JP2012109391A - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
JP2012109391A
JP2012109391A JP2010256919A JP2010256919A JP2012109391A JP 2012109391 A JP2012109391 A JP 2012109391A JP 2010256919 A JP2010256919 A JP 2010256919A JP 2010256919 A JP2010256919 A JP 2010256919A JP 2012109391 A JP2012109391 A JP 2012109391A
Authority
JP
Japan
Prior art keywords
electrode
solder
gap
joined
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010256919A
Other languages
Japanese (ja)
Inventor
Kazunobu Kamiya
和伸 神谷
Takuya Ishizaki
卓也 石崎
Shigekazu Higashimoto
繁和 東元
Munehiko Masutani
宗彦 増谷
Masami Takeuchi
政美 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2010256919A priority Critical patent/JP2012109391A/en
Publication of JP2012109391A publication Critical patent/JP2012109391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • H01L2224/376Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic apparatus in which bonding strength of an electronic component and an upper electrode can be ensured even if there is a variation in the gap distance between the upper electrode and the electronic component.SOLUTION: The electronic apparatus comprises a planar substrate 11, a semiconductor element 12 as a bonded member having a first electrode 13 and a second electrode 14, and a planar electrode 15 arranged to face the semiconductor element 12 with a gap therebetween. The planar electrode 15 is configured of an inclined part 21 having a step (size of the step is δ) at a part facing the second electrode 14, a first plane part 19 and a second plane part 20, and a through hole 21A connecting the first plane part 19 and the second plane part 20 and supplying solder. The gap distance d1 of the first plane part and the second electrode 14 is set longer than the gap distance d2 of the second plane part and the second electrode 14.

Description

この発明は、半導体素子など電子機器に関し、特に電子機器における電極の接続構造に関する。   The present invention relates to an electronic device such as a semiconductor element, and more particularly to an electrode connection structure in an electronic device.

特許文献1で開示された従来技術においては、金属板上に半導体素子が半田を介して接合されると共に、半導体素子上に上部電極が半田を介して接合された半導体装置が開示されている。板状の上部電極は、半導体素子の表面と平行に所定間隔をあけて配設されている。半導体素子の表面には表面電極が設けられ、上部電極における表面電極と対向する位置に貫通孔が設けられている。この貫通孔の側壁と半導体素子の表面電極とは、半田により接続されている。   The prior art disclosed in Patent Document 1 discloses a semiconductor device in which a semiconductor element is joined to a metal plate via solder and an upper electrode is joined to the semiconductor element via solder. The plate-like upper electrode is disposed at a predetermined interval in parallel with the surface of the semiconductor element. A surface electrode is provided on the surface of the semiconductor element, and a through hole is provided at a position facing the surface electrode in the upper electrode. The side wall of the through hole and the surface electrode of the semiconductor element are connected by solder.

この半導体装置の製造方法は、まず、金属板上に半導体素子を半田を介して接合させた後、半導体素子上に上部電極を所定間隔を保持しつつ対向配置させ、加熱装置で半導体装置全体を加熱させながら貫通孔から溶融半田を供給する。供給された溶融半田は、半導体素子の表面電極上に滴下され、半田の濡れ性により表面電極上を濡れ広がると共に、貫通孔に充填される。その結果、末広がりとなったフィレット形状を有する半田層が形成される。その後、加熱装置から半導体装置を取り出し冷却させることにより、半田層が硬化し半導体素子と上部電極とが半田により接合される。   In this method of manufacturing a semiconductor device, first, a semiconductor element is joined to a metal plate via solder, and then an upper electrode is disposed opposite to the semiconductor element while maintaining a predetermined interval. Molten solder is supplied from the through hole while heating. The supplied molten solder is dropped on the surface electrode of the semiconductor element, wets and spreads on the surface electrode due to the wettability of the solder, and fills the through hole. As a result, a solder layer having a fillet shape that is divergent is formed. Thereafter, the semiconductor device is taken out from the heating device and cooled, whereby the solder layer is cured and the semiconductor element and the upper electrode are joined by solder.

特開2008−182074号公報JP 2008-182074 A

しかし、特許文献1で開示された従来技術においては、半導体素子と上部電極間の隙間距離が、フィレット状に濡れ広がる適正な隙間距離である必要がある。この隙間距離が適正な隙間距離にあるときには、貫通孔を介して供給された溶融半田は隙間内に侵入し、フィレット状に濡れ広がる。しかし、この隙間距離が適正な隙間距離を超えて小さくなる方向にばらついた場合には、貫通孔を介して供給された溶融半田は隙間に侵入しずらくなり、フィレットが充分には形成されない恐れがある。逆に、この隙間距離が適正な隙間距離を超えて大きくなる方向にばらついた場合には、半田の供給量を一定とすると、貫通孔を介して供給された溶融半田は隙間に侵入はするが濡れ広がらず、フィレットが充分には形成されにくい。このように、半導体素子と上部電極間の隙間距離が適正な隙間距離を超えてばらつくとフィレットが充分には形成されにくいので、半田の表面電極との接合面積が減少し、半導体素子と上部電極との接合強度が低下してしまう問題がある。   However, in the prior art disclosed in Patent Document 1, the gap distance between the semiconductor element and the upper electrode needs to be an appropriate gap distance that spreads in a fillet shape. When this gap distance is an appropriate gap distance, the molten solder supplied through the through hole penetrates into the gap and spreads in a fillet shape. However, if the gap distance varies beyond the proper gap distance and decreases, the molten solder supplied through the through-holes will not easily enter the gap, and the fillet may not be formed sufficiently. There is. On the contrary, if the gap distance varies beyond the appropriate gap distance and becomes larger, if the amount of solder supplied is constant, the molten solder supplied through the through hole will enter the gap. It does not spread out and fillets are not easily formed. Thus, if the gap distance between the semiconductor element and the upper electrode varies beyond the proper gap distance, the fillet is not sufficiently formed, so that the bonding area between the solder surface electrode and the semiconductor element and the upper electrode is reduced. There is a problem that the bonding strength with the lowering.

本発明は上記の問題点に鑑みてなされたもので、本発明の目的は、上部電極と電子部品間の隙間距離にばらつきがあっても、電子部品と上部電極との接合強度を確保することが可能な電子機器の提供にある。   The present invention has been made in view of the above problems, and an object of the present invention is to ensure the bonding strength between the electronic component and the upper electrode even if the gap distance between the upper electrode and the electronic component varies. Is to provide electronic devices that can

上記の課題を解決するために、請求項1記載の発明は、平面状の被接合面を有する被接合部材と、少なくとも一部が該被接合部材の被接合面と隙間を空けて対向配置されつつ半田により接合される板状の電極とを備えた電子機器であって、前記電極は、前記被接合部材の被接合面と対向する部分に、前記被接合面との隙間距離の異なる複数の平面部と、該複数の平面部を繋ぐ連結部とを備え、前記被接合部材の被接合面は半田により前記複数の平面部の少なくとも1つと接合されることを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is arranged such that a member to be joined having a flat surface to be joined and at least a part of the member to be joined are spaced from the surface to be joined. An electronic device including a plate-like electrode joined by soldering, wherein the electrode has a plurality of different gap distances from the joined surface at a portion facing the joined surface of the joined member. A planar portion and a connecting portion that connects the plurality of planar portions are provided, and a surface to be joined of the member to be joined is joined to at least one of the plurality of planar portions by solder.

請求項1記載の発明によれば、電極と被接合部材間の隙間距離にばらつきがあっても、電極と被接合部材との接合強度を確保することが可能である。   According to the first aspect of the present invention, it is possible to ensure the bonding strength between the electrode and the member to be bonded even if the gap distance between the electrode and the member to be bonded varies.

請求項2記載の発明は、請求項1に記載の電子機器において、前記連結部には、半田供給用の貫通孔が形成されていることを特徴とする。   According to a second aspect of the present invention, in the electronic device according to the first aspect, a solder supply through-hole is formed in the connecting portion.

請求項2記載の発明によれば、連結部には半田供給用の貫通孔が形成されているので、貫通孔を介して連結部と被接合部材の被接合面間の隙間に半田を容易に供給することが可能である。   According to the second aspect of the present invention, since the through hole for supplying solder is formed in the connecting portion, the solder can be easily put into the gap between the connecting portion and the bonded surface of the member to be bonded through the through hole. It is possible to supply.

請求項3記載の発明は、請求項1又は2に記載の電子機器において、前記連結部が前記平面部に対して傾斜した傾斜面であることを特徴とする。   According to a third aspect of the present invention, in the electronic device according to the first or second aspect, the connecting portion is an inclined surface inclined with respect to the planar portion.

請求項3記載の発明によれば、連結部が平面部に対して傾斜した傾斜面なので、傾斜面と被接合部材の被接合面間の隙間に半田を供給することにより、傾斜面に沿って半田を濡れ広がらせ傾斜面を介して接続された隙間距離の異なる複数の平面部と被接合部材の被接合面間の隙間に半田を充填することが可能となる。   According to the invention described in claim 3, since the connecting portion is an inclined surface inclined with respect to the flat surface portion, the solder is supplied to the gap between the inclined surface and the bonded surface of the bonded member along the inclined surface. It becomes possible to fill the gaps between the plurality of plane portions having different gap distances connected via the inclined surfaces and the joined surfaces of the joined members by wetting and spreading the solder.

請求項4記載の発明は、請求項1〜3のいずれか一項に記載の電子機器において、前記複数の平面部は、前記電極の先端側の第1平面部と、前記第1平面部に前記連結部を介して接続され前記被接合面と一部が対向すると共に前記連結部より離間する方向へ延在する第2平面部とを備え、前記第1平面部及び前記第2平面部は、前記被接合部材の被接合面と平行に配置されると共に、前記第1平面部と前記被接合面との隙間距離が前記第2平面部と前記被接合面との隙間距離よりも大きく形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the electronic device according to any one of the first to third aspects, the plurality of flat surface portions are a first flat surface portion on a tip end side of the electrode and the first flat surface portion. A second plane part connected through the coupling part and partially facing the surface to be joined and extending away from the coupling part, the first plane part and the second plane part being And being arranged in parallel with the surface to be joined of the member to be joined, and having a gap distance between the first plane portion and the surface to be joined larger than a gap distance between the second plane portion and the surface to be joined. It is characterized by being.

請求項4記載の発明によれば、電極の複数の平面部は先端側の第1平面部と、第1平面部に連結部を介して接続された第2平面部とを備え、第1平面部及び第2平面部は被接合部材の被接合面と平行に配置されると共に、第1平面部と被接合面との隙間距離が第2平面部と被接合面との隙間距離よりも大きく形成されているので、例えば、連結部に半田を供給することにより、連結部を介して接続された第1平面部と被接合部材の被接合面間の隙間及び第2平面部と被接合部材の被接合面間の隙間の両方或いはどちらか一方の隙間に
半田を充填することが可能である。この場合、電極は先端側の第1平面部の隙間距離が大きく形成されているので、半田の接合状態を外部より観察し易い。
According to the fourth aspect of the present invention, the plurality of planar portions of the electrode include a first planar portion on the tip side and a second planar portion connected to the first planar portion via the connecting portion, and the first planar portion. The part and the second plane part are arranged in parallel to the joined surface of the joined member, and the gap distance between the first plane part and the joined surface is larger than the gap distance between the second plane part and the joined surface. Since it is formed, for example, by supplying solder to the connecting portion, the gap between the first plane portion connected through the connecting portion and the bonded surface of the member to be bonded and the second flat portion and the bonded member It is possible to fill both or one of the gaps between the surfaces to be joined with solder. In this case, the electrode is formed with a large gap distance between the first flat portion on the tip side, so that it is easy to observe the solder bonding state from the outside.

請求項5記載の発明は、請求項1〜3のいずれか一項に記載の電子機器において、前記複数の平面部は、前記電極の先端側の第1平面部と、前記第1平面部に前記連結部を介して接続され前記被接合面と一部が対向すると共に前記連結部より離間する方向へ延在する第2平面部とを備え、前記第1平面部及び前記第2平面部は、前記被接合部材の被接合面と平行に配置されると共に、前記第1平面部と前記被接合面との隙間距離が前記第2平面部と前記被接合面との隙間距離よりも小さく形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the electronic device according to any one of the first to third aspects, the plurality of flat surface portions are a first flat surface portion on a tip end side of the electrode and the first flat surface portion. A second plane part connected through the coupling part and partially facing the surface to be joined and extending away from the coupling part, the first plane part and the second plane part being And being arranged in parallel with the surface to be joined of the member to be joined, and the gap distance between the first plane portion and the surface to be joined is smaller than the gap distance between the second plane portion and the surface to be joined. It is characterized by being.

請求項5記載の発明によれば、電極の複数の平面部は先端側の第1平面部と、第1平面部に連結部を介して接続された第2平面部とを備え、第1平面部及び第2平面部は、被接合部材の被接合面と平行に配置されると共に、第1平面部と被接合面との隙間距離が第2平面部と被接合面との隙間距離よりも小さく形成されているので、例えば、連結部に半田を供給することにより、連結部を介して接続された第1平面部と被接合部材の被接合面間の隙間及び第2平面部と被接合部材の被接合面間の隙間の両方或いはどちらか一方の隙間に半田を充填することが可能である。この場合、電極は先端側の第1平面部の隙間距離が小さく形成されているので、第1平面部と被接合部材の被接合面間の隙間に充填される半田が被接合部材の被接合面の外側に漏れるのが防止可能である。   According to the fifth aspect of the present invention, the plurality of planar portions of the electrode include a first planar portion on the distal end side, and a second planar portion connected to the first planar portion via the connecting portion, and the first planar portion. The part and the second plane part are arranged in parallel with the surface to be joined of the member to be joined, and the gap distance between the first plane part and the face to be joined is larger than the gap distance between the second plane part and the face to be joined. Since it is formed small, for example, by supplying solder to the connecting portion, the gap between the first plane portion connected via the connecting portion and the bonded surface of the member to be bonded and the second flat portion and the bonded portion are joined. It is possible to fill both or one of the gaps between the surfaces to be joined of the member with solder. In this case, since the gap distance between the first flat portion on the tip side is small, the solder filled in the gap between the first flat portion and the bonded surface of the bonded member is bonded to the bonded member. It is possible to prevent leakage to the outside of the surface.

請求項6記載の発明は、請求項1〜5のいずれか一項に記載の電子機器において、前記被接合部材は半導体素子であり前記被接合面は前記半導体素子の表面に形成された表面電極であることを特徴とする。   According to a sixth aspect of the present invention, in the electronic apparatus according to any one of the first to fifth aspects, the member to be bonded is a semiconductor element, and the surface to be bonded is a surface electrode formed on the surface of the semiconductor element. It is characterized by being.

請求項6記載の発明によれば、被接合部材は半導体素子であり被接合面は半導体素子の表面に形成された表面電極なので、半導体素子の表面電極に電極を接合させることができる。   According to the sixth aspect of the present invention, since the member to be bonded is a semiconductor element and the bonded surface is a surface electrode formed on the surface of the semiconductor element, the electrode can be bonded to the surface electrode of the semiconductor element.

本発明によれば、電極と被接合部材間の隙間距離にばらつきがあっても、電極と被接合部材との接合強度を確保することが可能である。   According to the present invention, even if there is variation in the gap distance between the electrode and the member to be joined, it is possible to ensure the bonding strength between the electrode and the member to be joined.

第1の実施形態に係る半導体素子における電極の接続構造を示す斜視図である。It is a perspective view which shows the connection structure of the electrode in the semiconductor element which concerns on 1st Embodiment. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 第1の実施形態に係る電極の位置と接合可能距離範囲との関係を示す模式図である。It is a schematic diagram which shows the relationship between the position of the electrode which concerns on 1st Embodiment, and the joining possible distance range. 第1の実施形態に係る接続構造の製造工程を説明するための模式図であり、電極と半導体素子間の隙間距離d1,d2が両方とも接合可能距離範囲内にある場合を示す。(a)基部上に接合された半導体素子上に間隔を空けて電極を配置する工程を示し、(b)半導体装置を加熱装置内に配置し電極上より溶融半田を滴下させ、半導体素子と電極間の隙間に半田を供給する工程を示し、(c)半田を供給後硬化させた状態を示す。It is a schematic diagram for demonstrating the manufacturing process of the connection structure which concerns on 1st Embodiment, and shows the case where the clearance gap distances d1 and d2 between an electrode and a semiconductor element are both in the range which can be joined. (A) A step of disposing an electrode at an interval on a semiconductor element bonded on a base, (b) disposing molten semiconductor from the electrode by disposing a semiconductor device in a heating device, and the semiconductor element and the electrode A process of supplying solder to a gap between them is shown, and (c) a state in which the solder is hardened after being supplied. 第1の実施形態に係る接続構造の製造工程を説明するための模式図であり、電極と半導体素子間の隙間距離d1,d2のうちd2のみが接合可能距離範囲内にある場合を示す。(a)基部上に接合された半導体素子上に間隔を空けて電極を配置する工程を示し、(b)半導体装置を加熱装置内に配置し電極上より溶融半田を滴下させ、半導体素子と電極間の隙間に半田を供給する工程を示し、(c)半田を供給後硬化させた状態を示す。It is a schematic diagram for demonstrating the manufacturing process of the connection structure which concerns on 1st Embodiment, and shows the case where only d2 is in the bondable distance range among the gap distances d1 and d2 between an electrode and a semiconductor element. (A) A step of disposing an electrode at an interval on a semiconductor element bonded on a base, (b) disposing molten semiconductor from the electrode by disposing a semiconductor device in a heating device, and the semiconductor element and the electrode A process of supplying solder to a gap between them is shown, and (c) a state in which the solder is hardened after being supplied. 第1の実施形態に係る接続構造の製造工程を説明するための模式図であり、電極と半導体素子間の隙間距離d1,d2のうちd2が接合可能距離範囲を超えて小さくなる方向にばらつくと共にd1が接合可能距離範囲内にある場合を示す。(a)基部上に接合された半導体素子上に間隔を空けて電極を配置する工程を示し、(b)半導体装置を加熱装置内に配置し電極上より溶融半田を滴下させ、半導体素子と電極間の隙間に半田を供給する工程を示し、(c)半田を供給後硬化させた状態を示す。It is a schematic diagram for demonstrating the manufacturing process of the connection structure which concerns on 1st Embodiment, and d2 changes in the direction which d2 out of the gap distance d1 and d2 between an electrode and a semiconductor element becomes small exceeding a bondable distance range. A case where d1 is within the range of possible joining distance is shown. (A) A step of disposing an electrode at an interval on a semiconductor element bonded on a base, (b) disposing molten semiconductor from the electrode by disposing a semiconductor device in a heating device, and the semiconductor element and the electrode A process of supplying solder to a gap between them is shown, and (c) a state in which the solder is hardened after being supplied. 第2の実施形態に係る半導体素子における電極の接続構造を示す斜視図である。It is a perspective view which shows the connection structure of the electrode in the semiconductor element which concerns on 2nd Embodiment. 図5におけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. 第2の実施形態に係る電極の位置と接合可能距離範囲との関係を示す模式図である。It is a schematic diagram which shows the relationship between the position of the electrode which concerns on 2nd Embodiment, and the range which can be joined. 第2の実施形態に係る接続構造の製造工程を説明するための模式図であり、電極と半導体素子間の隙間距離d3,d4が両方とも接合可能距離範囲内にある場合を示す。(a)基部上に接合された半導体素子上に間隔を空けて電極を配置する工程を示し、(b)半導体装置を加熱装置内に配置し電極上より溶融半田を滴下させ、半導体素子と電極間の隙間に半田を供給する工程を示し、(c)半田を供給後硬化させた状態を示す。It is a schematic diagram for demonstrating the manufacturing process of the connection structure which concerns on 2nd Embodiment, and shows the case where the clearance gap distance d3 and d4 between an electrode and a semiconductor element are both in the range which can be joined. (A) A step of disposing an electrode at an interval on a semiconductor element bonded on a base, (b) disposing molten semiconductor from the electrode by disposing a semiconductor device in a heating device, and the semiconductor element and the electrode A process of supplying solder to a gap between them is shown, and (c) a state in which the solder is hardened after being supplied. 第2の実施形態に係る接続構造の製造工程を説明するための模式図であり、電極と半導体素子間の隙間距離d3,d4のうちd3のみが接合可能距離範囲内にある場合を示す。(a)基部上に接合された半導体素子上に間隔を空けて電極を配置する工程を示し、(b)半導体装置を加熱装置内に配置し電極上より溶融半田を滴下させ、半導体素子と電極間の隙間に半田を供給する工程を示し、(c)半田を供給後硬化させた状態を示す。It is a schematic diagram for demonstrating the manufacturing process of the connection structure which concerns on 2nd Embodiment, and shows the case where only d3 exists in the bondable distance range among the gap distances d3 and d4 between an electrode and a semiconductor element. (A) A step of disposing an electrode at an interval on a semiconductor element bonded on a base, (b) disposing molten semiconductor from the electrode by disposing a semiconductor device in a heating device, and the semiconductor element and the electrode A process of supplying solder to a gap between them is shown, and (c) a state in which the solder is hardened after being supplied. 第2の実施形態に係る接続構造の製造工程を説明するための模式図であり、電極と半導体素子間の隙間距離d3,d4のうちd3が接合可能距離範囲を超えて小さくなる方向にばらつくと共にd4が接合可能距離範囲内にある場合を示す。(a)基部上に接合された半導体素子上に間隔を空けて電極を配置する工程を示し、(b)半導体装置を加熱装置内に配置し電極上より溶融半田を滴下させ、半導体素子と電極間の隙間に半田を供給する工程を示し、(c)半田を供給後硬化させた状態を示す。It is a schematic diagram for demonstrating the manufacturing process of the connection structure which concerns on 2nd Embodiment, and d3 varies in the direction where d3 among the gap distances d3 and d4 between the electrode and the semiconductor element becomes smaller than the bondable distance range. The case where d4 is within the range of possible joining distance is shown. (A) A step of disposing an electrode at an interval on a semiconductor element bonded on a base, (b) disposing molten semiconductor from the electrode by disposing a semiconductor device in a heating device, and the semiconductor element and the electrode A process of supplying solder to a gap between them is shown, and (c) a state in which the solder is hardened after being supplied. その他の実施形態に係る電極の位置と接合可能距離範囲との関係を示す模式図である。It is a schematic diagram which shows the relationship between the position of the electrode which concerns on other embodiment, and the range which can be joined.

(第1の実施形態)
以下、第1の実施形態に係る電子部品としての半導体素子を図1〜図6に基づいて説明する。
図1及び図2に示すように、電子機器としての半導体装置10は、上面が平面状の基部11と、表面が平面状の第1電極13および第2電極14とを備えた被接合部材としての半導体素子12と、半導体素子12と隙間を空けて対向配置された板状の電極としての板状電極15から構成され、基部11と第1電極13とは第1半田層16を介して接合され、第2電極14と板状電極15とは第2半田層17を介して接合されている。なお、第2電極14は被接合部材の被接合面に相当する。
(First embodiment)
Hereinafter, a semiconductor element as an electronic component according to the first embodiment will be described with reference to FIGS.
As shown in FIGS. 1 and 2, a semiconductor device 10 as an electronic device is a member to be joined that includes a base 11 having a planar upper surface, and first and second electrodes 13 and 14 having planar surfaces. The semiconductor element 12 and the plate-like electrode 15 as a plate-like electrode disposed opposite to the semiconductor element 12 with a gap therebetween, and the base 11 and the first electrode 13 are joined via the first solder layer 16. The second electrode 14 and the plate electrode 15 are joined via the second solder layer 17. The second electrode 14 corresponds to the surface to be bonded of the member to be bonded.

基部11は、金属製で所定の厚さを有する材料が用いられており、材料としては、銅、アルミニウム、又はこれらの合金等を含んだ導電性で熱伝導性の良い金属材料が使用されている。   The base 11 is made of a metal and has a predetermined thickness, and as the material, a conductive and heat conductive metal material including copper, aluminum, or an alloy thereof is used. Yes.

半導体素子12は、矩形の形状を有し、裏面に第1電極13が形成され、おもて面に第2電極14が形成されている。第1電極13及び第2電極14は、ニッケル、チタン、アルミニウム等で形成されている。半導体素子12としては、例えば、IGBTのような電力制御素子などが用いられている。半導体素子12のおもて面における半導体素子12の短辺方向の側縁部のうちの一方には、制御用電極18が形成され、制御用電極18は図示しない外部電極とワイヤにより接続されている。従って、第1電極13は半導体素子12の裏面のほぼ全面に渡り形成されているが、第2電極14は半導体素子12のおもて面における制御用電極18の形成された部位を含まない領域に形成されている。   The semiconductor element 12 has a rectangular shape, a first electrode 13 is formed on the back surface, and a second electrode 14 is formed on the front surface. The first electrode 13 and the second electrode 14 are made of nickel, titanium, aluminum or the like. For example, a power control element such as an IGBT is used as the semiconductor element 12. A control electrode 18 is formed on one of the side edges in the short side direction of the semiconductor element 12 on the front surface of the semiconductor element 12, and the control electrode 18 is connected to an external electrode (not shown) by a wire. Yes. Therefore, the first electrode 13 is formed over almost the entire back surface of the semiconductor element 12, but the second electrode 14 is a region that does not include the portion where the control electrode 18 is formed on the front surface of the semiconductor element 12. Is formed.

板状電極15は、自身の形状を保持しうるほどの強度を持たせる厚みを有し短冊状の板状部材から形成されている。材料としては、銅、アルミニウム、又はこれらの合金等を含んだ導電性で熱伝導性の良い金属材料が使用されている。板状電極15は、板状の部材を折り曲げて段差を設けた形状を有し、水平に延びる第1平面部19及び第2平面部20と、第1平面部19と第2平面部20間に連設され第1平面部19及び第2平面部20に対して傾斜した連結部に相当する傾斜部21とを備えている。ここで、段差の大きさをδとすれば、δは第2電極14との隙間距離の大きい方の平面部(第1平面部19)と第2電極14との隙間距離の小さい方の平面部(第2平面部20)間の板状電極15の板厚方向における距離に相当する。この段差の大きさδは、予めdmin及びdmaxを考慮した適切な値に設定されている。なお、dmin及びdmaxは、第2電極14から板状電極15の平面部までの隙間距離であって半田の接合可能距離範囲の下限値及び上限値に相当する。   The plate-like electrode 15 is formed of a strip-like plate-like member having a thickness sufficient to maintain its own shape. As the material, a metal material having good conductivity and heat conductivity including copper, aluminum, or an alloy thereof is used. The plate-like electrode 15 has a shape in which a step is formed by bending a plate-like member, and extends horizontally between the first plane portion 19 and the second plane portion 20, and between the first plane portion 19 and the second plane portion 20. And an inclined portion 21 corresponding to a connecting portion inclined with respect to the first flat surface portion 19 and the second flat surface portion 20. Here, if the size of the step is δ, δ is the plane having the smaller gap distance between the second electrode 14 and the plane portion having the larger gap distance from the second electrode 14 (first plane portion 19). This corresponds to the distance in the plate thickness direction of the plate-like electrode 15 between the portions (second flat portion 20). The step size δ is set to an appropriate value in consideration of dmin and dmax in advance. Note that dmin and dmax are gap distances from the second electrode 14 to the flat portion of the plate-like electrode 15 and correspond to the lower limit value and the upper limit value of the solderable distance range.

図2に示すように、板状電極15は、半導体装置10の周辺外方より第2電極14上方を通って第1平面部19の先端側を制御用電極18側に向ける方向に延在し、板状電極15の第1平面部19、第2平面部20及び傾斜部21と、半導体素子12の第2電極14とが隙間を空けて対向するように配置されている。
ここで、第1平面部19及び第2平面部20の第2電極14と対向する下側の面をそれぞれ下面19A及び下面20Aとし、傾斜部21の第2電極14と対向する下側の傾斜面を下面21Bとすれば、下面19A及び下面20Aは、第2電極14と平行となるよう配置されており、下面21Bは第2電極14に対し傾斜して配置されている。
また、下面19Aと第2電極14間の隙間距離をd1とし、下面20Aと第2電極14間の隙間距離をd2とすれば、d1>d2となるように配置されている。すなわち、第1平面部19と第2電極14間の隙間距離d1は、第2平面部20と第2電極14間の隙間距離d2よりも大きくなるように配置されており、第1平面部19が第2電極14との隙間距離が大きい方の平面部に相当し、第2平面部20が第2電極14との隙間距離が小さい方の平面部に相当する。なお、d1、d2、δ間にはd1―d2=δの関係がある。
As shown in FIG. 2, the plate electrode 15 extends from the outer periphery of the semiconductor device 10 through the second electrode 14 in a direction in which the front end side of the first flat portion 19 faces the control electrode 18 side. The first planar portion 19, the second planar portion 20, and the inclined portion 21 of the plate electrode 15 and the second electrode 14 of the semiconductor element 12 are arranged to face each other with a gap.
Here, the lower surfaces of the first plane portion 19 and the second plane portion 20 facing the second electrode 14 are the lower surface 19A and the lower surface 20A, respectively, and the lower slope of the inclined portion 21 facing the second electrode 14 is inclined. If the surface is the lower surface 21 </ b> B, the lower surface 19 </ b> A and the lower surface 20 </ b> A are disposed so as to be parallel to the second electrode 14, and the lower surface 21 </ b> B is disposed so as to be inclined with respect to the second electrode 14.
In addition, if the gap distance between the lower surface 19A and the second electrode 14 is d1, and the gap distance between the lower surface 20A and the second electrode 14 is d2, d1> d2. That is, the gap distance d1 between the first plane part 19 and the second electrode 14 is arranged to be larger than the gap distance d2 between the second plane part 20 and the second electrode 14, and the first plane part 19 is disposed. Corresponds to the plane portion with the larger gap distance to the second electrode 14, and the second plane portion 20 corresponds to the plane portion with the smaller gap distance to the second electrode 14. Note that there is a relationship of d1-d2 = δ between d1, d2, and δ.

傾斜部21には半田供給用の貫通孔21Aが形成されている。貫通孔21Aを介して板状電極15と第2電極14間の隙間に溶融半田が供給される。
第1平面部19、第2平面部20及び傾斜部21の下面19A、下面20A及び下面21Bと、第2電極14との間に第2半田層17が形成されている。なお、第1半田層16及び第2半田層17は、スズ(Sn)等を含む同一組成、同一融点の半田を使用して形成されている。
The inclined portion 21 is formed with a through hole 21A for supplying solder. Molten solder is supplied to the gap between the plate electrode 15 and the second electrode 14 via the through hole 21A.
A second solder layer 17 is formed between the lower surface 19 </ b> A, the lower surface 20 </ b> A and the lower surface 21 </ b> B of the first planar portion 19, the second planar portion 20, and the inclined portion 21, and the second electrode 14. The first solder layer 16 and the second solder layer 17 are formed using solder having the same composition and the same melting point, including tin (Sn).

次に、上記構造を有する半導体装置10についてその作用説明を図3〜図6に基づき説明する。
図3に示すように、半導体素子12の第2電極14と板状電極15の各平面部(第1平面部19又は第2平面部20)間における半田の接合可能距離範囲をdmin〜dmaxとする。ところで、製造工程において、板状電極15が接合可能距離範囲を超えてばらついた場合であっても、第1平面部19及び第2平面部20のうちどちらか一方が接合可能距離範囲内にあれば、板状電極15を接合可能である。段差の大きさδは接合可能距離範囲の幅dmax−dminより小さく(δ≦dmax−dmin)なるように設定するのが好ましい。このとき、図3に示すように、接合可能距離範囲dmin〜dmaxに対する板状電極15の配設位置としては、P1、P2、P3の3つの位置が考えられる。P1位置では、第2平面部20と第2電極14間の隙間距離d2及び第1平面部19と第2電極14間の隙間距離d1の両方とも接合可能距離範囲dmin〜dmax内にあり、P2位置では、第2平面部20と第2電極14間の隙間距離d2のみが接合可能距離範囲dmin〜dmax内にあり、P3位置では、第1平面部19と第2電極14間の隙間距離d1のみが接合可能距離範囲dmin〜dmax内にある。また、d2=dmax、d1>dmaxの場合が上限位置を示し、d1=dmin、d2<dminの場合が下限位置を示している。
Next, the operation of the semiconductor device 10 having the above structure will be described with reference to FIGS.
As shown in FIG. 3, the solderable distance range between each planar portion (first planar portion 19 or second planar portion 20) of the second electrode 14 and the plate-like electrode 15 of the semiconductor element 12 is dmin to dmax. To do. By the way, even if the plate-like electrode 15 varies beyond the bondable distance range in the manufacturing process, either one of the first plane portion 19 and the second plane portion 20 is within the bondable distance range. In this case, the plate electrode 15 can be joined. The step size δ is preferably set to be smaller than the width dmax−dmin of the bondable distance range (δ ≦ dmax−dmin). At this time, as shown in FIG. 3, three positions of P <b> 1, P <b> 2, and P <b> 3 are conceivable as arrangement positions of the plate-like electrode 15 with respect to the bondable distance range dmin to dmax. At the P1 position, both the gap distance d2 between the second plane portion 20 and the second electrode 14 and the gap distance d1 between the first plane portion 19 and the second electrode 14 are within the bondable distance range dmin to dmax, and P2 At the position, only the gap distance d2 between the second plane portion 20 and the second electrode 14 is within the bondable distance range dmin to dmax, and at the position P3, the gap distance d1 between the first plane portion 19 and the second electrode 14 is. Are within the bondable distance range dmin to dmax. Further, the upper limit position is indicated when d2 = dmax and d1> dmax, and the lower limit position is indicated when d1 = dmin and d2 <dmin.

ここで、段差の大きさδの中間(δ/2)を通る中心線を引き、この中心線と第2電極14間の隙間距離をdcとする。また、接合可能距離範囲dmin〜dmaxの中心をdc0とすると、dc0=(dmin+dmax)/2と表すことができる。このdc0を設計上の電極の標準配置位置とし、これを使って接合可能距離範囲を表すと、次のようになる。すなわち、段差のない単一平面状の電極を有する従来技術の場合には、電極平面部の標準配置位置をdc0としたとき、電極配置のばらつきに対する半田接合可能な許容範囲は、dc0±(dmax−dmin)/2となるのに対し、本実施形態では、電極の標準配置位置をdc=dc0としたとき、電極配置のばらつきに対する半田接合可能な許容範囲は、dc0±((dmax−dmin)/2+δ/2)と表すことができ、従来技術と比較して、接合可能距離範囲が±δ/2だけ拡張される。但し、段差の大きさδは接合可能距離範囲の下限値より小さい(δ≦dmin)。なお、電極の標準配置位置として隙間距離d2をd2=dc0と設定した場合は、第2平面部20の下面20Aが上記従来技術と同様のdc0に位置するが図3の破線で示すように第1平面部19によって接合可能許容範囲が下方へ段差の大きさδ相当分拡張されて、dmin−δ≦d2≦dmaxとなる。   Here, a center line passing through the middle (δ / 2) of the step size δ is drawn, and a gap distance between the center line and the second electrode 14 is defined as dc. Further, when the center of the bondable distance range dmin to dmax is dc0, it can be expressed as dc0 = (dmin + dmax) / 2. If this dc0 is the standard arrangement position of the designed electrode and this is used to represent the range of possible bonding distance, it is as follows. That is, in the case of the prior art having a single planar electrode without a step, when the standard arrangement position of the electrode plane portion is dc0, the allowable range for soldering with respect to variations in electrode arrangement is dc0 ± (dmax -Dmin) / 2, in the present embodiment, when the standard arrangement position of the electrode is dc = dc0, the allowable range in which solder bonding is possible with respect to variations in electrode arrangement is dc0 ± ((dmax-dmin) / 2 + 2 + δ / 2), and the bondable distance range is extended by ± δ / 2 compared to the prior art. However, the size δ of the step is smaller than the lower limit value of the bondable distance range (δ ≦ dmin). When the gap distance d2 is set as d2 = dc0 as the standard arrangement position of the electrodes, the lower surface 20A of the second flat surface portion 20 is located at dc0 similar to the above-described conventional technique, but as shown by the broken line in FIG. The allowable allowable range for joining is expanded downward by an amount corresponding to the step size δ by the one plane portion 19, so that dmin−δ ≦ d2 ≦ dmax.

次に、板状電極15の半田接合について、図4〜図6に基づき製造工程の説明を行う。
図4は、板状電極15が図3の前記P1位置にある場合を示し、第2平面部20と第2電極14間の隙間距離d2が接合可能距離範囲dmin〜dmax内にあり、且つ、第1平面部19と第2電極14間の隙間距離d1も接合可能距離範囲dmin〜dmax内にある。図4(a)に示すように、第2電極14上に板状電極15の第1平面部19の先端側を制御用電極18側に向け、第2平面部20と第2電極14間に隙間距離d2を、第1平面部19と第2電極14間に隙間距離d1をそれぞれ保ちながら板状電極15を配置し、治具などで一端固定する。なお、この場合の前記隙間距離d1、d2をそれぞれd10、d20としたとき、dmin≦d10,d20≦dmaxとなっているので、第2平面部20と第2電極14間の隙間及び、第1平面部19と第2電極14間の隙間の両方の隙間に半田が充填可能である。
Next, the manufacturing process of solder bonding of the plate electrode 15 will be described with reference to FIGS.
FIG. 4 shows a case where the plate-like electrode 15 is at the P1 position in FIG. 3, the gap distance d2 between the second flat surface portion 20 and the second electrode 14 is within the bondable distance range dmin to dmax, and The gap distance d1 between the first planar portion 19 and the second electrode 14 is also within the bondable distance range dmin to dmax. As shown in FIG. 4A, the tip side of the first flat portion 19 of the plate electrode 15 is directed to the control electrode 18 side on the second electrode 14, and between the second flat portion 20 and the second electrode 14. The plate-like electrode 15 is disposed while the gap distance d2 is maintained between the first flat part 19 and the second electrode 14 while the gap distance d1 is maintained, and one end is fixed with a jig or the like. In this case, when the gap distances d1 and d2 are d10 and d20, respectively, dmin ≦ d10 and d20 ≦ dmax, so that the gap between the second planar portion 20 and the second electrode 14 and the first Both gaps between the flat portion 19 and the second electrode 14 can be filled with solder.

次に、図4(b)に示すように、図4(a)に示す状態にある半導体装置を加熱装置内に入れて、装置全体を加熱させながら上方に配置された半田供給装置22から溶融半田を供給する。半田供給装置22から供給された溶融半田は、傾斜部21に形成された半田供給用の貫通孔21Aを通過して半導体素子12の第2電極14上に供給され第2電極14の濡れ性により濡れ広がる。そして、図4(b)に矢印で示すように、濡れ広がった溶融半田は、第1平面部19の下面19Aと第2電極14間の隙間を第1平面部19の先端側に向けて移動すると共に、第2平面部20の下面20Aと第2電極14間の隙間を第2平面部20の後端側(傾斜部21から離間する方向)に向けて移動する。その結果、第1平面部19と第2電極14間の隙間及び、第2平面部20と第2電極14間の隙間の両方の隙間に半田が充填される。   Next, as shown in FIG. 4 (b), the semiconductor device in the state shown in FIG. 4 (a) is put in the heating device and melted from the solder supply device 22 disposed above while heating the entire device. Supply solder. The molten solder supplied from the solder supply device 22 passes through the solder supply through hole 21 </ b> A formed in the inclined portion 21 and is supplied onto the second electrode 14 of the semiconductor element 12 due to the wettability of the second electrode 14. Spread wet. Then, as indicated by arrows in FIG. 4B, the molten solder that has spread out moves through the gap between the lower surface 19 </ b> A of the first flat part 19 and the second electrode 14 toward the tip side of the first flat part 19. At the same time, the gap between the lower surface 20A of the second plane part 20 and the second electrode 14 is moved toward the rear end side (direction away from the inclined part 21) of the second plane part 20. As a result, the solder is filled in both the gap between the first plane portion 19 and the second electrode 14 and the gap between the second plane portion 20 and the second electrode 14.

次に、図4(c)に示すように、半導体装置を加熱装置から取り出し冷却させることにより半田が硬化し、第2電極14と板状電極15とが第2半田層17を介して接合される。
このように、第1平面部19と第2電極14間の隙間及び、第2平面部20と第2電極14間の隙間の両方の隙間に半田が充填されるので、半田の板状電極15との接合面積が確保可能である。
Next, as shown in FIG. 4C, the semiconductor device is taken out of the heating device and cooled to cure the solder, and the second electrode 14 and the plate electrode 15 are bonded via the second solder layer 17. The
As described above, since the solder is filled in both the gap between the first plane portion 19 and the second electrode 14 and the gap between the second plane portion 20 and the second electrode 14, the solder plate-like electrode 15. It is possible to ensure a bonding area with.

図5は、板状電極15が標準位置からばらつきにより図3のP2位置にずれた場合を示し、第2平面部20と第2電極14間の隙間距離d2が接合可能距離範囲dmin〜dmax内にあり、且つ、第1平面部19と第2電極14間の隙間距離d1が接合可能距離範囲dmin〜dmax内にない場合を示している。この場合、図5(a)に示すように、第2平面部20と第2電極14間の隙間距離d2をd22とし、第1平面部19と第2電極14間の隙間距離d1をd12とすれば、dmin≦d22≦dmax、d12>dmaxとなっており、第2平面部20と第2電極14間の隙間にのみ半田が充填可能となっている。   FIG. 5 shows a case where the plate-like electrode 15 is shifted from the standard position to the P2 position of FIG. 3 due to variations, and the gap distance d2 between the second flat portion 20 and the second electrode 14 is within the bondable distance range dmin to dmax. And the gap distance d1 between the first flat portion 19 and the second electrode 14 is not within the bondable distance range dmin to dmax. In this case, as shown in FIG. 5A, the gap distance d2 between the second plane portion 20 and the second electrode 14 is d22, and the gap distance d1 between the first plane portion 19 and the second electrode 14 is d12. In this case, dmin ≦ d22 ≦ dmax and d12> dmax are satisfied, and the solder can be filled only in the gap between the second flat portion 20 and the second electrode 14.

次に、図5(b)に矢印で示すように、半田供給装置22から供給された溶融半田は、第2電極14上に濡れ広がり、第2平面部20の下面20Aと第2電極14間の隙間を第2平面部20の後端側(傾斜部21から離間する方向)に向けて移動する。その結果、第2平面部20と第2電極14間の隙間には半田が充填されるが、第1平面部19と第2電極14間の隙間は、離間しすぎて半田が充填されない。   Next, as indicated by an arrow in FIG. 5B, the molten solder supplied from the solder supply device 22 spreads on the second electrode 14, and between the lower surface 20 </ b> A of the second flat portion 20 and the second electrode 14. Is moved toward the rear end side of the second flat surface portion 20 (in the direction away from the inclined portion 21). As a result, the gap between the second plane part 20 and the second electrode 14 is filled with solder, but the gap between the first plane part 19 and the second electrode 14 is too far away to be filled with solder.

次に、図5(c)に示すように、第2電極14と板状電極15とが第2半田層17を介して接合される。
このように、第2平面部20と第2電極14間の隙間には半田が充填されるので、半田の板状電極15との接合面積が確保可能である。
Next, as shown in FIG. 5C, the second electrode 14 and the plate-like electrode 15 are joined via the second solder layer 17.
Thus, since the gap between the second flat portion 20 and the second electrode 14 is filled with solder, it is possible to ensure a bonding area with the solder plate electrode 15.

図6は、板状電極15が標準位置からばらつきにより図3のP3位置にずれた場合を示し、第2平面部20と第2電極14間の隙間距離d2が接合可能距離範囲dmin〜dmaxを超えて小さくなる方向にばらついた場合を示している。この場合、図6(a)に示すように、第2平面部20と第2電極14間の隙間距離d2をd21とし、第1平面部19と第2電極14間の隙間距離d1をd11とすれば、d21<dmin、dmin≦d11≦dmaxとなっており、第1平面部19と第2電極14間の隙間にのみ半田が充填可能となっている。   FIG. 6 shows a case where the plate-like electrode 15 is shifted from the standard position to the P3 position of FIG. 3 due to variations, and the gap distance d2 between the second flat portion 20 and the second electrode 14 is within the bondable distance range dmin to dmax. It shows a case where the variation is smaller than the above. In this case, as shown in FIG. 6A, the gap distance d2 between the second plane portion 20 and the second electrode 14 is d21, and the gap distance d1 between the first plane portion 19 and the second electrode 14 is d11. In this case, d21 <dmin and dmin ≦ d11 ≦ dmax are satisfied, and only the gap between the first flat portion 19 and the second electrode 14 can be filled with solder.

次に、図6(b)に矢印で示すように、半田供給装置22から供給された溶融半田は、第2電極14上に濡れ広がり、第1平面部19と第2電極14間の隙間を第1平面部19の先端側に向けて移動するが、下面19Aと第2電極14間の隙間には侵入しない。
これは、半田の表面張力などの影響により、第2平面部20と第2電極14間の隙間距離d21は狭すぎて半田が侵入できない距離にあるが、第1平面部19と第2電極14間の隙間距離d11は、接合可能距離範囲内にあるので第1平面部19と第2電極14間の隙間には半田が充填可能なことによる。その結果、第1平面部19と第2電極14間の隙間にのみ半田が充填される。
Next, as indicated by an arrow in FIG. 6B, the molten solder supplied from the solder supply device 22 spreads on the second electrode 14, and a gap between the first flat portion 19 and the second electrode 14 is formed. Although it moves toward the front end side of the first flat surface portion 19, it does not enter the gap between the lower surface 19 </ b> A and the second electrode 14.
This is because the gap distance d21 between the second plane part 20 and the second electrode 14 is too narrow due to the influence of the surface tension of the solder and the like, but the solder cannot enter, but the first plane part 19 and the second electrode 14 Since the gap distance d11 is within the bondable distance range, the gap between the first flat portion 19 and the second electrode 14 can be filled with solder. As a result, only the gap between the first flat portion 19 and the second electrode 14 is filled with solder.

次に、図6(c)に示すように、第2電極14と板状電極15とが第2半田層17を介して接合される。
このように、第1平面部19と第2電極14間の隙間には半田が充填されるので、半田の板状電極15との接合面積が確保可能である。
Next, as shown in FIG. 6C, the second electrode 14 and the plate electrode 15 are joined via the second solder layer 17.
Thus, since the gap between the first flat portion 19 and the second electrode 14 is filled with solder, it is possible to ensure a bonding area with the solder plate electrode 15.

この第1の実施形態に係る半導体装置10によれば以下の効果を奏する。
(1)板状電極15は先端側の第1平面部19と、第1平面部19に傾斜部21を介して接続された第2平面部20とを備え、第1平面部19及び第2平面部20が半導体素子12の第2電極14と平行に配置されると共に、第1平面部19と第2電極14との隙間距離d1が第2平面部20と第2電極14との隙間距離d2よりも大きく形成されており、前記隙間距離d1、d2との差である大きさδの段差を形成することにより、板状電極15を第2電極14から距離を置いて配置する際に何らかの原因で標準配置位置より位置がばらついた場合であっても、第1平面部19と第2平面部20の少なくともいずれか一方が半田の接合可能距離範囲内に存在すれば接合が可能となるため、前記段差の大きさδに相当する分、接合可能距離範囲を拡張することができる。従って、製造工程上のばらつきに対するマージンを広くとることができ歩留まりが向上すると共に、従来技術と比較して、設計の自由度も向上する。また、この際半田の板状電極15との接合面積が確保でき、板状電極15と半導体素子12間の接合強度を確保することが可能となる。
(2)傾斜部21には半田供給用の貫通孔21Aが形成されているので、貫通孔21Aを介して傾斜部21と半導体素子12の第2電極14間の隙間に半田を容易に供給することが可能である。
(3)傾斜部21が第1平面部19及び第2平面部20に対して傾斜しているので、傾斜部21と半導体素子12の第2電極14間の隙間に半田を供給することにより、傾斜部21に沿って半田を濡れ広がらせ、傾斜部21を介して接続された隙間距離dの異なる第1平面部19及び第2平面部20と半導体素子12の第2電極14間の隙間の両方或いはどちらか一方の隙間に半田を充填可能である。
(4)板状電極15は先端側の第1平面部19と第2電極14間の隙間距離d1が大きく形成されているので、半田の接合状態を外部より観察し易い。
The semiconductor device 10 according to the first embodiment has the following effects.
(1) The plate-like electrode 15 includes a first flat surface portion 19 on the distal end side, and a second flat surface portion 20 connected to the first flat surface portion 19 via an inclined portion 21, and the first flat surface portion 19 and the second flat surface portion 19. The planar portion 20 is arranged in parallel with the second electrode 14 of the semiconductor element 12, and the gap distance d1 between the first planar portion 19 and the second electrode 14 is the gap distance between the second planar portion 20 and the second electrode 14. When the plate-like electrode 15 is arranged at a distance from the second electrode 14 by forming a step having a size δ which is a difference between the gap distances d1 and d2, the gap is set larger than d2. Even if the position varies from the standard arrangement position due to the cause, bonding is possible if at least one of the first plane portion 19 and the second plane portion 20 is within the solderable distance range. , The range of possible joining distance corresponding to the step size δ Can be extended. Therefore, a margin for variations in the manufacturing process can be widened, yield is improved, and design freedom is improved as compared with the prior art. At this time, the bonding area between the solder plate electrode 15 can be secured, and the bonding strength between the plate electrode 15 and the semiconductor element 12 can be secured.
(2) Since the through-hole 21A for supplying solder is formed in the inclined portion 21, solder is easily supplied to the gap between the inclined portion 21 and the second electrode 14 of the semiconductor element 12 through the through-hole 21A. It is possible.
(3) Since the inclined portion 21 is inclined with respect to the first planar portion 19 and the second planar portion 20, by supplying solder to the gap between the inclined portion 21 and the second electrode 14 of the semiconductor element 12, The solder is wetted and spread along the inclined portion 21, and the gaps between the first flat portion 19 and the second flat portion 20 and the second electrode 14 of the semiconductor element 12, which have different gap distances d connected via the inclined portion 21, are formed. Both or one of the gaps can be filled with solder.
(4) Since the plate-like electrode 15 is formed with a large gap distance d1 between the first flat portion 19 and the second electrode 14 on the distal end side, it is easy to observe the solder bonding state from the outside.

(第2の実施形態)
次に、第2の実施形態に係る半導体装置30を図7〜図12に基づいて説明する。
この実施形態は、第1の実施形態における板状電極15と半導体素子12との配置関係を変更したものであり、その他の構成は共通である。
従って、ここでは説明の便宜上、先の説明で用いた符号を一部共通して用い、共通する構成についてはその説明を省略し、変更した個所のみ説明を行う。
(Second Embodiment)
Next, the semiconductor device 30 according to the second embodiment will be described with reference to FIGS.
In this embodiment, the arrangement relationship between the plate-like electrode 15 and the semiconductor element 12 in the first embodiment is changed, and other configurations are common.
Therefore, here, for convenience of explanation, some of the reference numerals used in the previous explanation are used in common, explanation of common configurations is omitted, and only the changed parts are explained.

図7及び図8に示すように、板状電極31は、自身の形状を保持しうるほどの強度を持たせる厚みを有し短冊状の板状部材から形成されている。板状電極31は、板状の部材を折り曲げて段差を設けた形状を有し、水平に延びる第1平面部32及び第2平面部33と、第1平面部32と第2平面部33間に連設され第1平面部32及び第2平面部33に対して傾斜した連結部に相当する傾斜部34とを備えている。ここで、段差の大きさをδとすれば、δは第2電極14との隙間距離の大きい方の第1平面部32と第2電極14との隙間距離の小さい方の第2平面部33間の板状電極31の板厚方向における距離に相当する。この段差の大きさδは、第1の実施形態と同様にdmin及びdmaxを考慮した適切な値に設定されている。   As shown in FIGS. 7 and 8, the plate-like electrode 31 is formed of a strip-like plate-like member having a thickness sufficient to maintain its own shape. The plate-like electrode 31 has a shape in which a step is formed by bending a plate-like member, and extends horizontally between the first plane portion 32 and the second plane portion 33, and between the first plane portion 32 and the second plane portion 33. And an inclined portion 34 corresponding to a connecting portion inclined with respect to the first plane portion 32 and the second plane portion 33. Here, if the size of the step is δ, δ is the second plane portion 33 with the smaller gap distance between the second electrode 14 and the first plane portion 32 with the larger gap distance with the second electrode 14. This corresponds to the distance in the plate thickness direction of the plate electrode 31 between them. The step size δ is set to an appropriate value in consideration of dmin and dmax as in the first embodiment.

図8に示すように、板状電極31は、半導体装置30の周辺外方より第2電極14上方を通って第1平面部32の先端側を制御用電極18側に向ける方向に延在し、板状電極31の第1平面部32、第2平面部33及び傾斜部34と、半導体素子12の第2電極14とが隙間を空けて対向するように配置されている。
ここで、第1平面部32及び第2平面部33の第2電極14と対向する下側の面をそれぞれ下面32A及び下面33Aとし、傾斜部34の第2電極14と対向する下側の傾斜面を下面34Bとすれば、下面32A及び下面33Aは、第2電極14と平行となるよう配置されており、下面34Bは第2電極14に対し傾斜して配置されている。
また、下面32Aと第2電極14間の隙間距離をd3とし、下面33Aと第2電極14間の隙間距離をd4とすれば、d4>d3となるように配置されている。すなわち、第1平面部32と第2電極14間の隙間距離d3は、第2平面部33と第2電極14間の隙間距離d4よりも小さくなるように配置されており、第1平面部32が第2電極14との隙間距離が小さい方の平面部に相当し、第2平面部33が第2電極14との隙間距離が大きい方の平面部に相当する。なお、d3、d4、δ間にはd4―d3=δの関係がある。
As shown in FIG. 8, the plate-like electrode 31 extends from the outer periphery of the semiconductor device 30 through the second electrode 14 in the direction in which the front end side of the first planar portion 32 faces the control electrode 18 side. The first planar portion 32, the second planar portion 33, and the inclined portion 34 of the plate electrode 31 and the second electrode 14 of the semiconductor element 12 are arranged to face each other with a gap.
Here, the lower surfaces of the first plane portion 32 and the second plane portion 33 that face the second electrode 14 are the lower surface 32A and the lower surface 33A, respectively, and the lower slope of the inclined portion 34 that faces the second electrode 14 is inclined. If the surface is the lower surface 34 </ b> B, the lower surface 32 </ b> A and the lower surface 33 </ b> A are arranged to be parallel to the second electrode 14, and the lower surface 34 </ b> B is inclined with respect to the second electrode 14.
Further, if the gap distance between the lower surface 32A and the second electrode 14 is d3, and the gap distance between the lower surface 33A and the second electrode 14 is d4, d4> d3. That is, the gap distance d3 between the first plane part 32 and the second electrode 14 is arranged to be smaller than the gap distance d4 between the second plane part 33 and the second electrode 14, and the first plane part 32. Corresponds to the plane portion with the smaller gap distance to the second electrode 14, and the second plane portion 33 corresponds to the plane portion with the larger gap distance to the second electrode 14. Note that there is a relationship d4−d3 = δ between d3, d4, and δ.

この実施形態は、第1の実施形態と比較して、板状電極の形状は同等に形成されているが、半導体素子12との配置関係が異なっている。すなわち、第1平面部32と第2電極14間の隙間距離d3は、第2平面部33と第2電極14間の隙間距離d4よりも小さくなるよう配置されており、第1の実施形態における板状電極15の配置を上下逆転させた配置形態となっている。   In this embodiment, the shape of the plate-like electrode is formed to be equal to that of the first embodiment, but the arrangement relationship with the semiconductor element 12 is different. That is, the gap distance d3 between the first plane portion 32 and the second electrode 14 is arranged to be smaller than the gap distance d4 between the second plane portion 33 and the second electrode 14, and in the first embodiment, The arrangement is such that the arrangement of the plate electrodes 15 is reversed upside down.

傾斜部34には半田供給用の貫通孔34Aが形成されている。貫通孔34Aを介して板状電極31と第2電極14間の隙間に溶融半田が供給される。
第1平面部32、第2平面部33及び傾斜部34の下面32A、下面33A及び下面34Bと、第2電極14との間に第2半田層35が形成されている。なお、第1半田層16及び第2半田層35は、スズ(Sn)等を含む同一組成、同一融点の半田を使用して形成されている。
The inclined portion 34 is formed with a through-hole 34A for supplying solder. Molten solder is supplied to the gap between the plate electrode 31 and the second electrode 14 through the through hole 34A.
A second solder layer 35 is formed between the second electrode 14 and the lower surface 32 </ b> A, the lower surface 33 </ b> A and the lower surface 34 </ b> B of the first planar portion 32, the second planar portion 33, and the inclined portion 34. The first solder layer 16 and the second solder layer 35 are formed using solder having the same composition and the same melting point including tin (Sn) and the like.

次に、上記構造を有する半導体装置30についてその作用説明を図9〜図12に基づき説明する。
図9に示すように、この実施形態においても第1の実施形態と同様に、半田の接合可能距離範囲をdmin〜dmaxとした時に、製造工程において、板状電極31が接合可能距離範囲を超えてばらついた場合であっても、第1平面部32及び第2平面部33のうちどちらか一方が接合可能距離範囲内にあれば、板状電極31を接合可能である。なお、δ≦dmax−dminとなるように設定するのが好ましい。このとき、図9に示すように、接合可能距離範囲dmin〜dmaxに対する板状電極31の配設位置としては、Q1、Q2、Q3の3つの位置が考えられる。Q1位置では、第1平面部32と第2電極14間の隙間距離d3及び第2平面部33と第2電極14間の隙間距離d4の両方とも接合可能距離範囲dmin〜dmax内にあり、Q2位置では、第1平面部32と第2電極14間の隙間距離d3のみが接合可能距離範囲dmin〜dmax内にあり、Q3位置では、第2平面部33と第2電極14間の隙間距離d4のみが接合可能距離範囲dmin〜dmax内にある。また、d3=dmax、d4>dmaxの場合が上限位置を示し、d4=dmin、d3<dminの場合が下限位置を示している。
Next, the operation of the semiconductor device 30 having the above structure will be described with reference to FIGS.
As shown in FIG. 9, in this embodiment as well as in the first embodiment, when the solderable bondable distance range is dmin to dmax, the plate electrode 31 exceeds the bondable distance range in the manufacturing process. Even in the case of variations, the plate-like electrode 31 can be joined as long as one of the first plane part 32 and the second plane part 33 is within the bondable distance range. It is preferable to set so that δ ≦ dmax−dmin. At this time, as shown in FIG. 9, three positions Q1, Q2, and Q3 are conceivable as the arrangement positions of the plate-like electrode 31 with respect to the bondable distance range dmin to dmax. At the Q1 position, both the gap distance d3 between the first plane portion 32 and the second electrode 14 and the gap distance d4 between the second plane portion 33 and the second electrode 14 are within the bondable distance range dmin to dmax, and Q2 At the position, only the gap distance d3 between the first flat portion 32 and the second electrode 14 is within the bondable distance range dmin to dmax, and at the Q3 position, the gap distance d4 between the second flat portion 33 and the second electrode 14 is. Are within the bondable distance range dmin to dmax. Further, the upper limit position is indicated when d3 = dmax and d4> dmax, and the lower limit position is indicated when d4 = dmin and d3 <dmin.

ここで、第1の実施形態と同様に、段差の大きさδの中間(δ/2)を通る中心線を引き、この中心線と第2電極14間の隙間距離をdcとする。また、接合可能距離範囲dmin〜dmaxの中心をdc0とすると、dc0=(dmin+dmax)/2と表すことができる。このdc0を設計上の電極の標準配置位置とし、これを使って接合可能距離範囲を表すと、次のようになる。すなわち、段差のない単一平面状の電極を有する従来技術の場合には、電極平面部の標準配置位置をdc0としたとき、電極配置のばらつきに対する半田接合可能な許容範囲は、dc0±(dmax−dmin)/2となるのに対し、本実施形態では、電極の標準配置位置をdc=dc0としたとき、電極配置のばらつきに対する半田接合可能な許容範囲は、dc0±((dmax−dmin)/2+δ/2)と表すことができ、従来技術と比較して、接合可能距離範囲が±δ/2だけ拡張される。但し、段差の大きさδは接合可能距離範囲の下限値より小さい(δ≦dmin)。なお、電極の標準配置位置として隙間距離d3をd3=dc0と設定した場合は、第1平面部32の下面32Aが上記従来技術と同様のdc0に位置するが図9の破線で示すように第2平面部33によって接合可能許容範囲が下方へ段差の大きさδ相当分拡張されて、dmin−δ≦d3≦dmaxとなる。   Here, as in the first embodiment, a center line passing through the middle (δ / 2) of the step size δ is drawn, and a gap distance between the center line and the second electrode 14 is defined as dc. Further, when the center of the bondable distance range dmin to dmax is dc0, it can be expressed as dc0 = (dmin + dmax) / 2. If this dc0 is the standard arrangement position of the designed electrode and this is used to represent the range of possible bonding distance, it is as follows. That is, in the case of the prior art having a single planar electrode without a step, when the standard arrangement position of the electrode plane portion is dc0, the allowable range for soldering with respect to variations in electrode arrangement is dc0 ± (dmax -Dmin) / 2, in the present embodiment, when the standard arrangement position of the electrode is dc = dc0, the allowable range in which solder bonding is possible with respect to variations in electrode arrangement is dc0 ± ((dmax-dmin) / 2 + 2 + δ / 2), and the bondable distance range is extended by ± δ / 2 compared to the prior art. However, the size δ of the step is smaller than the lower limit value of the bondable distance range (δ ≦ dmin). When the gap distance d3 is set as d3 = dc0 as the standard position of the electrode, the lower surface 32A of the first flat portion 32 is located at dc0 similar to the above-described conventional technique, but the first as shown by the broken line in FIG. The jointable allowable range is expanded downward by an amount corresponding to the step size δ by the two flat portions 33, and dmin−δ ≦ d3 ≦ dmax.

次に、板状電極31の半田接合について、図10〜図12に基づき製造工程の説明を行う。
図10は、板状電極31が図9の前記Q1位置にある場合を示し、第1平面部32と第2電極14間の隙間距離d3が接合可能距離範囲dmin〜dmax内にあり、且つ、第2平面部33と第2電極14間の隙間距離d4も接合可能距離範囲dmin〜dmax内にある。図10(a)に示すように、第2電極14上に板状電極31の第1平面部32の先端側を制御用電極18側に向け、第1平面部32と第2電極14間に隙間距離d3を、第2平面部33と第2電極14間に隙間距離d4をそれぞれ保ちながら板状電極31を配置し、治具などで一端固定する。なお、この場合の前記隙間距離d3、d4をそれぞれd30、d40としたとき、dmin≦d30,d40≦dmaxとなっているので、第1平面部32と第2電極14間の隙間及び、第2平面部33と第2電極14間の隙間の両方の隙間に半田が充填可能である。
Next, the manufacturing process of solder bonding of the plate electrode 31 will be described with reference to FIGS.
FIG. 10 shows the case where the plate-like electrode 31 is at the Q1 position in FIG. 9, and the gap distance d3 between the first flat portion 32 and the second electrode 14 is within the bondable distance range dmin to dmax, and The gap distance d4 between the second flat portion 33 and the second electrode 14 is also within the bondable distance range dmin to dmax. As shown in FIG. 10A, the tip side of the first flat portion 32 of the plate electrode 31 is directed to the control electrode 18 side on the second electrode 14, and between the first flat portion 32 and the second electrode 14. The plate-like electrode 31 is arranged while the gap distance d3 is kept between the second plane portion 33 and the second electrode 14 while the gap distance d4 is kept, and is fixed at one end with a jig or the like. In this case, when the gap distances d3 and d4 are d30 and d40, respectively, dmin ≦ d30 and d40 ≦ dmax, so that the gap between the first planar portion 32 and the second electrode 14 and the second Solder can be filled in both the gaps between the flat portion 33 and the second electrode 14.

次に、図10(b)に示すように、図10(a)に示す状態にある半導体装置を加熱装置内に入れて、装置全体を加熱させながら上方に配置された半田供給装置22から溶融半田を供給する。半田供給装置22から供給された溶融半田は、傾斜部34に形成された半田供給用の貫通孔34Aを通過して半導体素子12の第2電極14上に供給され第2電極14の濡れ性により濡れ広がる。そして、図10(b)に矢印で示すように、濡れ広がった溶融半田は、第1平面部32の下面32Aと第2電極14間の隙間を第1平面部32の先端側に向けて移動すると共に、第2平面部33の下面33Aと第2電極14間の隙間を第2平面部33の後端側(傾斜部34から離間する方向)に向けて移動する。その結果、第1平面部32と第2電極14間の隙間及び、第2平面部33と第2電極14間の隙間の両方の隙間に半田が充填される。   Next, as shown in FIG. 10 (b), the semiconductor device in the state shown in FIG. 10 (a) is put in the heating device and melted from the solder supply device 22 disposed above while heating the entire device. Supply solder. The molten solder supplied from the solder supply device 22 passes through the solder supply through-hole 34 </ b> A formed in the inclined portion 34 and is supplied onto the second electrode 14 of the semiconductor element 12 due to the wettability of the second electrode 14. Spread wet. Then, as indicated by the arrows in FIG. 10B, the molten solder that has spread out moves through the gap between the lower surface 32 </ b> A of the first planar portion 32 and the second electrode 14 toward the distal end side of the first planar portion 32. At the same time, the gap between the lower surface 33A of the second flat portion 33 and the second electrode 14 is moved toward the rear end side (the direction away from the inclined portion 34) of the second flat portion 33. As a result, the solder is filled in both the gap between the first plane portion 32 and the second electrode 14 and the gap between the second plane portion 33 and the second electrode 14.

次に、図10(c)に示すように、半導体装置を加熱装置から取り出し冷却させることにより半田が硬化し、第2電極14と板状電極31とが第2半田層35を介して接合される。
このように、第1平面部32と第2電極14間の隙間及び、第2平面部33と第2電極14間の隙間の両方の隙間に半田が充填されるので、半田の板状電極31との接合面積が確保可能である。
Next, as shown in FIG. 10C, the semiconductor device is taken out of the heating device and cooled to cure the solder, and the second electrode 14 and the plate-like electrode 31 are joined via the second solder layer 35. The
As described above, since the solder is filled in both the gap between the first plane portion 32 and the second electrode 14 and the gap between the second plane portion 33 and the second electrode 14, the plate electrode 31 of the solder is filled. It is possible to ensure a bonding area with.

図11は、板状電極31が標準位置からばらつきにより図9のQ2位置にずれた場合を示し、第1平面部32と第2電極14間の隙間距離d3が接合可能距離範囲dmin〜dmax内にあり、且つ、第2平面部33と第2電極14間の隙間距離d4が接合可能距離範囲dmin〜dmax内にない場合を示している。この場合、図11(a)に示すように、第1平面部32と第2電極14間の隙間距離d3をd32とし、第2平面部33と第2電極14間の隙間距離d4をd42とすれば、dmin≦d32≦dmax、d42>dmaxとなっており、第1平面部32と第2電極14間の隙間にのみ半田が充填可能となっている。   FIG. 11 shows a case where the plate electrode 31 is shifted from the standard position to the Q2 position of FIG. 9 due to variations, and the gap distance d3 between the first flat portion 32 and the second electrode 14 is within the bondable distance range dmin to dmax. And the gap distance d4 between the second flat portion 33 and the second electrode 14 is not within the bondable distance range dmin to dmax. In this case, as shown in FIG. 11A, the gap distance d3 between the first plane portion 32 and the second electrode 14 is d32, and the gap distance d4 between the second plane portion 33 and the second electrode 14 is d42. In this case, dmin ≦ d32 ≦ dmax and d42> dmax are satisfied, and only the gap between the first flat portion 32 and the second electrode 14 can be filled with solder.

次に、図11(b)に矢印で示すように、半田供給装置22から供給された溶融半田は、第2電極14上に濡れ広がり、第1平面部32の下面32Aと第2電極14間の隙間を第1平面部32の先端側に向けて移動する。その結果、第1平面部32と第2電極14間の隙間には半田が充填されるが、第2平面部33と第2電極14間の隙間は、離間しすぎて半田が充填されない。   Next, as indicated by an arrow in FIG. 11B, the molten solder supplied from the solder supply device 22 spreads on the second electrode 14, and is between the lower surface 32 </ b> A of the first flat portion 32 and the second electrode 14. Is moved toward the tip side of the first flat surface portion 32. As a result, the gap between the first plane portion 32 and the second electrode 14 is filled with solder, but the gap between the second plane portion 33 and the second electrode 14 is too far away to be filled with solder.

次に、図11(c)に示すように、第2電極14と板状電極31とが第2半田層35を介して接合される。
このように、第1平面部32と第2電極14間の隙間には半田が充填されるので、半田の板状電極31との接合面積が確保可能である。
Next, as shown in FIG. 11C, the second electrode 14 and the plate electrode 31 are joined via the second solder layer 35.
Thus, since the gap between the first flat portion 32 and the second electrode 14 is filled with solder, it is possible to secure a bonding area with the solder plate electrode 31.

図12は、板状電極31が標準位置からばらつきにより図9のQ3位置にずれた場合を示し、第1平面部32と第2電極14間の隙間距離d3が接合可能距離範囲dmin〜dmaxを超えて小さくなる方向にばらついた場合を示している。この場合、図12(a)に示すように、第1平面部32と第2電極14間の隙間距離d3をd31とし、第2平面部33と第2電極14間の隙間距離d4をd41とすれば、d31<dmin、dmin≦d41≦dmaxとなっており、第2平面部33と第2電極14間の隙間にのみ半田が充填可能となっている。   FIG. 12 shows a case where the plate-like electrode 31 is shifted from the standard position to the Q3 position of FIG. 9 due to variations, and the gap distance d3 between the first flat portion 32 and the second electrode 14 is within the bondable distance range dmin to dmax. It shows a case where the variation is smaller than the above. In this case, as shown in FIG. 12A, the gap distance d3 between the first plane portion 32 and the second electrode 14 is d31, and the gap distance d4 between the second plane portion 33 and the second electrode 14 is d41. In this case, d31 <dmin and dmin ≦ d41 ≦ dmax are satisfied, and only the gap between the second flat surface portion 33 and the second electrode 14 can be filled with solder.

次に、図12(b)に矢印で示すように、半田供給装置22から供給された溶融半田は、第2電極14上に濡れ広がり、第2平面部33と第2電極14間の隙間を第2平面部33の後端側(傾斜部34から離間する方向)に向けて移動するが、第1平面部32と第2電極14間の隙間には侵入しない。
これは、半田の表面張力などの影響により、第1平面部32と第2電極14間の隙間距離d31は狭すぎて半田が侵入できない距離にあるが、第2平面部33と第2電極14間の隙間距離d41は、接合可能距離範囲内にあるので第2平面部33と第2電極14間の隙間には半田が充填可能なことによる。その結果、第2平面部33と第2電極14間の隙間にのみ半田が充填される。
Next, as indicated by an arrow in FIG. 12B, the molten solder supplied from the solder supply device 22 spreads on the second electrode 14, and a gap between the second flat portion 33 and the second electrode 14 is formed. Although it moves toward the rear end side (the direction away from the inclined portion 34) of the second plane portion 33, it does not enter the gap between the first plane portion 32 and the second electrode 14.
This is because the gap distance d31 between the first plane part 32 and the second electrode 14 is too narrow to allow the solder to enter due to the influence of the surface tension of the solder, etc., but the second plane part 33 and the second electrode 14 The gap distance d41 between them is within the bondable distance range, so that the gap between the second flat portion 33 and the second electrode 14 can be filled with solder. As a result, only the gap between the second flat portion 33 and the second electrode 14 is filled with solder.

次に、図12(c)に示すように、第2電極14と板状電極31とが第2半田層35を介して接合される。
このように、第2平面部33と第2電極14間の隙間には半田が充填されるので、半田の板状電極31との接合面積が確保可能である。
Next, as shown in FIG. 12C, the second electrode 14 and the plate-like electrode 31 are joined via the second solder layer 35.
Thus, since the gap between the second flat portion 33 and the second electrode 14 is filled with solder, a bonding area with the solder plate electrode 31 can be secured.

この第2の実施形態に係る半導体装置30によれば第1の実施形態における(1)〜(3)と同等の効果を得ることができること以外に、板状電極31は先端側の第1平面部32と第2電極14間の隙間距離d3が小さく形成されているので、第1平面部32と半導体素子12の第2電極14間の隙間に充填される半田が第2電極14の外側に漏れるのが防止可能である。   According to the semiconductor device 30 according to the second embodiment, the plate-like electrode 31 has the first flat surface on the tip side, in addition to the effects equivalent to (1) to (3) in the first embodiment. Since the gap distance d3 between the portion 32 and the second electrode 14 is formed small, the solder filled in the gap between the first plane portion 32 and the second electrode 14 of the semiconductor element 12 is outside the second electrode 14. Leakage can be prevented.

なお、本発明は、上記した実施形態に限定されるものではなく発明の趣旨の範囲内で種々の変更が可能であり、例えば、次のように変更しても良い。
○ 第1及び第2の実施形態では、段差の大きさδは接合可能距離範囲の幅dmax−dminより小さく、且つ、接合可能距離範囲の下限値より小さいことを条件として説明したが、段差の大きさδは接合可能距離範囲の幅dmax−dminより小さく、且つ、接合可能距離範囲の下限値より大きい場合には、第2平面部20又は第1平面部32が第2電極14と当接することがある。この場合、接合可能距離範囲の拡張幅は狭くなる。
○ 第1及び第2の実施形態では、段差の大きさδは接合可能距離範囲の幅dmax−dminより小さいとして説明したが、段差の大きさδは接合可能距離範囲の幅dmax−dminより大きくても構わない。例えば、図13に示すように、板状電極41が第1平面部42(隙間距離d5)と第2平面部43(隙間距離d6)とを有し、段差の大きさδが、接合可能距離範囲の幅dmax−dminより大きく設定されている場合には、次のようになる。すなわち、第2平面部43を基準として考えたときに、第2平面部43がR1位置〜R2位置間にあり隙間距離d6が接合可能範囲内にある場合には、第2平面部43と第2電極14間の隙間に半田を充填可能である。しかし、R2位置を超えて隙間距離d6が小さくなる方向にばらついたR3位置では、第1平面部42及び第2平面部43の両方とも接合可能範囲外(d5、d6とも接合可能範囲外)となり、この場合には、板状電極41は半田接合されずNG範囲となる。そして、更に隙間距離d6が小さくなる方向にばらつきR4位置に到達すると、第1平面部42が接合可能範囲に入ってくるので、第1平面部42と第2電極14間の隙間に半田を充填可能である。図13に矢印で示すように、不連続的ではあるが、接合可能範囲が拡張される。
○ 第1及び第2の実施形態では、連結部を傾斜面を有する傾斜部21、34として説明したが、連結部が湾曲面或いは、屈曲面で形成されていても良い。また、連結部が垂直に形成されていても良い。
○ 第1及び第2の実施形態では、板状電極は長尺方向に折れ曲がった形状を有するとして説明したが、長尺方向と直角な短尺方向に折れ曲った形状を有し、短尺方向の一方に第1平面部が形成され、短尺方向の他方に第2平面部が形成されて、第1平面部と第2平面部との間に2つの平面部を連結する連結部が形成されていても良い。
○ 第1及び第2の実施形態では、複数の平面部が2個で連結部が1個としたが、複数の平面部が3個以上で、各平面部間を連結する連結部が2個以上あり、各連結部に半田供給用の貫通孔が形成されていても良い。
○ 第1及び第2の実施形態では、傾斜部21、34に貫通孔21A、34Aを設けるとして説明したが、貫通孔を平面部に設けても良く、また、貫通孔を設けないで半田を側方より上部電極と第2電極間の隙間に直接供給しても良い。さらに、貫通孔に代えて傾斜部に切り欠きを設けても良い。
○ 第1及び第2の実施形態では、被接合部材を半導体素子12として説明したが、半導体素子12を介さずに基部11上に板状電極15、31を直接半田付けしても良い。この場合には、基部11が被接合部材となる。
The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the spirit of the invention. For example, the following modifications may be made.
In the first and second embodiments, the step size δ has been described on the condition that it is smaller than the width dmax−dmin of the bondable distance range and smaller than the lower limit value of the bondable distance range. When the size δ is smaller than the width dmax−dmin of the bondable distance range and larger than the lower limit value of the bondable distance range, the second flat surface portion 20 or the first flat surface portion 32 contacts the second electrode 14. Sometimes. In this case, the expansion width of the connectable distance range is narrowed.
In the first and second embodiments, the step size δ is described as being smaller than the width dmax−dmin of the bondable distance range, but the step size δ is larger than the width dmax−dmin of the bondable distance range. It doesn't matter. For example, as shown in FIG. 13, the plate-like electrode 41 has a first plane part 42 (gap distance d5) and a second plane part 43 (gap distance d6), and the step size δ is the bondable distance. When it is set to be larger than the range width dmax−dmin, it is as follows. In other words, when the second plane portion 43 is considered as a reference and the second plane portion 43 is between the R1 position and the R2 position and the gap distance d6 is within the connectable range, the second plane portion 43 and the second plane portion 43 Solder can be filled in the gap between the two electrodes 14. However, at the R3 position where the gap distance d6 varies in the direction that decreases beyond the R2 position, both the first flat surface portion 42 and the second flat surface portion 43 are outside the bondable range (both d5 and d6 are outside the bondable range). In this case, the plate electrode 41 is not soldered and is in the NG range. Then, when the variation R4 position is reached in the direction in which the gap distance d6 is further reduced, the first flat surface portion 42 enters the bondable range, so that the gap between the first flat surface portion 42 and the second electrode 14 is filled with solder. Is possible. As shown by the arrows in FIG. 13, although it is discontinuous, the bondable range is expanded.
In the first and second embodiments, the connecting portion has been described as the inclined portions 21 and 34 having inclined surfaces, but the connecting portion may be formed of a curved surface or a bent surface. Further, the connecting portion may be formed vertically.
In the first and second embodiments, the plate-like electrode has been described as having a shape bent in the long direction. However, the plate electrode has a shape bent in a short direction perpendicular to the long direction. The first plane portion is formed on the other side, the second plane portion is formed on the other side in the short direction, and a connecting portion for connecting the two plane portions is formed between the first plane portion and the second plane portion. Also good.
○ In the first and second embodiments, the number of the plurality of plane portions is two and the number of the connection portions is one. As described above, a through hole for supplying solder may be formed in each connecting portion.
In the first and second embodiments, it has been described that the through holes 21A and 34A are provided in the inclined portions 21 and 34. However, the through holes may be provided in the plane portion, and solder may be provided without providing the through holes. You may supply directly to the clearance gap between an upper electrode and a 2nd electrode from the side. Furthermore, a cutout may be provided in the inclined portion instead of the through hole.
In the first and second embodiments, the member to be bonded has been described as the semiconductor element 12. However, the plate-like electrodes 15 and 31 may be directly soldered on the base 11 without using the semiconductor element 12. In this case, the base 11 is a member to be joined.

10 半導体装置
11 基部
12 半導体素子
13 第1電極
14 第2電極
15 板状電極
17 第2半田層
19 第1平面部
20 第2平面部
21 傾斜部
21A 貫通孔
δ 段差の大きさ(=d1−d2)
d1 第1平面部と第2電極間の隙間距離
d2 第2平面部と第2電極間の隙間距離
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Base 12 Semiconductor element 13 1st electrode 14 2nd electrode 15 Plate-like electrode 17 2nd solder layer 19 1st plane part 20 2nd plane part 21 Inclined part 21A Through-hole (delta) Through-hole (delta) Size of level | step difference (= d1- d2)
d1 Gap distance between the first plane part and the second electrode d2 Gap distance between the second plane part and the second electrode

Claims (6)

平面状の被接合面を有する被接合部材と、少なくとも一部が該被接合部材の被接合面と隙間を空けて対向配置されつつ半田により接合される板状の電極とを備えた電子機器であって、
前記電極は、前記被接合部材の被接合面と対向する部分に、前記被接合面との隙間距離の異なる複数の平面部と、該複数の平面部を繋ぐ連結部とを備え、
前記被接合部材の被接合面は半田により前記複数の平面部の少なくとも1つと接合されることを特徴とする電子機器。
An electronic apparatus comprising: a member to be joined having a planar joined surface; and a plate-like electrode joined by solder while being disposed so as to face the joined surface of the joined member with a gap. There,
The electrode includes a plurality of plane portions having different gap distances from the bonded surface and a connecting portion that connects the plurality of flat surface portions in a portion facing the bonded surface of the bonded member.
An electronic apparatus, wherein a surface to be bonded of the member to be bonded is bonded to at least one of the plurality of flat portions by solder.
前記連結部には、半田供給用の貫通孔が形成されていることを特徴とする請求項1に記載の電子機器。   The electronic device according to claim 1, wherein a through hole for supplying solder is formed in the connecting portion. 前記連結部が前記平面部に対して傾斜した傾斜面であることを特徴とする請求項1又は2に記載の電子機器。   The electronic apparatus according to claim 1, wherein the connecting portion is an inclined surface that is inclined with respect to the planar portion. 前記複数の平面部は、前記電極の先端側の第1平面部と、前記第1平面部に前記連結部を介して接続され前記被接合面と一部が対向すると共に前記連結部より離間する方向へ延在する第2平面部とを備え、前記第1平面部及び前記第2平面部は、前記被接合部材の被接合面と平行に配置されると共に、前記第1平面部と前記被接合面との隙間距離が前記第2平面部と前記被接合面との隙間距離よりも大きく形成されていることを特徴とする請求項1〜3のいずれか一項に記載の電子機器。   The plurality of flat portions are connected to the first flat portion on the distal end side of the electrode via the connecting portion, the first flat portion is opposed to the bonded surface and partly separated from the connecting portion. A second planar portion extending in a direction, and the first planar portion and the second planar portion are disposed in parallel with a surface to be joined of the member to be joined, and the first planar portion and the subject to be joined. The electronic device according to any one of claims 1 to 3, wherein a gap distance with a bonding surface is formed larger than a gap distance between the second flat surface portion and the surface to be bonded. 前記複数の平面部は、前記電極の先端側の第1平面部と、前記第1平面部に前記連結部を介して接続され前記被接合面と一部が対向すると共に前記連結部より離間する方向へ延在する第2平面部とを備え、前記第1平面部及び前記第2平面部は、前記被接合部材の被接合面と平行に配置されると共に、前記第1平面部と前記被接合面との隙間距離が前記第2平面部と前記被接合面との隙間距離よりも小さく形成されていることを特徴とする請求項1〜3のいずれか一項に記載の電子機器。   The plurality of flat portions are connected to the first flat portion on the distal end side of the electrode via the connecting portion, the first flat portion is opposed to the bonded surface and partly separated from the connecting portion. A second planar portion extending in a direction, and the first planar portion and the second planar portion are disposed in parallel with a surface to be joined of the member to be joined, and the first planar portion and the subject to be joined. 4. The electronic device according to claim 1, wherein a gap distance with a bonding surface is formed to be smaller than a gap distance between the second flat surface portion and the surface to be bonded. 前記被接合部材は半導体素子であり前記被接合面は前記半導体素子の表面に形成された表面電極であることを特徴とする請求項1〜5のいずれか一項に記載の電子機器。   The electronic device according to claim 1, wherein the member to be bonded is a semiconductor element, and the surface to be bonded is a surface electrode formed on a surface of the semiconductor element.
JP2010256919A 2010-11-17 2010-11-17 Electronic apparatus Pending JP2012109391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256919A JP2012109391A (en) 2010-11-17 2010-11-17 Electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256919A JP2012109391A (en) 2010-11-17 2010-11-17 Electronic apparatus

Publications (1)

Publication Number Publication Date
JP2012109391A true JP2012109391A (en) 2012-06-07

Family

ID=46494699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256919A Pending JP2012109391A (en) 2010-11-17 2010-11-17 Electronic apparatus

Country Status (1)

Country Link
JP (1) JP2012109391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2022620A (en) * 2018-03-02 2019-09-06 Shindengen Electric Mfg Semiconductor device and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2022620A (en) * 2018-03-02 2019-09-06 Shindengen Electric Mfg Semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP2004063688A (en) Semiconductor device and semiconductor assembly module
JP5800778B2 (en) Bonding method and semiconductor device manufacturing method
JP5011562B2 (en) Semiconductor device and manufacturing method thereof
JP2013201289A (en) Semiconductor device
JP2012169477A (en) Semiconductor device
JP2012191021A (en) Semiconductor module
JP2002026195A (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2012109391A (en) Electronic apparatus
JP2008294390A (en) Module structure
JP2018088493A (en) Bonding component and substrate unit
JP2012084588A (en) Connection structure of electrode in electronic parts
JP2013258013A (en) Fuse
US8300421B2 (en) Electronic component and method of manufacturing electronic component
JP2012252935A (en) Semiconductor device for electricity
JP2011086743A (en) Power semiconductor device and method for manufacturing the power semiconductor device
WO2012067109A1 (en) Connection terminal and circuit component
JP6242328B2 (en) Semiconductor device
JP2021002637A (en) Semiconductor device and manufacturing method of semiconductor device
JP2010212729A (en) Semiconductor device and manufacturing method of the same
JP2012059905A (en) Electrode connecting structure in electronic component
JP2012081481A (en) Connection structure of electrode in electronic component
JP2013065758A (en) Semiconductor device and manufacturing method of the same
JP2018152468A (en) Semiconductor device and semiconductor device manufacturing method
JP2008124152A (en) Solder sheet, semiconductor device, and semiconductor device manufacturing method
JP2016100515A (en) substrate