JP2012109288A - Wafer for led - Google Patents

Wafer for led Download PDF

Info

Publication number
JP2012109288A
JP2012109288A JP2010251454A JP2010251454A JP2012109288A JP 2012109288 A JP2012109288 A JP 2012109288A JP 2010251454 A JP2010251454 A JP 2010251454A JP 2010251454 A JP2010251454 A JP 2010251454A JP 2012109288 A JP2012109288 A JP 2012109288A
Authority
JP
Japan
Prior art keywords
plating
layer
plating layer
led
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010251454A
Other languages
Japanese (ja)
Inventor
Fumio Oshita
文夫 大下
Masahiro Yamaguchi
雅弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAMATSU MEKKI KK
Original Assignee
TAKAMATSU MEKKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAMATSU MEKKI KK filed Critical TAKAMATSU MEKKI KK
Priority to JP2010251454A priority Critical patent/JP2012109288A/en
Publication of JP2012109288A publication Critical patent/JP2012109288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer for LED which holds stabilized heat dissipation and mechanical strength and, at the same time, allows for microfabrication and high reliability even for chemical resistance because extensive studies are conducted about a plating method that allows for microfabrication by using a combined material only in a core material in the center part, and thereby respective metal layers are formed uniformly and integrally with no interlayer exfoliation, and contact thermal resistance with the LED is extremely low.SOLUTION: The wafer for LED is obtained by forming an Au plating surface layer of Au or an Au alloy on both surfaces vertically symmetrically around a thin film core material consisting of Mo, and then forming composite underlying layer consisting at least of a Cu plating layer between the core material and the Au plating surface layer, so as to complement and maintain the core material and the Au plating surface layer.

Description

この発明は、半導体素子としてのLEDを保持するとともに、それに蓄熱するのを防止する機能を果たすLED用ウエハに関する。   The present invention relates to an LED wafer that functions to hold an LED as a semiconductor element and prevent it from storing heat.

半導体装置、例えばLED(発光ダイオード)や半導体集積回路等では、最近の高密度化および高出力化により、放熱量が増加する傾向にあり、このためそのウエハにおいて優れた高放熱性能が要求されると同時に、細密化、繊細化およびこれに伴う耐腐食性、耐衝撃性等が要求される傾向にある。また、高放熱性能に関連してLED等との接触を保持するために要する変形しない安定性ないし低熱膨張率も要求される。従来、サファイア基板をこのLED用ウエハとして使用することがあったが、最近では熱伝導性や耐衝撃性等について既に不足する実情にある。   In semiconductor devices such as LEDs (light emitting diodes) and semiconductor integrated circuits, the amount of heat dissipation tends to increase due to the recent increase in density and output, and thus excellent high heat dissipation performance is required for the wafer. At the same time, there is a tendency to demand fineness, fineness, and associated corrosion resistance, impact resistance, and the like. In addition, in relation to high heat dissipation performance, there is also a demand for non-deformable stability or a low coefficient of thermal expansion required to maintain contact with an LED or the like. Conventionally, a sapphire substrate has been used as this LED wafer, but recently there is a lack of thermal conductivity and impact resistance.

半導体素子がLEDである場合、図8についてこれをみると、そのLEDは、サファイア基板の上に搭載されているが、これであると、接触抵抗のためLEDの発光部から発する熱がサファイア基板との間に溜まりやすく(図9の左図参照)、多くの半導体素子ではその蓄熱があると機能が低下し、特にLEDではその輝度が衰えたり、サファイア基板の破損等の弊害が生じることから、それを受ける部分に熱の比較的接触抵抗が少ない熱伝導性の良好で強度のある金属製の放熱基板(ウエハ)が使用される(図9の右図参照)。たとえば、銅やモリブデン、タングステン、チタン等のメタルウエハと称する金属である。そして、主にモリブデン(Mo)を銅(Cu,Cu)のメッキでサンドイッチしたもの(「DMD」と称することにする)が良好であることが知られている(同図9の右図参照)。しかし、これらの金属は耐食性、耐薬品性、LEDとの熱伝接触性等について問題が残っていた。   When the semiconductor element is an LED, the LED is mounted on a sapphire substrate, as shown in FIG. 8, but in this case, heat generated from the light emitting part of the LED due to contact resistance is generated by the sapphire substrate. (Refer to the left diagram in FIG. 9). Many semiconductor elements have a reduced function when heat is stored, and particularly LEDs have a negative effect such as a decrease in brightness and damage to the sapphire substrate. A heat radiating substrate (wafer) made of metal having a good thermal conductivity and a relatively low heat resistance is used for the portion receiving it (see the right figure in FIG. 9). For example, a metal called a metal wafer such as copper, molybdenum, tungsten, or titanium. And, it is known that molybdenum (Mo) sandwiched mainly by copper (Cu, Cu) plating (referred to as “DMD”) is good (see the right figure in FIG. 9). . However, these metals still have problems with respect to corrosion resistance, chemical resistance, heat transfer contact with LED, and the like.

一般的に、ウエハに要求される性質ないし性能等については、優れた熱伝導性が求められることから、その熱伝導率はもちろん、例えばLEDとの取付において、熱の接触抵抗が少ないこと、歪みや反りがない安定性と高い機械的強度、機械加工性が要求される。また、取り付ける接着やロウ付け等に適すること、耐薬品性に優れていること等も求められる。これらの性質は、従来、複数の金属材(グラッド材)の層結合により総合的に発揮するよう開発が進められる(特許文献1、特許文献2)。この多層構造を取る手段としては、従来、グラッド材を圧着して重合する圧延方法や熱間一軸加工法が用いられていた。しかし、特に圧延方法では層厚の均等性が得られ難かった。   Generally, the properties and performances required for wafers require excellent thermal conductivity. Therefore, not only the thermal conductivity, but also, for example, when mounting with LEDs, there is little thermal contact resistance, distortion In addition, stability without warping and high mechanical strength and machinability are required. In addition, it is required to be suitable for attachment and brazing, and to be excellent in chemical resistance. Conventionally, development has been progressed so that these properties are comprehensively exhibited by layer bonding of a plurality of metal materials (grad materials) (Patent Documents 1 and 2). As means for taking this multilayer structure, conventionally, a rolling method in which a grad material is pressure-bonded and polymerized or a hot uniaxial processing method has been used. However, it has been difficult to obtain uniformity of the layer thickness especially by the rolling method.

図10は、従来の熱間一軸加工法による装置を示し、LED用ウエハ54は、W又はMoの金属からなる基材50の両面にCu又はTiのいずれかの金属からなる合せ材52,52を圧着しサンドイッチ構造に層形成したものであったが、下記の如く問題があった。   FIG. 10 shows an apparatus based on a conventional hot uniaxial processing method. An LED wafer 54 is made of a laminated material 52, 52 made of either Cu or Ti on both surfaces of a substrate 50 made of W or Mo metal. However, there were problems as described below.

特開平6−268115号公報JP-A-6-268115 特許第3862737号公報Japanese Patent No. 3862737

圧延方法や熱間一軸加工法は、いずれも複数枚の合せ金属材(グラッド材、グラッド金属とも称する)を重ねて圧縮することにより熱可塑性により偏平化するとともに合せ材どうしを加熱圧着してグラッド層を形成するものであるが(この構造を「CMC」と称することにする)、その接着には加熱温度、時間、圧縮強さ等の条件整合が難しく剥離しないという信頼性に乏しく、剥離が発生すると、機械的強度や放熱性能に支障(剥離部分に蓄熱する)をきたし、盛り上がりでパッケージ基板やLED素子との結合が不安定となる。   In the rolling method and the hot uniaxial processing method, a plurality of laminated metal materials (also referred to as grad materials and grad metals) are overlapped and compressed to flatten due to thermoplasticity, and the laminated materials are thermocompression bonded to each other. Although it forms a layer (this structure is called “CMC”), it is difficult to match conditions such as heating temperature, time, and compressive strength for adhesion, and it is not reliable and does not peel. When it occurs, mechanical strength and heat dissipation performance are hindered (heat is stored in the peeled portion), and the coupling with the package substrate and the LED element becomes unstable due to the rise.

また、特に、グラッド金属厚の最小化には限界があるため、LED用ウエハの微細化という点では避けがたい問題があった。さらに、異種金属の接合に伴う反りを防ぐ方法として、中心部となる母材を中心としてその上下両面に対称になるよう合せ金属材が配置されるが、それでも熱変形の異なる異種金属を同時に加熱圧縮するため、グラッド層の厚みに偏在が生じ、特に圧延方法では層にうねりやコロニーが生じたりしやすく、これらの発生も全体的な反りの原因となり、また、機械的強度や放熱性能に支障を招く要因となるという問題もあった。   In particular, since there is a limit to minimizing the thickness of the grad metal, there is a problem that cannot be avoided in terms of miniaturization of the LED wafer. Furthermore, as a method to prevent warping due to the joining of different metals, the laminated metal materials are arranged so as to be symmetrical on both the upper and lower surfaces around the base material as the center, but still different metals with different thermal deformation are heated simultaneously. Due to the compression, the thickness of the grad layer is unevenly distributed, and in particular, the rolling method tends to cause undulations and colonies in the layer. These occurrences also cause overall warpage, and also hinder the mechanical strength and heat dissipation performance. There was also a problem of becoming a factor inviting.

この発明は、上記のような実情に鑑みて、合せ材を層の中心部のコア材にのみ用いることにして、微細化が可能なメッキ手法について鋭意研究を重ねてきたもので、各金属層が均一且つ不離一体に形成され、層間において剥離が生じなく、また、LEDとの接触熱抵抗が極めて少いため、安定した放熱性および機械的強度を保持すると同時に、微細化が可能で耐薬品性についても信頼性が高いLED用ウエハを提供することを課題とした。   In view of the above situation, the present invention has been intensively researched on a plating method capable of miniaturization by using a laminated material only as a core material at the center of each layer. Is formed uniformly and inseparably, does not cause delamination between layers, and has very little contact thermal resistance with the LED, so it can maintain stable heat dissipation and mechanical strength, and at the same time can be miniaturized and has chemical resistance Also, it was an object to provide a highly reliable LED wafer.

上記の課題を解決するために、この発明は次のような構成とした。   In order to solve the above problems, the present invention has the following configuration.

(1)すなわち、この発明は、Moからなる薄板状のコア材を中心として上下対称となるように、両面にAuまたはAu合金のAuメッキ表面層を形成し、コア材とAuメッキ表面層との間にそれを補完・維持する少なくともCuメッキ層からなる複合下地層を形成してなることを特徴とするLED用ウエハを要旨とする(請求項1)(実施例1ないし4がそれぞれ該当する)。   (1) That is, this invention forms Au plating surface layers of Au or Au alloy on both sides so as to be vertically symmetrical about a thin plate-like core material made of Mo, and the core material and the Au plating surface layer (1) (Embodiments 1 to 4 correspond respectively), characterized in that a composite underlayer composed of at least a Cu plating layer that complements and maintains it is formed. ).

上記の構成によれば、層間の熱伝導が良好であることはもちろん、Moのコア材の上下にCuメッキ層を有し、MoをCu(熱伝導率420W/(m.k))で挟む所謂「DMD」を構成するが、Cuである場合とは違って、上下両面が濡れ性の良いAuメッキ表面層であるために、LEDを接着剤を介して密に結合でき、熱伝導の接触抵抗が極く少なくなる。   According to the above configuration, not only the heat conduction between layers is good, but the Cu plating layer is provided on the upper and lower sides of the Mo core material, and Mo is sandwiched between Cu (thermal conductivity 420 W / (m.k)). Unlike so-called “DMD”, the upper and lower surfaces are Au-plated surface layers with good wettability, so that the LEDs can be tightly bonded via an adhesive and contact with heat conduction. Resistance is extremely low.

また、Auメッキ表面層の性質により、繊細なLEDの取付けについて、LEDの接着の安定性や表面の耐腐食性が得られ、加えて、この特性のある貴金属のAuを表面のみに使用することでコスト的に有利となる。   Also, due to the nature of the Au-plated surface layer, LED adhesion stability and surface corrosion resistance can be obtained for the attachment of delicate LEDs. In addition, the noble metal Au with this property should be used only on the surface. This is advantageous in terms of cost.

Auは、熱伝導率が320W/(m.k)、密度19300kg/m、硬度2.5であり、これ自体とCuを介して放熱が滞りなく行われる。また、Cu(硬度3.0)と共に、硬度の低さからLEDを軟着する微細なクッション性が得られる。 Au has a thermal conductivity of 320 W / (mk), a density of 19300 kg / m 3 , and a hardness of 2.5, and heat can be radiated without delay through itself and Cu. Further, together with Cu (hardness 3.0), a fine cushioning property for softly attaching the LED can be obtained due to the low hardness.

(2)さらに、請求項2に記載の如く、複合下地層がCuメッキ層の上下両面に薄いNiメッキ層を有するサンドイッチ構造であって、該Cuメッキ層がNiメッキ層を下地としてコア材の上に形成され、Auメッキ表面層がCuメッキ層の上にNiメッキ層を下地として形成される(実施例1,2が該当する)。   (2) Further, as described in claim 2, the composite underlayer has a sandwich structure having thin Ni plating layers on both upper and lower surfaces of the Cu plating layer, and the Cu plating layer is made of the Ni plating layer as an underlayer. The Au plating surface layer is formed on the Cu plating layer with the Ni plating layer as a base (Examples 1 and 2 correspond).

Niは安定した金属であり、また、他のメッキの下地としての相性が良く、コア材に対するCuメッキ層の形成や、Cuメッキ層に対するAuメッキ表面層の形成に寄与し、Cuメッキ層やAuメッキ表面層の強固な結合を保持し、Auメッキ表面層の特性も発揮されやすくする。なお、Niは、熱伝導率が90W/(m.k)であるが、薄くメッキすることでLED用ウエハに全体的に高い放熱性能が発揮される。   Ni is a stable metal and has good compatibility as a base for other plating, contributing to the formation of a Cu plating layer on the core material and the formation of an Au plating surface layer on the Cu plating layer. The strong bonding of the plating surface layer is maintained, and the characteristics of the Au plating surface layer are easily exhibited. Note that Ni has a thermal conductivity of 90 W / (mk), but high heat dissipation performance is exerted on the LED wafer as a whole by thinly plating.

(3)さらに加えて、請求項3のように、Auメッキ表面層がSnを20〜30%含むAu−Sn合金メッキであることもある(実施例2が該当する)。   (3) In addition, as in claim 3, the Au plating surface layer may be Au—Sn alloy plating containing 20 to 30% of Sn (corresponding to Example 2).

この場合であると、Auの機械的強度が改善され、LEDの取付けが安定して保持される。   In this case, the mechanical strength of Au is improved, and the LED mounting is stably held.

(4)さらに加えて、請求項4に記載した如く、前記サンドイッチ構造の上にAuメッキ層とSnメッキ層とを順次形成し、前記Auメッキ表面層が該Snメッキ層の上に形成されることにより、上下表面部にSnメッキをAuメッキで挟むサンドイッチのAu性複合層が形成される(実施例3が該当する)。   (4) In addition, as described in claim 4, an Au plating layer and an Sn plating layer are sequentially formed on the sandwich structure, and the Au plating surface layer is formed on the Sn plating layer. Thus, a sandwich Au composite layer in which Sn plating is sandwiched between Au plating is formed on the upper and lower surface portions (Example 3 corresponds).

この場合であると、Snの硬度が1.5で小さいことから、Au(硬度2.5)よりもさらに軟質の層が表面に形成されるため、繊細なLEDの搭載に特に適する。また、このAu性複合層の熱伝導率も良好である。   In this case, since the hardness of Sn is as small as 1.5, a softer layer than Au (hardness 2.5) is formed on the surface, which is particularly suitable for mounting delicate LEDs. Moreover, the thermal conductivity of this Au composite layer is also good.

(5)さらに請求項8及び9に記載した如く、Au表面メッキ層とNiメッキ層の間にPdメッキ層のバリア層を設けると、Au−Niの相互拡散を抑制することができ、Auのメッキ厚を薄くすることができる。   (5) Further, as described in claims 8 and 9, when a barrier layer of a Pd plating layer is provided between the Au surface plating layer and the Ni plating layer, Au-Ni interdiffusion can be suppressed. The plating thickness can be reduced.

以上説明したように、この発明によれば、合せ材を層の中心部のコア材にのみ用い、これを中心として上下にメッキにより対称に層形成したので、各金属層が均一且つ不離一体に形成され、反りのない安定性があり、層間において剥離が生じなく、このようなため、LEDを確実に搭載し安全に保持できる。また、LEDとの接触熱抵抗が極く少いため、安定した放熱性および機械的強度を保持すると同時に、微細化が可能で耐薬品性についても信頼性が高く、加えて、表面の金属により光が効率的に反射して放熱性が高まると同時に発光効率が向上し、さらにその貴金属であるAuの使用を合理的に節約しコスト的にも有利となるという優れた効果がある。   As described above, according to the present invention, the laminated material is used only for the core material at the center of the layer, and the layers are formed symmetrically by plating up and down around this, so that each metal layer is uniformly and non-isolated. It is formed and has no warpage stability, and no delamination occurs between the layers. For this reason, the LED can be securely mounted and safely held. In addition, since the contact thermal resistance with the LED is extremely low, stable heat dissipation and mechanical strength are maintained, and at the same time, miniaturization is possible and the chemical resistance is also highly reliable. Is efficiently reflected and heat dissipation is enhanced, and at the same time, the luminous efficiency is improved. Furthermore, there is an excellent effect that the use of Au, which is a noble metal, is rationally saved and advantageous in terms of cost.

この発明の第1実施例を示すLED用ウエハの層構造を模式的に示す断面説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory sectional view schematically showing a layer structure of an LED wafer according to a first embodiment of the present invention. 同LED用ウエハの一部を出来るだけ実際の厚み比に置き換えて示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing a part of the LED wafer replaced with an actual thickness ratio as much as possible. 同LED用ウエハの使用状態を模式的に示す説明図である。It is explanatory drawing which shows typically the use condition of the wafer for LED. 同LED用ウエハの使用について、LEDの取付け状態において光の反射効を示す説明図である。It is explanatory drawing which shows the light reflection effect in the attachment state of LED about use of the wafer for LED. 第2実施例を示すLED用ウエハの層構造を模式的に示す断面説明図である。It is sectional explanatory drawing which shows typically the layer structure of the wafer for LED which shows 2nd Example. 第3実施例を示すLED用ウエハの層構造を模式的に示す断面説明図である。It is sectional explanatory drawing which shows typically the layer structure of the wafer for LED which shows 3rd Example. 第4実施例を示すLED用ウエハの層構造を模式的に示す断面説明図である。It is sectional explanatory drawing which shows typically the layer structure of the wafer for LED which shows 4th Example. LED用ウエハの使用状態において、従来例を左右図の比較で示す説明図である。It is explanatory drawing which shows a prior art example by the comparison of a left-right view in the use condition of the wafer for LED. LED用ウエハの使用状態において、従来例を左右図の比較で示す説明図である。It is explanatory drawing which shows a prior art example by the comparison of a left-right view in the use condition of the wafer for LED. 従来例の他の説明図である。It is another explanatory drawing of a prior art example.

この発明は、メッキにより層構造を形成するものであるため、その基材として金属薄板のコア材1が必要である。これにはMoの金属を薄く50〜200μm程度に薄く引き延ばした薄板材が使用され、これに各メッキ層を施してから、細分化することにより多数のLED用ウエハP,P,・・が量産される。なお、Moの代わりにWを使用できる。しかし一般的に割高となる。   Since this invention forms a layer structure by plating, the core material 1 of a metal thin plate is required as the base material. For this purpose, a thin plate material made by thinly stretching Mo metal to about 50 to 200 μm is used, and after applying each plating layer to this, a large number of LED wafers P, P,. Is done. Note that W can be used instead of Mo. However, it is generally expensive.

メッキは、電解、無電解、イオンプレーティング(IP)法等が望ましいが、メッキであれば特に限定するものではない。いずれにしても、メッキによって各金属層の厚みが上下対称で均一な層に形成され、各層が緊密に結合する。また、Cuメッキ層5,5の形成については、Cuめっきの他に、Cuイオンプレーティング法を最適に用いることができる。   For plating, electrolysis, electroless, ion plating (IP) method or the like is desirable, but there is no particular limitation as long as it is plating. In any case, the thickness of each metal layer is formed into a uniform layer with vertical symmetry by plating, and the layers are tightly coupled. For forming the Cu plating layers 5 and 5, besides the Cu plating, a Cu ion plating method can be optimally used.

各実施例において、コア材1をはじめ、第一及び第二のNiメッキ層3及び7、Cuメッキ層5、Auメッキ表面層9、Snメッキ層13の各メッキ厚については、各LED用ウエハPの層を表すそれぞれの実施例図(図1,図5,図6)の右側に適正な範囲において表示した。例えば、図1において、Cuメッキ層5,5は、3.0〜20.0μmの表示範囲である。   In each embodiment, the plating thicknesses of the core material 1, the first and second Ni plating layers 3 and 7, the Cu plating layer 5, the Au plating surface layer 9, and the Sn plating layer 13 are determined for each LED wafer. Each of the examples showing the P layer (FIGS. 1, 5 and 6) is displayed in the appropriate range on the right side. For example, in FIG. 1, Cu plating layers 5 and 5 have a display range of 3.0 to 20.0 μm.

各実施例における図示した各厚み範囲を説明すると、コア材1について、その表示範囲においてサンドイッチ構造の中心的な機械的強度が有効に保持される。また、第一及び第二のNiメッキ層3及び7について、表示範囲以下であると下地としての機能が果たせなく、それ以上であると過剰となり、また、Cuメッキ層5については、表示範囲以下であると所望する導電性が得られ難く、以上であるとLED10を安全に保持するクッション性(軟着性)が得られ難い。さらに、Auメッキ層ないしAuメッキ表面層9について、範囲以下であると所望するクッション性(軟着性)が得られ難い。Snメッキ層13については、表示範囲においてAuメッキの増量的機能を有効に果たし、Auの節約に適する。   Explaining each illustrated thickness range in each example, the core member 1 can effectively maintain the central mechanical strength of the sandwich structure in the display range. Further, if the first and second Ni plating layers 3 and 7 are below the display range, they cannot function as a base, and if they are more than that, they are excessive, and the Cu plating layer 5 is below the display range. If it is, it is difficult to obtain the desired conductivity, and if it is the above, it is difficult to obtain a cushioning property (softness) that holds the LED 10 safely. Furthermore, when the Au plating layer or the Au plating surface layer 9 is within the range, it is difficult to obtain desired cushioning properties (softness). The Sn plating layer 13 effectively performs the Au plating increasing function in the display range, and is suitable for saving Au.

図1ないし図3は一実施例を示し、まず、Moの金属板からなるコア材1の両面に薄い第一のNiメッキ層3,3を介してCuメッキ層5,5を形成した。このようにコア材1の両面にCuメッキ層5,5を有する構造を本明細書では「DMD」と称している。また、両Cuメッキ層5,5の上にそれぞれ同じく第二のNiメッキ層7,7を介してAuメッキ表面層9,9が形成される。なお、図において2は、複合下地層を示す。   1 to 3 show an embodiment. First, Cu plating layers 5 and 5 are formed on both surfaces of a core material 1 made of a Mo metal plate via thin first Ni plating layers 3 and 3, respectively. The structure having the Cu plating layers 5 and 5 on both surfaces of the core material 1 is referred to as “DMD” in this specification. Further, Au plating surface layers 9 and 9 are formed on both Cu plating layers 5 and 5 through second Ni plating layers 7 and 7 respectively. In the figure, 2 indicates a composite underlayer.

従来の「CMC」の構造(図9参照)では、材料を例えば1μm程度に切削して調整することが困難であり、材料間に剥離が生じやすかったが、この場合、メッキにより均一厚みの形成が可能となった。しかも、図2に示すように、コア材1の上にCuメッキ層5を、Cuメッキ層5の上にAuメッキ表面層9をそれぞれNiメッキ層3,7を下地として形成したので、層間の結合強度が極めて強く、剥離が生じることがないため、放熱性が安定して保持されるとともに、LED10の取付けも安定して保持される。   In the conventional “CMC” structure (see FIG. 9), it is difficult to adjust the material by cutting it to, for example, about 1 μm, and peeling between the materials is likely to occur. In this case, uniform thickness is formed by plating. Became possible. Moreover, as shown in FIG. 2, since the Cu plating layer 5 is formed on the core material 1 and the Au plating surface layer 9 is formed on the Cu plating layer 5 with the Ni plating layers 3 and 7 as the foundation, Since the bonding strength is extremely strong and peeling does not occur, heat dissipation is stably maintained, and attachment of the LED 10 is also stably maintained.

図3は、LED用ウエハPを介してパッケージ14の上にLED10を搭載した状態を模式的に示したもので、接着剤16によりパッケージ14およびLED10が取り付けられる。接着剤16には、Ag若しくはAuSn合金のペーストが有効に利用できる。表面がAuメッキ表面層9,9であるため、エピタキシャルによる繊細なLED10であっても、取付け強度および安全性が有効に確保される。   FIG. 3 schematically shows a state in which the LED 10 is mounted on the package 14 via the LED wafer P, and the package 14 and the LED 10 are attached by the adhesive 16. For the adhesive 16, an Ag or AuSn alloy paste can be used effectively. Since the surface is the Au plating surface layer 9, 9, even if the LED 10 is epitaxially delicate, the mounting strength and safety are effectively ensured.

これは図示の通り、表面が接着剤の乗りが良く軟質のAuメッキ表面層9,9であるため、これによってLEDの取付け強度が強化されるとともに、LED10への衝撃が緩和されるからである。しかも、半導体素子が特にLEDである場合、光ないし輻射熱がAuメッキ表面層9により反射され(図4)、放熱性が得られるばかりでなく、LEDの発光効率が高められる。   This is because, as shown in the figure, since the surface is a soft Au plating surface layer 9, 9 with good adhesion of the adhesive, this enhances the mounting strength of the LED and reduces the impact on the LED 10. . In addition, when the semiconductor element is an LED in particular, light or radiant heat is reflected by the Au plating surface layer 9 (FIG. 4), and not only heat dissipation is obtained, but also the luminous efficiency of the LED is improved.

次に、実施例2ないし実施例4に及ぶが、以上述べたことと同じような特性がある。   Next, it extends to the second to fourth embodiments, and has the same characteristics as described above.

図5に示すように、LED用ウエハは、Moの金属板からなるコア材1の両面に第一のNiメッキ層3,3を介してCuメッキ層5,5を形成し、両Cuメッキ層5,5の上にそれぞれ同じく第二のNiメッキ層7,7を介してAu表面メッキ9,9が形成される。これまでは実施例1と同じであるが、Auメッキ表面層9,9がAu−Snの合金メッキとして形成される。   As shown in FIG. 5, in the LED wafer, Cu plating layers 5 and 5 are formed on both surfaces of a core material 1 made of a Mo metal plate via first Ni plating layers 3 and 3, and both Cu plating layers are formed. Au surface platings 9 and 9 are formed on the 5 and 5 through the second Ni plating layers 7 and 7 respectively. The process so far is the same as in Example 1, but the Au plating surface layers 9 and 9 are formed as Au—Sn alloy plating.

図6に示す如く、LED用ウエハは、Moの金属板からなるコア材1の両面に第一のNiメッキ層3,3を介してCuメッキ層5,5を形成し、両Cuメッキ層5,5の上にそれぞれ同じく下地の第二のNiメッキ層7,7を介してAuメッキ層11,11とSnメッキ層13,13が順次形成され、その上にAuメッキ表面層9,9が形成される。そして、この上層部において、Snメッキ層13をAuメッキ層9及び11が挟むサンドイッチ構造のAu性複合層15が構成されている。   As shown in FIG. 6, in the LED wafer, Cu plating layers 5 and 5 are formed on both surfaces of a core material 1 made of a Mo metal plate via first Ni plating layers 3 and 3, and both Cu plating layers 5 are formed. , 5, Au plating layers 11, 11 and Sn plating layers 13, 13 are sequentially formed through second Ni plating layers 7, 7, respectively, and Au plating surface layers 9, 9 are formed thereon. It is formed. In this upper layer portion, an Au composite layer 15 having a sandwich structure in which the Sn plating layer 13 is sandwiched between the Au plating layers 9 and 11 is formed.

SnもAuと共に軟質であって、相互に非常に性質が馴染みやすく、Au性複合層15は、両面のAuによってAuの性質の強い層となっている。LED用ウエハPは、両面のAu性複合層15,15により反りのない安定性が得られ、LED10の取付けの安全性がAuの性質によりいっそう確保される。   Sn is also soft together with Au, and its properties are very familiar to each other. The Au composite layer 15 is a layer having strong Au properties due to Au on both sides. In the LED wafer P, stability without warping is obtained by the Au composite layers 15 and 15 on both sides, and the safety of mounting the LED 10 is further ensured by the property of Au.

図7に示す如く、LED用ウエハは、Moの金属板からなるコア材1の両面に第一のNiメッキ層3,3を介してCuメッキ層5,5を形成し、両Cuメッキ層5,5の上にそれぞれ同じく下地の第二のNiメッキ層7,7を介してPdメッキ層17,17が形成され、その上にAuメッキ表面層9,9が形成される。   As shown in FIG. 7, in the LED wafer, Cu plating layers 5 and 5 are formed on both surfaces of a core material 1 made of a Mo metal plate via first Ni plating layers 3 and 3, and both Cu plating layers 5 are formed. , 5 are respectively formed with Pd plating layers 17, 17 via second Ni plating layers 7, 7, respectively, and Au plating surface layers 9, 9 are formed thereon.

上記構成において、Auメッキ表面層9と第二のNiメッキ層7との間にPdメッキ層17のバリア層を設けることにより、Au−Niの相互拡散を抑制することが出来ると共に、Auのメッキ厚を薄くすることが出来る。   In the above configuration, by providing a barrier layer of the Pd plating layer 17 between the Au plating surface layer 9 and the second Ni plating layer 7, Au-Ni interdiffusion can be suppressed and Au plating can be performed. The thickness can be reduced.

P LED用ウエハ
1 コア材
2 複合下地層
3 第一のNiメッキ層
5 Cuメッキ層
7 第二のNiメッキ層
9 Auメッキ表面層
11 Auメッキ層
13 Snメッキ層
15 Au性複合層
17 Pdメッキ層
P LED wafer 1 Core material 2 Composite underlayer 3 First Ni plating layer 5 Cu plating layer 7 Second Ni plating layer 9 Au plating surface layer 11 Au plating layer 13 Sn plating layer 15 Au-based composite layer 17 Pd plating layer

Claims (9)

Moからなる薄板状のコア材を中心として上下対称となるように、両面にAuまたはAu合金のAuメッキ表面層を形成し、コア材とAuメッキ表面層との間にそれを補完・維持する少なくともCuメッキ層からなる複合下地層を形成してなることを特徴とするLED用ウエハ。   An Au plated surface layer of Au or an Au alloy is formed on both sides so as to be vertically symmetric about a thin plate core material made of Mo, and this is complemented and maintained between the core material and the Au plated surface layer. An LED wafer comprising a composite underlayer comprising at least a Cu plating layer. 複合下地層がCuメッキ層の上下両面に薄いNiメッキ層を有するサンドイッチ構造であって、該Cuメッキ層がNiメッキ層を下地としてコア材の上に形成され、Auメッキ表面層がCuメッキ層の上にNiメッキ層を下地として形成されていることを特徴とする請求項1記載のLED用ウエハ。   The composite underlayer has a sandwich structure having thin Ni plating layers on both the upper and lower surfaces of the Cu plating layer, the Cu plating layer is formed on the core material with the Ni plating layer as an underlayer, and the Au plating surface layer is the Cu plating layer The LED wafer according to claim 1, wherein a Ni plating layer is formed on the substrate as a base. Auメッキ表面層が、Snを20〜30%含むAu−Sn合金メッキであることを特徴とする請求項2記載のLED用ウエハ。   The LED wafer according to claim 2, wherein the Au plating surface layer is Au—Sn alloy plating containing 20 to 30% of Sn. 前記サンドイッチ構造の上にAuメッキ層とSnメッキ層とを順次形成し、前記Auメッキ表面層が該Snメッキ層の上に形成されることにより、上下表面部にSnメッキをAuメッキで挟むサンドイッチのAu性複合層が形成されていることを特徴とする請求項2又は3記載のLED用ウエハ。   An Au plating layer and an Sn plating layer are sequentially formed on the sandwich structure, and the Au plating surface layer is formed on the Sn plating layer, thereby sandwiching the Sn plating between the upper and lower surface portions with the Au plating. The LED wafer according to claim 2, wherein the Au composite layer is formed. Moのコア材が50〜200μm、下部Niメッキ層が0.1〜3.0μm、Cuメッキ層が3.0〜20.0μm、上部Niメッキ層が0.5〜5.0μm、Auメッキ表面層が0.1〜2.0μmであることを特徴とする請求項2記載のLED用ウエハ。   Mo core material is 50-200 μm, lower Ni plating layer is 0.1-3.0 μm, Cu plating layer is 3.0-20.0 μm, upper Ni plating layer is 0.5-5.0 μm, Au plating surface The LED wafer according to claim 2, wherein the layer is 0.1 to 2.0 μm. Moのコア材が50〜200μm、下部Niメッキ層が0.1〜3.0μm、Cuメッキ層が3.0〜20.0μm、上部Niメッキ層が0.5〜5.0μm、Auメッキ層表面が0.1〜3.0μmであることを特徴とする請求項3記載のLED用ウエハ。   Mo core material is 50 to 200 μm, lower Ni plating layer is 0.1 to 3.0 μm, Cu plating layer is 3.0 to 20.0 μm, upper Ni plating layer is 0.5 to 5.0 μm, Au plating layer 4. The LED wafer according to claim 3, wherein the surface is 0.1 to 3.0 [mu] m. Moのコア材が50〜200μm、下部Niメッキ層が0.1〜3.0μm、Cuメッキ層が3.0〜20.0μm、上部Niメッキ層が0.5〜5.0μm、Snメッキ層が0.5〜5.0μm、Auメッキ層ないしAuメッキ表面層が0.5〜3.0μmであることを特徴とする請求項4記載のLED用ウエハ。   Mo core material is 50 to 200 μm, lower Ni plating layer is 0.1 to 3.0 μm, Cu plating layer is 3.0 to 20.0 μm, upper Ni plating layer is 0.5 to 5.0 μm, Sn plating layer 5. The LED wafer according to claim 4, wherein 0.5 to 5.0 μm, and the Au plating layer or the Au plating surface layer is 0.5 to 3.0 μm. 複合下地層がCuメッキ層の上下両面に薄いNiメッキ層を有するサンドイッチ構造であって、該Cuメッキ層が第一のNiメッキ層を下地としてコア材の上に形成され、Auメッキ表面層がCuメッキ層の上に第二のNiメッキ層を介してPdメッキ層を下地として形成されていることを特徴とする請求項1記載のLED用ウエハ。   The composite underlayer has a sandwich structure having thin Ni plating layers on both upper and lower surfaces of the Cu plating layer, the Cu plating layer being formed on the core material with the first Ni plating layer as an underlayer, and an Au plating surface layer 2. The LED wafer according to claim 1, wherein a Pd plating layer is formed on the Cu plating layer with a Pd plating layer as a base via a second Ni plating layer. Moのコア材が50〜200μm、このコア材の上部及び下部の第一のNiメッキ層が0.1〜3.0μm、このNiメッキ層の上部及び下部のCuメッキ層が3.0〜20.0μm、このCuメッキ層の上部及び下部の第二のNiメッキ層が0.5〜5.0μm、この第二のNiメッキ層の上部及び下部を構成するPdメッキ層が0.02〜0.5μm、このPdメッキ層の上部及び下部を構成するAuメッキ表面層が0.03〜1.0μmであることを特徴とする請求項8記載のLED用ウエハ。   The core material of Mo is 50 to 200 μm, the upper and lower first Ni plating layers of the core material are 0.1 to 3.0 μm, and the upper and lower Cu plating layers of the Ni plating layer are 3.0 to 20 μm. 0.0 μm, the upper and lower second Ni plating layers of the Cu plating layer are 0.5 to 5.0 μm, and the Pd plating layer constituting the upper and lower portions of the second Ni plating layer is 0.02 to 0 9. The LED wafer according to claim 8, wherein the Au plating surface layer constituting the upper and lower portions of the Pd plating layer is 0.03 to 1.0 μm.
JP2010251454A 2010-10-20 2010-11-10 Wafer for led Pending JP2012109288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251454A JP2012109288A (en) 2010-10-20 2010-11-10 Wafer for led

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010235084 2010-10-20
JP2010235084 2010-10-20
JP2010251454A JP2012109288A (en) 2010-10-20 2010-11-10 Wafer for led

Publications (1)

Publication Number Publication Date
JP2012109288A true JP2012109288A (en) 2012-06-07

Family

ID=46494623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251454A Pending JP2012109288A (en) 2010-10-20 2010-11-10 Wafer for led

Country Status (1)

Country Link
JP (1) JP2012109288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082350A (en) * 2012-10-17 2014-05-08 Takamatsu Mekki:Kk Led wafer and manufacturing method thereof
CN103840043A (en) * 2012-11-26 2014-06-04 株式会社高松电镀 LED-used wafer and manufacturing method thereof
JP2014192272A (en) * 2013-03-27 2014-10-06 Takamatsu Mekki:Kk Metal substrate for LED

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204884A (en) * 1998-01-07 1999-07-30 Mitsubishi Electric Corp Solder forming method
JP2000138320A (en) * 1998-11-02 2000-05-16 Nec Corp Semiconductor element mounting substrate or heat sink and its manufacture and jointed body of the substrate or the heat sink with semiconductor element
JP2001177018A (en) * 1999-12-21 2001-06-29 Nec Kansai Ltd Stem for laser diode and manufacturing method thereof
JP2003179191A (en) * 2001-12-12 2003-06-27 Hitachi Ltd Power semiconductor device and heat radiator
JP2008041811A (en) * 2006-08-03 2008-02-21 Ngk Spark Plug Co Ltd Wiring circuit board, multiple-chip wiring circuit board, and method for manufacturing the wiring board
JP2008227395A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Submount and method of forming the same
WO2009099187A1 (en) * 2008-02-07 2009-08-13 Showa Denko K.K. Compound semiconductor light-emitting diode
JP2010074122A (en) * 2008-08-21 2010-04-02 Sumitomo Electric Ind Ltd Heat sink for led, heat sink precursor for led, led element, method for manufacturing heat sink for led and method for manufacturing led element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204884A (en) * 1998-01-07 1999-07-30 Mitsubishi Electric Corp Solder forming method
JP2000138320A (en) * 1998-11-02 2000-05-16 Nec Corp Semiconductor element mounting substrate or heat sink and its manufacture and jointed body of the substrate or the heat sink with semiconductor element
JP2001177018A (en) * 1999-12-21 2001-06-29 Nec Kansai Ltd Stem for laser diode and manufacturing method thereof
JP2003179191A (en) * 2001-12-12 2003-06-27 Hitachi Ltd Power semiconductor device and heat radiator
JP2008041811A (en) * 2006-08-03 2008-02-21 Ngk Spark Plug Co Ltd Wiring circuit board, multiple-chip wiring circuit board, and method for manufacturing the wiring board
JP2008227395A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Submount and method of forming the same
WO2009099187A1 (en) * 2008-02-07 2009-08-13 Showa Denko K.K. Compound semiconductor light-emitting diode
JP2010074122A (en) * 2008-08-21 2010-04-02 Sumitomo Electric Ind Ltd Heat sink for led, heat sink precursor for led, led element, method for manufacturing heat sink for led and method for manufacturing led element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082350A (en) * 2012-10-17 2014-05-08 Takamatsu Mekki:Kk Led wafer and manufacturing method thereof
CN103840043A (en) * 2012-11-26 2014-06-04 株式会社高松电镀 LED-used wafer and manufacturing method thereof
JP2014192272A (en) * 2013-03-27 2014-10-06 Takamatsu Mekki:Kk Metal substrate for LED

Similar Documents

Publication Publication Date Title
JP5480722B2 (en) Heat dissipation component and semiconductor package provided with the same
JP2005303012A (en) Semiconductor light emitting element mount member and semiconductor light emitting device using it
KR20110059519A (en) Die-bonding method of led chip and led manufactured by the same
TW201325330A (en) Wiring substrate and method for manufacturing same and semiconductor device
JP7101754B2 (en) Composite member and manufacturing method of composite member
TW201427113A (en) Bonding method and structure for LED package
JPH09312361A (en) Composite material for electronic component and its manufacture
TWI540772B (en) Cladding material for holding substrate of led light-emitting device and manufacturing method for same
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2012109288A (en) Wafer for led
JP5522786B2 (en) Manufacturing method of heat dissipation board for semiconductor mounting
WO2017159024A1 (en) Ceramic substrate, method for producing ceramic substrate and power module
TWI495160B (en) Flip-chip light emitting diode and manufacturing method and application thereof
WO2012056809A1 (en) Semiconductor device, heat radiation member, and manufacturing method for semiconductor device
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
TW201225227A (en) Method for manufacturing heat dissipation bulk of semiconductor device
JP2014192272A (en) Metal substrate for LED
CN101656279A (en) Luminous element comprising composite electroplating substrate
JP2010050415A (en) Substrate for power module and method of manufacturing the same
WO2012001767A1 (en) Process for producing radiating substrate for semiconductor mounting
KR20140086373A (en) Wafer for led and manufacturing method thereof
JP4146736B2 (en) Manufacturing method of semiconductor device
JP2014082350A (en) Led wafer and manufacturing method thereof
TWI500190B (en) A wafer used for led and manufacturing method of the wafer
TWI392117B (en) Light emitting diode with a diamond film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140724