⁇ s, particularly preferably 10 to 500 Pa ⁇ s, and further preferably 20 to 400 Pa. S, and more preferably 30 to 350 Pa ⁇ s.
  • the workability is excellent when the absolute viscosity is 10 to 600 Pa ⁇ s.
  • the absolute viscosity can be obtained by adjusting each component with the above-described blending amount.
  • the absolute viscosity is measured using a model number PC-1TL (10 rpm) manufactured by Malcolm Corporation.
  • the thermal conductivity was measured at 25 ° C. using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the particle diameter measurement value of the thermally conductive filler is a volume-based cumulative average diameter measured by Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • thermally conductive silicone grease composition used in the following examples are shown below.
  • (A) component The viscosity at 25 ° C. of dimethylpolysiloxane blocked at both ends with dimethylvinylsilyl groups is as follows: (A-1) Absolute viscosity: 0.6 Pa ⁇ s (A-2) Absolute viscosity: 10.0 Pa ⁇ s (A-3) Absolute viscosity: 30.0 Pa ⁇ s
  • (F) component (F-1) 50% by mass toluene solution of 1-ethynyl-1-cyclohexanol
  • (G) component (G-1) The following structural formula: One end trimethoxysilyl group-blocked dimethylpolysiloxane having a kinematic viscosity of 32 mm 2 / s represented by
  • a composition was prepared by the following method using each component having the composition and amount shown in Table 1.
  • component (B), component (E) and component (F) were added, and the above-mentioned temperatures were maintained, and kneaded uniformly to prepare thermally conductive silicone grease compositions -1 to 5.
  • SiH / Vi number of SiH groups in component (B) relative to one vinyl group in component (A) (hereinafter the same)
  • the curable resin composition used in the present invention was prepared as follows.
  • D-1 alumina powder
  • D-2 zinc oxide powder
  • G-1 one-end-terminated trimethoxysilyl group-blocked dimethylpolysiloxane was charged into a 5 L planetary mixer (both manufactured by Inoue M
  • (D-1) alumina powder, (D-2) zinc oxide powder, and (B-1) organohydrogenpolysiloxane were 400 g, 100 g, and 9.
  • a curable resin composition-2 was obtained in the same manner except that the amount was 8 g.
  • SiH / Vi 1.2
  • the viscosity of the curable resin composition was 105 Pa ⁇ s.
  • the amount of the filler in this curable resin composition was 46% by volume.
  • the surface-treated fumed silica is a dry fumed silica having a BET specific surface area of 120 m 2 / g and hydrophobized with dimethyldichlorosilane.
  • Example 1 As shown in FIG. 11, 0.3 g of the heat conductive silicone grease composition-1 as the heat conductive silicone grease composition 21 was applied to the center of the slide glass 24 having a length of 50 mm, a width of 70 mm, and a thickness of 1 mm. Then, the curable resin composition-1 as the curable resin composition 22 was applied so that there was no break in the periphery. Thereafter, as shown in FIG. 12, a spacer 23 having a thickness of 0.5 mm is placed on both ends of the slide glass 24, and another slide glass 24 is pressed from the upper side so that the heat conductive silicone grease composition 21 and the curable resin are cured.
  • the resin composition 22 was completely brought into close contact between the upper and lower slide glasses 24 so as to block the heat conductive silicone grease composition 21 from the outside air. Then, it was left in an oven at 150 ° C. for 1 hour to cure the heat conductive silicone grease composition-1 and the curable resin composition-1. Thereafter, the thermally conductive silicone grease composition-1 and the curable resin composition-1 were aged for 1,000 hours under the conditions of 85 ° C./85% RH. After aging, the oxygen content of the thermally conductive silicone grease composition-1 was measured with an oxygen / nitrogen analyzer EMGA-2800 manufactured by Horiba, Ltd. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 2% by mass.
  • Example 2 The procedure of Example 1 was repeated except that the thermally conductive silicone grease composition 21 of Example 1 was changed to the thermally conductive silicone grease composition-2. As a result, the oxygen content of the thermally conductive silicone grease composition-2 was 3% by mass.
  • Example 3 The procedure of Example 1 was repeated except that the heat conductive silicone grease composition 21 of Example 1 was changed to the heat conductive silicone grease composition-3. As a result, the oxygen content of the thermally conductive silicone grease composition-3 was 2% by mass.
  • Example 4 The procedure of Example 1 was repeated except that the thermally conductive silicone grease composition 21 of Example 1 was changed to the thermally conductive silicone grease composition-4. As a result, the oxygen content of the thermally conductive silicone grease composition-4 was 4% by mass.
  • Example 5 The same procedure as in Example 1 was conducted except that the curable resin composition 22 of Example 1 was changed to the curable resin composition-2. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 3% by mass.
  • Example 6 The same procedure as in Example 1 was conducted except that the curable resin composition 22 of Example 1 was changed to the curable resin composition-3. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 3% by mass.
  • Example 7 Example 1 except that the thermally conductive silicone grease composition 21 of Example 1 was changed to the thermally conductive silicone grease composition-2 and the curable resin composition 22 was changed to the curable resin composition-2. As well as. As a result, the oxygen content of the thermally conductive silicone grease composition-2 was 2% by mass.
  • Example 8 Example 1 except that the thermally conductive silicone grease composition 21 of Example 1 was changed to a thermally conductive silicone grease composition-5 and the curable resin composition 22 was changed to a curable resin composition-3. As well as. As a result, the oxygen content of the thermally conductive silicone grease composition-2 was 2% by mass.
  • FIG. 13 is a diagram illustrating in detail a semiconductor device of the present invention having a silicon die 31 of 15 mm ⁇ 15 mm and a substrate 32.
  • a silicon die 31 On the silicon die 31, 0.3 g of the heat conductive silicone grease composition-1 that is the heat conductive silicone grease composition 33 obtained in this example is applied, and the silicon die 31 is surrounded without any breaks.
  • the curable resin composition-1 which is the curable resin composition 34 obtained in this example was applied so that the width was 1 mm and the coating height was higher than that of the silicon die 31.
  • an adhesive 37 was applied to a portion where the edge portion 36 of the heat spreader 35 as a heat radiating member and the substrate 32 are in contact with each other.
  • the heat spreader 35 is pressed at 50 psi for 1 minute, and then the semiconductor device is left in an oven at 150 ° C. for 1 hour to heat-conductive silicone grease composition 33, curable resin composition 34, and adhesive 37. Cured.
  • the curable resin composition 34 is in contact with the substrate 32 and the heat spreader 35 without any gaps at all positions around the silicon die 31, thereby blocking the thermally conductive silicone grease composition 33 from the outside air. I am doing so.
  • the silicon die 31 is attached to the substrate 32 via an underfill 38 and solder 39.
  • the semiconductor device of the present invention was a semiconductor with overheat accumulation as compared to the case without the curable resin composition-1.
  • Example 9 After the test of Example 9, the thermally conductive silicone grease composition-1 was taken out and the oxygen content was measured. As a result, the amount of oxygen was 2% by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention provides a highly reliable semiconductor device that includes a heat-conductive silicone grease composition and that constantly exhibits a superior heat dissipation effect even under a high-temperature, high-humidity environment. This semiconductor device has a heat-conductive silicone grease composition between a heat-generating electronic component and a heat-dissipating member and is characterized in that the heat-conductive silicone grease composition is shielded from outside air.

Description

熱伝導性シリコーングリースを用いた半導体装置Semiconductor device using thermally conductive silicone grease
 本発明は、熱伝導性に優れた熱伝導性シリコーングリース組成物を用いた半導体装置に関する。 The present invention relates to a semiconductor device using a thermally conductive silicone grease composition having excellent thermal conductivity.
 プリント基板上に実装される電子部品であるCPU等の電子部品は、使用時の発熱による温度上昇によって性能が低下したり破損したりすることがあるため、従来、電子部品と放熱フィン等の間に熱伝導性の良い放熱シートや放熱グリースが用いられている。放熱シートは手軽に載置できるメリットはある。しかし、CPUや放熱フィン等の表面は一見平滑に見えてもミクロ的に観れば凸凹があるため、実際にはそれらの被着面に確実に密着できず、空気層が介在する結果、放熱効果を性能通りに発揮できないという不都合が生じる。 Since electronic components such as CPUs, which are electronic components mounted on a printed circuit board, may be degraded in performance or damaged due to temperature rise due to heat generation during use, conventionally, between electronic components and radiating fins, etc. In addition, heat-dissipating sheets and heat-dissipating grease with good thermal conductivity are used. There is an advantage that the heat dissipation sheet can be easily placed. However, even though the surface of the CPU and heat radiating fins may look smooth at first glance, there are irregularities when viewed microscopically. Inconvenience occurs that cannot be performed as per the performance.
 それを解決するために放熱シートの表面に粘着層等を設けて密着性を向上させたものも提案されているが十分なものではない。一方、放熱グリースはCPUや放熱フィン等の表面の凹凸に影響されることなく、それら被着面に追随、密着することができるが、他の部品が汚染されたり、長時間の使用によってオイルが流出したりする等の問題があった。 In order to solve this problem, an adhesive layer or the like provided on the surface of the heat dissipation sheet to improve the adhesion has been proposed, but it is not sufficient. On the other hand, heat-release grease can follow and adhere to these adherends without being affected by surface irregularities such as CPU and heat-release fins. There were problems such as spills.
 このような理由から液状シリコーンゴム組成物をポッティング剤や接着剤として用いる方法が提案されている(特許文献1及び2)。しかしながらこれらは、硬化後の組成物が非常に硬いことからCPU動作時に起こるシリコンチップの反りに追随出来ずに基材等から剥がれてしまう結果、経時で熱抵抗が上昇し、所望する放熱性能が得られないなどの問題があった。 For these reasons, methods using a liquid silicone rubber composition as a potting agent or an adhesive have been proposed (Patent Documents 1 and 2). However, since the composition after curing is very hard, it cannot follow the silicon chip warp that occurs during CPU operation and peels off from the base material, etc., resulting in an increase in thermal resistance over time, and the desired heat dissipation performance. There were problems such as being unable to obtain.
 それらを解決するために、硬化後も柔軟性を持つ材料が開発されている(特許文献3及び4)。しかしながら、CPUの発熱が非常に大きい場合、これらの持つ放熱性能でも十分ではなかった。CPUの発熱が非常に大きい場合、放熱性能を引き上げるためにシリコーン中にガリウムあるいはガリウム合金などを分散させる方法も提案されているが(特許文献5及び6)、ガリウムは高温高湿下において、酸化が進みやすく、経時で性能が落ちるため実用的ではなかった。 In order to solve these problems, materials having flexibility even after curing have been developed (Patent Documents 3 and 4). However, when the heat generation of the CPU is very large, the heat dissipation performance of these is not sufficient. In the case where the heat generation of the CPU is very large, a method of dispersing gallium or a gallium alloy or the like in silicone has been proposed in order to enhance the heat dissipation performance (Patent Documents 5 and 6), but gallium is oxidized under high temperature and high humidity. It was not practical because it was easy to progress and performance deteriorated over time.
特開昭61-157569号公報JP-A 61-157469 特開平8-208993号公報Japanese Patent Application Laid-Open No. 8-208993 特許第3580366号公報Japanese Patent No. 3580366 特許第3580358号公報Japanese Patent No. 3580358 特許第4551074号公報Japanese Patent No. 4551074 特開2013-82816号公報JP2013-82816A
 本発明は、上記欠点を克服した、高温高湿下においても継続的に良好な放熱効果が得られる、熱伝導性シリコーングリース組成物を用いた高信頼性の半導体装置を提供することを目的とする。 An object of the present invention is to provide a highly reliable semiconductor device using a thermally conductive silicone grease composition that overcomes the above-described drawbacks and can continuously obtain a good heat dissipation effect even under high temperature and high humidity. To do.
 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、熱伝導性シリコーングリース組成物を外気から遮断する構成とすれば、該熱伝導性シリコーングリース組成物の劣化が防止され、高温高湿下においても継続的に良好な放熱効果を奏する高信頼性の半導体製品が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the inventors of the present invention can prevent the heat conductive silicone grease composition from being deteriorated if the heat conductive silicone grease composition is configured to be blocked from the outside air. The present invention has been completed by finding that a highly reliable semiconductor product that continuously exhibits a good heat dissipation effect even under high temperature and high humidity can be obtained.
 即ち、本発明は、下記の熱伝導性シリコーングリース組成物を用いた半導体装置を提供するものである。
〔1〕 発熱性電子部品と放熱部材との間に熱伝導性シリコーングリース組成物が配置されている半導体装置であって、該熱伝導性シリコーングリース組成物が外気から遮断されていることを特徴とする半導体装置。
〔2〕 該熱伝導性シリコーングリース組成物以外の硬化性樹脂組成物が、該熱伝導性シリコーングリース組成物の外周囲に配置され、かつ、発熱性電子部品が接続されている基板と、放熱部材との間に配置されていることを特徴とする〔1〕に記載の半導体装置。
〔3〕 該熱伝導性シリコーングリース組成物が、ガリウム及び/又はガリウム合金を含有していることを特徴とする〔1〕又は〔2〕に記載の半導体装置。
〔4〕 該熱伝導性シリコーングリース組成物が、
 (A)ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン:100質量部、
 (B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1~5.0個となる量、
 (C)融点が0~70℃のガリウム及び/又はその合金:1,000~20,000質量部、
 (D)平均粒径が0.1~100μmの熱伝導性充填剤:0~1,000質量部、
 (E)白金系触媒:(A)成分の質量に対して0.1~500ppm、並びに
 (G)下記一般式(1)
Figure JPOXMLDOC01-appb-C000002

(式中、Rは同一もしくは異種の一価の炭化水素基であり、Rはアルキル基、アルケニル基又はアシル基であり、aは5~100の整数であり、bは1~3の整数である。)
で表されるポリシロキサン:0~500質量部
を含むことを特徴とする〔1〕~〔3〕のいずれか1項に記載の半導体装置。
〔5〕 更に、(G-2)下記一般式(2):
 R Si(OR4-c-d   (2)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、cは1~3の整数、dは0~2の整数であり、c+dの和は1~3の整数である。)
 で表されるアルコキシシラン化合物を、(A)成分100質量部に対し0.1~100質量部含有することを特徴とする〔4〕に記載の半導体装置。
〔6〕 該硬化性樹脂組成物が充填剤を10~90体積%含有することを特徴とする〔2〕~〔5〕のいずれか1項に記載の半導体装置。
〔7〕 該硬化性樹脂組成物のバインダーがシリコーンであることを特徴とする〔2〕~〔6〕のいずれか1項に記載の半導体装置。
〔8〕 発熱性電子部品上に、該熱伝導性シリコーングリース組成物を載置し、その発熱性電子部品を切れ目無く囲むように硬化前の硬化性樹脂組成物を基板上に塗布した後、該発熱性電子部品及び塗布された硬化前の硬化性樹脂組成物上に放熱部材を被せ、その後、80~180℃で加熱する工程を含むことを特徴とする〔2〕~〔7〕のいずれか1項に記載の半導体装置。
That is, the present invention provides a semiconductor device using the following thermally conductive silicone grease composition.
[1] A semiconductor device in which a thermally conductive silicone grease composition is disposed between a heat-generating electronic component and a heat radiating member, wherein the thermally conductive silicone grease composition is shielded from outside air. A semiconductor device.
[2] A curable resin composition other than the thermally conductive silicone grease composition is disposed on the outer periphery of the thermally conductive silicone grease composition, and a substrate to which a heat-generating electronic component is connected, and heat dissipation The semiconductor device according to [1], wherein the semiconductor device is disposed between the members.
[3] The semiconductor device according to [1] or [2], wherein the thermally conductive silicone grease composition contains gallium and / or a gallium alloy.
[4] The thermally conductive silicone grease composition comprises:
(A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom in one molecule: Hydrogen bonded to a silicon atom in the component for one alkenyl group in the component (A) The amount that the number of atoms is 0.1-5.0,
(C) Gallium having a melting point of 0 to 70 ° C. and / or its alloy: 1,000 to 20,000 parts by mass,
(D) Thermally conductive filler having an average particle size of 0.1 to 100 μm: 0 to 1,000 parts by mass
(E) Platinum-based catalyst: 0.1 to 500 ppm relative to the mass of component (A), and (G) the following general formula (1)
Figure JPOXMLDOC01-appb-C000002

Wherein R 1 is the same or different monovalent hydrocarbon group, R 2 is an alkyl group, an alkenyl group or an acyl group, a is an integer of 5 to 100, and b is 1 to 3 (It is an integer.)
[4] The semiconductor device according to any one of [1] to [3], wherein the semiconductor device contains 0 to 500 parts by mass of polysiloxane represented by the following formula.
[5] Furthermore, (G-2) the following general formula (2):
R 3 c R 4 d Si (OR 5 ) 4-cd (2)
Wherein R 3 is independently an alkyl group having 6 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently And an alkyl group having 1 to 6 carbon atoms, c is an integer of 1 to 3, d is an integer of 0 to 2, and the sum of c + d is an integer of 1 to 3.)
The semiconductor device according to [4], wherein the alkoxysilane compound represented by the formula (A) is contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A).
[6] The semiconductor device according to any one of [2] to [5], wherein the curable resin composition contains 10 to 90% by volume of a filler.
[7] The semiconductor device according to any one of [2] to [6], wherein the binder of the curable resin composition is silicone.
[8] After placing the thermally conductive silicone grease composition on the exothermic electronic component and applying the curable resin composition before curing on the substrate so as to surround the exothermic electronic component seamlessly, Any one of [2] to [7], comprising a step of covering the heat-generating electronic component and the applied uncured curable resin composition with a heat radiating member and then heating at 80 to 180 ° C. 2. The semiconductor device according to claim 1.
 本発明の半導体装置は、高温高湿下においても継続的に良好な放熱効果が得られるため、高い信頼性を提供できる。 The semiconductor device of the present invention can provide a high reliability because a good heat dissipation effect can be obtained continuously even under high temperature and high humidity.
シリコンダイを基板に載置した半導体装置の図である。It is a figure of the semiconductor device which mounted the silicon die on the substrate. 図1の半導体装置を横方向から見た図である。It is the figure which looked at the semiconductor device of FIG. 1 from the horizontal direction. 図1の半導体装置に熱伝導性シリコーングリース組成物及び硬化性樹脂組成物を塗布した状態を示す図である。It is a figure which shows the state which apply | coated the heat conductive silicone grease composition and the curable resin composition to the semiconductor device of FIG. 図3の立面図である。FIG. 4 is an elevation view of FIG. 3. 本発明に用いられる放熱部材(表面)を示す図である。It is a figure which shows the heat radiating member (surface) used for this invention. 本発明に用いられる放熱部材(裏面)を示す図である。It is a figure which shows the heat radiating member (back surface) used for this invention. 図5の放熱部材の断面図である。It is sectional drawing of the heat radiating member of FIG. 放熱部材を基板に載置した半導体装置の図である。It is a figure of the semiconductor device which mounted the heat radiating member on the board | substrate. 図8の立面図である。FIG. 9 is an elevation view of FIG. 8. 図8の断面を横方向から見た図である。It is the figure which looked at the cross section of FIG. 8 from the horizontal direction. 実施例に用いる装置を組み立てる前の図である。It is a figure before assembling the apparatus used for an Example. 実施例に用いる装置を組み立てた後の図である。It is a figure after assembling the apparatus used for an Example. 本発明の半導体装置の詳細な断面図である。It is detailed sectional drawing of the semiconductor device of this invention.
 以下に、本発明の、熱伝導性シリコーングリース組成物を用いた半導体装置について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the semiconductor device using the thermally conductive silicone grease composition of the present invention will be described in detail, but the present invention is not limited thereto.
 本発明は、発熱性電子部品と放熱部材との間に熱伝導性シリコーングリース組成物が配置されている半導体装置であって、該熱伝導性シリコーングリース組成物が外気から遮断されていることを特徴とする。 The present invention relates to a semiconductor device in which a thermally conductive silicone grease composition is disposed between a heat-generating electronic component and a heat dissipation member, wherein the thermally conductive silicone grease composition is shielded from the outside air. Features.
 本発明の半導体装置の1つの態様としては、該熱伝導性シリコーングリース組成物以外の硬化性樹脂組成物が、該熱伝導性シリコーングリース組成物の外周囲に配置され、かつ、発熱性電子部品が接続されている基板と、放熱部材との間に配置されているものが挙げられる。ここで、該硬化性樹脂組成物は発熱性電子部品の周囲を切れ目無く取り囲むように配置されているため、基板と放熱部材と相俟って、該熱伝導性シリコーングリース組成物を外気から遮断する。 As one aspect of the semiconductor device of the present invention, a curable resin composition other than the thermally conductive silicone grease composition is disposed on the outer periphery of the thermally conductive silicone grease composition, and an exothermic electronic component is provided. What is arrange | positioned between the board | substrate with which is connected, and the thermal radiation member is mentioned. Here, since the curable resin composition is arranged so as to surround the heat-generating electronic component without interruption, the thermally conductive silicone grease composition is shielded from the outside air in combination with the substrate and the heat radiating member. To do.
 本態様の半導体装置を製造するには、例えば、発熱性電子部品上に、該熱伝導性シリコーングリース組成物を載置し、その発熱性電子部品を切れ目無く囲むように硬化前の硬化性樹脂組成物を基板上に塗布した後、該発熱性電子部品及び塗布された硬化前の硬化性樹脂組成物上に放熱部材を被せ、その後、80~180℃で加熱する方法が挙げられる。 To manufacture the semiconductor device of this embodiment, for example, the thermally conductive silicone grease composition is placed on a heat-generating electronic component, and the curable resin before curing so as to surround the heat-generating electronic component seamlessly. An example is a method in which after the composition is applied on a substrate, a heat radiating member is placed on the exothermic electronic component and the applied curable resin composition before curing, and then heated at 80 to 180 ° C.
 この方法の詳細を、図を用いて説明する。
 なお、図1~10は本発明を詳述するための必要部位あるいは、製造のための工程を説明するものであって、簡略化されたものであり、本発明の具体的な半導体装置は図13にて後述される。
Details of this method will be described with reference to the drawings.
FIGS. 1 to 10 are diagrams for explaining necessary parts or manufacturing steps for explaining the present invention in detail, and are simplified, and a specific semiconductor device of the present invention is shown in FIG. 13 will be described later.
 図1は、シリコンダイ11が基板12にマウントされている半導体装置の平面図である。図2は、図1の半導体装置の立面図である。
 図3は、シリコンダイ11上に熱伝導性シリコーングリース組成物13を塗布し、更にシリコンダイ11の周囲に切れ目無く取り囲むように該熱伝導性シリコーングリース組成物13とは別の硬化性樹脂組成物14を塗布した状態の図である。熱伝導性シリコーングリース13及び硬化性樹脂組成物14の塗布は、シリンジなどの容器にシリコーン樹脂を封入し、空気圧や窒素圧などを利用してシリンジの針先からシリコーン樹脂を押し出しながら塗布するディスペンス塗布が好ましい。ディスペンス塗布を用いることにより、シリコーン樹脂の塗布量を精密に制御できる。熱伝導性シリコーングリース組成物13及び硬化性樹脂組成物14はディスペンス塗布にてそれぞれ塗布されることが好ましいが、特に塗布方法は限定されない。
FIG. 1 is a plan view of a semiconductor device in which a silicon die 11 is mounted on a substrate 12. FIG. 2 is an elevation view of the semiconductor device of FIG.
FIG. 3 shows a curable resin composition different from the thermally conductive silicone grease composition 13 in which a thermally conductive silicone grease composition 13 is applied onto the silicon die 11 and the silicon die 11 is surrounded without any breaks. It is a figure of the state which apply | coated the thing. The thermal conductive silicone grease 13 and the curable resin composition 14 are applied by applying silicone resin in a container such as a syringe and extruding the silicone resin from the needle tip of the syringe using air pressure or nitrogen pressure. Application is preferred. By using dispense application, the amount of silicone resin applied can be precisely controlled. The thermally conductive silicone grease composition 13 and the curable resin composition 14 are preferably applied by dispensing application, but the application method is not particularly limited.
 図4は、図3の立面図である。硬化性樹脂組成物14の塗布後の高さは、全ての地点においてシリコンダイ11より少なくとも高くなければならない。これは次の工程にて、ヒートスプレッダーなどの放熱部材を覆いかぶせた際に、硬化樹脂組成物14の高さがシリコンダイ11よりも高くないと、この硬化性樹脂組成物14が、物理的に基板12と放熱部材両方に接触しないため外気の遮断が困難になるためである。
 図5、6は本発明に用いる放熱部材のヒートスプレッダー15である。図5と図6は同一のヒートスプレッダー15を示している。図6は図5を裏返した図である。図5のX面は一面平らであるが、図6のY面はエッジ部16より、一段低い面となる。そのY面側が、該熱伝導性シリコーングリース組成物13及び硬化性樹脂組成物14と接する面となる。図7は図5の断面図である。エッジ部16の高さは、シリコンダイ11の基板12からの高さと同等あるいはわずかに高くなることが好ましい。
FIG. 4 is an elevation view of FIG. The height after application of the curable resin composition 14 must be at least higher than the silicon die 11 at all points. This is because in the next step, when the heat-dissipating member such as a heat spreader is covered, if the height of the cured resin composition 14 is not higher than that of the silicon die 11, the curable resin composition 14 is physically This is because it is difficult to block the outside air because it does not contact both the substrate 12 and the heat dissipation member.
5 and 6 show the heat spreader 15 of the heat radiating member used in the present invention. 5 and 6 show the same heat spreader 15. FIG. 6 is a reverse view of FIG. Although the X plane in FIG. 5 is flat, the Y plane in FIG. 6 is a plane that is one step lower than the edge portion 16. The Y surface side is a surface in contact with the heat conductive silicone grease composition 13 and the curable resin composition 14. FIG. 7 is a cross-sectional view of FIG. The height of the edge portion 16 is preferably equal to or slightly higher than the height of the silicon die 11 from the substrate 12.
 放熱部材のシートスプレッダー15の材質は、銅が好ましく、表面をニッケルにてコートしていることがより好ましい。この放熱部材であるヒートスプレッダー15を図8、9に示すように、熱伝導性シリコーングリース組成物13及び硬化性樹脂組成物14全体を覆うように被せて上部から押圧した後、80~180℃で加熱する。この加熱により、熱伝導性シリコーン組成物13及び硬化性樹脂組成物14を硬化させる。なお、放熱部材であるヒートスプレッダー15を基板12に接着させるために、図10に示すように、接着材17を使用することが好ましい。図9は図8をサイドから見た図であり、図10は図8の断面図をサイドから見た図である。
 また、ヒートスプレッダーの接着前後斜視図を夫々図11及び図12に示す。
The material of the sheet spreader 15 of the heat radiating member is preferably copper, and more preferably the surface is coated with nickel. As shown in FIGS. 8 and 9, the heat spreader 15 as the heat radiating member is covered with the heat conductive silicone grease composition 13 and the curable resin composition 14 so as to cover the whole, and is pressed from above, and then 80 to 180 ° C. Heat with. By this heating, the heat conductive silicone composition 13 and the curable resin composition 14 are cured. In addition, in order to adhere the heat spreader 15 which is a heat radiating member to the board | substrate 12, it is preferable to use the adhesive material 17 as shown in FIG. 9 is a view of FIG. 8 viewed from the side, and FIG. 10 is a view of the cross-sectional view of FIG. 8 viewed from the side.
Further, front and rear perspective views of the heat spreader are shown in FIGS. 11 and 12, respectively.
 完成品の断面図を図13に示す。硬化性樹脂組成物14が、物理的に水蒸気の侵入を抑えるあるいは少なくするため、熱伝導性シリコーングリース組成物13に含有するガリウムあるいはガリウム合金の酸化が抑えられる。 A cross-sectional view of the finished product is shown in FIG. Since the curable resin composition 14 physically suppresses or reduces the entry of water vapor, oxidation of gallium or a gallium alloy contained in the heat conductive silicone grease composition 13 can be suppressed.
 次に、本発明に好適に使用される、該熱伝導性シリコーングリース組成物について説明する。本発明に用いられる熱伝導性シリコーングリース組成物は、(A)成分、(B)成分、(C)成分、(D)成分、(E)成分及び(G)成分を含有するものが好ましい。
 以下、それぞれの成分について詳述する。
Next, the thermally conductive silicone grease composition that is preferably used in the present invention will be described. The thermally conductive silicone grease composition used in the present invention preferably contains (A) component, (B) component, (C) component, (D) component, (E) component and (G) component.
Hereinafter, each component will be described in detail.
<(A)オルガノポリシロキサン>
 本発明に用いられる組成物の(A)成分は、ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンであり、付加反応硬化系における主剤(ベースポリマー)である。このオルガノポリシロキサンが液状であれば、その分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状などであってもよいが、特に好ましくは直鎖状である。
<(A) Organopolysiloxane>
The component (A) of the composition used in the present invention is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is a main agent (base polymer) in an addition reaction curing system. If this organopolysiloxane is liquid, its molecular structure is not limited. For example, it may be linear, branched, partially branched, etc. is there.
 前記アルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基、1-へキセニル基等が挙げられる。これらの中でも、汎用性が高いビニル基が好ましい。このアルケニル基は、分子鎖末端のケイ素原子、また分子鎖途中のケイ素原子のいずれに結合していてもよいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。 Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group. Among these, a vinyl group having high versatility is preferable. This alkenyl group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, but in order to make the resulting cured product flexible, It is preferable that it is bonded only to.
 (A)成分中のアルケニル基以外のケイ素原子に結合する基としては、例えば、非置換又は置換の一価炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基;クロロメチル基、3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基等が挙げられる。就中、合成面及び経済性の点から、これらの基のうち、90%以上がメチル基であることが好ましい。 (A) As a group couple | bonded with silicon atoms other than the alkenyl group in a component, it is an unsubstituted or substituted monovalent hydrocarbon group, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, hexyl Group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group and other alkyl groups; cyclopentyl group, cyclohexyl group and other cycloalkyl groups; phenyl group, tolyl group, xylyl group, naphthyl group and other aryl groups; benzyl group Aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group; halogenated alkyl groups such as chloromethyl group, 3,3,3-trifluoropropyl group and 3-chloropropyl group. In particular, 90% or more of these groups are preferably methyl groups from the viewpoint of synthesis and economy.
 また、このオルガノポリシロキサンの25℃における粘度は、0.05~100Pa・sの範囲が好ましく、特に好ましくは0.1~50Pa・sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなり、また、高すぎると得られる組成物の伸展性が悪くなる場合がある。なお、この粘度はスパイラル粘度計PC-ITL(株式会社マルコム社製)を用いて測定することができる。 The viscosity of this organopolysiloxane at 25 ° C. is preferably in the range of 0.05 to 100 Pa · s, particularly preferably in the range of 0.1 to 50 Pa · s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor. This viscosity can be measured using a spiral viscometer PC-ITL (manufactured by Malcolm).
 このようなオルガノポリシロキサンの好適な具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端メチルジビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端ジメチルビニルシロキシ封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。 Preferable specific examples of such organopolysiloxanes include dimethylvinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, methyldivinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, and dimethylvinylsiloxy-capped dimethylsiloxane having molecular chains at both ends. -A methylphenylsiloxane copolymer etc. are mentioned.
 この(A)成分のオルガノポリシロキサンは、1種単独でも、例えば粘度が異なる2種以上を組み合わせて使用することもできる。 The organopolysiloxane of component (A) can be used alone or in combination of two or more having different viscosities.
<(B)オルガノハイドロジェンポリシロキサン>
 本発明に用いられる組成物の(B)成分は、ケイ素原子に結合した水素原子(以下、「SiH基」という)を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサンであり、上記(A)成分の架橋剤として作用するものである。即ち、この(B)成分中のSiH基が、後記(E)成分の白金系触媒の作用により、(A)成分中のアルケニル基とヒドロシリル化反応により付加して、架橋結合を有する3次元網状構造を有する架橋硬化物を与える。
<(B) Organohydrogenpolysiloxane>
Component (B) of the composition used in the present invention is an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms (hereinafter referred to as “SiH groups”) in one molecule. A) It acts as a crosslinking agent for the component. That is, the SiH group in the component (B) is added by the hydrosilylation reaction with the alkenyl group in the component (A) by the action of the platinum catalyst of the component (E) described later, and has a three-dimensional network structure having a crosslink. A crosslinked cured product having a structure is provided.
 (A)成分中の水素原子以外のケイ素原子に結合する基としては、例えば、アルケニル基以外の非置換又は置換の一価炭化水素基であり、(A)成分について例示したものと同様の基が挙げられる。中でも、合成面及び経済性の点から、メチル基が好ましい。また、このオルガノハイドロジェンポリシロキサンの構造としては、直鎖状、分岐状、環状、及び、これらの組み合わせのいずれであってもよい。 (A) As a group couple | bonded with silicon atoms other than a hydrogen atom in a component, it is an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group, for example, The group similar to what was illustrated about (A) component Is mentioned. Among these, a methyl group is preferable from the viewpoint of synthesis and economy. Further, the structure of the organohydrogenpolysiloxane may be linear, branched, cyclic, or a combination thereof.
 (B)成分のオルガノハイドロジェンポリシロキサンの好適な具体例としては、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジエンシロキシ基封鎖メチルフエニルポリシロキサン等が挙げられる。また、(B)成分のオルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を組み合わせても使用することができる。 Preferred specific examples of the organohydrogenpolysiloxane of component (B) include molecular chain both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer. , Dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer blocked with trimethylsiloxy group blocked at both ends of molecular chain, dimethylpolysiloxane blocked with dimethylhydrogensiloxy group blocked at both ends of molecular chain, dimethylpolysiloxane blocked with dimethylhydrogensiloxy group blocked at both ends of molecular chain Siloxane / methylhydrogensiloxane copolymer, dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylphenylsiloxane copolymer, both ends of the molecular chain Le hydro diene siloxy group-blocked methyl phenylalanine polysiloxane and the like. Moreover, the organohydrogenpolysiloxane of the component (B) can be used singly or in combination of two or more.
 (B)成分の配合量は、上記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1~5.0個となる量であり、好ましくは0.5~3.0個となる量である。前記個数が0.1個未満であると、十分な網状構造が形成されないので、硬化後に必要とされる硬さが得られず、更に、後記(C)成分を固定・保持することが困難となる。逆に、5.0個を超えると得られる硬化物の物性の経時変化が大きくなり、保存安定性が悪化する場合がある。 The blending amount of the component (B) is such that the number of hydrogen atoms bonded to silicon atoms in the component is 0.1 to 5.0 with respect to one alkenyl group in the component (A). The amount is preferably 0.5 to 3.0. If the number is less than 0.1, a sufficient network structure is not formed, so that the required hardness after curing cannot be obtained, and it is difficult to fix and hold the component (C) described later. Become. On the other hand, when the number exceeds 5.0, the change over time in the physical properties of the obtained cured product increases, and the storage stability may deteriorate.
<(C)ガリウム及び/又はその合金>
 本発明に用いられる組成物の(C)成分は、融点が0~70℃の、ガリウム及び/又はその合金である。該(C)成分は、本発明に用いられる組成物から得られる硬化物に良好な熱伝導性を付与するために配合される成分であり、この成分を配合した組成物の使用が本発明の半導体装置の特徴をなすものである。
<(C) Gallium and / or its alloy>
The component (C) of the composition used in the present invention is gallium and / or an alloy thereof having a melting point of 0 to 70 ° C. The component (C) is a component that is blended in order to impart good thermal conductivity to the cured product obtained from the composition used in the present invention, and the use of the composition blended with this component is used in the present invention. This is a characteristic of a semiconductor device.
 この(C)成分の融点は、上記のとおり、0~70℃の範囲であることが必要である。これは、本発明に用いられる組成物を調製した後に、その組成物に含まれる各成分の分散状態を保持するため、長期保存及び輸送時には、約-30~-10℃、好ましくは約-25~-15℃の低温状態とする必要があるが、前記融点が0℃未満であると、前記のとおりに長期保存及び輸送する際に、液状微粒子同士が凝集しやすくなり、組成物の調製時の状態を保持することが比較的困難となる。また、逆に、70℃を超えると組成物の調製工程において速やかに融解しないため、作業性に劣る結果となる。よって、前記のとおり、0~70℃の範囲とすることが、取り扱い上必要な条件であるとともに適切な範囲である。特に、融点が15~50℃の範囲内のものが、本発明に用いられる組成物の調製が容易であり、前記長期保存及び輸送時の取扱いが簡便であることから、より好ましい。また、組成物の硬化に際する加熱処理条件下で、該(C)成分の液状微粒子の凝集・連結による熱伝導性の経路の形成が容易であることから、融点が15~50℃の範囲内のものが、より好ましい。 The melting point of the component (C) needs to be in the range of 0 to 70 ° C. as described above. This is because, after preparing the composition used in the present invention, the dispersion state of each component contained in the composition is maintained, so that it is about −30 to −10 ° C., preferably about −25 during long-term storage and transportation. Although it is necessary to maintain a low temperature state of -15 ° C., when the melting point is less than 0 ° C., liquid fine particles tend to aggregate during long-term storage and transportation as described above. It is relatively difficult to maintain this state. On the other hand, when the temperature exceeds 70 ° C., the composition is not rapidly melted in the preparation process, resulting in poor workability. Therefore, as described above, the range of 0 to 70 ° C. is an appropriate range as well as a necessary condition for handling. In particular, those having a melting point in the range of 15 to 50 ° C. are more preferable because preparation of the composition used in the present invention is easy and handling during the long-term storage and transportation is simple. In addition, it is easy to form a heat conductive path by agglomeration and connection of the liquid fine particles of the component (C) under the heat treatment conditions for curing the composition. The inside is more preferable.
 因みに、金属ガリウムの融点は29.8℃である。また、代表的なガリウム合金としては、例えば、ガリウム-インジウム合金;例えばGa-In(質量比=75.4:24.6、融点=15.7℃)、ガリウム-スズ合金、ガリウム-スズ-亜鉛合金;例えばGa-Sn-Zn(質量比=82:12:6、融点=17℃)、ガリウム-インジウム-スズ合金;例えばGa-In-Sn(質量比=21.5:16.0:62.5、融点=10.7℃)、ガリウム-インジウム-ビスマス-スズ合金;例えばGa-In-Bi-Sn(質量比=9.4:47.3:24.7:18.6、融点=48.0℃)等が挙げられる。 Incidentally, the melting point of metallic gallium is 29.8 ° C. Typical gallium alloys include, for example, gallium-indium alloys; for example, Ga-In (mass ratio = 75.4: 24.6, melting point = 15.7 ° C.), gallium-tin alloys, gallium-tin- Zinc alloy; for example, Ga—Sn—Zn (mass ratio = 82: 12: 6, melting point = 17 ° C.), gallium-indium-tin alloy; for example, Ga—In—Sn (mass ratio = 21.5: 16.0: 62.5, melting point = 10.7 ° C.), gallium-indium-bismuth-tin alloy; for example, Ga—In—Bi—Sn (mass ratio = 9.4: 47.3: 24.7: 18.6, melting point) = 48.0 ° C.) and the like.
 この(C)成分は1種単独でも2種以上を組み合わせても使用することができる。 This component (C) can be used alone or in combination of two or more.
 未硬化状態の本発明に用いられる組成物中に存在するガリウム及び/又はその合金の液状微粒子又は固体微粒子の形状は、通常、略球状であるが、不定形のものが含まれていてもよい。また、その平均粒径は、通常、0.1~100μm、特に5~50μmであることが好ましい。前記平均粒径が小さすぎると組成物の粘度が高くなりすぎるため、伸展性が乏しいものとなるので塗工作業性に問題があり、また、逆に大きすぎると組成物が不均一となるため発熱性電子部品等への薄膜状の塗布が困難となることがある。なお、前記形状及び平均粒径、更に組成物中での分散状態は、上記のとおり、組成物の調製後に速やかに低温下で保存されることから、発熱性電子部品等への塗工工程まで維持することができる。なお、この平均粒径は体積基準の累積平均径であってレーザー散乱法[マイクロトラックMT3300EX(日機装株式会社製)]より測定したものをいう。 The shape of the liquid fine particles or solid fine particles of gallium and / or an alloy thereof present in the composition used in the present invention in an uncured state is usually substantially spherical, but may include irregular shapes. . In addition, the average particle diameter is usually 0.1 to 100 μm, preferably 5 to 50 μm. If the average particle size is too small, the viscosity of the composition will be too high, and the extensibility will be poor, so there will be a problem in coating workability, and conversely if it is too large, the composition will be non-uniform. It may be difficult to apply a thin film to exothermic electronic components. In addition, since the shape and average particle diameter, as well as the dispersion state in the composition, are stored at a low temperature immediately after the preparation of the composition as described above, until the coating process to the heat-generating electronic components, etc. Can be maintained. The average particle diameter is a volume-based cumulative average diameter, which is measured by a laser scattering method [Microtrack MT3300EX (manufactured by Nikkiso Co., Ltd.)].
 この(C)成分の配合量は、上記(A)成分100質量部に対して、1,000~20,000質量部であり、好ましくは3,000~17,000質量部であり、特に好ましくは5,000~1,5000である。前記配合量が1,000質量部未満であると熱伝導率が低くなり、組成物が厚い場合、十分な放熱性能が得られない。20,000質量部より多いと均一組成物とすることが困難となり、また、組成物の粘度が高すぎるものとなるため、伸展性があるグリース状のものとして組成物を得ることができないという問題がある。 The amount of component (C) is 1,000 to 20,000 parts by weight, preferably 3,000 to 17,000 parts by weight, particularly preferably 100 parts by weight of component (A). Is from 5,000 to 1,5000. When the blending amount is less than 1,000 parts by mass, the thermal conductivity is lowered, and when the composition is thick, sufficient heat dissipation performance cannot be obtained. When the amount is more than 20,000 parts by mass, it is difficult to obtain a uniform composition, and the viscosity of the composition becomes too high, so that the composition cannot be obtained as an extensible grease. There is.
<(D)熱伝導性充填剤>
 本発明組成物には、前記(C)成分とともに、従来から公知の熱伝導性シート又は熱伝導性グリースに配合される熱伝導性充填剤を配合することができる。1,000質量部より多いと組成物の粘度が高くなり、伸展性があるグリース状のものとして組成物を得ることができないという問題があるため、(D)成分の配合量は0~1,000質量部の範囲であり、50~500質量部の範囲が好ましい。
<(D) Thermally conductive filler>
In the composition of the present invention, together with the component (C), a heat conductive filler to be blended in a conventionally known heat conductive sheet or heat conductive grease can be blended. If the amount is more than 1,000 parts by mass, the viscosity of the composition becomes high, and there is a problem that the composition cannot be obtained as a grease-like material having extensibility. The range is 000 parts by mass, and preferably 50 to 500 parts by mass.
 この(D)成分としては、熱伝導率が良好なものであれば特に限定されず、従来から公知のものを全て使用することができ、例えば、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化硼素粉末、窒化アルミニウム粉末、窒化珪素粉末、銅粉末、ダイヤモンド粉末、ニッケル粉末、亜鉛粉末、ステンレス粉末、カーボン粉末等が挙げられる。また、この(D)成分は1種単独でも2種以上を組み合わせても使用することができる。 The component (D) is not particularly limited as long as it has a good thermal conductivity, and any conventionally known one can be used. For example, aluminum powder, zinc oxide powder, alumina powder, boron nitride Examples thereof include powder, aluminum nitride powder, silicon nitride powder, copper powder, diamond powder, nickel powder, zinc powder, stainless steel powder, and carbon powder. Further, the component (D) can be used alone or in combination of two or more.
 但し、アルミニウムのようにガリウムとの反応性が高いものを用いると、組成物を調製する際の配合混練時に凝集して、均一な配合が困難となる場合がある。この場合には、先ず(C)成分の液状微粒子の、(A)及び(G)成分の混合液成分中への均一な分散が終了し、(C)成分が、(A)及び(G)成分の混合液により被覆された状態となった後に、(D)成分を加えて配合混練を行えばよい。こうすることによって(D)成分の凝集を防ぐことができる。 However, if a material having high reactivity with gallium such as aluminum is used, it may aggregate during mixing and kneading when preparing the composition, and uniform mixing may be difficult. In this case, first, the uniform dispersion of the liquid fine particles of the component (C) in the mixed liquid component of the components (A) and (G) is completed, and the component (C) is converted into the components (A) and (G). After being in a state of being coated with the component mixture, the component (D) may be added and blended and kneaded. By doing so, aggregation of the component (D) can be prevented.
 (D)成分の平均粒径は、0.1~100μmの範囲内であり、好ましくは1~20μmの範囲内である。前記平均粒径が小さすぎると、得られる組成物の粘度が高くなりすぎるので伸展性の乏しいものとなる。また、逆に大きすぎると、均一な組成物を得ることが困難となる。なお、この平均粒径は体積基準の累積平均径であってレーザー散乱法[マイクロトラックMT3300EX(日機装株式会社製)]より測定したものである。 (D) The average particle diameter of the component (D) is in the range of 0.1 to 100 μm, preferably in the range of 1 to 20 μm. If the average particle size is too small, the resulting composition will have too high a viscosity, resulting in poor extensibility. On the other hand, if it is too large, it is difficult to obtain a uniform composition. This average particle diameter is a volume-based cumulative average diameter and is measured by a laser scattering method [Microtrack MT3300EX (manufactured by Nikkiso Co., Ltd.)].
<(E)白金系触媒>
 本発明に用いられる組成物の(E)成分の白金系触媒は、上記(A)成分中のアルケニル基と上記(B)成分中のSiHとの付加反応を促進し、本発明に用いられる組成物から3次元網状状態の架橋硬化物を与えるために配合される成分である。
<(E) Platinum-based catalyst>
The platinum-based catalyst of the component (E) of the composition used in the present invention promotes the addition reaction between the alkenyl group in the component (A) and SiH in the component (B), and the composition used in the present invention. It is a component blended to give a cross-linked cured product in a three-dimensional network state.
 この(E)成分としては、通常のヒドロシリル化反応に用いられる公知のものを全て使用することができ、例えば、白金金属(白金黒)、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。(E)成分の配合量は、本発明に用いられる組成物を硬化させるに必要な有効量であればよく、特に限定されないが、例えば、白金原子として(A)成分の質量に対して、通常、0.1~500ppmとすることが好ましい。 As the component (E), all known compounds used in ordinary hydrosilylation reactions can be used. For example, platinum metal (platinum black), chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, Examples include platinum coordination compounds. (E) The compounding quantity of a component should just be an effective amount required in order to harden the composition used for this invention, Although it does not specifically limit, For example, normally with respect to the mass of (A) component as a platinum atom. 0.1 to 500 ppm is preferable.
<(F)付加反応制御剤>
 本発明に用いられる組成物の(F)成分の付加反応制御剤は、必要により配合される成分で、室温における上記白金系触媒の作用にヒドロシリル化反応を抑制し、本発明に用いられる組成物の可使時間(シェルフライフ、ポットライフ)を確保して、発熱性電子部品等への塗工作業に支障をきたさないように配合される成分である。
<(F) Addition reaction control agent>
The addition reaction control agent for the component (F) of the composition used in the present invention is a component that is blended as necessary, and the hydrosilylation reaction is suppressed by the action of the platinum-based catalyst at room temperature, and the composition used in the present invention. It is a component that is blended so as to ensure the pot life (shelf life, pot life) and to prevent the coating work on the heat-generating electronic parts and the like.
 この(F)成分としては、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て使用することができ、例えば、1-エチニル-1-シクロヘキサノール、3-ブチン-1-オール等のアセチレン化合物や、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が挙げられる。 As the component (F), all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. For example, 1-ethynyl-1-cyclohexanol, 3-butyne-1 -Acetylene compounds such as ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds and the like.
 この(F)成分の配合量は、上記(E)成分の使用量によっても異なり、一概にいえないが、ヒドロシリル化反応の進行を抑制することができる有効量であればよく、特に限定されない。例えば、(A)成分100質量部に対して、通常、0.001~5質量部程度とすることが好ましい。(F)成分の配合量が少なすぎれば、十分な可使時間を確保することができないことがあり、また、多すぎると本発明に用いられる組成物の硬化性が低下することがある。なお、この(F)成分は、組成物中への分散性を向上させるため、必要に応じて、トルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。 The blending amount of the component (F) varies depending on the amount of the component (E) used and cannot be generally specified, but is not particularly limited as long as it is an effective amount capable of suppressing the progress of the hydrosilylation reaction. For example, it is usually preferably about 0.001 to 5 parts by mass with respect to 100 parts by mass of component (A). If the amount of component (F) is too small, sufficient pot life may not be ensured, and if too large, the curability of the composition used in the present invention may decrease. In addition, in order to improve the dispersibility in a composition, this (F) component can also be used by diluting with organic solvents, such as toluene, xylene, and isopropyl alcohol, as needed.
<(G)表面処理剤>
 本発明に用いられる組成物には、組成物の調製時に(C)成分のガリウム及び/又はその合金を疎水化処理し、且つ前記(C)成分の液状粒子の(A)成分のオルガノポリシロキサンとの濡れ性を向上させ、前記(C)成分を微粒子として、前記(A)成分からなるマトリックス中に均一に分散させることを目的として下記一般式(1)で示されるポリシロキサンを(G)表面処理剤として配合することが好ましい。
<(G) Surface treatment agent>
The composition used in the present invention comprises hydrophobizing the component (C) gallium and / or its alloy during preparation of the composition, and the component (A) liquid particle organopolysiloxane (C) And (G) a polysiloxane represented by the following general formula (1) for the purpose of uniformly dispersing the component (C) as fine particles in a matrix composed of the component (A). It is preferable to mix as a surface treatment agent.
 また、この(G)成分は、上記(D)成分の熱伝導性充填剤も、同様にその表面の濡れ性を向上させて、その均一分散性を良好なものとする作用も有する。
 (G)成分としては、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003

(式中、Rは同一もしくは異種の一価の炭化水素基であり、Rはアルキル基、アルケニル基又はアシル基であり、aは5~100の整数であり、bは1~3の整数である。)
で表される、分子鎖の片末端が加水分解性基で封鎖されたポリシロキサンであり、25℃における動粘度が10~10,000mm/sである。
 なお、この動粘度はオストワルド粘度計により測定した値である。
In addition, the component (G) also has the function of improving the wettability of the surface of the thermally conductive filler of the component (D) and improving the uniform dispersibility.
As the component (G), the following general formula (1):
Figure JPOXMLDOC01-appb-C000003

Wherein R 1 is the same or different monovalent hydrocarbon group, R 2 is an alkyl group, an alkenyl group or an acyl group, a is an integer of 5 to 100, and b is 1 to 3 (It is an integer.)
And a polysiloxane having one end of a molecular chain blocked with a hydrolyzable group, and a kinematic viscosity at 25 ° C. of 10 to 10,000 mm 2 / s.
The kinematic viscosity is a value measured with an Ostwald viscometer.
 (G)成分の配合量は、(A)成分100質量部に対して、500質量部より多いと相対的に(A)成分が少なくなるため仕上がる組成物が硬化しにくくなるという問題がある。本発明に用いられる組成物が硬化しないと、グリースがICパッケージに塗布された後に、接着がズレてしまい、性能が著しく落ちる可能性がある。従って、(G)成分の配合量は0~500質量部の範囲であり、好ましくは50~200質量部である。 When the blending amount of the (G) component is more than 500 parts by mass with respect to 100 parts by mass of the (A) component, there is a problem that the finished composition is difficult to cure because the (A) component is relatively decreased. If the composition used in the present invention is not cured, after the grease is applied to the IC package, the adhesion may be shifted and the performance may be significantly lowered. Accordingly, the blending amount of the component (G) is in the range of 0 to 500 parts by mass, preferably 50 to 200 parts by mass.
 また、更に場合によっては(G)成分の一部として、以下のアルコキシシランを配合してもよい。
 (G-2)下記一般式(2):
 R Si(OR4-c-d   (2)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、cは1~3の整数、dは0~2の整数であり、c+dの和は1~3の整数である。)
Further, in some cases, the following alkoxysilane may be blended as part of the component (G).
(G-2) The following general formula (2):
R 3 c R 4 d Si (OR 5 ) 4-cd (2)
Wherein R 3 is independently an alkyl group having 6 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently And an alkyl group having 1 to 6 carbon atoms, c is an integer of 1 to 3, d is an integer of 0 to 2, and the sum of c + d is an integer of 1 to 3.)
 上記一般式(2)式中のRとしては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素原子数が6未満であると上記(C)成分及び(D)成分の濡れ性の向上が充分でなく、15を超えると該(G-2)成分のオルガノシランが常温で固化するので、取り扱いが不便な上、得られた組成物の低温特性が低下する。 Examples of R 3 in the general formula (2) include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. When the number of carbon atoms is less than 6, the wettability of the component (C) and the component (D) is not sufficiently improved, and when it exceeds 15, the organosilane of the component (G-2) is solidified at room temperature. In addition to being inconvenient to handle, the low temperature properties of the resulting composition are reduced.
 また、上記一般式(2)Rとしては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2-(ナノフルオロブチル)エチル基、2-(へプタデカフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられる。これらの中では、特に、メチル基、エチル基が好ましい。 The general formula (2) R 4 includes, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group and an octyl group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; a vinyl group and an allyl group Alkenyl groups such as phenyl group, tolyl group and the like; aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (nano And halogenated hydrocarbon groups such as a fluorobutyl) ethyl group, a 2- (heptadecafluorooctyl) ethyl group, and a p-chlorophenyl group. Among these, a methyl group and an ethyl group are particularly preferable.
 また、上記Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基が挙げられる。これらの中では、特に、メチル基、エチル基が好ましい。 Further, the above-mentioned R 5, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an alkyl group such as hexyl group. Among these, a methyl group and an ethyl group are particularly preferable.
 この(G-2)成分の好適な具体例としては、下記のものを挙げることができる。
  C13Si(OCH
  C1021Si(OCH
  C1225Si(OCH
  C1225Si(OC
  C1021Si(CH)(OCH
  C1021Si(C)(OCH
  C1021Si(CH)(OC
  C1021Si(CH=CH)(OCH
  C1021Si(CHCHCF)(OCH
Preferable specific examples of the component (G-2) include the following.
C 6 H 13 Si (OCH 3 ) 3
C 10 H 21 Si (OCH 3 ) 3
C 12 H 25 Si (OCH 3 ) 3
C 12 H 25 Si (OC 2 H 5 ) 3
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2
C 10 H 21 Si (C 6 H 5) (OCH 3) 2
C 10 H 21 Si (CH 3 ) (OC 2 H 5) 2
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2
C 10 H 21 Si (CH 2 CH 2 CF 3) (OCH 3) 2
 なお、この(G-2)成分は1種単独でも2種以上を組み合わせても使用することができる。また、その配合量は、(A)成分100質量部に対して、0.1~100質量部、より好ましくは1~50質量部である。前記配合量が多すぎると、ウェッター効果が増大することがなく不経済であり、多少揮発性があるので開放系で放置しておくと本発明に用いられる組成物が徐々に硬くなってしまう場合がある。 This component (G-2) can be used alone or in combination of two or more. The blending amount is 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A). When the blending amount is too large, the wetter effect does not increase and it is uneconomical. Since it is somewhat volatile, the composition used in the present invention gradually becomes harder if left in an open system. There is.
<熱伝導性シリコーングリース組成物の粘度>
 本発明に用いられる組成物は、後述のとおり、発熱性電子部品の表面に適用され、これに放熱部材を圧接した後、加熱処理することにより硬化して、熱伝導性層を形成する。この際、作業性を良好とするために、本発明に用いられる組成物はグリース状である必要がある。
<Viscosity of thermally conductive silicone grease composition>
As will be described later, the composition used in the present invention is applied to the surface of the heat-generating electronic component, and after heat-contacting the heat-dissipating member, the composition is cured by heat treatment to form a heat conductive layer. At this time, in order to improve workability, the composition used in the present invention needs to be in the form of grease.
 例えば、本発明に用いられる組成物はシリンジ内に収納され、該シリンジからCPU等の発熱性電子部品の表面に塗布されて被覆層が形成され、これに放熱部材が圧接される。従って、本発明に用いられる組成物の25℃の絶対粘度は、10~1,000Pa・sが好ましく、特に50~400Pa・sであることが好ましい。前記絶対粘度が低すぎると前記塗布時に液垂れが生じて、作業上問題となる場合がある。また、逆に、絶対粘度が高すぎると、シリンジからの押し出しが困難となるため、塗布作業の効率が悪くなる場合がある。なお、この粘度はスパイラル粘度計PC-ITL(株式会社マルコム社製)により測定することができる。 For example, the composition used in the present invention is accommodated in a syringe, applied from the syringe onto the surface of a heat-generating electronic component such as a CPU, and a coating layer is formed, and a heat radiating member is pressed against this. Accordingly, the absolute viscosity at 25 ° C. of the composition used in the present invention is preferably 10 to 1,000 Pa · s, and particularly preferably 50 to 400 Pa · s. If the absolute viscosity is too low, dripping may occur during the application, which may cause a problem in operation. On the other hand, if the absolute viscosity is too high, extrusion from the syringe becomes difficult, and the efficiency of the coating operation may be deteriorated. This viscosity can be measured with a spiral viscometer PC-ITL (Malcom Co., Ltd.).
<本発明に用いられる熱伝導性シリコーングリース組成物の調製>
 本発明に用いられる熱伝導性シリコーングリース組成物は、
  (i)前記(A)成分、前記(C)成分、前記(D)成分、前記(G)成分及び(G-2)成分を含む場合は、該成分を40~120℃の範囲内の温度であり、かつ、前記(C)成分の融点以上である温度で混練して均一な混合物を得る工程;
  (ii)混練を停止して、前記温度を前記(C)成分の融点未満にまで冷却させる工程;及び
  (iii)前記(B)成分と前記(E)成分と前記(F)成分と、場合により他の成分とを、追加して、前記(C)成分の融点未満の温度で混練して均一な混合物を得る工程;
を含む製造方法によって得ることができる。
<Preparation of thermally conductive silicone grease composition used in the present invention>
The thermally conductive silicone grease composition used in the present invention is:
(I) When the component (A), the component (C), the component (D), the component (G) and the component (G-2) are included, the temperature of the component is in the range of 40 to 120 ° C. And kneading at a temperature equal to or higher than the melting point of the component (C) to obtain a uniform mixture;
(Ii) stopping kneading and cooling the temperature to below the melting point of component (C); and (iii) component (B), component (E), component (F), and A step of adding the other components by kneading at a temperature lower than the melting point of the component (C) to obtain a uniform mixture;
It can obtain by the manufacturing method containing.
 前記製造方法においては、加熱手段、及び必要に応じて冷却手段を備えたコンディショニングミキサー、プラネタリーミキサー等の攪拌・混練機を使用することができる。 In the production method, a stirring / kneading machine such as a conditioning mixer or a planetary mixer provided with a heating means and, if necessary, a cooling means can be used.
 前記(i)工程において、(C)成分のガリウム及び/又はその合金の液状物と、(D)成分の熱伝導性充填剤は、(A)成分と(G)成分、又は、(A)成分と(G)成分及び(G-2)成分の混合液中に均一に分散される。 In the step (i), the liquid material of gallium and / or its alloy as the component (C) and the thermally conductive filler as the component (D) are the components (A) and (G), or (A) It is uniformly dispersed in a mixed solution of the component, the component (G) and the component (G-2).
 前記工程(ii)における降温操作乃至冷却操作は速やかに行われることが好ましい。該工程(ii)において、(A)成分と(G)成分、又は、(A)成分と(G)成分及び(G-2)成分の混合液からなるマトリックス中に均一に分散された液状微粒子状態の(C)成分は、その平均粒径及び前記分散状態を保持して固化する。 It is preferable that the temperature lowering operation or the cooling operation in the step (ii) is performed promptly. In the step (ii), liquid fine particles uniformly dispersed in a matrix composed of the component (A) and the component (G) or the mixed solution of the component (A), the component (G) and the component (G-2) The component (C) in the state solidifies while maintaining its average particle diameter and the dispersed state.
 前記工程(iii)もできるだけ短時間で終了させることが好ましい。該工程(iii)の終了時点において、(C)成分の固化した微粒子の前記分散状態に、実質上、変化が生じることはない。そして、該工程(iii)の終了後は、生成した組成物を容器内に収容し、速やかに約-30~-10℃、好ましくは約-25~-15℃の温度の冷凍庫、冷凍室等で保存するのが好ましい。また、その輸送等においても冷凍設備を備えた車両等を用いるのが好ましい。このように低温下で保管・輸送することにより、例えば長期間の保存によっても、本発明に用いられる組成物の組成及び分散状態を安定して保持することができる。 It is preferable that the step (iii) is also completed in as short a time as possible. At the end of the step (iii), there is substantially no change in the dispersion state of the solidified fine particles of the component (C). After the completion of the step (iii), the produced composition is accommodated in a container, and quickly, a freezer having a temperature of about −30 to −10 ° C., preferably about −25 to −15 ° C., a freezer, etc. It is preferable to store in Further, it is preferable to use a vehicle or the like equipped with a refrigeration facility for its transportation. By storing and transporting at a low temperature as described above, the composition and dispersion state of the composition used in the present invention can be stably maintained even after long-term storage, for example.
 次に、本発明に用いられる熱伝導性シリコーングリース組成物以外の硬化性樹脂組成物について詳述する。本発明に用いられる硬化性樹脂組成物に用いられるバインダー樹脂はシリコーンに特に限定されないが、耐熱性や応力緩和の観点からシリコーンが好ましい。硬化性樹脂組成物がヒドロシリル化反応により硬化する場合には、該熱伝導性シリコーン樹脂組成物と同じ(A)成分、(B)成分、(E)成分及び充填剤で構成される。(G)成分及び/又は(F)成分は含有してもよいが、(C)成分は含有してはならない。硬化性樹脂に使用される(A)成分に対する(B)成分、(E)成分の配合比率は、該熱伝導性シリコーングリース組成物と同じである。(G)成分及び/又は(F)成分が含有される場合でも、(A)成分に対する比率は、該熱伝導性シリコーングリース組成物と同じである。 Next, the curable resin composition other than the heat conductive silicone grease composition used in the present invention will be described in detail. The binder resin used in the curable resin composition used in the present invention is not particularly limited to silicone, but silicone is preferable from the viewpoint of heat resistance and stress relaxation. When the curable resin composition is cured by a hydrosilylation reaction, it is composed of the same component (A), component (B), component (E) and filler as the thermally conductive silicone resin composition. The component (G) and / or the component (F) may be contained, but the component (C) must not be contained. The blending ratio of the component (B) and the component (E) to the component (A) used for the curable resin is the same as that of the thermally conductive silicone grease composition. Even when the component (G) and / or the component (F) is contained, the ratio to the component (A) is the same as that of the thermally conductive silicone grease composition.
 上記の硬化性樹脂組成物は、組成物中、5~90体積%の充填剤を含む事が好ましい。充填剤が5体積%より小さいと、周りから侵入する水蒸気を十分に防ぐことができない場合があり、90体積%を超えると硬化性樹脂組成物の流動性が無くなるためである。充填剤の含有量は、好ましくは10~80体積%であり、より好ましくは15~70体積%である。 The above curable resin composition preferably contains 5 to 90% by volume of filler in the composition. If the filler is less than 5% by volume, water vapor entering from the surroundings may not be sufficiently prevented, and if it exceeds 90% by volume, the fluidity of the curable resin composition is lost. The content of the filler is preferably 10 to 80% by volume, more preferably 15 to 70% by volume.
 硬化性樹脂組成物に使用される充填剤は、上述されている熱伝導性シリコーン樹脂組成物に使用される(D)成分と全く同じでもよいし、表面処理煙霧質シリカでもよい。 The filler used in the curable resin composition may be the same as the component (D) used in the above-described thermally conductive silicone resin composition, or may be surface-treated fumed silica.
 ここで、表面処理煙霧質シリカの表面処理剤としては、例えば、クロロシラン、シラザン、シロキサンが有効である。表面処理剤の具体例としては、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ヘキサメチルジシラザン、オクタメチルシクロテトラシロキサン、α,ω-トリメチルシリルジメチルポリシロキサン等が挙げられる。 Here, as the surface treatment agent for the surface-treated fumed silica, for example, chlorosilane, silazane, and siloxane are effective. Specific examples of the surface treatment agent include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, hexamethyldisilazane, octamethylcyclotetrasiloxane, α, ω-trimethylsilyldimethylpolysiloxane, and the like.
 また、表面処理煙霧質シリカの比表面積(BET法)は50m/g以上であることが好ましく、より好ましくは100~500m/gである。比表面積が50m/g未満であると組成物の粘度が高くなってしまう場合がある。 Further, the specific surface area (BET method) of the surface-treated fumed silica is preferably 50 m 2 / g or more, more preferably 100 to 500 m 2 / g. When the specific surface area is less than 50 m 2 / g, the viscosity of the composition may increase.
 本発明に用いられる硬化性樹脂組成物の製造方法は、従来公知のシリコーングリース組成物の製造方法に従えばよく、特に限定されるものでない。例えば、上記(A)、(B)、(E)及び充填剤、更に必要に応じてその他の成分を、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機、登録商標)、ウルトラミキサー(みずほ工業(株)製混合機、登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機、登録商標)等の混合機にて30分~4時間混合することにより製造することができる。また、必要に応じて、50~150℃の範囲の温度で加熱しながら混合してもよい。 The method for producing the curable resin composition used in the present invention may be any conventional method for producing a silicone grease composition, and is not particularly limited. For example, the above (A), (B), (E) and filler, and other components as necessary, Trimix, Twinwin, Planetary Mixer (all are mixers manufactured by Inoue Mfg. Co., Ltd., registered) (Trademark), Ultramixer (mixer manufactured by Mizuho Industry Co., Ltd., registered trademark), Hibis Dispermix (mixer manufactured by Tokushu Kika Kogyo Co., Ltd., registered trademark), etc., and mixing for 30 minutes to 4 hours Can be manufactured. If necessary, mixing may be performed while heating at a temperature in the range of 50 to 150 ° C.
 本発明に用いられる硬化性樹脂組成物について、25℃にて測定される絶対粘度は、好ましくは10~600Pa・sであり、特に好ましくは10~500Pa・sであり、更に好ましくは20~400Pa・sであり、さらにまた好ましくは30~350Pa・sである。絶対粘度が10~600Pa・sであることにより作業性も優れる。該絶対粘度は、各成分を上述した配合量で調整することにより得ることができる。上記絶対粘度は、株式会社マルコム社製の型番PC-1TL(10rpm)を用いて測定される。 With respect to the curable resin composition used in the present invention, the absolute viscosity measured at 25 ° C. is preferably 10 to 600 Pa · s, particularly preferably 10 to 500 Pa · s, and further preferably 20 to 400 Pa. S, and more preferably 30 to 350 Pa · s. The workability is excellent when the absolute viscosity is 10 to 600 Pa · s. The absolute viscosity can be obtained by adjusting each component with the above-described blending amount. The absolute viscosity is measured using a model number PC-1TL (10 rpm) manufactured by Malcolm Corporation.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。使用原料は以下の通りである。また、各測定を以下のようにして行った。 Hereinafter, although an example and a comparative example are shown and the present invention is explained concretely, the present invention is not limited to the following example. The raw materials used are as follows. Moreover, each measurement was performed as follows.
<粘度の測定>
 組成物の絶対粘度を、株式会社マルコム社製の型番PC-1TL(10rpm)にて測定した。
<Measurement of viscosity>
The absolute viscosity of the composition was measured with a model number PC-1TL (10 rpm) manufactured by Malcolm Corporation.
<熱伝導率の測定>
 熱伝導率を、京都電子工業株式会社製のTPA-501により、いずれも25℃において測定した。
<Measurement of thermal conductivity>
The thermal conductivity was measured at 25 ° C. using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
<粒径の測定>
 熱伝導性充填剤の粒径測定値は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。
<Measurement of particle size>
The particle diameter measurement value of the thermally conductive filler is a volume-based cumulative average diameter measured by Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
 下記実施例において用いられる熱伝導性シリコーングリース組成物の(A)~(G)成分を下記に示す。 The components (A) to (G) of the thermally conductive silicone grease composition used in the following examples are shown below.
(A)成分:
 両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン
25℃における粘度が下記のとおりである
 (A-1)絶対粘度:0.6Pa・s
 (A-2)絶対粘度:10.0Pa・s
 (A-3)絶対粘度:30.0Pa・s
(A) component:
The viscosity at 25 ° C. of dimethylpolysiloxane blocked at both ends with dimethylvinylsilyl groups is as follows: (A-1) Absolute viscosity: 0.6 Pa · s
(A-2) Absolute viscosity: 10.0 Pa · s
(A-3) Absolute viscosity: 30.0 Pa · s
(B)成分:
 (B-1)下記構造式:
Figure JPOXMLDOC01-appb-C000004

で表されるオルガノハイドロジェンポリシロキサン
(B) component:
(B-1) The following structural formula:
Figure JPOXMLDOC01-appb-C000004

Organohydrogenpolysiloxane represented by
(C)成分:
 (C-1)金属ガリウム〔融点=29.8℃〕
 (C-2)Ga-In合金
     〔質量比=75.4:24.6、融点=15.7℃〕
(C) component:
(C-1) Metallic gallium [melting point = 29.8 ° C.]
(C-2) Ga—In alloy [mass ratio = 75.4: 24.6, melting point = 15.7 ° C.]
(D)成分:
 (D-1):アルミナ粉末〔平均粒径:8.2μm〕
 (D-2):酸化亜鉛粉末〔平均粒径:1.0μm〕
(D) component:
(D-1): Alumina powder [average particle size: 8.2 μm]
(D-2): Zinc oxide powder [average particle size: 1.0 μm]
(E)成分:
 (E-1):白金-ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン(両末端がジメチルビニルシリル基で封鎖されたもの、粘度:0.6Pa・s)溶液〔白金原子含有量:1質量%〕
(E) component:
(E-1): dimethylpolysiloxane of platinum-divinyltetramethyldisiloxane complex (both ends blocked with dimethylvinylsilyl groups, viscosity: 0.6 Pa · s) solution [platinum atom content: 1% by mass ]
(F)成分:
 (F-1)1-エチニル-1-シクロヘキサノールの50質量%トルエン溶液
(F) component:
(F-1) 50% by mass toluene solution of 1-ethynyl-1-cyclohexanol
(G)成分:
 (G-1)下記構造式:
Figure JPOXMLDOC01-appb-C000005

で表される動粘度32mm/sの片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
(G) component:
(G-1) The following structural formula:
Figure JPOXMLDOC01-appb-C000005

One end trimethoxysilyl group-blocked dimethylpolysiloxane having a kinematic viscosity of 32 mm 2 / s represented by
 (G-2)下記構造式:
  C1225Si(OC
 で表されるオルガノシラン
(G-2) The following structural formula:
C 12 H 25 Si (OC 2 H 5 ) 3
Organosilane represented by
<熱伝導性シリコーングリース組成物の調製>
 表1に記載の組成及び量の各成分を用いて、下記の方法により、組成物を調製した。
 内容積250ミリリットルのコンディショニングミキサー(株式会社シンキー製、商品名:あわとり練太郎)に、(A)成分、(C)成分、(D)成分、(G)成分を加え、70℃に昇温し該温度を維持し、5分間混練した。次いで、混練を停止し、15℃になるまで冷却した。次に、(B)成分、(E)成分及び(F)成分を加え、前記各温度を維持し、均一になるように混練して熱伝導性シリコーングリース組成物-1~5を調製した。
Figure JPOXMLDOC01-appb-T000006

 *:SiH/Vi=(A)成分中のビニル基1個に対する(B)成分中のSiH基の個数(以下、同様)
 
<Preparation of thermally conductive silicone grease composition>
A composition was prepared by the following method using each component having the composition and amount shown in Table 1.
Add component (A), component (C), component (D) and component (G) to a conditioning mixer (made by Shinky Co., Ltd., trade name: Nertaro Awatori) with an internal volume of 250 ml, and raise the temperature to 70 ° C. The temperature was maintained and kneaded for 5 minutes. The kneading was then stopped and cooled to 15 ° C. Next, component (B), component (E) and component (F) were added, and the above-mentioned temperatures were maintained, and kneaded uniformly to prepare thermally conductive silicone grease compositions -1 to 5.
Figure JPOXMLDOC01-appb-T000006

*: SiH / Vi = number of SiH groups in component (B) relative to one vinyl group in component (A) (hereinafter the same)
 本発明に用いられる硬化性樹脂組成物は、以下のようにして調製された。 The curable resin composition used in the present invention was prepared as follows.
<硬化性樹脂組成物-1>
 上記(A-1)に記載の、両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン100gに、(D-1)のアルミナ粉末800gと(D-2)の酸化亜鉛粉末200g、さらには(G-1)の片末端トリメトキシシリル基封鎖ジメチルポリシロキサン20gを、5Lのプラネタリーミキサー(いずれも井上製作所(株)製混合機、登録商標)に仕込み、150℃で1時間撹拌を行った。その後、室温まで冷却した後、(F-1)及び(E-1)をそれぞれ0.45g、0.15g添加し更に15分間撹拌を行った。更にその後、(B-1)のオルガノハイドロジェンポリシロキサンを8.2g添加し、15分間撹拌し、硬化性樹脂組成物-1を得た。この時、SiH/Vi=1.0であり、又、この硬化性樹脂組成物の粘度は、250Pa・sであった。この硬化性樹脂組成物中の充填剤の量は65体積%であった。
<Curable resin composition-1>
To 100 g of dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups, as described in (A-1) above, 800 g of alumina powder (D-1), 200 g of zinc oxide powder (D-2), 20 g of (G-1) one-end-terminated trimethoxysilyl group-blocked dimethylpolysiloxane was charged into a 5 L planetary mixer (both manufactured by Inoue Mfg. Co., Ltd., registered trademark) and stirred at 150 ° C. for 1 hour. It was. Thereafter, after cooling to room temperature, 0.45 g and 0.15 g of (F-1) and (E-1) were added, respectively, and further stirred for 15 minutes. Thereafter, 8.2 g of the organohydrogenpolysiloxane (B-1) was added and stirred for 15 minutes to obtain a curable resin composition-1. At this time, SiH / Vi = 1.0, and the viscosity of the curable resin composition was 250 Pa · s. The amount of the filler in the curable resin composition was 65% by volume.
<硬化性樹脂組成物-2>
 上記硬化性樹脂組成物-1での、(D-1)のアルミナ粉末、(D-2)の酸化亜鉛粉末、(B-1)のオルガノハイドロジェンポリシロキサンを、それぞれ400g、100g、9.8gにした以外は、全て同じにして硬化性樹脂組成物-2を得た。この時、SiH/Vi=1.2であり、又、この硬化性樹脂組成物の粘度は、105Pa・sであった。この硬化性樹脂組成物中の充填剤の量は46体積%であった。
<Curable resin composition-2>
In the curable resin composition-1, (D-1) alumina powder, (D-2) zinc oxide powder, and (B-1) organohydrogenpolysiloxane were 400 g, 100 g, and 9. A curable resin composition-2 was obtained in the same manner except that the amount was 8 g. At this time, SiH / Vi = 1.2, and the viscosity of the curable resin composition was 105 Pa · s. The amount of the filler in this curable resin composition was 46% by volume.
<硬化性樹脂組成物-3>
 上記硬化性樹脂組成物-1での、(D-1)のアルミナ粉末と(D-2)の酸化亜鉛粉末を、以下の、表面処理煙霧質シリカに変更し、添加量を50gにした以外はすべて同じにして硬化性樹脂組成物-3を得た。この時、SiH/Vi=1.0であり、又、この硬化性樹脂組成物の粘度は、350Pa・sであった。この硬化性樹脂組成物中の充填剤の量は15体積%であった。
<Curable resin composition-3>
In the curable resin composition-1, the alumina powder of (D-1) and the zinc oxide powder of (D-2) were changed to the following surface-treated fumed silica, and the addition amount was changed to 50 g. Were all the same to obtain a curable resin composition-3. At this time, SiH / Vi = 1.0, and the viscosity of the curable resin composition was 350 Pa · s. The amount of the filler in this curable resin composition was 15% by volume.
 表面処理煙霧質シリカは、BET比表面積が120m/gであり、ジメチルジクロロシランにより疎水化処理された乾式煙霧質シリカである。 The surface-treated fumed silica is a dry fumed silica having a BET specific surface area of 120 m 2 / g and hydrophobized with dimethyldichlorosilane.
<実施例1>
 図11に示すように、縦50mm、横70mm、厚み1mmのスライドガラス24上の中央部に、熱伝導性シリコーングリース組成物21である熱伝導性シリコーングリース組成物-1を0.3g塗布し、その周辺に切れ目が無いように、硬化性樹脂組成物22である硬化性樹脂組成物-1を塗布した。その後、図12に示すように、厚み0.5mmのスペーサー23をスライドガラス24の両端に置き、もう一枚のスライドガラス24を上部から押しあて、熱伝導性シリコーングリース組成物21と、硬化性樹脂組成物22とを上下のスライドガラス24の間に完全に密着させ、熱伝導性シリコーングリース組成物21を外気から遮断するようにした。そして、150℃のオーブンに1時間放置し、熱伝導性シリコーングリース組成物-1と、硬化性樹脂組成物-1とを硬化した。その後、85℃/85%RH条件で、熱伝導性シリコーングリース組成物-1と、硬化性樹脂組成物-1とに対して、1,000時間エージングをかけた。エージング後に、熱伝導性シリコーングリース組成物-1の酸素量を、株式会社堀場製作所の酸素・窒素分析装置EMGA-2800にて測定した。その結果、熱伝導性シリコーングリース組成物-1の酸素量は2質量%であった。
<Example 1>
As shown in FIG. 11, 0.3 g of the heat conductive silicone grease composition-1 as the heat conductive silicone grease composition 21 was applied to the center of the slide glass 24 having a length of 50 mm, a width of 70 mm, and a thickness of 1 mm. Then, the curable resin composition-1 as the curable resin composition 22 was applied so that there was no break in the periphery. Thereafter, as shown in FIG. 12, a spacer 23 having a thickness of 0.5 mm is placed on both ends of the slide glass 24, and another slide glass 24 is pressed from the upper side so that the heat conductive silicone grease composition 21 and the curable resin are cured. The resin composition 22 was completely brought into close contact between the upper and lower slide glasses 24 so as to block the heat conductive silicone grease composition 21 from the outside air. Then, it was left in an oven at 150 ° C. for 1 hour to cure the heat conductive silicone grease composition-1 and the curable resin composition-1. Thereafter, the thermally conductive silicone grease composition-1 and the curable resin composition-1 were aged for 1,000 hours under the conditions of 85 ° C./85% RH. After aging, the oxygen content of the thermally conductive silicone grease composition-1 was measured with an oxygen / nitrogen analyzer EMGA-2800 manufactured by Horiba, Ltd. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 2% by mass.
<実施例2>
 実施例1の熱伝導性シリコーングリース組成物21を、熱伝導性シリコーングリース組成物-2に変えた以外は、全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-2の酸素量は3質量%であった。
<Example 2>
The procedure of Example 1 was repeated except that the thermally conductive silicone grease composition 21 of Example 1 was changed to the thermally conductive silicone grease composition-2. As a result, the oxygen content of the thermally conductive silicone grease composition-2 was 3% by mass.
<実施例3>
 実施例1の熱伝導性シリコーングリース組成物21を、熱伝導性シリコーングリース組成物-3に変えた以外は、全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-3の酸素量は2質量%であった。
<Example 3>
The procedure of Example 1 was repeated except that the heat conductive silicone grease composition 21 of Example 1 was changed to the heat conductive silicone grease composition-3. As a result, the oxygen content of the thermally conductive silicone grease composition-3 was 2% by mass.
<実施例4>
 実施例1の熱伝導性シリコーングリース組成物21を、熱伝導性シリコーングリース組成物-4に変えた以外は、全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-4の酸素量は4質量%であった。
<Example 4>
The procedure of Example 1 was repeated except that the thermally conductive silicone grease composition 21 of Example 1 was changed to the thermally conductive silicone grease composition-4. As a result, the oxygen content of the thermally conductive silicone grease composition-4 was 4% by mass.
<実施例5>
 実施例1の硬化性樹脂組成物22を、硬化性樹脂組成物-2に変えた以外は、全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-1の酸素量は3質量%であった。
<Example 5>
The same procedure as in Example 1 was conducted except that the curable resin composition 22 of Example 1 was changed to the curable resin composition-2. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 3% by mass.
<実施例6>
 実施例1の硬化性樹脂組成物22を、硬化性樹脂組成物-3に変えた以外は、全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-1の酸素量は3質量%であった。
<Example 6>
The same procedure as in Example 1 was conducted except that the curable resin composition 22 of Example 1 was changed to the curable resin composition-3. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 3% by mass.
<実施例7>
 実施例1の熱伝導性シリコーングリース組成物21を、熱伝導性シリコーングリース組成物-2に変え、且つ硬化性樹脂組成物22を硬化性樹脂組成物-2に変えた以外は全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-2の酸素量は2質量%であった。
<Example 7>
Example 1 except that the thermally conductive silicone grease composition 21 of Example 1 was changed to the thermally conductive silicone grease composition-2 and the curable resin composition 22 was changed to the curable resin composition-2. As well as. As a result, the oxygen content of the thermally conductive silicone grease composition-2 was 2% by mass.
<実施例8>
 実施例1の熱伝導性シリコーングリース組成物21を、熱伝導性シリコーングリース組成物-5に変え、且つ硬化性樹脂組成物22を硬化性樹脂組成物-3に変えた以外は全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-2の酸素量は2質量%であった。
<Example 8>
Example 1 except that the thermally conductive silicone grease composition 21 of Example 1 was changed to a thermally conductive silicone grease composition-5 and the curable resin composition 22 was changed to a curable resin composition-3. As well as. As a result, the oxygen content of the thermally conductive silicone grease composition-2 was 2% by mass.
<比較例1>
 実施例1の硬化性樹脂組成物-1を塗布しない以外は全て実施例1と同様に行った。その結果、熱伝導性シリコーングリース組成物-1の酸素量は20質量%であった。
<Comparative Example 1>
All operations were performed in the same manner as in Example 1 except that the curable resin composition-1 of Example 1 was not applied. As a result, the oxygen content of the thermally conductive silicone grease composition-1 was 20% by mass.
<実施例9>
 [半導体装置への適用]
 図13は、15mmx15mmのシリコンダイ31と、基板32とを有する本発明の半導体装置を詳細に記載した図である。シリコンダイ31上に、本実施例で得られた熱伝導性シリコーングリース組成物33である熱伝導性シリコーングリース組成物-1を0.3g塗布し、またシリコンダイ31の周囲に切れ目無く取り囲むように、同じく本実施例で得られた硬化性樹脂組成物34である硬化性樹脂組成物-1を幅1mm、塗布高さがシリコンダイ31より高くなるように塗布した。さらに、放熱部材であるヒートスプレッダー35のエッジ部36と、基板32とが接する部分に、接着剤37を塗布した。上部から、ヒートスプレッダー35を50psiで1分間押圧してから、半導体装置を150℃で1時間オーブン内に放置し、熱伝導性シリコーングリース組成物33、硬化性樹脂組成物34及び接着剤37を硬化させた。この時、硬化性樹組成物34は、シリコンダイ31の周囲の全ての位置において、基板32とヒートスプレッダー35とに隙間無く接触することで、熱伝導性シリコーングリース組成物33を外気から遮断するようにしている。なお、シリコンダイ31は、アンダーフィル38及びはんだ39を介して基板32に取り付けられている。このようにして得た半導体装置を85℃/85%RH下で1,000時間動作させたところ、本発明の半導体装置は、硬化性樹脂組成物-1が無い場合と比べ、過熱蓄積による半導体装置の性能低下、破損等が防止できた。よって、本発明の採用により、半導体装置の信頼性が向上することが確認できた。
 実施例9の試験後、熱伝導性シリコーングリース組成物-1を取り出し、酸素量を測定した。その結果、酸素量は2質量%であった。
<Example 9>
[Application to semiconductor devices]
FIG. 13 is a diagram illustrating in detail a semiconductor device of the present invention having a silicon die 31 of 15 mm × 15 mm and a substrate 32. On the silicon die 31, 0.3 g of the heat conductive silicone grease composition-1 that is the heat conductive silicone grease composition 33 obtained in this example is applied, and the silicon die 31 is surrounded without any breaks. Similarly, the curable resin composition-1 which is the curable resin composition 34 obtained in this example was applied so that the width was 1 mm and the coating height was higher than that of the silicon die 31. Further, an adhesive 37 was applied to a portion where the edge portion 36 of the heat spreader 35 as a heat radiating member and the substrate 32 are in contact with each other. From above, the heat spreader 35 is pressed at 50 psi for 1 minute, and then the semiconductor device is left in an oven at 150 ° C. for 1 hour to heat-conductive silicone grease composition 33, curable resin composition 34, and adhesive 37. Cured. At this time, the curable resin composition 34 is in contact with the substrate 32 and the heat spreader 35 without any gaps at all positions around the silicon die 31, thereby blocking the thermally conductive silicone grease composition 33 from the outside air. I am doing so. The silicon die 31 is attached to the substrate 32 via an underfill 38 and solder 39. When the semiconductor device thus obtained was operated at 85 ° C./85% RH for 1,000 hours, the semiconductor device of the present invention was a semiconductor with overheat accumulation as compared to the case without the curable resin composition-1. We were able to prevent the performance degradation and damage of the equipment. Therefore, it was confirmed that the reliability of the semiconductor device was improved by employing the present invention.
After the test of Example 9, the thermally conductive silicone grease composition-1 was taken out and the oxygen content was measured. As a result, the amount of oxygen was 2% by mass.
<比較例2>
 実施例9の、硬化性樹脂組成物-1を使わない以外は全て実施例9と同じにして、同様に半導体を作動させたところ、750時間にて動作しなくなった。この時の熱伝導性シリコーングリース組成物-1を取り出し、酸素量を測定した。その結果、酸素量は21質量%であった。
<Comparative example 2>
When the semiconductor was operated in the same manner as in Example 9 except that the curable resin composition-1 of Example 9 was not used, it did not operate in 750 hours. At this time, the thermally conductive silicone grease composition-1 was taken out and the amount of oxygen was measured. As a result, the oxygen content was 21% by mass.
  11:シリコンダイ
  12:基板
  13:熱伝導性シリコーングリース組成物
  14:硬化性樹脂組成物
  15:放熱部材(ヒートスプレッダー)
  16:ヒートスプレッダーのエッジ部
  17:接着剤
  21:熱伝導性シリコーングリース組成物
  22:硬化性樹脂組成物
  23:0.5mmのスペーサー
  24:スライドガラス
  31:シリコンダイ
  32:基板
  33:熱伝導性シリコーングリース組成物
  34:硬化性樹脂組成物
  35:放熱部材(ヒートスプレッダー)
  36:ヒートスプレッダーのエッジ部
  37:接着剤
  38:アンダーフィル
  39:はんだ
11: Silicon die 12: Substrate 13: Thermally conductive silicone grease composition 14: Curable resin composition 15: Heat radiating member (heat spreader)
16: Edge portion of heat spreader 17: Adhesive 21: Thermally conductive silicone grease composition 22: Curable resin composition 23: 0.5 mm spacer 24: Slide glass 31: Silicon die 32: Substrate 33: Thermal conductivity Silicone grease composition 34: Curable resin composition 35: Heat radiating member (heat spreader)
36: Edge portion of heat spreader 37: Adhesive 38: Underfill 39: Solder

Claims (8)

  1.  発熱性電子部品と放熱部材との間に熱伝導性シリコーングリース組成物が配置されている半導体装置であって、該熱伝導性シリコーングリース組成物が外気から遮断されていることを特徴とする半導体装置。 A semiconductor device in which a thermally conductive silicone grease composition is disposed between an exothermic electronic component and a heat dissipation member, wherein the thermally conductive silicone grease composition is shielded from outside air apparatus.
  2.  該熱伝導性シリコーングリース組成物以外の硬化性樹脂組成物が、該熱伝導性シリコーングリース組成物の外周囲に配置され、かつ、発熱性電子部品が接続されている基板と、放熱部材との間に配置されていることを特徴とする請求項1に記載の半導体装置。 A curable resin composition other than the thermally conductive silicone grease composition is disposed on the outer periphery of the thermally conductive silicone grease composition, and a substrate to which a heat generating electronic component is connected, and a heat radiating member The semiconductor device according to claim 1, wherein the semiconductor device is disposed between the semiconductor devices.
  3.  該熱伝導性シリコーングリース組成物が、ガリウム及び/又はガリウム合金を含有していることを特徴とする請求項1又は2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, wherein the thermally conductive silicone grease composition contains gallium and / or a gallium alloy.
  4.  該熱伝導性シリコーングリース組成物が、
     (A)ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン:100質量部、
     (B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1~5.0個となる量、
     (C)融点が0~70℃のガリウム及び/又はその合金:1,000~20,000質量部、
     (D)平均粒径が0.1~100μmの熱伝導性充填剤:0~1,000質量部、
     (E)白金系触媒:(A)成分の質量に対して0.1~500ppm、並びに
     (G)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは同一もしくは異種の一価の炭化水素基であり、Rはアルキル基、アルケニル基又はアシル基であり、aは5~100の整数であり、bは1~3の整数である。)
    で表されるポリシロキサン:0~500質量部
    を含むことを特徴とする請求項1~3のいずれか1項に記載の半導体装置。
    The thermally conductive silicone grease composition is
    (A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass
    (B) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom in one molecule: Hydrogen bonded to a silicon atom in the component for one alkenyl group in the component (A) The amount that the number of atoms is 0.1-5.0,
    (C) Gallium having a melting point of 0 to 70 ° C. and / or its alloy: 1,000 to 20,000 parts by mass,
    (D) Thermally conductive filler having an average particle size of 0.1 to 100 μm: 0 to 1,000 parts by mass
    (E) Platinum-based catalyst: 0.1 to 500 ppm relative to the mass of component (A), and (G) the following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is the same or different monovalent hydrocarbon group, R 2 is an alkyl group, an alkenyl group or an acyl group, a is an integer of 5 to 100, and b is 1 to 3 (It is an integer.)
    The semiconductor device according to any one of claims 1 to 3, comprising: 0 to 500 parts by mass of polysiloxane represented by:
  5.  更に、(G-2)下記一般式(2):
      R Si(OR4-c-d   (2)
    (式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、cは1~3の整数、dは0~2の整数であり、c+dの和は1~3の整数である。)
    で表されるアルコキシシラン化合物を、(A)成分100質量部に対し0.1~100質量部含有することを特徴とする請求項4に記載の半導体装置。
    Further, (G-2) the following general formula (2):
    R 3 c R 4 d Si (OR 5 ) 4-cd (2)
    Wherein R 3 is independently an alkyl group having 6 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently And an alkyl group having 1 to 6 carbon atoms, c is an integer of 1 to 3, d is an integer of 0 to 2, and the sum of c + d is an integer of 1 to 3.)
    The semiconductor device according to claim 4, wherein the alkoxysilane compound represented by the formula (A) is contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A).
  6.  該硬化性樹脂組成物が充填剤を10~90体積%含有することを特徴とする請求項2~5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 2, wherein the curable resin composition contains 10 to 90% by volume of a filler.
  7.  該硬化性樹脂組成物のバインダーがシリコーンであることを特徴とする請求項2~6のいずれか1項に記載の半導体装置。 7. The semiconductor device according to claim 2, wherein the binder of the curable resin composition is silicone.
  8.  発熱性電子部品上に、該熱伝導性シリコーングリース組成物を載置し、その発熱性電子部品を切れ目無く囲むように硬化前の硬化性樹脂組成物を基板上に塗布した後、該発熱性電子部品及び塗布された硬化前の硬化性樹脂組成物上に放熱部材を被せ、その後、80~180℃で加熱する工程を含むことを特徴とする請求項2~7のいずれか1項に記載の半導体装置の製造方法。
     
     
     
     
    The thermally conductive silicone grease composition is placed on the exothermic electronic component, and the curable resin composition before curing is applied on the substrate so as to surround the exothermic electronic component seamlessly. The method according to any one of claims 2 to 7, further comprising a step of covering the electronic component and the applied curable resin composition before curing with a heat radiating member and then heating at 80 to 180 ° C. Semiconductor device manufacturing method.



PCT/JP2015/070583 2014-10-10 2015-07-17 Semiconductor device including heat-conductive silicone grease WO2016056286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-208863 2014-10-10
JP2014208863 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056286A1 true WO2016056286A1 (en) 2016-04-14

Family

ID=55652911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070583 WO2016056286A1 (en) 2014-10-10 2015-07-17 Semiconductor device including heat-conductive silicone grease

Country Status (2)

Country Link
TW (1) TW201625725A (en)
WO (1) WO2016056286A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502155A1 (en) * 2017-12-21 2019-06-26 The Boeing Company Conductive composites
EP3901998A4 (en) * 2018-12-21 2022-08-24 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition and semiconductor device
WO2023203973A1 (en) * 2022-04-22 2023-10-26 信越化学工業株式会社 Thermally conductive silicone composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237884B2 (en) * 2020-04-17 2023-03-13 信越化学工業株式会社 Thermally conductive silicone composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308485A (en) * 1997-04-28 1998-11-17 Hewlett Packard Co <Hp> Composite heat interface assembly
JP2000332169A (en) * 1999-05-17 2000-11-30 Toshiba Corp Heat dissipating structure for heat generating object and electronic apparatus having it
JP2008227361A (en) * 2007-03-15 2008-09-25 Nec Corp Electronic equipment
JP2013046016A (en) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2013082816A (en) * 2011-10-11 2013-05-09 Shin-Etsu Chemical Co Ltd Curable organopolysiloxane composition and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308485A (en) * 1997-04-28 1998-11-17 Hewlett Packard Co <Hp> Composite heat interface assembly
JP2000332169A (en) * 1999-05-17 2000-11-30 Toshiba Corp Heat dissipating structure for heat generating object and electronic apparatus having it
JP2008227361A (en) * 2007-03-15 2008-09-25 Nec Corp Electronic equipment
JP2013046016A (en) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2013082816A (en) * 2011-10-11 2013-05-09 Shin-Etsu Chemical Co Ltd Curable organopolysiloxane composition and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502155A1 (en) * 2017-12-21 2019-06-26 The Boeing Company Conductive composites
US11075021B2 (en) 2017-12-21 2021-07-27 The Boeing Company Conductive composites
US11621101B2 (en) 2017-12-21 2023-04-04 The Boeing Company Conductive composites
EP3901998A4 (en) * 2018-12-21 2022-08-24 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition and semiconductor device
WO2023203973A1 (en) * 2022-04-22 2023-10-26 信越化学工業株式会社 Thermally conductive silicone composition

Also Published As

Publication number Publication date
TW201625725A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
JP4551074B2 (en) Curable organopolysiloxane composition and semiconductor device
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP5843368B2 (en) Thermally conductive silicone composition and cured product thereof
WO2018079215A1 (en) One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
TWI682030B (en) Addition one part curing type heat-conductive silicone grease composition
JP5843364B2 (en) Thermally conductive composition
WO2014188667A1 (en) Thermally conductive silicone composition
JP6042307B2 (en) Curable heat conductive resin composition, method for producing the composition, cured product of the composition, method for using the cured product, semiconductor device having a cured product of the composition, and method for producing the semiconductor device
TWI622624B (en) Polyoxonium composition and method for producing thermal conductive polyphosphonium composition
WO2016056286A1 (en) Semiconductor device including heat-conductive silicone grease
JP2012107152A (en) Thermally conductive silicone grease composition
WO2020129555A1 (en) Heat-conductive silicone composition and semiconductor device
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
EP4333047A1 (en) Curable organopolysiloxane composition and semiconductor device
WO2024084897A1 (en) Curable organopolysiloxane composition and semiconductor device
WO2024048335A1 (en) Thermally conductive silicone composition
JP2024060273A (en) CURABLE ORGANOPOLYSILOXANE COMPOSITION AND DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP