TWI392117B - Light emitting diode with a diamond film and manufacturing method thereof - Google Patents

Light emitting diode with a diamond film and manufacturing method thereof Download PDF

Info

Publication number
TWI392117B
TWI392117B TW97138787A TW97138787A TWI392117B TW I392117 B TWI392117 B TW I392117B TW 97138787 A TW97138787 A TW 97138787A TW 97138787 A TW97138787 A TW 97138787A TW I392117 B TWI392117 B TW I392117B
Authority
TW
Taiwan
Prior art keywords
metal layer
manufacturing
diamond film
light
vapor deposition
Prior art date
Application number
TW97138787A
Other languages
Chinese (zh)
Other versions
TW201015750A (en
Inventor
Yen Kang Liu
Yi Tsang Lee
Chien Wei Kao
Original Assignee
Kinik Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinik Co filed Critical Kinik Co
Priority to TW97138787A priority Critical patent/TWI392117B/en
Publication of TW201015750A publication Critical patent/TW201015750A/en
Application granted granted Critical
Publication of TWI392117B publication Critical patent/TWI392117B/en

Links

Description

具有鑽石薄膜之發光二極體及其製造方法 Light-emitting diode with diamond film and manufacturing method thereof

本發明係關於一種發光二極體及其製造方法,特別是一種具有鑽石薄膜之發光二極體及其製造方法。 The present invention relates to a light-emitting diode and a method of manufacturing the same, and more particularly to a light-emitting diode having a diamond film and a method of manufacturing the same.

電子元件在運作時會伴隨產生高熱,效率越高的電子元件於運作時其溫度會越高,以中央處理單元為例,目前科技所開發的中央處理單元之運算效率已可達數十億赫(GHz),其所產生的高熱已非傳統散熱器所能迅速散除。 Electronic components are accompanied by high heat during operation. The higher the efficiency of electronic components, the higher the temperature of the electronic components. In the case of central processing units, the central processing unit developed by the technology has been operating at billions of ohms. (GHz), the high heat generated by it has been quickly dissipated by conventional heat sinks.

此外,近十年來光源半導體元件,例如發光二極體(LED)、雷射二極體...等,其技術突飛猛進,所使用的功率越來越高,伴隨產生的熱能也越來越高,業已達到半導體光源所能承受之上限,為了避免元件因高熱而受破壞,新的散熱材料或散熱方式急待開發。 In addition, in the past decade, light-emitting semiconductor components, such as light-emitting diodes (LEDs), laser diodes, etc., have advanced by leaps and bounds, and the power used is getting higher and higher, and the heat energy generated is also getting higher and higher. It has reached the upper limit that semiconductor light sources can withstand. In order to avoid damage to components due to high heat, new heat dissipation materials or heat dissipation methods are urgently needed to be developed.

發光二極體最大的特點在於:無需暖燈時間、反應速度快、體積小、用電省、耐震、污染低、適合量產,具高可靠度,容易配合應用上的需要製成極小或陣列式的元件。惟因為發光二極體是固態照明,即是利用晶片通電,量子激態回復發出能量(光),但在發光的過程,晶片內的光能量並無法完全傳至外界,不能出光的能量,在晶片內部及封裝體內便會被吸收而形成熱,若不散熱,這些熱量累積會影響晶片效率及壽命,故要以高效率發光二極體運用於照明設備,首要解決散熱的問題。 The biggest characteristics of the light-emitting diode are: no need for warming time, fast response, small size, low power consumption, low vibration, low pollution, suitable for mass production, high reliability, easy to make small or array with the needs of the application. Component. However, because the light-emitting diode is solid-state illumination, that is, the power is applied by the wafer, and the quantum excited state returns energy (light), but in the process of light emission, the light energy in the wafer cannot be completely transmitted to the outside, and the energy cannot be emitted. The inside of the wafer and the package body are absorbed to form heat. If heat is not dissipated, the accumulation of heat will affect the efficiency and life of the wafer. Therefore, it is necessary to use the high-efficiency light-emitting diode for lighting equipment to solve the problem of heat dissipation.

本案申請人於先前所提出之台灣專利第96141093號專利申請案所揭露之發光二極體結構,其基板與發光層之間係利用金屬層相互接合,並透過鑽石層之良好熱傳導特性,將發光層之熱導往第一基材後進行散熱,然而在製造過程中需針對鑽石層進行拋光處理,且第一基材並非高導熱係數之材質,因此整體散熱效率仍有提升空間。 The light-emitting diode structure disclosed in the above-mentioned patent application of the Japanese Patent No. 96111093, the substrate and the light-emitting layer are bonded to each other by a metal layer, and through the good heat conduction characteristics of the diamond layer, the light is emitted. The heat of the layer is radiated to the first substrate, but the diamond layer is polished during the manufacturing process, and the first substrate is not a material with high thermal conductivity, so the overall heat dissipation efficiency still has room for improvement.

美國專利US 20040238946號專利案所揭露之半導體元件的散熱裝置,係利用鑽石層或是包含鑽石的材料結構,例如鑽石層與陶瓷層或是鑽石與陶瓷顆粒的混合層,並透過高分子接著劑貼附於金屬熱沈上來進行散熱,然而其缺點在於所使用之高分子接著劑並非高導熱係數之材質,因此整體散熱效率並不佳。 The heat dissipating device for a semiconductor device disclosed in US Patent No. 20040238946 utilizes a diamond layer or a material structure containing diamonds, such as a diamond layer and a ceramic layer or a mixed layer of diamond and ceramic particles, and a polymer adhesive. It is attached to a metal heat sink for heat dissipation. However, the disadvantage is that the polymer adhesive used is not a material with high thermal conductivity, so the overall heat dissipation efficiency is not good.

先前技術由於必須於鑽石膜上依序形成多層金屬層,因此必須對鑽石膜進行拋光處理至所需的平坦度,以利鑽石膜與金屬層之間的結合,然而鑽石材料具有最高的硬度,故鑽石膜的拋光製程將會耗費相當多的時間及成本。 In the prior art, since a plurality of metal layers must be sequentially formed on the diamond film, the diamond film must be polished to a desired flatness to facilitate the bonding between the diamond film and the metal layer, whereas the diamond material has the highest hardness. Therefore, the polishing process of the diamond film will take a considerable amount of time and cost.

鑑於先前技術中須以矽基板與散熱器接觸而降低散熱效果,並於製程中須針對鑽石膜進行拋光處理的問題,本發明提供一種具有鑽石薄膜之發光二極體及其製造方法,其製造過程中簡化了鑽石膜的拋光製程,且以鑽石膜取代矽基板而與散熱器接觸,藉由粗糙的鑽石表面增加與散熱膏的接觸面積,同時增加鑽石膜的散熱面積,以改善先前技術之發光二極體於使用時所產生之散熱效率不佳的問題。 In view of the problem in the prior art that the heat dissipation effect is reduced by contacting the germanium substrate with the heat sink, and the diamond film is polished in the process, the present invention provides a light emitting diode having a diamond film and a manufacturing method thereof. The polishing process of the diamond film is simplified, and the diamond substrate is replaced by the diamond substrate to contact the heat sink, and the contact area of the rough diamond surface is increased, and the heat dissipation area of the diamond film is increased to improve the light emission of the prior art. The problem of poor heat dissipation efficiency caused by the use of the polar body.

本發明之發光二極體的製造方法,包括提供一暫時基材;形成一鑽石膜於暫時基材上,鑽石膜具有第一側面及第二側面,第一側面係相對於第二側面,第一側面係貼附於暫時基材上,而第二側面係為一粗糙面;移除暫時基材;形成一第三金屬層於鑽石膜之第一側面上;形成一第一金屬層於第三金屬層上;提供一基材;形成一發光層於基材上;形成一第二金屬層於發光層上;接合第一金屬層與第二金屬層;最後移除基材。 The method for manufacturing a light-emitting diode of the present invention comprises: providing a temporary substrate; forming a diamond film on the temporary substrate, the diamond film having a first side and a second side, the first side being opposite to the second side, One side is attached to the temporary substrate, and the second side is a rough surface; the temporary substrate is removed; a third metal layer is formed on the first side of the diamond film; and a first metal layer is formed Providing a substrate; forming a light-emitting layer on the substrate; forming a second metal layer on the light-emitting layer; bonding the first metal layer and the second metal layer; and finally removing the substrate.

本發明之功效在於,簡化習知技術中須對鑽石膜進行拋光處理的製程,並以鑽石膜與散熱器接觸,減少矽基板多餘的熱阻隔,且藉由鑽石成長面所形成之粗糙面增加與散熱器之接觸面積。另外,接近粗糙面的鑽石晶格排列較佳,藉由晶格排列的梯度差異之特性,可將發光層之熱導往散熱器,進而達到提升散熱效率之目的。 The invention has the advantages of simplifying the process of polishing the diamond film in the prior art, and contacting the diamond film with the heat sink to reduce the excess thermal barrier of the ruthenium substrate, and the rough surface formed by the diamond growth surface is increased and The contact area of the heat sink. In addition, the diamond lattice arrangement close to the rough surface is better, and the heat of the luminescent layer can be guided to the heat sink by the characteristics of the gradient difference of the lattice arrangement, thereby achieving the purpose of improving the heat dissipation efficiency.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明前述之目的及優點。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The above objects and advantages of the present invention will be readily understood by those skilled in the art.

以上之關於本發明內容之說明及以下之實施方式之說明係用以示範與解釋本發明之原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the present invention and the following description of the embodiments of the present invention are intended to illustrate and explain the principles of the invention.

為使對本發明的目的、構造、特徵、及其功能有進一步的瞭 解,茲配合實施例詳細說明如下。 In order to further improve the object, structure, features, and functions of the present invention The solution is described in detail below in conjunction with the embodiment.

參閱「第1圖」及「第2A圖」至「第2F圖」所示,係分別為本發明之發光二極體之製作流程示意圖及步驟流程示意圖。如「第1圖」及「第2A圖」所示,鑽石膜210具有相對之一第一側面2101及一第二側面2102,第二側面2102為鑽石成長面,故第二側面2102相較於第一側面2101係為一粗糙面,第一側面2101係貼附於暫時基材200上,以形成一鑽石膜210於一暫時基材200上(步驟100),其中鑽石膜210係以化學氣相沈積(Chemical Vapor Deposition,CVD),例如是微波電漿輔助化學氣相沉積法(Microwave Plasma assisted Chemical Vapor Deposition,MPCVD)形成於暫時基材200上,且其材質包括單晶鑽石、多晶鑽石或是類鑽碳(DLC)等材料,但並不以此為限,而暫時基材200之材料可選用矽(Si)、碳化矽(SiC)、砷化鎵(GaAs)、氧化鋁或藍寶石等材料,但並不以此為限。 Referring to "1st" and "2A" to "2F", the schematic diagram of the production process and the flow chart of the steps of the light-emitting diode of the present invention are shown. As shown in "Fig. 1" and "Fig. 2A", the diamond film 210 has a first side surface 2101 and a second side surface 2102, and the second side surface 2102 is a diamond growth surface, so that the second side surface 2102 is compared with The first side surface 2101 is a rough surface, and the first side surface 2101 is attached to the temporary substrate 200 to form a diamond film 210 on a temporary substrate 200 (step 100), wherein the diamond film 210 is chemically gas. A chemical vapor deposition (CVD), such as Microwave Plasma assisted Chemical Vapor Deposition (MPCVD), is formed on the temporary substrate 200, and the material thereof includes single crystal diamonds and polycrystalline diamonds. Or materials such as diamond-like carbon (DLC), but not limited to this, and the material of the temporary substrate 200 may be selected from bismuth (Si), tantalum carbide (SiC), gallium arsenide (GaAs), alumina or sapphire. Such materials, but not limited to this.

接著,如「第1圖」及「第2B圖」所示,移除暫時基材200(步驟110),並且形成一第三金屬層260於鑽石膜210之第一側面2101上(步驟120)。其中第三金屬層260係以濺鍍(suptter)、熱蒸鍍(thermal evaporation)、電子束蒸鍍(e-gun evaporation)、化學氣相沈積(Chemical Vapor Deposition,CVD)或物理氣相沈積(Physical Vapor Deposition,PVD)等方式,形成於鑽石膜210之上,而第三金屬層260之材料包括鎳(Ni)、鈦(Ti)、金(Au)、銀(Ag)、鉻(Cr)或鋁(Al)及其合金,其中,組成第三金屬層260之材料的鍵能強度具有較不易因熱處 理製程後而減弱強度的特質。此外,第三金屬層260厚度小於2,000奈米(nm),較佳之厚度介於50奈米至100奈米之間,本發明所揭露之厚度具有較低之特徵接觸電阻(specific contact resistance)及較強之薄膜貼合強度。 Next, as shown in FIG. 1 and FIG. 2B, the temporary substrate 200 is removed (step 110), and a third metal layer 260 is formed on the first side 2101 of the diamond film 210 (step 120). . The third metal layer 260 is sputter, thermal evaporation, e-gun evaporation, chemical vapor deposition (CVD) or physical vapor deposition ( Physical Vapor Deposition, PVD), etc., formed on the diamond film 210, and the material of the third metal layer 260 includes nickel (Ni), titanium (Ti), gold (Au), silver (Ag), chromium (Cr) Or aluminum (Al) and alloys thereof, wherein the bond energy of the material constituting the third metal layer 260 is less susceptible to heat After the process, the strength of the strength is weakened. In addition, the third metal layer 260 has a thickness of less than 2,000 nanometers (nm), preferably between 50 nanometers and 100 nanometers. The thickness of the present invention has a lower characteristic contact resistance and Strong film bonding strength.

接著,如「第1圖」及「第2C圖」所示,形成一第一金屬層220於第三金屬層260上(步驟130),其中第一金屬層220可藉由濺鍍、熱蒸鍍、電子束蒸鍍、化學氣相沈積或物理氣相沈積等方式形成於第三金屬層260上,第一金屬層220之材料包括金(Au)、銀(Ag)、鈀(Pd)、銦(In)、鈦(Ti)、鉻(Cr)或鎳(Ni),其厚度小於2微米(μm)。其中,由金(Au)或銀(Ag)所組成之第一金屬層220於處理程序後,所形成之連續網狀型態可均勻分散電流,有助於薄膜之導電性,且本發明所揭露之厚度具有較低之特徵接觸電阻。 Next, as shown in FIG. 1 and FIG. 2C, a first metal layer 220 is formed on the third metal layer 260 (step 130), wherein the first metal layer 220 can be sputtered and steamed. Forming on the third metal layer 260 by plating, electron beam evaporation, chemical vapor deposition or physical vapor deposition, the material of the first metal layer 220 includes gold (Au), silver (Ag), palladium (Pd), Indium (In), titanium (Ti), chromium (Cr) or nickel (Ni) having a thickness of less than 2 micrometers (μm). Wherein, the first metal layer 220 composed of gold (Au) or silver (Ag) can form a continuous network shape to uniformly disperse current after the processing procedure, thereby contributing to the conductivity of the film, and the present invention The exposed thickness has a lower characteristic contact resistance.

接著,如「第1圖」及「第2D圖」所示,提供一基材230,並且形成一發光層240於基材230上(步驟140)。接著,如「第1圖」及「第2E圖」所示,形成一第二金屬層250於發光層240上(步驟150),其中第二金屬層250係以濺鍍、熱蒸鍍、電子束蒸鍍、化學氣相沈積或物理氣相沈積等方式形成於發光層240上,而第二金屬層250之材料係包括金(Au)、銀(Ag)、鈀(Pd)、銦(In)、鈦(Ti)、鉻(Cr)或鎳(Ni),其厚度不大於2微米(μm)。其中,由金(Au)或銀(Ag)所組成之第二金屬層250於處理程序後,所形成之連續網狀型態可均勻分散電流,有助於薄膜之導電性,且本發明所揭露之厚度具有較低之特徵接觸電阻。 Next, as shown in "FIG. 1" and "2D", a substrate 230 is provided, and a light-emitting layer 240 is formed on the substrate 230 (step 140). Next, as shown in FIG. 1 and FIG. 2E, a second metal layer 250 is formed on the light-emitting layer 240 (step 150), wherein the second metal layer 250 is sputtered, thermally evaporated, and electronically. Beam evaporation, chemical vapor deposition or physical vapor deposition is formed on the light-emitting layer 240, and the material of the second metal layer 250 includes gold (Au), silver (Ag), palladium (Pd), indium (In ), titanium (Ti), chromium (Cr) or nickel (Ni) having a thickness of not more than 2 micrometers (μm). Wherein, the second metal layer 250 composed of gold (Au) or silver (Ag) can form a continuous network shape to uniformly disperse current after the processing procedure, thereby contributing to the conductivity of the film, and the present invention The exposed thickness has a lower characteristic contact resistance.

如「第1圖」及「第2F圖」所示,將第一金屬層220與第二金屬層250相互接合(步驟160),其中,依「第2F圖」中所示之箭頭方向將第一金屬層220與第二金屬層250於200℃至300℃之溫度下熱壓約30分鐘,使得鑽石膜210與基材230結合,其中因第一金屬層220與第二金屬層250之金屬組成材料相似且能帶(energy gap)低,易因熱壓作用促使第一金屬層220與第二金屬層250間以金屬鍵結的方式而緊密地接合鑽石膜210及基材230。最後如「第1圖」所示,移除基材230(步驟170),以形成本發明之發光二極體。 As shown in "Fig. 1" and "Fig. 2F", the first metal layer 220 and the second metal layer 250 are joined to each other (step 160), wherein the direction of the arrow shown in "2F" is A metal layer 220 and a second metal layer 250 are hot pressed at a temperature of 200 ° C to 300 ° C for about 30 minutes, so that the diamond film 210 is bonded to the substrate 230, wherein the metal of the first metal layer 220 and the second metal layer 250 The composition materials are similar and the energy gap is low, and the diamond film 210 and the substrate 230 are closely bonded by the metal bonding between the first metal layer 220 and the second metal layer 250 by the hot pressing. Finally, as shown in "FIG. 1", the substrate 230 is removed (step 170) to form the light-emitting diode of the present invention.

請參閱「第3圖」,係分別為本發明之發光二極體結構10的剖面示意圖。發光二極體結構10包括鑽石層210、第三金屬層260、第一金屬層220、第二金屬層250及發光層240。其中,鑽石膜210具有一粗糙面,而第三金屬層260係形成於鑽石膜210上,第一金屬層220係形成於第三金屬層260之上,第二金屬層250係形成於第一金屬層220上,發光層240係形成於第二金屬層250上。本發明於鑽石膜210與第一金屬層220間形成第三金屬層260,因此增強鑽石膜210與第一金屬層220之間的貼合性。 Please refer to FIG. 3, which is a schematic cross-sectional view of the light emitting diode structure 10 of the present invention. The light emitting diode structure 10 includes a diamond layer 210, a third metal layer 260, a first metal layer 220, a second metal layer 250, and a light emitting layer 240. The diamond film 210 has a rough surface, and the third metal layer 260 is formed on the diamond film 210. The first metal layer 220 is formed on the third metal layer 260, and the second metal layer 250 is formed on the first surface. On the metal layer 220, the light emitting layer 240 is formed on the second metal layer 250. The present invention forms the third metal layer 260 between the diamond film 210 and the first metal layer 220, thereby enhancing the adhesion between the diamond film 210 and the first metal layer 220.

「第4圖」係為本發明之發光二極體結合散熱器的剖面示意圖。本發明之發光二極體藉由散熱膏20或其他封裝黏結材料將鑽石膜210貼附於散熱器30上,由於鑽石膜之第二側面2102為粗糙面,因此,可增加與散熱膏20之接觸面積,進而增加與散熱膏20的結合力且可提升散熱效率。另外,接近粗糙面之鑽石晶格排列較佳,藉由其晶格排列之梯度差異,可將發光層240所 產生之熱量依序經由第二金屬層250、第一金屬層220及第三金屬層260導向鑽石膜之第二側面2102,進而提升散熱效率。 Fig. 4 is a schematic cross-sectional view showing the light-emitting diode of the present invention in combination with a heat sink. The light-emitting diode of the present invention attaches the diamond film 210 to the heat sink 30 by the heat-dissipating paste 20 or other package bonding material. Since the second side surface 2102 of the diamond film is a rough surface, the heat-dissipating paste 20 can be added. The contact area, in turn, increases the bonding force with the thermal grease 20 and improves the heat dissipation efficiency. In addition, the diamond lattice arrangement close to the rough surface is better, and the light-emitting layer 240 can be arranged by the gradient difference of the lattice arrangement thereof. The generated heat is sequentially guided to the second side surface 2102 of the diamond film via the second metal layer 250, the first metal layer 220, and the third metal layer 260, thereby improving heat dissipation efficiency.

綜上所述,本發明之發光二極體係利用形成於暫時基材200上之鑽石膜的第一側面2101為平坦面之特性,可直接在第一側面2101上形成第三金屬層260及第一金屬層220,而無須對鑽石膜210進行拋光製程,且發光二極體與散熱器30之間係藉由散熱膏20與散熱器30接觸,其中藉由鑽石膜之第二側面具有粗糙面來增加與散熱膏20的接觸面積,進而達到增加散熱效率的效果。另外,鑽石膜210晶格排列梯度差異之特性,將發光層240產生之熱導往金屬熱沈30,以達到提升散熱效率之目的。 In summary, the light-emitting diode system of the present invention utilizes the characteristic that the first side surface 2101 of the diamond film formed on the temporary substrate 200 is a flat surface, and the third metal layer 260 and the first metal layer 260 can be formed directly on the first side surface 2101. a metal layer 220 without polishing the diamond film 210, and the light-emitting diode and the heat sink 30 are in contact with the heat sink 30 by the heat-dissipating paste 20, wherein the second side of the diamond film has a rough surface The contact area with the thermal grease 20 is increased to achieve an effect of increasing heat dissipation efficiency. In addition, the diamond film 210 has a lattice alignment gradient characteristic, and the heat generated by the light-emitting layer 240 is guided to the metal heat sink 30 to achieve the purpose of improving heat dissipation efficiency.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

10‧‧‧鑽石薄膜發光二極體 10‧‧‧Diamond film light-emitting diode

20‧‧‧散熱膏 20‧‧‧ Thermal grease

30‧‧‧散熱器 30‧‧‧ radiator

100‧‧‧形成一鑽石膜於暫時基材上 100‧‧‧Forming a diamond film on a temporary substrate

110‧‧‧移除暫時基材 110‧‧‧Remove temporary substrate

120‧‧‧形成一第三金屬層於鑽石膜上 120‧‧‧Form a third metal layer on the diamond film

130‧‧‧形成一第一金屬層於第三金屬層上 130‧‧‧ Forming a first metal layer on the third metal layer

140‧‧‧形成一發光層於基材上 140‧‧‧ Forming a luminescent layer on the substrate

150‧‧‧形成一第二金屬層於發光層上 150‧‧‧ forming a second metal layer on the light-emitting layer

160‧‧‧接合第一金屬層與第二金屬層 160‧‧‧ joining the first metal layer and the second metal layer

170‧‧‧移除基材 170‧‧‧Remove the substrate

200‧‧‧暫時基材 200‧‧‧temporary substrate

210‧‧‧鑽石膜 210‧‧‧Diamond film

2101‧‧‧第一側面 2101‧‧‧ first side

2102‧‧‧第二側面 2102‧‧‧ second side

220‧‧‧第一金屬層 220‧‧‧First metal layer

230‧‧‧基材 230‧‧‧Substrate

240‧‧‧發光層 240‧‧‧Lighting layer

250‧‧‧第二金屬層 250‧‧‧Second metal layer

260‧‧‧第三金屬層 260‧‧‧ Third metal layer

第1圖係為本發明之發光二極體之製作流程示意圖;第2A圖至第2F圖為本發明一實施例之製作發光二極體之步驟流程示意圖;第3圖為本發明之發光二極體之剖面示意圖;以及第4圖為本發明之發光二極體結合散熱裝置之剖面示意圖。 1 is a schematic diagram showing a manufacturing process of a light-emitting diode of the present invention; FIGS. 2A to 2F are schematic flow charts showing a step of fabricating a light-emitting diode according to an embodiment of the present invention; and FIG. 3 is a light-emitting diode of the present invention. A schematic cross-sectional view of a polar body; and FIG. 4 is a schematic cross-sectional view of the light-emitting diode of the present invention in combination with a heat sink.

100‧‧‧形成一鑽石膜於暫時基材上 100‧‧‧Forming a diamond film on a temporary substrate

110‧‧‧移除暫時基材 110‧‧‧Remove temporary substrate

120‧‧‧形成一第三金屬層於鑽石膜上 120‧‧‧Form a third metal layer on the diamond film

130‧‧‧形成一第一金屬層於第三金屬層上 130‧‧‧ Forming a first metal layer on the third metal layer

140‧‧‧形成一發光層於基材上 140‧‧‧ Forming a luminescent layer on the substrate

150‧‧‧形成一第二金屬層於發光層上 150‧‧‧ forming a second metal layer on the light-emitting layer

160‧‧‧接合第一金屬層與第二金屬層 160‧‧‧ joining the first metal layer and the second metal layer

170‧‧‧移除基材 170‧‧‧Remove the substrate

Claims (12)

一種發光二極體之製造方法,包括有以下步驟:提供一暫時基材;形成一鑽石膜於該暫時基材上,該鑽石膜具有一第一側面及一第二側面,該第一側面係相對於該第二側面,該第一側面係貼附於該暫時基材上,而該第二側面係為一粗糙面;移除該暫時基材;形成一第三金屬層於該鑽石膜之第一側面上;形成一第一金屬層於該第三金屬層上;提供一基材;形成一發光層於該基材上;形成一第二金屬層於該發光層上;接合該第一金屬層與該第二金屬層;以及移除該基材。 A method for manufacturing a light-emitting diode includes the steps of: providing a temporary substrate; forming a diamond film on the temporary substrate, the diamond film having a first side and a second side, the first side Relative to the second side, the first side is attached to the temporary substrate, and the second side is a rough surface; the temporary substrate is removed; and a third metal layer is formed on the diamond film Forming a first metal layer on the third metal layer; providing a substrate; forming a light-emitting layer on the substrate; forming a second metal layer on the light-emitting layer; bonding the first a metal layer and the second metal layer; and removing the substrate. 如申請專利範圍第1項所述之製造方法,其中形成該第三金屬層之方法包括濺鍍、熱蒸鍍、電子束蒸鍍、化學氣相沈積或物理氣相沈積。 The manufacturing method of claim 1, wherein the method of forming the third metal layer comprises sputtering, thermal evaporation, electron beam evaporation, chemical vapor deposition, or physical vapor deposition. 如申請專利範圍第1項所述之製造方法,其中該第三金屬層材料係選自鎳、鈦、金、銀、鉻或鋁及其合金。 The manufacturing method of claim 1, wherein the third metal layer material is selected from the group consisting of nickel, titanium, gold, silver, chromium or aluminum and alloys thereof. 如申請專利範圍第1項所述之製造方法,其中該第三金屬層厚度係為2000奈米以下。 The manufacturing method according to claim 1, wherein the third metal layer has a thickness of 2000 nm or less. 如申請專利範圍第1項所述之製造方法,其中該第三金屬層厚 度係介於50奈米至100奈米之間。 The manufacturing method of claim 1, wherein the third metal layer is thick The degree is between 50 nm and 100 nm. 如申請專利範圍第1項所述之製造方法,其中形成該第一金屬層之方法包括濺鍍、熱蒸鍍、電子束蒸鍍、化學氣相沈積或物理氣相沈積。 The manufacturing method of claim 1, wherein the method of forming the first metal layer comprises sputtering, thermal evaporation, electron beam evaporation, chemical vapor deposition, or physical vapor deposition. 如申請專利範圍第1項所述之製造方法,其中該第一金屬層材料係選自金、銀、鈀、銦、鈦、鉻或鎳。 The manufacturing method of claim 1, wherein the first metal layer material is selected from the group consisting of gold, silver, palladium, indium, titanium, chromium or nickel. 如申請專利範圍第1項所述之製造方法,其中該第一金屬層厚度係為2微米以下。 The manufacturing method according to claim 1, wherein the first metal layer has a thickness of 2 μm or less. 如申請專利範圍第1項所述之製造方法,其中形成該第二金屬層之方法包括濺鍍、熱蒸鍍、電子束蒸鍍、化學氣相沈積或物理氣相沈積。 The manufacturing method of claim 1, wherein the method of forming the second metal layer comprises sputtering, thermal evaporation, electron beam evaporation, chemical vapor deposition, or physical vapor deposition. 如申請專利範圍第1項所述之製造方法,其中該第二金屬層材料係選自金、銀、鈀、銦、鈦、鉻或鎳。 The manufacturing method of claim 1, wherein the second metal layer material is selected from the group consisting of gold, silver, palladium, indium, titanium, chromium or nickel. 如申請專利範圍第1項所述之製造方法,其中該第二金屬層厚度係為2微米以下。 The manufacturing method according to claim 1, wherein the second metal layer has a thickness of 2 μm or less. 如申請專利範圍第1項所述之製造方法,其中形成該鑽石膜之方法包括化學氣相沈積或微波電漿輔助化學氣相沉積法。 The manufacturing method of claim 1, wherein the method of forming the diamond film comprises chemical vapor deposition or microwave plasma assisted chemical vapor deposition.
TW97138787A 2008-10-08 2008-10-08 Light emitting diode with a diamond film and manufacturing method thereof TWI392117B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97138787A TWI392117B (en) 2008-10-08 2008-10-08 Light emitting diode with a diamond film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97138787A TWI392117B (en) 2008-10-08 2008-10-08 Light emitting diode with a diamond film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201015750A TW201015750A (en) 2010-04-16
TWI392117B true TWI392117B (en) 2013-04-01

Family

ID=44830158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138787A TWI392117B (en) 2008-10-08 2008-10-08 Light emitting diode with a diamond film and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI392117B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237287A (en) * 2010-04-27 2011-11-09 中国砂轮企业股份有限公司 Method for manufacturing substrate and substrate structure
US11476178B2 (en) * 2019-07-22 2022-10-18 Raytheon Company Selectively-pliable chemical vapor deposition (CVD) diamond or other heat spreader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208691A1 (en) * 2004-03-17 2005-09-22 Shih-Chang Shei Method for manufacturing light-emitting diode
US20060211222A1 (en) * 2005-01-26 2006-09-21 Linares Robert C Gallium nitride light emitting devices on diamond
US20070216024A1 (en) * 2006-03-17 2007-09-20 Kabushiki Kaisha Toshiba Heat sink, electronic device, method of manufacturing heat sink, and method of manufacturing electronic device
US20080067916A1 (en) * 2006-07-28 2008-03-20 Epistar Corporation Light emitting device having a patterned substrate and the method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208691A1 (en) * 2004-03-17 2005-09-22 Shih-Chang Shei Method for manufacturing light-emitting diode
US20060211222A1 (en) * 2005-01-26 2006-09-21 Linares Robert C Gallium nitride light emitting devices on diamond
US20070216024A1 (en) * 2006-03-17 2007-09-20 Kabushiki Kaisha Toshiba Heat sink, electronic device, method of manufacturing heat sink, and method of manufacturing electronic device
US20080067916A1 (en) * 2006-07-28 2008-03-20 Epistar Corporation Light emitting device having a patterned substrate and the method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y S Wu et. al., Effect of the silver mirror location on the luminance intensity of double-roughened GaN light-emitting diodes, Electrochemical and Solid-State Letters, Volume: 10, Issue: 10, Pages: J126-J128, July 24, 2007 *

Also Published As

Publication number Publication date
TW201015750A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
JP3918858B2 (en) Light-emitting element mounting member and semiconductor device using the same
JP4654389B2 (en) Room temperature bonding method for diamond heat spreader and heat dissipation part of semiconductor device
TW200414456A (en) Heat spreader and semiconductor device and package using the same
TW200828611A (en) Electroluminescent device, and fabrication method thereof
TW201427113A (en) Bonding method and structure for LED package
US20180190520A1 (en) Composite heat-dissipating substrate
TWI381551B (en) A light emitting device containing a composite electroplated substrate
JP4409560B2 (en) Manufacturing method of heat sink of semiconductor element
JPWO2013038964A1 (en) Clad material for LED light-emitting element holding substrate and manufacturing method thereof
TWI392117B (en) Light emitting diode with a diamond film and manufacturing method thereof
TWI385826B (en) A led device comprising a transparent material lamination having graded refractive index, or a led device having heat dissipation property, and applications of the same
TWI463710B (en) Mrthod for bonding heat-conducting substraye and metal layer
JP2004200347A (en) Light emitting diode with high heat dissipation capability
JP5134108B2 (en) Manufacturing method of semiconductor element heat sink
CN101656279B (en) Luminous element comprising composite electroplating substrate
TWM595383U (en) A heat dissipation type electronic device
US20150270238A1 (en) Jointed structure and method of manufacturing same
TWI398956B (en) A thermal dissipating structure with diamond and its manufacture method are provided
JP2019036566A (en) Semiconductor device and method of manufacturing the same
JP2012109288A (en) Wafer for led
KR101557431B1 (en) Semiconductor unit with submount for semiconductor device
TWM406259U (en) Package substrate of light emitting diode having a double-sided DLC film
JP6508182B2 (en) Semiconductor module and method of manufacturing the same
TWI552379B (en) Light emitting diode and method for fabricating the same
US9006086B2 (en) Stress regulated semiconductor devices and associated methods

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees