JP2012108023A - Method and apparatus for measuring each component concentration in suspension to be used for wet fluorescent magnetic particle flaw detection test - Google Patents

Method and apparatus for measuring each component concentration in suspension to be used for wet fluorescent magnetic particle flaw detection test Download PDF

Info

Publication number
JP2012108023A
JP2012108023A JP2010257667A JP2010257667A JP2012108023A JP 2012108023 A JP2012108023 A JP 2012108023A JP 2010257667 A JP2010257667 A JP 2010257667A JP 2010257667 A JP2010257667 A JP 2010257667A JP 2012108023 A JP2012108023 A JP 2012108023A
Authority
JP
Japan
Prior art keywords
test
concentration
fluorescent magnetic
flaw detection
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010257667A
Other languages
Japanese (ja)
Other versions
JP4750221B1 (en
Inventor
Kenji Matsumoto
謙二 松本
Takashi Fujimoto
貴司 藤本
Keisuke Komatsu
慶亮 小松
Toshiharu Aisaka
俊治 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2010257667A priority Critical patent/JP4750221B1/en
Priority to PCT/JP2010/071864 priority patent/WO2011138843A1/en
Priority to CN201080066652.5A priority patent/CN102884417B/en
Application granted granted Critical
Publication of JP4750221B1 publication Critical patent/JP4750221B1/en
Publication of JP2012108023A publication Critical patent/JP2012108023A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】検査液中の分散剤および蛍光磁粉の濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を提供する。
【解決手段】被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置では、検査液を透明な測定具3に導入し、光源4の光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5の検出値および励起して発光した可視光を検出する蛍光輝度検出器6の検出値に基づいて、分散剤の濃度を測定する。
【選択図】図6
[PROBLEMS] A wet fluorescent magnetic particle flaw detection with improved measurement accuracy and workability, capable of simultaneously measuring the concentration of a dispersant and fluorescent magnetic powder in a test solution by a simple method, and enabling the concentration to be measured instantaneously and with high accuracy. Provided are a method and an apparatus for measuring a component concentration of a test liquid used in a test.
A wet method for flaw detection by bringing a test liquid mixed with at least fluorescent magnetic powder into contact with a magnetized metal surface of an object to be inspected, and collecting and adhering the fluorescent magnetic powder to the surface flaw. In the method and apparatus for measuring the component concentration of the test liquid used for the fluorescent magnetic particle flaw detection test, the test liquid is introduced into the transparent measuring tool 3, and the light from the light source 4 is irradiated to the test liquid from one side of the measuring tool 3. Based on the detection value of the ultraviolet detector 5 that detects the transmitted light and the detection value of the fluorescence luminance detector 6 that detects the visible light excited and emitted, using the transmitted light and the visible light excited and emitted. To measure the concentration of the dispersant.
[Selection] Figure 6

Description

本発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液に関し、より詳細には、検査液における各成分濃度の測定方法および測定装置に関する。   The present invention is a wet method for flaw detection by bringing a test liquid obtained by mixing at least fluorescent magnetic powder into contact with a magnetized metal surface of an object to be inspected, and collecting and adhering the fluorescent magnetic powder to the surface flaw. More particularly, the present invention relates to a method and an apparatus for measuring the concentration of each component in a test liquid.

湿式蛍光磁粉探傷試験は、一般的にビレットなどの鋼材や、自動車のシャフトなどの部品の探傷検査に適用する、JIS−Z−2320に規格化されたものである。これは、被検査体を磁化することにより、被検査体の表層部に傷部を有していれば、この傷部に磁極が発生するため、当該磁極に磁粉を付着させることで傷部を判定する、例えば特許文献1〜2に記載のような周知の非破壊検査法である。この傷部に付着させる磁粉は蛍光磁粉を使用しているため、暗室内で紫外線を照射し、傷部に付着した蛍光磁粉の蛍光体を発光させることで視認性を向上させ、検査を容易にする効果が得られる。検査に適用する検査液は数μm〜数十μmの蛍光磁粉と水もしくは白灯油と所定の分散剤、所定の防錆剤からなるのが一般的である。探傷検査において検査液内の蛍光磁粉の含有量が、傷部の視認性や検出限界などを左右する重要な要素である。検査液中の蛍光磁粉の濃度を測定する一般的な手法は、沈殿管を用いたもの(非破壊検査シリーズ、磁粉探傷試験3P82〜83)であ
る。その手法は、よく撹拌し懸濁した検査液を散布ノズルから採取し、沈殿管を30分間静置した後、沈殿管底部に沈殿した沈殿物の容積を求めていた。
The wet fluorescent magnetic particle flaw detection test is standardized by JIS-Z-2320, which is generally applied to flaw detection inspection of steel materials such as billets and parts such as automobile shafts. This is because, by magnetizing the object to be inspected, if the surface layer part of the object to be inspected has a scratched part, a magnetic pole is generated at this scratched part. It is a well-known nondestructive inspection method as described in Patent Documents 1 and 2, for example. Since the magnetic powder to be attached to the scratched part uses fluorescent magnetic powder, the ultraviolet light is irradiated in the dark room, and the phosphor of the fluorescent magnetic powder attached to the damaged part emits light to improve the visibility and facilitate the inspection. Effect is obtained. The inspection liquid applied to the inspection is generally composed of fluorescent magnetic powder of several μm to several tens μm, water or white kerosene, a predetermined dispersant, and a predetermined rust preventive. In the flaw detection inspection, the content of the fluorescent magnetic powder in the inspection liquid is an important factor that affects the visibility and detection limit of the scratched part. A general method for measuring the concentration of the fluorescent magnetic powder in the test solution is a method using a sedimentation tube (non-destructive inspection series, magnetic particle testing 3P82 to 83). In this method, a well-stirred and suspended test solution was collected from a spray nozzle, and the sedimentation tube was allowed to stand for 30 minutes, and then the volume of sediment deposited on the bottom of the sedimentation tube was determined.

特開2009−109424号公報JP 2009-109424 A 特開2007−303824号公報JP 2007-303824 A

しかし、上記のような湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法では、サンプリングの状況や、スケールおよびゴミなど異物の混入によって沈殿量が多くなっている場合、濃度測定値にばらつきを生じていた。そこで、この問題を解決するために、擬似欠陥に付着した蛍光体の明るさを指針として測定する方法(特開平7―113787)や、その明るさをCCDで読み取り画像処理することで測定する方法(特開2009−75098)、さらには鉄粉の電磁気特性と蛍光輝度を併用して測定する手法(特開平5−215724)が提案されているが、擬似欠陥を有した試験片の磁化状態、散布法などにより測定結果のばらつきは避けられない。また、上述したサンプリング操作は煩わしく、作業性が悪いという問題もあった。 However, in the method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test as described above, the concentration measurement value varies when the amount of precipitation increases due to sampling conditions or contamination with foreign matter such as scale and dust. Was produced. Therefore, in order to solve this problem, a method of measuring the brightness of the phosphor adhering to the pseudo defect as a guide (Japanese Patent Laid-Open No. 7-113787) or a method of measuring the brightness by reading the image with a CCD and processing the image. (JP 2009-75098 A), and further, a method (JP-A 5-215724) for measuring the electromagnetic characteristics and fluorescence luminance of iron powder in combination has been proposed, but the magnetization state of the test piece having pseudo defects, Variations in measurement results are unavoidable due to spraying methods. Further, the sampling operation described above is troublesome and there is a problem that workability is poor.

さらに、上述してきた検査液の成分濃度の測定方法では、蛍光磁粉の濃度しか測定することができない。ところで、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右するとともに、分散剤の濃度は、検査液の被検査体への濡れ性を左右する。分散剤の評価方法としては、特開平8−128993に開示した、表面あらさ標準片の標準面と透明板体の一面とが所要間隔を置いて対面している状態で固定し、当該両面が垂直になる姿勢で設置した測定装置にて、その下端部を試料に浸漬して前記間隔を毛細管現象によって上昇する試料の上昇値を測定し、当該測定値によって当該検査液中の分散剤の濡れ性を評価するものがあるが、分散剤自体の濃度を測定するものではなく、また、分散剤の評価のためだけに別途測定装置を設けなければならず、コスト高となるとともに作業効率が悪いという問題もあった。   Furthermore, only the concentration of the fluorescent magnetic powder can be measured by the method for measuring the component concentration of the test liquid described above. By the way, the concentration of the fluorescent magnetic powder in the test solution affects the visibility of the flaw detection, and the concentration of the dispersant determines the wettability of the test solution to the object to be inspected. As a method for evaluating the dispersant, the standard surface of the surface roughness standard piece and one surface of the transparent plate, which are disclosed in JP-A-8-128993, are fixed in a state where they face each other at a required interval, and the both surfaces are vertical. In a measuring device installed in a posture, the lower end of the sample is immersed in the sample, and the rising value of the sample rising by capillary action is measured, and the wettability of the dispersant in the test liquid is measured by the measured value. However, it does not measure the concentration of the dispersant itself, and a separate measuring device must be provided only for the evaluation of the dispersant, which increases costs and reduces work efficiency. There was also a problem.

そこで、本願発明者らは、特願2010−107561に記載したように、検査液に光源の紫外線LEDランプから紫外線を照射し、検査液から得られた透過光および励起して発光した可視光をそれぞれ紫外線検出器と、蛍光輝度検出器とで検出した各検出値に基づいて、検査液中に含有する蛍光磁粉の濃度および分散剤の濃度を測定する方法および装置を開発した。   Therefore, as described in Japanese Patent Application No. 2010-107561, the inventors of the present application irradiate the test liquid with ultraviolet light from an ultraviolet LED lamp as a light source, and transmit transmitted light obtained from the test liquid and excited visible light. A method and apparatus for measuring the concentration of the fluorescent magnetic powder and the concentration of the dispersant contained in the test liquid based on the detection values detected by the ultraviolet detector and the fluorescence luminance detector, respectively, have been developed.

しかしながら、検査液の多くは、検査液タンクで調製され、磁化した被検査体に塗布された後、余剰分の検査液は回収し、再び被検査体に散布される。被検査体に対して前工程でショットブラストなどの表面処理を行っている場合、この表面処理で生じた鉄屑などのスケールが被検査体に付着し、このスケールの付着した被検査体に検査液を塗布すると、検査液タンクには余剰分の検査液に混入したスケールも回収されてしまう。このスケールは、酸化鉄などの強磁性体であるため、探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう。   However, most of the test liquid is prepared in the test liquid tank and applied to the magnetized object to be inspected, and then the surplus test liquid is collected and sprayed again on the object to be inspected. When surface treatment such as shot blasting is performed on the inspected object in the previous process, scales such as iron scrap generated by this surface treatment adhere to the inspected object, and the inspected object to which this scale adheres is inspected. When the liquid is applied, the scale mixed in the excess test liquid is also collected in the test liquid tank. Since this scale is a ferromagnetic material such as iron oxide, during the flaw detection, the adhesion of the fluorescent magnetic powder to the flaw portion is hindered, and the flaw detection accuracy is remarkably lowered.

そこで、検査液中に含まれるスケールの濃度を把握し、管理する必要があるが、従来では、このスケールの濃度(含有量)など、検査液中に含まれる蛍光磁粉および分散剤以外の成分濃度を測定することができず、探傷試験の際の傷部の検出性能が低いという問題があった。   Therefore, it is necessary to grasp and manage the concentration of scale contained in the test solution. Conventionally, the concentration of components other than the fluorescent magnetic powder and dispersant contained in the test solution, such as the concentration (content) of this scale Cannot be measured, and there is a problem in that the detection performance of the flaws in the flaw detection test is low.

従って、この発明の目的は、検査液中に含有するスケールや、検査液を構成する蛍光磁粉、分散剤、防錆剤など検査液中の各成分濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、探傷試験の際の傷部の検出性能および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を提供するものである。   Accordingly, the object of the present invention is to simultaneously measure the concentration of each component in the test liquid, such as the scale contained in the test liquid, the fluorescent magnetic powder, the dispersant, and the rust preventive that constitute the test liquid, and those Provided are a method and an apparatus for measuring a component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test which can improve the detection performance and workability of a flaw in a flaw detection test, which can measure the concentration instantaneously and with high accuracy. Is.

このため、請求項1に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、該成分濃度測定方法は、撹拌された前記検査液を透明な測定具に導入し、光源の光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する検出器および前記励起して発光した可視光を検出する検出器の各検出値および前記各成分の時間経過に伴う沈降特性の違いによって得られる前記各検出器の検出値の変化から、前記検査液の各成分濃度を測定することを特徴とする。   For this reason, according to the first aspect of the present invention, the test liquid obtained by mixing at least the fluorescent magnetic powder is brought into contact with the surface of the magnetized metal of the object to be inspected, and the fluorescent magnetic powder is assembled and adhered to the scratched portion of the surface. The component concentration measurement method of the test liquid used in the wet fluorescent magnetic particle flaw detection test for flaw detection by performing the test, wherein the component concentration measurement method introduces the stirred test solution into a transparent measuring instrument. The detector for detecting the transmitted light using the transmitted light obtained by irradiating the test solution from one side of the measuring instrument and the visible light excited and emitted, and the excited light The concentration of each component of the test solution is measured from the change in each detection value of the detector that detects the emitted visible light and the change in the detection value of each detector obtained by the difference in the sedimentation characteristics of each component over time. It is characterized by that.

請求項2に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記光源は、紫外線LEDランプおよび赤外線LEDランプであることを特徴とする。   According to a second aspect of the present invention, in the method for measuring a component concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, the light source is an ultraviolet LED lamp or an infrared LED lamp.

請求項3に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記透過光を検出する検出器は、紫外線検出器および赤外線検出器であることを特徴とする。   According to a third aspect of the present invention, in the component concentration measurement method for a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, the detectors that detect the transmitted light are an ultraviolet detector and an infrared detector. It is characterized by that.

請求項4に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記紫外線検出器および前記赤外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする。   According to a fourth aspect of the present invention, in the method for measuring a component concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, the ultraviolet detector and the infrared detector sandwich the measuring tool and the light source. It is characterized in that it is installed at the opposite position.

請求項5に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記各成分は、蛍光磁粉と、分散剤と、スケールとを含むことを特徴とする。   A fifth aspect of the present invention is the method of measuring a concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, wherein each of the components includes fluorescent magnetic powder, a dispersant, and a scale. Features.

請求項6に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、該成分濃度測定装置は、前記検査液を導入する測定具と、前記検査液の流れを制御するポンプと、該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、該測定具内の前記検査液に赤外線を照射する光源の赤外線LEDランプと、前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、前記赤外線照射により前記検査液から得られた透過光を検出する赤外線検出器と、前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、前記ポンプの動作時および停止時の前記検査液の、前記紫外線検出器、前記赤外線検出器および前記蛍光輝度検出器による各検出値に基づいて、それぞれ前記検査液に含有する前記蛍光磁粉の濃度、前記分散剤の濃度、防錆剤濃度、スケール濃度を算出する情報処理部とを備えることを特徴とする。   According to the sixth aspect of the present invention, the test liquid obtained by mixing at least the fluorescent magnetic powder is brought into contact with the surface of the magnetized metal of the object to be inspected, and the fluorescent magnetic powder is collected and adhered to the scratched portion of the metal surface. A component concentration measuring device for the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection of the scratched part, the component concentration measuring device comprising: a measuring tool for introducing the test solution; and a flow of the test solution A pump to be controlled, an ultraviolet LED lamp as a light source for irradiating the test liquid in the measuring tool with ultraviolet light, an infrared LED lamp as a light source for irradiating the test liquid in the measuring tool with infrared light, and An ultraviolet detector for detecting transmitted light obtained from the test liquid, an infrared detector for detecting transmitted light obtained from the test liquid by the infrared irradiation, and obtained from the test liquid by the ultraviolet irradiation. Fluorescence luminance detector for detecting visible light emitted by excitation, and each detection by the ultraviolet detector, the infrared detector and the fluorescence luminance detector of the test liquid when the pump is operated and stopped And an information processing unit for calculating the concentration of the fluorescent magnetic powder, the concentration of the dispersing agent, the concentration of the rust inhibitor, and the scale concentration contained in the test solution, respectively, based on the values.

請求項7に記載の発明は、請求項6に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置において、前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記赤外線LEDランプと、前記紫外線検出器と、前記赤外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする。   The invention according to claim 7 is the component concentration measuring apparatus for the test liquid used in the wet fluorescent magnetic particle flaw detection test according to claim 6, wherein the measuring tool is installed in a dark box, and the ultraviolet LED lamp, The infrared LED lamp, the ultraviolet detector, the infrared detector, and the fluorescence luminance detector are provided in the dark box.

請求項8に記載の発明は、少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項6〜7に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。   According to an eighth aspect of the present invention, there is provided a test liquid tank for storing a test liquid formed by mixing at least fluorescent magnetic powder, and the test liquid in the test liquid tank is taken out by a circulation means and is returned to the test liquid tank. A wet-type fluorescent magnetic particle flaw detection tester comprising: a transfer means that causes the test liquid in the transfer means to contact the magnetized metal surface of the object to be inspected to detect a flaw on the surface. The transfer means includes the component concentration measuring device according to claim 6, which measures the component concentration of the test liquid, and the transfer means is for testing the test liquid to pump the test liquid to the flaw detection unit. It is piping, Comprising: The said measuring tool of the said component concentration measuring apparatus was connected to this test piping, It is characterized by the above-mentioned.

請求項1に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法であって、この成分濃度測定方法は、撹拌された検査液を透明な測定具に導入し、光源の光を、測定具の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する検出器および励起して発光した可視光を検出する検出器の各検出値および各成分の時間経過に伴う沈降特性の違いによって得られる各検出器の検出値の変化から、検査液の各成分濃度を測定するので、光学的手法を用いた簡単な構成により、検査液中に含まれる各成分の濃度を瞬時かつ高精度で、容易に測定することができる。   According to the first aspect of the present invention, the surface of the magnetized metal of the object to be inspected is brought into contact with a test liquid obtained by mixing at least the fluorescent magnetic powder, and the fluorescent magnetic powder is collected and adhered to the scratched surface. The component concentration measurement method of the test liquid used in the wet fluorescent magnetic particle flaw detection test for flaw detection, wherein this component concentration measurement method introduces the stirred test solution into a transparent measuring instrument, A detector for detecting transmitted light and a detector for detecting visible light excited and emitted using transmitted light obtained by irradiating the test solution from one side of the measuring instrument and visible light excited and emitted. From the change in the detection value of each detector obtained by the difference in the sedimentation characteristics with the passage of time of each detection value and each component, the concentration of each component of the test solution is measured, so by a simple configuration using an optical method, Concentration of each component contained in the test solution Instantaneous and accurate, it can be easily measured.

特に、被検査体の探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう検査液中に混入したスケールの濃度や、その他検査液中に混合されている防錆剤など、従来では測定できなかった検査液中に含まれる各成分の濃度を容易に測定することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   In particular, when flaw detection is performed on the object to be inspected, it is mixed in the concentration of scale mixed in the test solution that inhibits the attachment of fluorescent magnetic powder to the scratched part and significantly reduces the flaw detection accuracy, and other test solutions. It is possible to easily measure the concentration of each component contained in a test solution that could not be measured conventionally, such as a rust inhibitor. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test which enables measurement of each component concentration and improves measurement accuracy and workability.

請求項2に記載の発明によれば、光源は、紫外線LEDランプおよび赤外線LEDランプであるので、波長の異なる2種類の電磁波を用いて、検査液および検査液中に含まれる各成分から、成分濃度算出に必要な多種類の測定データを得ることができるとともに、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。従って、各成分濃度の測定を可能にするとともに、生産性を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   According to the second aspect of the present invention, the light source is an ultraviolet LED lamp or an infrared LED lamp, and therefore, using two types of electromagnetic waves having different wavelengths, from the components contained in the test solution and the test solution, the components Various types of measurement data necessary for concentration calculation can be obtained, and the service life of a light source lamp that absorbs and excites light in a test solution can be extended, thereby reducing costs. Accordingly, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test, which enables measurement of each component concentration and improves productivity.

請求項3に記載の発明によれば、透過光を検出する検出器は、紫外線検出器および赤外線検出器であるので、検査液中に含まれる各成分の吸光濃度および沈降特性を、波長の異なる2種類の電磁波別に得ることができ、蛍光輝度の測定値と併せてこれらの値に基づき、検査液中の各成分の濃度を正確かつ簡単に算出することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   According to the invention described in claim 3, since the detector for detecting the transmitted light is an ultraviolet detector and an infrared detector, the absorption concentration and sedimentation characteristics of each component contained in the test solution are different in wavelength. It can be obtained for each of the two types of electromagnetic waves, and the concentration of each component in the test solution can be accurately and easily calculated based on these values together with the measured values of the fluorescence luminance. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test which enables measurement of each component concentration and improves measurement accuracy and workability.

請求項4に記載の発明によれば、紫外線検出器および赤外線検出器は、測定具を挟んで光源の対向位置に設置するので、紫外線LEDランプおよび赤外線LEDランプから検査液に入射し、液中を略直進的に透過した紫外線および赤外線の透過光を、各成分の吸光濃度として正確かつ安定的に測定することができる。従って、簡単な構成で測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   According to the invention described in claim 4, since the ultraviolet detector and the infrared detector are installed at a position opposite to the light source with the measuring tool sandwiched therebetween, the ultraviolet LED lamp and the infrared LED lamp are incident on the test solution, The transmitted light of ultraviolet rays and infrared rays transmitted substantially straight through can be accurately and stably measured as the absorbance concentration of each component. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with a simple configuration and improved measurement accuracy.

請求項5に記載の発明によれば、各成分は、蛍光磁粉と、分散剤と、スケールとを含むので、被検査体の探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう検査液中に混入したスケールの濃度や、その他検査液中に混合されている防錆剤など、従来では測定できなかった検査液中に含まれる各成分の濃度を容易に測定することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   According to the fifth aspect of the present invention, each component includes fluorescent magnetic powder, a dispersant, and a scale. Therefore, when flaw detection is performed on the object to be inspected, the adhesion of the fluorescent magnetic powder to the flaw is inhibited. Easily adjust the concentration of each component contained in the test solution, which could not be measured in the past, such as the concentration of scale mixed in the test solution that would significantly reduce the accuracy, and other anti-corrosive agents mixed in the test solution Can be measured. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test which enables measurement of each component concentration and improves measurement accuracy and workability.

請求項6に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、金属表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置であって、この成分濃度測定装置は、検査液を導入する測定具と、検査液の流れを制御するポンプと、この測定具内の検査液に紫外線を照射する光源の紫外線LEDランプと、この測定具内の検査液に赤外線を照射する光源の赤外線LEDランプと、紫外線照射により検査液から得られた透過光を検出する紫外線検出器と、赤外線照射により検査液から得られた透過光を検出する赤外線検出器と、紫外線照射により検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、ポンプの動作時および停止時の検査液の、紫外線検出器、赤外線検出器および蛍光輝度検出器による各検出値に基づいて、それぞれ検査液に含有する蛍光磁粉の濃度、分散剤の濃度、防錆剤濃度、スケール濃度を算出する情報処理部とを備えるので、検査液中に含まれる各成分の濃度を瞬時かつ高精度で、容易に測定することができる。   According to the sixth aspect of the present invention, the test liquid formed by mixing at least the fluorescent magnetic powder is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is collected and adhered to the scratched portion of the metal surface. Is a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by using a measuring tool for introducing the test solution, a pump for controlling the flow of the test solution, and the like. , An ultraviolet LED lamp as a light source for irradiating the test liquid in the measuring tool with ultraviolet light, an infrared LED lamp as a light source for irradiating the test liquid in the measuring tool with infrared light, and transmitted light obtained from the test liquid by the ultraviolet irradiation UV detector that detects UV light, infrared detector that detects the transmitted light obtained from the test solution by infrared irradiation, and fluorescent light that detects the excited and emitted visible light obtained from the test solution by UV irradiation. Based on the detection values of the detector and the inspection liquid at the time of operation and stoppage of the pump by the ultraviolet detector, the infrared detector and the fluorescence luminance detector, the concentration of the fluorescent magnetic powder contained in the inspection liquid and the dispersant Since the information processing unit for calculating the concentration, the rust inhibitor concentration, and the scale concentration is provided, the concentration of each component contained in the test liquid can be easily measured with high accuracy and instantaneously.

特に、被検査体の探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう検査液中に混入したスケールの濃度や、その他検査液中に混合されている防錆剤など、従来では測定できなかった検査液中に含まれる各成分の濃度を容易に測定することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を提供することができる。   In particular, when flaw detection is performed on the object to be inspected, it is mixed in the concentration of scale mixed in the test solution that inhibits the attachment of fluorescent magnetic powder to the scratched part and significantly reduces the flaw detection accuracy, and other test solutions. It is possible to easily measure the concentration of each component contained in a test solution that could not be measured conventionally, such as a rust inhibitor. Therefore, it is possible to provide a component concentration measuring apparatus for a test liquid used for a wet fluorescent magnetic particle flaw detection test that enables measurement of each component concentration and improves measurement accuracy and workability.

さらに本成分濃度測定装置は、設置場所を限定せず、探傷試験装置に組込んだり、成分濃度測定装置を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。   Furthermore, this component concentration measuring device is not limited to the installation location, but can be incorporated into a flaw detection test device, or the component concentration measuring device can be carried as a measurement unit, and the component concentration of a sampled test solution can be measured at an arbitrary location. be able to. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability.

請求項7に記載の発明によれば、測定具は、暗箱体内に設置するとともに、紫外線LEDランプと、赤外線LEDランプと、紫外線検出器と、赤外線検出器と、蛍光輝度検出器とは、暗箱体内に備えるので、暗室内において、検査液からの紫外線の透過光や蛍光輝度および赤外線の透過光を正確に測定することができる。従って、測定精度を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。   According to the invention described in claim 7, the measuring tool is installed in the dark box, and the ultraviolet LED lamp, the infrared LED lamp, the ultraviolet detector, the infrared detector, and the fluorescence luminance detector are the dark box. Since it is provided in the body, it is possible to accurately measure the transmitted light of ultraviolet rays, the fluorescence luminance, and the transmitted light of infrared rays from the test solution in the dark room. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy.

請求項8に記載の発明によれば、少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項6〜7に記載の成分濃度測定装置を備え、移送手段が、探傷部に検査液を圧送する試験用配管であって、この試験用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。   According to the eighth aspect of the present invention, a test liquid tank for storing a test liquid formed by mixing at least the fluorescent magnetic powder, the test liquid in the test liquid tank is taken out by the circulation means, and returned to the test liquid tank. A wet fluorescent magnetic particle flaw detection test apparatus comprising: a transfer means that causes the test liquid in the transfer means to contact the magnetized metal surface of the object to be inspected to detect a flaw on the surface. The transfer means includes the component concentration measuring device according to claim 6, wherein the transfer means is a test pipe for pumping the test liquid to the flaw detection unit. Since the measuring instrument of the component concentration measuring device is connected to the pipe for the component, the component concentration measuring device is configured integrally with the wet fluorescent magnetic particle flaw detection test device, and the inspection liquid is sampled as in the conventional method, which is different from the flaw detection test device. Measure the component concentration at the place There is no required.

つまり、検査液タンクから探傷部へ移送途中である検査液の成分濃度を、散布装置での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができる。従って、作業性を向上させた湿式蛍光磁粉探傷試験装置を提供することができる。   That is, the component concentration of the test liquid being transferred from the test liquid tank to the flaw detection unit can be instantaneously measured online as part of the flaw detection test immediately before spraying with the spraying device. Accordingly, it is possible to provide a wet fluorescent magnetic particle flaw detection test apparatus with improved workability.

本発明の一例を示す、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置の斜視図である。It is a perspective view of the component density | concentration measuring apparatus of the test liquid used for a wet fluorescent magnetic particle flaw detection test which shows an example of this invention. 成分濃度測定装置の平面図である。It is a top view of a component concentration measuring apparatus. 成分濃度測定装置の正面図である。It is a front view of a component concentration measuring apparatus. 測定具に対する光源(紫外線LEDランプ)と、紫外線検出器および蛍光輝度検出器の設置位置を示す測定具周辺の正面模式図である。It is a front schematic diagram of the measurement tool periphery showing the installation position of the light source (ultraviolet LED lamp) with respect to the measurement tool, the ultraviolet detector, and the fluorescence luminance detector. 測定具に対する光源(赤外線LEDランプ)と、赤外線検出器の設置位置を示す測定具周辺の正面模式図である。It is a front schematic diagram of the measurement tool periphery which shows the light source (infrared LED lamp) with respect to a measurement tool, and the installation position of an infrared detector. 成分濃度測定装置のブロック制御図である。It is a block control diagram of a component concentration measuring device. 検査液中の各成分(a)〜(d)の濃度に対する吸光濃度および蛍光輝度を示すグラフ(検査液を撹拌・流動状態)である。It is a graph (A test liquid is stirred and fluidized) which shows the light-absorbing density | concentration with respect to the density | concentration of each component (a)-(d) in a test liquid, and fluorescence luminance. 検査液中の各成分(a)〜(d)の濃度に対する紫外線沈降吸光濃度を示すグラフ(検査液静止状態)である。It is a graph (test | medical solution stationary state) which shows the ultraviolet sedimentation absorption density with respect to the density | concentration of each component (a)-(d) in a test | inspection liquid. 湿式蛍光磁粉探傷試験装置の一例を示した全体模式図である。It is the whole schematic diagram which showed an example of the wet fluorescent magnetic particle flaw detection test apparatus. 探傷部の拡大模式図である。It is an expansion schematic diagram of a flaw detection part. 湿式蛍光磁粉探傷試験装置に備える成分濃度測定装置の一例を示した斜視図である。It is the perspective view which showed an example of the component density | concentration measuring apparatus with which a wet fluorescent magnetic particle test apparatus is equipped.

以下、図面を参照しつつ、この発明を実施するための最良の形態について詳述する。図1は本発明の一例を示した、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図、図2は成分濃度測定装置の平面図、図3は成分濃度測定装置の正面図、図4は測定具に対する光源(紫外線LEDランプ)と、紫外線検出器および蛍光輝度検出器の設置位置を示す測定具周辺の正面模式図、図5は測定具に対する光源(赤外線LEDランプ)と、赤外線検出器の設置位置を示す測定具周辺の正面模式図、図6は成分濃度測定装置のブロック制御図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test, showing an example of the present invention, FIG. 2 is a plan view of the component concentration measuring device, and FIG. 3 is a front view of the component concentration measuring device. 4 is a schematic front view of the periphery of the measuring tool showing the installation position of the UV detector and the fluorescence luminance detector, and FIG. 5 is a light source (infrared LED lamp) for the measuring tool. Fig. 6 is a schematic front view of the periphery of the measuring tool showing the installation position of the infrared detector, and Fig. 6 is a block control diagram of the component concentration measuring apparatus.

まず、周知のとおり湿式蛍光磁粉探傷試験に用いる検査液は、蛍光磁粉と、分散剤と、必要に応じて防錆剤とを混合させてなるものである。そして、それら成分の詳細は、例えば上述した特開2009−109424号公報などに記載されているように、まず蛍光磁粉としては、例えば、市販の磁粉(四三酸化鉄粒子や純鉄粒子などの導磁性粒子に酢酸セルローズ系合成樹脂やビニルブチラール系合成樹脂などの合成樹脂バインダーを用いてルモゲンイエロー50790:商品名:BASF社製やフエスタA:商品名:Swada社製などの蛍光顔料を付着させてなるメジアン径3〜70μm:体積基準分布表示−以下、同じ−で真比重2〜5g/cm3の粉末;以下「蛍光磁粉」という)を用いることができる。 First, as is well known, the inspection liquid used in the wet fluorescent magnetic particle flaw detection test is a mixture of fluorescent magnetic powder, a dispersant, and, if necessary, a rust inhibitor. The details of these components are described in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2009-109424, etc. First, as the fluorescent magnetic powder, for example, commercially available magnetic powder (such as iron trioxide particles or pure iron particles) Using a synthetic resin binder such as cellulose acetate-based synthetic resin or vinyl butyral-based synthetic resin, Lumogen Yellow 50790: Product name: BASF or Festa A: Product name: Swada The median diameter of 3 to 70 μm: a volume-based distribution display—hereinafter the same—with a true specific gravity of 2 to 5 g / cm 3 ; hereinafter referred to as “fluorescent magnetic powder”) can be used.

また、分散剤は、例えば、ポリオキシアルキレンアリルフェニルエーテル型非イオン系界面活性剤および陰イオン活性剤を用いることができる。さらに防錆剤としては、例えば亜硝酸ナトリウムなどを用いることができる。なお、蛍光磁粉や分散剤、防錆剤は上述した成分に限定されない。   Moreover, a polyoxyalkylene allyl phenyl ether type nonionic surfactant and an anionic surfactant can be used for a dispersing agent, for example. Furthermore, as a rust preventive agent, sodium nitrite etc. can be used, for example. In addition, fluorescent magnetic powder, a dispersing agent, and a rust preventive agent are not limited to the component mentioned above.

そして、湿式蛍光磁粉探傷試験では、上記のような各成分(蛍光磁粉、分散剤、防錆剤)について、探傷試験の対象に応じて設定したそれぞれの所定量で混合し、調製した検査液を、自動車のシャフトなどの鋼製部品や、ビレットなどの鋼材である被検査体に接触させ、当該被検査体の表面傷部(検査物の表面乃至表面近傍に存在する微細なワレやピンホール)に当該検査液に分散している当該磁粉を集合させて形成した磁粉模様によって表面傷部を探傷する周知の技術である。   In the wet fluorescent magnetic particle flaw detection test, the above-described components (fluorescent magnetic powder, dispersant, rust preventive agent) are mixed in respective predetermined amounts set according to the object of the flaw detection test, and the prepared inspection liquid is used. In contact with an object to be inspected, which is a steel part such as an automobile shaft, or a steel material such as a billet, surface scratches on the object to be inspected (fine cracks or pinholes existing on or near the surface of the object to be inspected) This is a well-known technique for flaw detection of a surface flaw by a magnetic powder pattern formed by collecting the magnetic powder dispersed in the inspection liquid.

この検査液は、多くが検査液タンクで調製され、磁化した被検査体に塗布された後、余剰分の検査液は回収し、再び被検査体に散布される。上述したように、被検査体に対して前工程で表面処理を行っている場合、この表面処理で生じた鉄屑などのスケールが被検査体に付着し、このスケールの付着した被検査体に検査液を塗布すると、検査液タンクには余剰分の検査液に混入したスケールが回収されてしまうことから、検査液には探傷の使用当初(調製当初)は存在しなかったスケールが混入されるとともに、その濃度は徐々に上昇する。そして、このスケールは、酸化鉄などの強磁性体であるため、探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう。   Most of the test liquid is prepared in the test liquid tank and applied to the magnetized test object, and then the surplus test liquid is collected and sprayed on the test object again. As described above, when surface treatment is performed on the object to be inspected in the previous process, scales such as iron scrap generated by the surface treatment adhere to the object to be inspected, and the object to be inspected to which this scale is attached is attached. When the test liquid is applied, the scale mixed in the surplus test liquid is collected in the test liquid tank, and therefore the scale that did not exist at the beginning of the flaw detection (initial preparation) is mixed in the test liquid. Along with this, the concentration gradually increases. And since this scale is a ferromagnetic material such as iron oxide, the flaw detection accuracy is greatly reduced because the adhesion of the fluorescent magnetic powder to the flaw portion is hindered during flaw detection.

また、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右し、分散剤の濃度も、検査液の被検査体への濡れ性を左右するとともに、防錆剤の濃度管理も当然必要である。このような検査液を用いて行なう、後述する湿式蛍光磁粉探傷試験装置において、検査液タンク内からポンプで取出し、被検査体に接触させて探傷試験を行った検査液は、検査液タンクに戻された後、再度探傷試験に使用して循環利用されるため、その検査液の成分濃度が刻々と変動することから、探傷検出性能を向上させ、高精度な被検査体の探傷試験を行うには、検査液中の各成分濃度を同時かつ瞬時に測定でき、それら濃度を把握し管理する必要がある。   In addition, the concentration of the fluorescent magnetic powder in the test solution affects the visibility of flaw detection, and the concentration of the dispersant also affects the wettability of the test solution to the object to be inspected. It is. In a wet fluorescent magnetic particle flaw detection test apparatus, which will be described later, performed using such a test liquid, the test liquid taken out from the test liquid tank with a pump and brought into contact with the object to be inspected and subjected to the flaw detection test is returned to the test liquid tank. After that, since the component concentration of the inspection liquid fluctuates every moment because it is used again for the flaw detection test, the flaw detection performance is improved and a highly accurate flaw detection test is performed on the inspected object. The concentration of each component in the test solution can be measured simultaneously and instantaneously, and it is necessary to grasp and manage these concentrations.

そこで、本願発明者らは、光学的手法を用いることにより、検査液中に含まれる各成分の濃度(蛍光磁粉、分散剤、防錆剤およびスケール)を、瞬時かつ同時に測定可能とした、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を開発した。   Therefore, the inventors of the present application have made it possible to instantaneously and simultaneously measure the concentration of each component (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) contained in the test liquid by using an optical technique. A method and apparatus for measuring the component concentration of the test liquid used in the fluorescent magnetic particle flaw detection test have been developed.

まず、検査液の成分濃度測定装置1としては、例えば、図1〜3に示すように、暗箱2と、この暗箱体2内に設置した測定具3と、さらには暗箱体2内に取付けられた光源4a,4bおよび検出器5,6,7とから構成されるものである。以下の説明では、成分濃度測定装置1を、設置場所を自由とし、後述する検査液タンク22内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明する。   First, as the component concentration measuring apparatus 1 for the test liquid, for example, as shown in FIGS. 1 to 3, the dark box 2, the measuring tool 3 installed in the dark box 2, and the dark box 2 are attached. The light sources 4a and 4b and the detectors 5, 6 and 7 are included. In the following description, the component concentration measuring apparatus 1 will be described as a measuring apparatus unit that can measure the component concentration of the test liquid sampled from the test liquid tank 22 to be described later, with the installation location being free.

暗箱体2は、例えば、正面視略台形の形状(限定しない)を有し、材質は特に限定されないが、プラスチックなどの合成樹脂またはアルミなどの金属からなる、内部を暗室とした箱材である。また、暗箱体2における正面および背面の中央近傍を結ぶ直線上には、円形(限定しない、後述する測定具3の外形に応じた形状とする)の穴部hが設けられている。さらに暗箱体2における天面の左右肩部には、左右の一方または双方(図例では双方)の外側端部を外方に向けて下降傾斜させた傾斜部8を形成する。なお、この暗箱体2には、例えば図3に示すような把持部16を天面などに設けてもよい。   The dark box body 2 is, for example, a box material having a substantially trapezoidal shape (not limited) when viewed from the front and made of a synthetic resin such as plastic or a metal such as aluminum. . Further, on a straight line connecting the vicinity of the center of the front surface and the back surface in the dark box body 2, a circular hole portion h (not limited to a shape corresponding to the outer shape of the measuring tool 3 described later) is provided. Further, the left and right shoulders of the top surface of the dark box body 2 are formed with inclined portions 8 in which the outer end portions of one or both of the left and right sides (both in the illustrated example) are inclined downward. The dark box body 2 may be provided with a gripping portion 16 as shown in FIG.

次に、測定具3は、図2に示すように、上述した暗箱体2の穴部hに貫設可能とし、暗箱体2の前後方向に略等しい長さを有する、側面部が透明な円筒形状(限定しない)のものであり、その材質は、測定具3内面の摩擦係数を小さくできるフッ素樹脂から構成されている。なお、円筒部の直径は、例えば6mm程度(限定されない)とされる。なお、測定具3の材質は上述したフッ素樹脂が好ましいが、測定具3内面の摩擦係数を小さくできる材質であれば適宜用いることができる。   Next, as shown in FIG. 2, the measuring tool 3 can be inserted into the hole h of the dark box body 2 described above, and has a length substantially equal to the front-rear direction of the dark box body 2 and has a transparent side portion. It has a shape (not limited), and the material thereof is made of a fluororesin that can reduce the friction coefficient of the inner surface of the measuring tool 3. In addition, the diameter of a cylindrical part shall be about 6 mm (it is not limited), for example. The material of the measuring tool 3 is preferably the above-described fluororesin, but any material that can reduce the friction coefficient of the inner surface of the measuring tool 3 can be used as appropriate.

また、測定具3は、例えば、基端部は、本体から図示しない螺旋溝などで着脱自在とした鍔部9を備える蓋体10を有しており、この蓋体10および測定具3の先端部11に遮光板の貼付や着色などをすることにより、測定具3を暗箱体2の穴部hに貫設設置した際に、暗箱体2内に周囲から光が入らないように遮光している。   In addition, the measuring tool 3 has, for example, a lid 10 provided with a flange 9 that is detachable from the main body by a spiral groove (not shown) at the base end, and the distal end of the lid 10 and the measuring tool 3. By attaching or coloring a light shielding plate to the portion 11, when the measuring tool 3 is installed in a hole h of the dark box body 2, the light is shielded from entering the dark box body 2 from the surroundings. Yes.

さらに、例えば、暗箱体2の背面側(装着させた測定具3の先端側)外側部には、測定具3の撹拌手段としてのケース16a内に設置した駆動モータ16が取付けられる。この場合、測定具3の先端部には、モータ軸17に嵌合可能とする凹部18が取付けられており、測定具3を暗箱体2に装着した際、凹部18をモータ軸17に嵌合させ、駆動モータ16の回転駆動によりモータ軸17を介して測定具3が暗箱体2の前後方向を軸芯として回転する。   Further, for example, a drive motor 16 installed in a case 16 a as a stirring means of the measuring tool 3 is attached to the back side of the dark box body 2 (the front end side of the measuring tool 3 attached). In this case, a recess 18 that can be fitted to the motor shaft 17 is attached to the tip of the measuring tool 3. When the measuring tool 3 is mounted on the dark box body 2, the recess 18 is fitted to the motor shaft 17. The measuring tool 3 is rotated about the front-rear direction of the dark box body 2 through the motor shaft 17 by the rotational drive of the drive motor 16.

次に、この暗箱体2の左右一方の側面(図1中では手前に示した左側面)前後位置には、適宜間隔を空けて、光源4aとしての紫外線LED(Light Emitting Diode)ランプ12(図例では左側)および光源4bとしての赤外線LEDランプ13(図例では右側)が、暗箱体2の内側暗室内を照射方向として取付けられている。なお、紫外線LEDランプ12および赤外線LEDランプ13の設置位置(暗箱体2側面の左右位置)は上述に限定されず、左右逆位置に設置してもよい。   Next, an ultraviolet LED (Light Emitting Diode) lamp 12 (see FIG. 1) as a light source 4a is provided at an appropriate interval in front and rear positions of the left and right side surfaces (the left side surface shown in FIG. 1). An infrared LED lamp 13 (right side in the example) as a light source 4b is attached with the inside darkroom of the dark box 2 as the irradiation direction. The installation positions of the ultraviolet LED lamp 12 and the infrared LED lamp 13 (left and right positions on the side surface of the dark box 2) are not limited to those described above, and may be installed at opposite left and right positions.

また、暗箱体2における左右他方の内側面(図1中では奥に示した右側面)の端部(図例では左側)であって、暗箱体2に装着した状態での測定具3を挟んだ紫外線LEDランプ12の取付位置に対向する位置には、紫外線検出器5が設置される。この紫外線検出器5では、紫外線LEDランプ12から照射され、測定具3内の検査液を通過して得られた紫外線の透過度が検出される。なお、この紫外線検出器5は周知の技術であるため、詳細な説明は省略する。   Further, the measuring tool 3 is mounted on the dark box body 2 at the end (left side in the figure) of the other left and right inner side surfaces (the right side surface shown in the back in FIG. 1) of the dark box body 2. The ultraviolet detector 5 is installed at a position facing the mounting position of the ultraviolet LED lamp 12. In the ultraviolet detector 5, the transmittance of the ultraviolet rays irradiated from the ultraviolet LED lamp 12 and obtained by passing through the test solution in the measuring tool 3 is detected. Since the ultraviolet detector 5 is a well-known technique, a detailed description thereof is omitted.

さらに、例えば、暗箱体2の紫外線LEDランプ12が設置されている側(図1中では手前に示した左上面傾斜)の傾斜部8における紫外線LEDランプ12の斜め上方の内面には、蛍光輝度検出器6が取付けられる。この蛍光輝度検出器6では、紫外線を測定具3内の検査液に照射し、検査液から得られた可視光(励起して発光した可視光)が蛍光輝度として検出される。なお、この蛍光輝度検出器6も周知の技術であるため、詳細な説明は省略する。   Further, for example, the inner surface of the dark box body 2 on the obliquely upper side of the ultraviolet LED lamp 12 in the inclined portion 8 on the side where the ultraviolet LED lamp 12 is installed (inclined on the upper left side shown in FIG. 1) A detector 6 is attached. In this fluorescence luminance detector 6, ultraviolet light is irradiated onto the test solution in the measuring tool 3, and visible light (visible light that has been excited and emitted) obtained from the test solution is detected as fluorescence luminance. Since the fluorescence luminance detector 6 is also a well-known technique, detailed description thereof is omitted.

また、暗箱体2における左右他方の内側面(図1中では奥に示した右側面)の端部(図例では右側)であって、暗箱体2に装着した状態での測定具3を挟んだ赤外線LEDランプ13の取付位置に対向する位置には、赤外線検出器7が設置される。この赤外線検出器7では、赤外線LEDランプ13から照射され、測定具3内の検査液を通過して得られた赤外線の透過度が検出される。なお、この赤外線検出器7は周知の技術であるため、詳細な説明は省略する。   Moreover, it is an edge part (right side in the figure example) of the other left and right inner side surfaces in the dark box body 2 (right side surface shown in FIG. 1), and sandwiches the measuring tool 3 mounted on the dark box body 2. The infrared detector 7 is installed at a position facing the mounting position of the infrared LED lamp 13. In this infrared detector 7, the infrared ray transmittance obtained by irradiating from the infrared LED lamp 13 and passing through the test solution in the measuring tool 3 is detected. Since the infrared detector 7 is a well-known technique, detailed description thereof is omitted.

光源4a,4bおよび測定具3に対するこれら検出器5,6,7の設置位置は、図4に示すように、まず、紫外線検出器5は、上述したように測定具3を介して紫外線LEDランプ12の対向位置に設置されるが、この紫外線LEDランプ12の紫外線照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。   As shown in FIG. 4, the installation positions of these detectors 5, 6, and 7 with respect to the light sources 4 a and 4 b and the measurement tool 3 are as follows. 12, but at an appropriate angle range from the extended line in the ultraviolet irradiation direction of the ultraviolet LED lamp 12 (incident direction into the test solution in the measuring tool 3), preferably on the extended line. It is installed on the inner surface of the dark box body 2 in FIG.

また、蛍光輝度検出器6は、紫外線LEDランプ12側の測定具3の周囲であって、測定具3の正面中心位置cから、紫外線LEDランプ12による照射光の照射方向に対して、正側(上側)90度の範囲内であって、例えば40度〜50度、好ましくは50度となる暗箱体2における傾斜部8内面に設置する。なお、蛍光輝度検出器6は、広範な濃度の蛍光磁粉の蛍光輝度値をより正確に測定し得る位置として、実験データに基づき、前記50度が適切な角度の1つとして挙げられる。   Further, the fluorescence luminance detector 6 is around the measuring tool 3 on the ultraviolet LED lamp 12 side, and is on the positive side from the front center position c of the measuring tool 3 with respect to the irradiation direction of the irradiation light by the ultraviolet LED lamp 12. (Upper side) Within the range of 90 degrees, for example, 40 degrees to 50 degrees, preferably 50 degrees, preferably installed on the inner surface of the inclined portion 8 in the dark box 2. Note that the fluorescence intensity detector 6 is one of the appropriate angles based on experimental data as a position where the fluorescence intensity values of a wide range of concentrations of fluorescent magnetic powder can be measured more accurately.

また、赤外線検出器7は、図5に示すように、測定具3を介して赤外線LEDランプ13の対向位置に設置されるが、この赤外線LEDランプ13の赤外線照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。   As shown in FIG. 5, the infrared detector 7 is installed at a position facing the infrared LED lamp 13 via the measuring tool 3, and the infrared irradiation direction of the infrared LED lamp 13 (inspection in the measuring tool 3). It is installed in an appropriate angle range from the extension line of the incident direction into the liquid), preferably on the inner side surface of the dark box 2 on the extension line.

さらに、図6に示すように、これら検出器5,6,7は、暗箱体2内に設置されたコントローラC内の情報処理部14などに接続されており、この情報処理部14には、後述する図7〜8のグラフから得られた各種データを含む計算式などを予め入力しておく。   Further, as shown in FIG. 6, these detectors 5, 6, and 7 are connected to the information processing unit 14 in the controller C installed in the dark box 2, and the information processing unit 14 includes Calculation formulas including various data obtained from the graphs shown in FIGS.

そして、このコントローラCには、例えば、暗箱体2の傾斜部8面上に設けた、蛍光磁粉濃度や分散剤濃度を表示(デジタル表示など)させる、液晶などの表示パネルとしての表示部15を接続させる。なお、表示部15は、暗箱体2以外に、暗箱体2とは別体の表示装置や、後述する湿式蛍光磁粉探傷試験装置21内に設置してもよい。   For example, the controller C includes a display unit 15 as a display panel such as a liquid crystal display, which is provided on the surface of the inclined portion 8 of the dark box 2 and displays the fluorescent magnetic powder concentration and the dispersant concentration (such as digital display). Connect. In addition to the dark box 2, the display unit 15 may be installed in a display device separate from the dark box 2 or in a wet fluorescent magnetic particle testing apparatus 21 described later.

検査液に紫外線を照射すると、検査液中に含まれる各成分のうち、紫外線を照射された蛍光磁粉は、その蛍光顔料などの蛍光物質が励起して発光するため、この発光した可視光を蛍光輝度(照度)として上述の蛍光輝度検出器6により検出することができる。この蛍光輝度は、検査液中の蛍光磁粉の濃度によって異なる。   When the test liquid is irradiated with ultraviolet light, among the components contained in the test liquid, the fluorescent magnetic powder irradiated with ultraviolet light emits light when the fluorescent material such as the fluorescent pigment is excited. The luminance (illuminance) can be detected by the fluorescent luminance detector 6 described above. This fluorescence brightness varies depending on the concentration of the fluorescent magnetic powder in the test solution.

また、検査液に紫外線および赤外線を照射すると、検査液に入射した紫外線および赤外線は、各成分を含む検査液中を通過し、入射方向とは逆方向から透過して液外に放射される。このとき、光のエネルギーは、透過や反射によって伝達され、光の透過は通常、次式1のように吸光濃度として表される。
吸光濃度=−LOG10(放射光束/入射光束)・・・・・[式1]
Further, when the test solution is irradiated with ultraviolet rays and infrared rays, the ultraviolet rays and infrared rays incident on the test solution pass through the test solution containing each component, and are transmitted from the direction opposite to the incident direction and emitted outside the solution. At this time, the energy of light is transmitted by transmission or reflection, and the transmission of light is usually expressed as an absorbance concentration as in the following equation 1.
Absorbance density = -LOG 10 (Radiation flux / incident flux) ... [Formula 1]

この吸光濃度は、検査液中に含まれる各成分(蛍光磁粉、分散剤、防錆剤、スケールなど)によって異なるとともに、各成分の濃度によっても異なる。さらには、検査液が撹拌(流動)されない静置状態においても、各成分の時間経過に伴う沈降特性の違いによっても異なる。   This absorbance concentration varies depending on each component (fluorescent magnetic powder, dispersant, rust inhibitor, scale, etc.) contained in the test solution, and also varies depending on the concentration of each component. Furthermore, even in a stationary state where the test liquid is not stirred (flowed), the difference depends on the difference in sedimentation characteristics with the passage of time of each component.

そこで、上述した成分濃度測定装置1などを用い、以下の表1に示す要領で調製した検査液に見立てた各試験液に、光源4a,4bから波長の異なる電磁波(紫外線および赤外線)を照射し、各成分別に検出器5,6,7で蛍光輝度および吸光濃度を検出して、各成分の特性を得る実験を行った。図7は検査液中の各成分(a)〜(d)の濃度に対する吸光濃度および蛍光輝度を示すグラフ(検査液は撹拌・流動状態)、図8は検査液中の各成分(a)〜(d)の濃度に対する紫外線沈降吸光濃度を示すグラフ(検査液は静止状態)である。   Therefore, using the above-described component concentration measuring device 1 or the like, the test solutions prepared as shown in Table 1 below are irradiated with electromagnetic waves (ultraviolet rays and infrared rays) having different wavelengths from the light sources 4a and 4b. In addition, an experiment was carried out in which the fluorescence brightness and the light absorption concentration were detected by the detectors 5, 6 and 7 for each component to obtain the characteristics of each component. FIG. 7 is a graph showing the absorbance concentration and fluorescence luminance with respect to the concentrations of the components (a) to (d) in the test solution (the test solution is in a stirred and fluidized state), and FIG. 8 is the components (a) to (a) in the test solution. It is a graph which shows the ultraviolet sedimentation absorption density with respect to the density | concentration of (d) (a test solution is a stationary state).

Figure 2012108023
Figure 2012108023

なお、これら試験液は、例えばグループ1では、蛍光磁粉のみを水2Lに添加する場合、それら磁粉濃度が、それぞれ0g/L(無添加)、0.3g/L、0.5g/L、1.0g/L、2.0g/Lになるように蛍光磁粉の添加量を変更して5種類の磁粉濃度を有する試験液を作成したものである。同様にグループ2は分散剤のみを有する試験液、グループ3は防錆剤のみを有する試験液、グループ4はスケールのみを有する試験液を作成した。なお、蛍光磁粉には、LY−20(マークテック株式会社製、スーパーマグナ蛍光磁粉)、分散剤には、EC−600C(マークテック株式会社製、エコマグナ分散剤)、防錆剤には、AR−100K(マークテック株式会社製、スーパーキープ防錆剤)、スケールには、酸化鉄粉体をそれぞれ使用した。   In addition, for example, in Group 1, when only fluorescent magnetic powder is added to 2 L of water, the concentration of the magnetic powder is 0 g / L (no addition), 0.3 g / L, 0.5 g / L, 1 The test liquid having five kinds of magnetic powder concentrations was prepared by changing the addition amount of the fluorescent magnetic powder to 0.0 g / L and 2.0 g / L. Similarly, group 2 was a test solution having only a dispersant, group 3 was a test solution having only a rust inhibitor, and group 4 was a test solution having only a scale. In addition, LY-20 (manufactured by Marktec Co., Ltd., Super Magna fluorescent magnetic powder) is used for the fluorescent magnetic powder, EC-600C (manufactured by Marktec Co., Ltd., Eco-Magna Dispersant) is used for the dispersant, and AR is used for the rust preventive agent. Iron oxide powder was used for each of −100K (manufactured by Marktec Co., Ltd., super keep rust inhibitor) and scale.

まず、成分濃度測定装置1における蓋体10を脱着した測定具3内にサンプリングした、例えば試験液グループ1の磁粉濃度が0g/Lの試験液No1を装填し、再び蓋体10を取付けた測定具3を、暗箱体2の穴部7に回転可能に貫設する。このとき、測定具3の先端部は、暗箱体2の背面の穴部7およびモータ軸17に凹部18を嵌合させることで、安定的に支持されるとともに、測定具3の基端部は、蓋体10の鍔部9が暗箱2正面板へのストッパーとなり、暗箱体2に測定具3をずれることなく安定装着させることができる。   First, measurement was performed by loading the sample solution 1 in which the magnetic powder concentration of the test solution group 1 was 0 g / L, for example, which was sampled in the measuring tool 3 from which the lid body 10 was detached in the component concentration measuring apparatus 1, and then attaching the lid body 10 again. The tool 3 is rotatably inserted in the hole 7 of the dark box body 2. At this time, the distal end of the measuring tool 3 is stably supported by fitting the recess 18 into the hole 7 and the motor shaft 17 on the back surface of the dark box body 2, and the base end of the measuring tool 3 is The flange portion 9 of the lid body 10 serves as a stopper for the front plate of the dark box 2, and the measuring tool 3 can be stably mounted on the dark box body 2 without shifting.

そして、駆動モータ16の動力により、モータ軸17および凹部18を介して測定具3を回転させて試験液No1を撹拌し、この撹拌開始から3分後に、測定具3内で撹拌されている検査液に、紫外線LEDランプ12および赤外線LEDランプ13を点灯させて紫外線および赤外線を照射し、各検出器5,6,7により該試験液の蛍光輝度、紫外線吸光濃度、赤外線吸光濃度を検出した。同様にして、磁粉濃度が0.3〜2.0g/Lの順(順不問)に各試験液の蛍光輝度、紫外線吸光濃度、赤外線吸光濃度を検出した結果を、図7(a)のグラフに示した。   Then, by the power of the drive motor 16, the measuring tool 3 is rotated through the motor shaft 17 and the recess 18 to stir the test solution No 1, and after 3 minutes from the start of stirring, the test stirred in the measuring tool 3. The ultraviolet LED lamp 12 and the infrared LED lamp 13 were turned on to irradiate the solution with ultraviolet rays and infrared rays, and the fluorescence brightness, ultraviolet absorption concentration, and infrared absorption concentration of the test solution were detected by the detectors 5, 6, and 7. Similarly, the graph of Fig.7 (a) shows the result of having detected the fluorescence brightness | luminance of each test solution, the ultraviolet light absorption density | concentration, and the infrared light absorption density | concentration in order (magnetic order) of 0.3-2.0 g / L of magnetic powder density | concentration. It was shown to.

また、同様にして、試験液グループ2の分散剤濃度別、試験液グループ3の防錆剤濃度別、試験液グループ4のスケール濃度別の各試験液についても蛍光輝度、紫外線吸光濃度、赤外線吸光濃度を検出した結果を、図7(b)〜(d)のグラフに示した。   Similarly, the fluorescence intensity, ultraviolet light absorption concentration, and infrared light absorption of each test solution by the concentration of dispersant in test solution group 2, by the concentration of rust inhibitor in test solution group 3, and by the concentration of scale in test solution group 4 are also shown. The results of detecting the concentration are shown in the graphs of FIGS.

そして、これら各値から撹拌中における各成分(蛍光磁粉、分散剤、防錆剤およびスケール)は、それぞれの成分濃度と、各検出値(蛍光輝度、紫外線吸光濃度、赤外線吸光濃度)との間に略一次直線を有する相関性を見出すことができ、各成分固有の相関係数(各直線の傾き)として情報処理部14に入力される。なお、これら相関係数は、後述する検査液測定で説明する。   From these values, each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale) during stirring is between the component concentration and each detected value (fluorescence luminance, ultraviolet light absorption concentration, infrared light absorption concentration). Can be found, and is input to the information processing unit 14 as a correlation coefficient (slope of each straight line) specific to each component. These correlation coefficients will be described in the test liquid measurement described later.

次に、成分濃度測定装置1において、上述同様にして測定具3内に充填したグループ1〜4の各濃度におけるそれぞれの試験液を駆動モータ16で撹拌させ、この駆動モータ16の駆動を停止して所定時間(例えば2分間)経過したときの、静置状態時におけるこれら試験液に紫外線LEDランプ12で紫外線を照射し、紫外線検出器5により紫外線吸光濃度を検出した。   Next, in the component concentration measuring apparatus 1, the test solutions at the respective concentrations of groups 1 to 4 filled in the measuring tool 3 are agitated by the drive motor 16 in the same manner as described above, and the drive of the drive motor 16 is stopped. When a predetermined time (for example, 2 minutes) elapses, the test solution in a stationary state was irradiated with ultraviolet rays by the ultraviolet LED lamp 12, and the ultraviolet absorption concentration was detected by the ultraviolet detector 5.

さらに、それぞれの成分(蛍光磁粉、分散剤、防錆剤およびスケール)の各濃度において、上述した試験液撹拌時の紫外線吸光濃度の値から、静置状態時の紫外線吸光濃度の値を差し引いた差分の値(紫外線沈降吸光濃度)を、図8(a)〜(d)のグラフに示した。なお、この図8(a)〜(d)には、上記成分の各濃度において、上述した試験液撹拌時の赤外線吸光濃度の値から、静置状態時の赤外線吸光濃度の値を差し引いた差分の値(赤外線沈降吸光濃度)および試験液撹拌時の蛍光輝度の値から、静置状態時の蛍光輝度の値を差し引いた差分の値(沈降蛍光輝度)も示している。   Furthermore, at each concentration of each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale), the value of the ultraviolet light absorption density in the stationary state was subtracted from the value of the ultraviolet light absorption density when stirring the test solution described above. The difference value (ultraviolet sedimentation absorption density) is shown in the graphs of FIGS. In FIGS. 8A to 8D, the difference obtained by subtracting the value of the infrared light absorption density in the stationary state from the value of the infrared light absorption density when stirring the test solution described above in each concentration of the above components. The value of the difference (precipitation fluorescence brightness) obtained by subtracting the fluorescence brightness value in the stationary state from the above value (infrared sedimentation absorption concentration) and the fluorescence brightness value when stirring the test solution is also shown.

そして、これら各値から、静置中における各成分(蛍光磁粉、分散剤、防錆剤およびスケール)は、それぞれの成分濃度と、各差分値(紫外線沈降吸光濃度、赤外線沈降吸光濃度、沈降蛍光輝度)との間に略一次直線を有する相関性を見出すことができ、各成分固有の沈降特性として、それら相関係数(各直線の傾き)が情報処理部14に入力される。なお、これら相関係数は、後述する検査液測定で説明する。   And from these values, each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale) during standing is the respective component concentration and each differential value (ultraviolet sedimentation absorbance concentration, infrared sedimentation absorbance concentration, sedimentation fluorescence) (Corresponding to luminance) having a substantially linear line can be found, and the correlation coefficient (slope of each straight line) is input to the information processing unit 14 as a sedimentation characteristic unique to each component. These correlation coefficients will be described in the test liquid measurement described later.

検査液中に含まれる各成分の濃度は、以下に例示する式から求めることができる。まず、例えば、知りたい検査液中の4種類の成分濃度(蛍光磁粉、分散剤、防錆剤およびスケール)をそれぞれ未知数として、イ、ロ、ハ、ニとし、成分濃度測定装置1などで測定した検査液の、実測データ(蛍光輝度、紫外線吸光濃度、赤外線吸光濃度、紫外線沈降吸光濃度)をそれぞれα、β、γ、δとすれば、上記相関係数と実測データは以下のような四元連立一次方程式となる。   The density | concentration of each component contained in a test | inspection liquid can be calculated | required from the formula illustrated below. First, for example, the four component concentrations (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution that you want to know are determined as unknowns by using the component concentration measuring device 1 and the like. Assuming that the measured data (fluorescence brightness, ultraviolet light absorption density, infrared light absorption density, ultraviolet precipitation density) of the test solution is α, β, γ, and δ, the correlation coefficient and the measured data are as follows. The original simultaneous linear equation.

[式2]
a×イ+b×ロ+c×ハ+d×ニ=α
e×イ+f×ロ+g×ハ+h×ニ=β
i×イ+j×ロ+k×ハ+l×ニ=γ
m×イ+n×ロ+o×ハ+p×ニ=δ
なお、a〜dは各成分における蛍光輝度の相関係数、e〜hは各成分における紫外線吸光濃度の相関係数、i〜lは各成分における赤外線吸光濃度の相関係数、m〜pは各成分における紫外線沈降吸光濃度の相関係数を示す。
[Formula 2]
a × b + b × b + c × c + d × d = α
e × b + f × b + g × c + h × d = β
i x i + j x b + k x c + l x d = γ
m × b + n × b + o × c + p × d = δ
Here, a to d are correlation coefficients of fluorescence luminance in each component, e to h are correlation coefficients of ultraviolet light absorption concentration in each component, i to l are correlation coefficients of infrared light absorption concentration in each component, and m to p are The correlation coefficient of the ultraviolet sedimentation absorption density in each component is shown.

そして、上述の式[2]を行列式で表記すると、

Figure 2012108023
以上のようにした場合、A×C=B・・・[式3]
つまり、C=A―1×B・・・[式4]
となり、B(α、β、γ、δ)の値(検査液の実測値)が分かると、知りたい検査液中の4種類の成分濃度(蛍光磁粉、分散剤、防錆剤およびスケール)が判明する。従って、情報処理部14には、このような計算式ならびに各相関係数が入力される。 And when the above equation [2] is expressed as a determinant,
Figure 2012108023
In the above case, A × C = B (Equation 3)
That is, C = A− 1 × B (Equation 4)
When the values of B (α, β, γ, δ) (measured values of the test solution) are known, the concentration of the four components (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution to be known Prove. Therefore, such a calculation formula and each correlation coefficient are input to the information processing unit 14.

なお、上述の例では、紫外線沈降吸光濃度を使用したが、この紫外線沈降吸光濃度の代わりに、赤外線沈降吸光濃度や蛍光沈降輝度を用いてもよい。また、測定する検査液中の成分を4種類(蛍光磁粉、分散剤、防錆剤およびスケール)として算出する計算式例を示したが、これら測定したい成分が5種類や6種類となれば、紫外線沈降吸光濃度に加えて、赤外線沈降吸光濃度や蛍光沈降輝度の検出データを用い、五元連立一次方程式または六元連立一次方程式で算出させることができる。   In the above example, the ultraviolet sedimentation absorbance is used, but infrared sedimentation absorbance and fluorescence sedimentation luminance may be used instead of the ultraviolet sedimentation absorbance. Moreover, although the example of the calculation formula which calculates the component in the test | inspection liquid to measure as 4 types (fluorescent magnetic powder, a dispersing agent, a rust preventive agent, and a scale) was shown, if these components to measure become 5 types or 6 types, In addition to ultraviolet sedimentation absorption density, detection data of infrared sedimentation absorption density and fluorescence sedimentation luminance can be used to calculate with a five-way simultaneous linear equation or a six-way simultaneous linear equation.

ここで、例えば、後述の湿式蛍光磁粉探傷試験装置21における検査液タンク22内の検査液の成分濃度を測定したい場合には、まず、蓋体10を脱着した測定具3内にサンプリングした検査液を装填し、再び蓋体10を取付けた測定具3を、暗箱体2の穴部hに回転可能に貫設する。   Here, for example, when it is desired to measure the component concentration of the inspection liquid in the inspection liquid tank 22 in the wet fluorescent magnetic particle flaw detection test apparatus 21 described later, first, the inspection liquid sampled in the measuring tool 3 with the lid 10 removed. , And the measurement tool 3 with the lid 10 attached again is rotatably inserted in the hole h of the dark box body 2.

そして、測定開始のスイッチを投入するなどした際、コントローラCは、駆動モータ16を作動させ、モータ軸17および凹部18を介して測定具3を回転させることで、測定具3内で検査液を撹拌する。そして、コントローラCは、この測定具3の回転開始から所定時間(例えば3分)後に、紫外線LEDランプ12および赤外線LEDランプ13を点灯させて紫外線および赤外線を検査液に照射する。   When the measurement start switch is turned on, the controller C operates the drive motor 16 and rotates the measuring tool 3 via the motor shaft 17 and the recess 18 to thereby supply the test solution in the measuring tool 3. Stir. Then, the controller C turns on the ultraviolet LED lamp 12 and the infrared LED lamp 13 and irradiates the test liquid with ultraviolet rays and infrared rays after a predetermined time (for example, 3 minutes) from the start of rotation of the measuring tool 3.

次いで、撹拌中で均質な検査液を透過した透過光である紫外線および赤外線を紫外線吸光濃度および赤外線吸光濃度として、それぞれ紫外線検出器5および赤外線検出器7で検出し、その検出結果が情報処理部14に送信されるとともに、検査液から得られる、励起して発光した可視光を蛍光輝度として蛍光輝度検出器6で検出し、その検出結果が情報処理部14に送信される。   Next, ultraviolet light and infrared light, which are transmitted light that has passed through a homogeneous test solution during stirring, are detected as an ultraviolet light absorption density and an infrared light absorption density by the ultraviolet light detector 5 and the infrared light detector 7, respectively, and the detection result is an information processing unit. 14, visible light emitted from the test solution and excited and emitted is detected as fluorescence luminance by the fluorescence luminance detector 6, and the detection result is transmitted to the information processing unit 14.

次に、コントローラCは、この測定具3の回転開始から所定時間(例えば3分)後であって、上述した検査液における紫外線吸光濃度、赤外線吸光濃度および蛍光輝度の検出後に、駆動モータ16の回転を停止し、さらに、駆動モータ16の回転停止から所定時間(例えば2分)後に、紫外線LEDランプ12(または/および赤外線LEDランプ13であってもよい)を点灯させて紫外線(または/および赤外線であってもよい)を検査液に照射する。   Next, after a predetermined time (for example, 3 minutes) from the start of rotation of the measuring tool 3 and after the detection of the ultraviolet light absorption concentration, the infrared light absorption concentration, and the fluorescence luminance in the test solution, the controller C detects the drive motor 16. The rotation is stopped, and further, after a predetermined time (for example, 2 minutes) from the rotation stop of the drive motor 16, the ultraviolet LED lamp 12 (or the infrared LED lamp 13 may be used) is turned on to emit ultraviolet light (or / and The test solution is irradiated with infrared rays (which may be infrared rays).

次いで、静置中の検査液を透過した透過光である紫外線を紫外線吸光濃度として、紫外線検出器5で検出し、その検出結果が情報処理部14に送信される。なお、この場合の検査液の測定は、上述の紫外線吸光濃度に代えて、赤外線吸光濃度または蛍光輝度であってもよい。   Next, ultraviolet light, which is transmitted light that has passed through the stationary test solution, is detected as an ultraviolet light absorption concentration by the ultraviolet light detector 5, and the detection result is transmitted to the information processing unit 14. In this case, the measurement of the test solution may be an infrared absorption density or a fluorescence luminance instead of the above-described ultraviolet absorption density.

そして、情報処理部14では、撹拌中の検査液から測定した紫外線吸光濃度と、静置中の検査液から測定した紫外線吸光濃度との差分を紫外線沈降吸光濃度として算出するとともに、撹拌中の検査液における蛍光輝度や紫外線吸光濃度、赤外線吸光濃度の実測値を用いて、上述した[式4]のような行列式から検査液中の各成分濃度(蛍光磁粉、分散剤、防錆剤およびスケール)を算出する。   And in the information processing part 14, while calculating the difference of the ultraviolet light absorption density | concentration measured from the test | inspection liquid under stirring and the ultraviolet light absorption density | concentration measured from the test | inspection liquid still standing as a ultraviolet sedimentation absorption density | concentration, Using the measured values of fluorescence brightness, ultraviolet light absorption density, and infrared light absorption density in the liquid, the concentration of each component in the test liquid (fluorescent magnetic powder, dispersant, rust preventive and scale) from the determinant such as [Formula 4] described above ) Is calculated.

以下に、行列式を用いた検査液の各成分濃度の算出例(式)を示す。

Figure 2012108023
このように、[式4]のAに当たる各ファクターには、図7〜8に示した各グラフの傾き値が予め入力されているため、上述したような検査液の各実測値が、上式に入力されることで、行列式により検査液中の各成分(蛍光磁粉、分散剤、防錆剤およびスケール)の濃度を算出することができる。このように、各成分濃度を異にする様々な種類の検査液および、経時変化に伴い変動する検査液に対応して、各成分濃度を正確かつ瞬時に算出させることができるのである。なお、実測値に基づく実際の各成分濃度の記載は省略する。 Hereinafter, calculation examples (formulas) of the concentration of each component of the test solution using the determinant are shown.
Figure 2012108023
As described above, since the slope values of the respective graphs shown in FIGS. 7 to 8 are input in advance to each factor corresponding to A in [Expression 4], the respective measured values of the test liquid as described above are expressed by the above formula. The concentration of each component (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution can be calculated from the determinant. In this way, the concentration of each component can be calculated accurately and instantaneously in response to various types of test solutions having different component concentrations and test solutions that vary with time. In addition, description of each actual component density | concentration based on a measured value is abbreviate | omitted.

また、式中のUVは紫外線(ultraviolet)、IRは赤外線(infrared)を示す。また、撹拌中の検査液における蛍光輝度や紫外線吸光濃度、赤外線吸光濃度、紫外線沈降吸光濃度の実測値は、対数処理したものを用いている。   Further, UV in the formula represents ultraviolet (ultraviolet), and IR represents infrared (infrared). In addition, logarithmically processed values are used for the measured fluorescence luminance, ultraviolet absorption density, infrared absorption density, and ultraviolet sedimentation absorption density in the test solution being stirred.

このようにして、検査液中に含まれる各成分(蛍光磁粉、分散剤、防錆剤およびスケール)の濃度が算出され、それら算出結果を、コントローラCは、表示部15に表示させる。従って、検査液の撹拌開始から各成分濃度を表示部15に表示させるまで、その間わずか数分程度の短時間で検査液の各成分濃度を自動かつ同時に測定することができる。   In this way, the concentration of each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale) contained in the test solution is calculated, and the controller C causes the display unit 15 to display the calculation results. Accordingly, the concentration of each component of the test liquid can be measured automatically and simultaneously in a short time of only a few minutes during the period from the start of stirring of the test liquid to the display unit 15 displaying the concentration of each component.

以上のような構成により、撹拌された検査液を透明な測定具3に導入し、光源4a,4bの光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する検出器5,7および励起して発光した可視光を検出する検出器6の各検出値に基づいて、検査液の各成分濃度を測定するとともに、各成分の時間経過に伴う沈降特性の違いによって得られる各検出器の検出値の変化から、検査液の各成分濃度を測定するので、光学的手法を用いた簡単な構成により、検査液中に含まれる各成分の濃度を瞬時かつ高精度で、容易に測定することができる。   With the configuration as described above, the transmitted test light obtained by introducing the stirred test solution into the transparent measurement tool 3 and irradiating the test solution with light from the light sources 4a and 4b from one side of the measurement tool 3 and The concentration of each component of the test solution is measured based on the detection values of the detectors 5 and 7 that detect the transmitted light and the detector 6 that detects the visible light that is excited and emitted using the visible light that is excited and emitted. In addition, since the concentration of each component of the test solution is measured from the change in the detection value of each detector obtained by the difference in the sedimentation characteristics of each component over time, inspection can be performed with a simple configuration using an optical method. The concentration of each component contained in the liquid can be easily measured instantaneously with high accuracy.

特に、被検査体の探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう検査液中に混入したスケールの濃度や、その他検査液中に混合されている防錆剤など、従来では測定できなかった検査液中に含まれる各成分の濃度を容易に測定することができる。   In particular, when flaw detection is performed on the object to be inspected, it is mixed in the concentration of scale mixed in the test solution that inhibits the attachment of fluorescent magnetic powder to the scratched part and significantly reduces the flaw detection accuracy, and other test solutions. It is possible to easily measure the concentration of each component contained in a test solution that could not be measured conventionally, such as a rust inhibitor.

また、光源4a,4bは、紫外線LEDランプ12および赤外線LEDランプ13 であるので、波長の異なる2種類の電磁波を用いて、検査液および検査液中に含まれる各成分から、成分濃度算出に必要な多種類の測定データを得ることができるとともに、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。   Further, since the light sources 4a and 4b are the ultraviolet LED lamp 12 and the infrared LED lamp 13, they are necessary for calculating the component concentration from the test solution and each component contained in the test solution using two types of electromagnetic waves having different wavelengths. In addition to obtaining a wide variety of measurement data, the service life of the light source lamp that absorbs and excites the test solution is prolonged, and the cost can be reduced.

また、透過光を検出する検出器5,7は、紫外線検出器5および赤外線検出器7であるので、検査液中に含まれる各成分の吸光濃度および沈降特性を、波長の異なる2種類の電磁波別に得ることができ、蛍光輝度の測定値と併せてこれらの値に基づき、検査液中の各成分の濃度を正確かつ簡単に算出することができる。   Further, since the detectors 5 and 7 for detecting transmitted light are the ultraviolet detector 5 and the infrared detector 7, the absorption density and sedimentation characteristics of each component contained in the test liquid are determined based on two types of electromagnetic waves having different wavelengths. The concentration of each component in the test solution can be accurately and easily calculated based on these values together with the measured values of the fluorescence luminance.

また、紫外線検出器5および赤外線検出器7は、測定具3を挟んで光源4a,4bの対向位置に設置するので、紫外線LEDランプ12および赤外線LEDランプ13から検査液に入射し、液中を略直進的に透過した紫外線および赤外線の透過光を、各成分の吸光濃度として正確かつ安定的に測定することができる。   Further, since the ultraviolet detector 5 and the infrared detector 7 are installed at positions facing the light sources 4a and 4b with the measuring tool 3 interposed therebetween, they enter the inspection liquid from the ultraviolet LED lamp 12 and the infrared LED lamp 13 and pass through the liquid. It is possible to accurately and stably measure the transmitted light of ultraviolet rays and infrared rays that have been transmitted substantially linearly as the absorbance concentration of each component.

また、測定具3は、フッ素樹脂からなるので、摩擦係数が小さい測定具内面への検査液中の蛍光磁粉の付着を減らし、測定具3内の清掃作業などメンテナンス頻度を低下させるとともに、長期間安定した計測を行うことができる。   Moreover, since the measuring tool 3 is made of a fluororesin, the adhesion of the fluorescent magnetic powder in the test liquid to the inner surface of the measuring tool having a small friction coefficient is reduced, the frequency of maintenance such as cleaning work in the measuring tool 3 is reduced, and a long period of time. Stable measurement can be performed.

さらに、測定具3は、暗箱体2内に設置するとともに、紫外線LEDランプ12と、赤外線LEDランプ13と、紫外線検出器5と、赤外線検出器7と、蛍光輝度検出器6とは、暗箱体2内に備えるので、暗室内において検査液への紫外線の透過光および蛍光輝度を正確に測定することができる。   Further, the measuring tool 3 is installed in the dark box 2, and the ultraviolet LED lamp 12, the infrared LED lamp 13, the ultraviolet detector 5, the infrared detector 7, and the fluorescence luminance detector 6 are the dark box. Therefore, it is possible to accurately measure the ultraviolet light transmitted to the test solution and the fluorescence luminance in the dark room.

そして、本成分濃度測定装置1は、設置場所を限定せず、成分濃度測定装置1を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。なお、成分濃度測定装置1は、上述したような形状に限定されるものではない。   And this component concentration measuring apparatus 1 does not limit an installation place, but can make the component concentration measuring apparatus 1 portable as a measurement unit, and can measure the component density | concentration of the sampled test solution in arbitrary places. In addition, the component concentration measuring apparatus 1 is not limited to the shape as described above.

上記成分濃度測定装置1は、上述した例のように、検査液タンク内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明したが、この成分濃度測定装置1を湿式蛍光磁粉探傷試験装置内に成分濃度測定装置1´として組み込んで検査液の濃度測定をすることができる。   Although the said component concentration measuring apparatus 1 was demonstrated as a measuring apparatus unit which can measure the component density | concentration of the test liquid sampled from the inside of a test liquid tank like the example mentioned above, this component concentration measuring apparatus 1 is a wet fluorescent magnetic particle flaw detection test. The concentration of the test solution can be measured by incorporating it into the apparatus as a component concentration measuring apparatus 1 ′.

以下、図9は湿式蛍光磁粉探傷試験装置の一例を示した全体模式図、図10は探傷部の拡大模式図、図11は湿式蛍光磁粉探傷試験装置に備える成分濃度測定装置の一例を示した斜視図である。   Hereinafter, FIG. 9 is an overall schematic diagram showing an example of a wet fluorescent magnetic particle flaw detection test apparatus, FIG. 10 is an enlarged schematic diagram of a flaw detection unit, and FIG. 11 shows an example of a component concentration measuring apparatus provided in the wet fluorescent magnetic particle flaw detection test apparatus. It is a perspective view.

湿式蛍光磁粉探傷試験装置21(例えば、商品名:スーパーマグナなど、マークテック株式会社製)は、図9に示すように、検査液を貯留する検査液タンク22と、この検査液タンク22内の検査液を、ポンプなどの循環手段23で取り出すとともに、検査液タンク22内に還流させる配管などの移送手段24と、この移送手段24内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部25とから構成される。   As shown in FIG. 9, the wet fluorescent magnetic particle flaw detector 21 (for example, trade name: Super Magna, manufactured by Marktec Co., Ltd.) includes a test liquid tank 22 for storing a test liquid, and a test liquid tank 22 The inspection liquid is taken out by a circulating means 23 such as a pump, and the transfer means 24 such as a pipe for returning to the inspection liquid tank 22 and the inspection liquid in the transfer means 24 are applied to the magnetized metal surface of the object to be inspected. It is comprised from the flaw detection part 25 which is made to contact and flaw-detects the surface flaw part.

この探傷部25は、図10に示すように、搬送ローラ26aを備え、コンベア26b上の被検査体を搬送する搬送装置26と、検査液タンク22内から取出した検査液を被検査体上に散布する散布装置27(図示しないが、散布した検査液を回収して検査液タンク内に戻す循環装置を含む)と、貫通コイル28aおよびヨークコイル28bなどからなり、コンベア26b上の被検査体を磁化する磁化装置28と、紫外線探傷灯29a(ブラックライト)を被検査体に照射して探傷を行う探傷装置29(図示しないが、傷部を検出するCCDカメラなど画像処理装置を含む)とから構成される。   As shown in FIG. 10, the flaw detection unit 25 includes a conveyance roller 26a, and conveys the inspection liquid on the conveyor 26b and the inspection liquid taken out from the inspection liquid tank 22 onto the inspection object. A spraying device 27 for spraying (including a circulation device (not shown) that collects the sprayed test solution and returns it to the test solution tank), a through coil 28a, a yoke coil 28b, and the like. From a magnetizing device 28 that magnetizes, and a flaw detection device 29 that performs flaw detection by irradiating an inspection object with an ultraviolet flaw detection lamp 29a (black light) (not shown, but includes an image processing device such as a CCD camera that detects a flaw). Composed.

なお、この湿式蛍光磁粉探傷試験装置21は、上述してきたように周知の装置(技術)であるため、それら詳細な説明は省略する。   The wet fluorescent magnetic particle flaw detection test apparatus 21 is a well-known apparatus (technique) as described above, and a detailed description thereof will be omitted.

そして、本願発明の検査液の成分濃度測定装置1´は、湿式蛍光磁粉探傷試験装置21における検査液タンク22と、探傷部25との間の移送手段24中途部に設置される。   The test liquid component concentration measuring apparatus 1 ′ of the present invention is installed in the middle of the transfer means 24 between the test liquid tank 22 and the flaw detection part 25 in the wet fluorescent magnetic particle flaw detection test apparatus 21.

成分濃度測定装置1´は、上述した図1〜3に例示したような、光源4a,4bや測定具3、各検出器5,6,7などを内設させた1個の暗箱体2であってもよいが、この他に図11に示すような、例えば2個の暗箱体から構成するものを用いてもよい。   The component concentration measuring device 1 'is a single dark box 2 in which the light sources 4a and 4b, the measuring tool 3, the detectors 5, 6, and 7 are installed as illustrated in FIGS. In addition to this, for example, a structure composed of two dark boxes as shown in FIG. 11 may be used.

この場合、成分濃度測定装置1´は、基本的には成分濃度測定装置1と同様であるが、この図11に示すように、互いに同じ大きさおよび形状(限定しない)を有する2個の暗箱体2a,2bを別個に用い、例えば、一方の暗箱体2aには、測定具3´を穴部hに貫通させるとともに、この測定具3´の両端部をそれぞれ移送手段24に接続可能とする。このとき、測定具3´の両端部は、移送手段24に、図示しないボルトやネジなどの締結具で着脱自在に連結固定される。   In this case, the component concentration measuring apparatus 1 ′ is basically the same as the component concentration measuring apparatus 1, but as shown in FIG. 11, two dark boxes having the same size and shape (not limited). The bodies 2a and 2b are used separately. For example, in one dark box body 2a, the measuring tool 3 'is passed through the hole h, and both end portions of the measuring tool 3' can be connected to the transfer means 24, respectively. . At this time, both end portions of the measuring tool 3 ′ are detachably connected and fixed to the transfer means 24 with fasteners such as bolts and screws (not shown).

さらに、暗箱体2aには、上述同様に、左右内側面の中央近傍位置であって、測定具3´を挟んだ対向位置に、光源4aとしての紫外線LEDランプ12と、紫外線検出器5とを設置するとともに、図4に示した測定具3の正面中心位置cから、紫外線LEDランプ12による照射光の照射方向に対して、正側(上側)90度の範囲内であって、例えば40度〜50度、好ましくは50度となる暗箱体2aにおける傾斜部8(この例では暗箱体の天面一方のみ傾斜部を設けた)内面に、蛍光輝度検出器6が設置される。   Further, as described above, the dark box body 2a is provided with the ultraviolet LED lamp 12 as the light source 4a and the ultraviolet detector 5 at a position near the center of the left and right inner surfaces and sandwiching the measuring tool 3 '. 4 and within the range of 90 degrees on the positive side (upper side) with respect to the irradiation direction of the irradiation light from the ultraviolet LED lamp 12 from the front center position c of the measuring tool 3 shown in FIG. The fluorescence luminance detector 6 is installed on the inner surface of the inclined portion 8 (in this example, the inclined portion is provided only on the top surface of the dark box body) in the dark box body 2a at -50 degrees, preferably 50 degrees.

また、他方の暗箱体2bには、測定具3´を穴部hに貫通させるとともに、この測定具3´の両端部をそれぞれ移送手段24に接続可能とし、測定具3´を挟んだ対向位置に、光源4bとしての赤外線LEDランプ13と、赤外線検出器7とが設置される。   In addition, the other dark box body 2b allows the measuring tool 3 'to pass through the hole h, and allows both ends of the measuring tool 3' to be connected to the transfer means 24, respectively. In addition, an infrared LED lamp 13 as the light source 4b and an infrared detector 7 are installed.

なお、成分濃度測定装置1´は、測定具3´を挿入する穴部h近傍に、上述したような遮光手段を設けるとともに、湿式蛍光磁粉探傷試験装置21では循環手段23を備えているため、移送手段24中を検査液が搬送されることから、成分濃度測定装置1で説明した暗箱体2内の撹拌手段の設置は不要とされる。また、表示部15は、各暗箱体2a,2bの天面水平部分や、湿式蛍光磁粉探傷試験装置21の操作盤など、適宜位置に設けることができる。   In addition, since the component concentration measuring apparatus 1 ′ is provided with the light shielding means as described above in the vicinity of the hole h in which the measuring tool 3 ′ is inserted, the wet fluorescent magnetic particle flaw detection test apparatus 21 includes the circulation means 23. Since the test solution is transported through the transfer means 24, it is not necessary to install the stirring means in the dark box 2 described in the component concentration measuring apparatus 1. Moreover, the display part 15 can be provided in appropriate positions, such as the top horizontal part of each dark box 2a, 2b, and the operation panel of the wet fluorescent magnetic particle test equipment 21.

このような暗箱体2a,2bからなる成分濃度測定装置1´を、上述した湿式蛍光磁粉探傷試験装置21における検査液タンク22と、探傷部25との間の移送手段24中途部に設置する際、図例では、検査液タンク22側(上流側)に暗箱体2bおよび探傷部25側(下流側)に暗箱体2aを設置したが、これら暗箱体2a,2bの設置順を逆にしてもよく、また、それら設置間隔も適宜設定することができる。   When the component concentration measuring device 1 ′ composed of such dark boxes 2 a and 2 b is installed in the middle of the transfer means 24 between the test liquid tank 22 and the flaw detection unit 25 in the wet fluorescent magnetic particle flaw detection test device 21 described above. In the illustrated example, the dark box body 2b is installed on the test solution tank 22 side (upstream side) and the dark box body 2a is installed on the flaw detection unit 25 side (downstream side). However, even if the installation order of these dark box bodies 2a and 2b is reversed. In addition, the installation interval can be set as appropriate.

そして、この湿式蛍光磁粉探傷試験装置21で被検査体の探傷試験を行う際、検査液タンク22内に貯留される検査液を、移送手段24内に循環手段23で取り出し、探傷部25に圧送するが、この移送途中において移送手段24内の検査液は、成分濃度測定装置1´において、まず、暗箱体2aの測定具3´内を通過し、移送手段24を介してさらに暗箱体2bの測定具3´内を通過した後、移送手段24内から探傷部25に到達する。   When the wet fluorescent magnetic particle flaw detection test apparatus 21 performs a flaw detection test on the object to be inspected, the inspection liquid stored in the inspection liquid tank 22 is taken out into the transfer means 24 by the circulation means 23 and is pumped to the flaw detection section 25. However, during this transfer, the inspection liquid in the transfer means 24 first passes through the measuring tool 3 ′ of the dark box body 2 a in the component concentration measuring apparatus 1 ′, and further passes through the transfer means 24 to the dark box body 2 b. After passing through the measuring tool 3 ′, the flaw detection unit 25 is reached from the transfer means 24.

そして、検査液中の成分濃度を測定する場合には、上述した成分濃度測定装置1での測定のように、この場合、湿式蛍光磁粉探傷試験装置21において、循環手段23による検査液の循環開始から所定時間(例えば3分)後に、各暗箱体2a,2bにおいて、測定具3´内を通過中の検査液(循環による撹拌状態)に、光源4a,4bから紫外線および赤外線を照射し、各検出器5,6,7によって、上述同様に各測定値(紫外線吸光濃度、赤外線吸光濃度および蛍光輝度)を得る。   Then, when measuring the component concentration in the test solution, as in the measurement with the component concentration measuring device 1 described above, in this case, in the wet fluorescent magnetic particle testing device 21, the circulation of the test solution by the circulating means 23 is started. After a predetermined time (for example, 3 minutes), in each dark box 2a, 2b, the test solution passing through the measuring instrument 3 '(agitated state by circulation) is irradiated with ultraviolet rays and infrared rays from the light sources 4a, 4b, Each measurement value (ultraviolet ray absorption density, infrared ray absorption density, and fluorescence luminance) is obtained by the detectors 5, 6, and 7 in the same manner as described above.

次いで、循環開始から所定時間(例えば3分)後であって、上述の各測定値の検出後に、循環手段23の駆動を停止し、さらに、循環手段23の駆動停止から所定時間(例えば2分)後に、各暗箱体2a,2bにおいて、測定具3´内を静置中の検査液に、光源4a,4bから紫外線および赤外線を照射し、各検出器5,6,7によって、所定の測定値を得て、情報処理部14において、上述した算出方法により検査液中の各成分(蛍光磁粉、分散剤、防錆剤およびスケール)が上述同様にして算出され、表示部15などに表示される。   Next, after a predetermined time (for example, 3 minutes) from the start of circulation and after the detection of each measurement value, the driving of the circulation means 23 is stopped, and further, a predetermined time (for example, 2 minutes) from the stop of the circulation means 23 is stopped. ) After that, in each dark box 2a, 2b, the test solution standing in the measuring instrument 3 'is irradiated with ultraviolet rays and infrared rays from the light sources 4a, 4b, and the detectors 5, 6, 7 perform predetermined measurement. After obtaining the value, each component (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution is calculated in the information processing unit 14 in the same manner as described above by the calculation method described above, and displayed on the display unit 15 or the like. The

なお、コントローラCには、予め検査液の各成分濃度の上限値や下限値を設置しておくことで、例えば、スケール濃度が、設定値に到達したところで、表示部15や図示しない警報装置などを介して周囲に注意を喚起することで、検査液の交換など適切な処理が施される。   In addition, by setting the upper limit value and the lower limit value of each component concentration of the test solution in advance in the controller C, for example, when the scale concentration reaches the set value, the display unit 15 or an alarm device (not shown) or the like. Appropriate processing, such as replacement of the test solution, is performed by drawing attention to the surroundings.

なお、上述した静置中の検査液の各測定値を検出した後は、循環手段23の駆動を開始し、湿式蛍光磁粉探傷試験装置21において、循環手段23により検査液の循環が開始され、上述した検査液の測定操作が繰り返される。   In addition, after detecting each measured value of the test liquid during the above-described standing, driving of the circulation means 23 is started, and in the wet fluorescent magnetic particle flaw detection test apparatus 21, circulation of the test liquid is started by the circulation means 23, The test liquid measurement operation described above is repeated.

このような構成にすることで、成分濃度測定装置1´が湿式蛍光磁粉探傷試験装置21と一体に構成され、検査液タンク22から探傷部25へ移送途中である検査液中の各成分濃度を、散布装置27での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができ、作業性とともに探傷性能を向上させることで、被検査体の生産性および品質向上に貢献することができる。   With this configuration, the component concentration measuring device 1 ′ is configured integrally with the wet fluorescent magnetic particle flaw detection test device 21, and the concentration of each component in the test solution being transferred from the test solution tank 22 to the flaw detection unit 25 is determined. As a part of the flaw detection test, the measurement can be instantaneously performed online immediately before spraying by the spraying device 27. By improving the flaw detection performance as well as workability, it is possible to contribute to the productivity and quality improvement of the object to be inspected. .

また、成分濃度測定装置1´は、図示しないが、検査液タンク22に別途設けた、循環手段を備える、検査液中の各成分濃度の測定専用配管である移送手段の中途部に設置させることもできる。   In addition, although not shown, the component concentration measuring apparatus 1 ′ is installed in the middle of the transfer means, which is provided separately in the test liquid tank 22 and has a circulation means, which is a dedicated pipe for measuring each component concentration in the test liquid. You can also.

このような構成にすることで、検査液タンク22から測定用配管などの移送手段24´を介して検査液タンク22に戻される循環中の検査液の各成分濃度を、探傷試験の一環としてオンラインで瞬時に測定することができる。そして、この場合、検査液の散布経路とは別に、検査液の測定専用経路を設けたため、例えば散布経路に不都合などが生じて、散布が停止しても、測定専用経路で常時検査液中の各成分濃度を測定することができる。   With this configuration, the concentration of each component of the circulating test liquid returned from the test liquid tank 22 to the test liquid tank 22 via the transfer means 24 'such as a measurement pipe is online as part of the flaw detection test. Can be measured instantaneously. In this case, since a dedicated path for measuring the test liquid is provided separately from the path for spraying the test liquid, for example, inconvenience occurs in the spray path, and even if the spraying stops, The concentration of each component can be measured.

本発明は、湿式蛍光磁粉探傷試験に用いる検査液中の各成分濃度を測定する、あらゆる湿式蛍光磁粉探傷試験装置および検査液の成分濃度測定装置に適用することができる。   The present invention can be applied to all wet fluorescent magnetic particle flaw detection test devices and test liquid component concentration measurement devices that measure the concentration of each component in the test liquid used in the wet fluorescent magnetic particle flaw detection test.

1,1´ 成分濃度測定装置
2 暗箱体
3,3´ 測定具
4a,4b 光源
5 紫外線検出器
6 蛍光輝度検出器
7 赤外線検出器
8 傾斜部
12 紫外線LEDランプ
13 赤外線LEDランプ
14 情報処理部
21 湿式蛍光磁粉探傷試験装置
22 検査液タンク
23 循環手段
24 移送手段
C コントローラ
c 正面中心位置
h 穴部
DESCRIPTION OF SYMBOLS 1,1 'Component density | concentration measuring apparatus 2 Dark box 3, 3' Measuring tool 4a, 4b Light source 5 Ultraviolet detector 6 Fluorescence luminance detector 7 Infrared detector 8 Inclination part 12 Ultraviolet LED lamp 13 Infrared LED lamp 14 Information processing part 21 Wet fluorescent magnetic particle testing equipment 22 Test liquid tank 23 Circulating means 24 Transfer means C Controller c Front center position h Hole

そこで、本願発明者らは、特願2010−107561に記載したように、検査液に光源の紫外線LEDランプから紫外線を照射し、検査液から得られた透過光および励起して発光した可視光をそれぞれ紫外線検出器と、蛍光輝度検出器とで検出した各検出値に基づいて、検査液中に含有する分散剤の濃度および蛍光磁粉の濃度を測定する方法および装置を開発した。 Therefore, as described in Japanese Patent Application No. 2010-107561, the inventors of the present application irradiate the test liquid with ultraviolet light from an ultraviolet LED lamp as a light source, and transmit transmitted light obtained from the test liquid and excited visible light. A method and apparatus have been developed for measuring the concentration of the dispersant and the concentration of the fluorescent magnetic powder contained in the test liquid based on the detection values detected by the ultraviolet detector and the fluorescence luminance detector, respectively.

また、前記光源は、紫外線LEDランプおよび赤外線LEDランプであることを特徴とする。 The light source is an ultraviolet LED lamp or an infrared LED lamp.

また、前記透過光を検出する検出器は、紫外線検出器および赤外線検出器であることを特徴とする。 The detector for detecting the transmitted light is an ultraviolet detector and an infrared detector.

請求項に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記紫外線検出器および前記赤外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする。 A second aspect of the present invention is the method for measuring a concentration of a test solution component used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, wherein the ultraviolet detector and the infrared detector sandwich the measuring tool and the light source. It is characterized in that it is installed at the opposite position.

請求項に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記各成分は、蛍光磁粉と、分散剤と、スケールとを含むことを特徴とする。 A third aspect of the present invention is the method for measuring a concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, wherein each of the components includes fluorescent magnetic powder, a dispersant, and a scale. Features.

請求項に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、該成分濃度測定装置は、前記検査液を導入する測定具と、前記検査液の流れを制御するポンプと、該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、該測定具内の前記検査液に赤外線を照射する光源の赤外線LEDランプと、前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、前記赤外線照射により前記検査液から得られた透過光を検出する赤外線検出器と、前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、前記ポンプの動作時および停止時の前記検査液の、前記紫外線検出器、前記赤外線検出器および前記蛍光輝度検出器による各検出値に基づいて、それぞれ前記検査液に含有する前記蛍光磁粉の濃度、前記分散剤の濃度、防錆剤濃度、スケール濃度を算出する情報処理部とを備えることを特徴とする。 According to a fourth aspect of the present invention, a test liquid obtained by mixing at least fluorescent magnetic powder is brought into contact with a magnetized metal surface of an object to be inspected, and the fluorescent magnetic powder is collected and adhered to a scratch on the metal surface. A component concentration measuring device for the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection of the scratched part, the component concentration measuring device comprising: a measuring tool for introducing the test solution; and a flow of the test solution A pump to be controlled, an ultraviolet LED lamp as a light source for irradiating the test liquid in the measuring tool with ultraviolet light, an infrared LED lamp as a light source for irradiating the test liquid in the measuring tool with infrared light, and An ultraviolet detector for detecting transmitted light obtained from the test liquid, an infrared detector for detecting transmitted light obtained from the test liquid by the infrared irradiation, and obtained from the test liquid by the ultraviolet irradiation. Fluorescence luminance detector for detecting visible light emitted by excitation, and each detection by the ultraviolet detector, the infrared detector and the fluorescence luminance detector of the test liquid when the pump is operated and stopped And an information processing unit for calculating the concentration of the fluorescent magnetic powder, the concentration of the dispersing agent, the concentration of the rust inhibitor, and the scale concentration contained in the test solution, respectively, based on the values.

請求項に記載の発明は、請求項に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置において、前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記赤外線LEDランプと、前記紫外線検出器と、前記赤外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする。 Invention of Claim 5 is set to the component density | concentration measuring apparatus of the test solution used for the wet fluorescent magnetic particle flaw detection test of Claim 4 , and while the said measurement tool is installed in a dark box, the said ultraviolet LED lamp, The infrared LED lamp, the ultraviolet detector, the infrared detector, and the fluorescence luminance detector are provided in the dark box.

請求項に記載の発明は、少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項4〜5に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。 According to a sixth aspect of the present invention, there is provided a test liquid tank for storing a test liquid formed by mixing at least fluorescent magnetic powder, and the test liquid in the test liquid tank is taken out by a circulation means and is returned to the test liquid tank. A wet-type fluorescent magnetic particle flaw detection tester comprising: a transfer means that causes the test liquid in the transfer means to contact the magnetized metal surface of the object to be inspected to detect a flaw on the surface. The transfer means includes the component concentration measuring device according to claim 4 , wherein the transfer means measures the component concentration of the test liquid, and the transfer means pumps the test liquid to the flaw detection unit. It is piping, Comprising: The said measuring tool of the said component concentration measuring apparatus was connected to this test piping, It is characterized by the above-mentioned.

また、光源は、紫外線LEDランプおよび赤外線LEDランプであるので、波長の異なる2種類の電磁波を用いて、検査液および検査液中に含まれる各成分から、成分濃度算出に必要な多種類の測定データを得ることができるとともに、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。従って、各成分濃度の測定を可能にするとともに、生産性を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 In addition, since the light source is an ultraviolet LED lamp or an infrared LED lamp, various types of measurements necessary for calculating the component concentration from the test solution and each component contained in the test solution using two types of electromagnetic waves having different wavelengths. In addition to obtaining data, the service life of the light source lamp that absorbs and excites light in the test solution is prolonged, and the cost can be reduced. Accordingly, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test, which enables measurement of each component concentration and improves productivity.

また、透過光を検出する検出器は、紫外線検出器および赤外線検出器であるので、検査液中に含まれる各成分の吸光濃度および沈降特性を、波長の異なる2種類の電磁波別に得ることができ、蛍光輝度の測定値と併せてこれらの値に基づき、検査液中の各成分の濃度を正確かつ簡単に算出することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 Moreover , since the detectors that detect the transmitted light are ultraviolet detectors and infrared detectors, the absorption concentration and sedimentation characteristics of each component contained in the test solution can be obtained for two types of electromagnetic waves having different wavelengths. The concentration of each component in the test solution can be calculated accurately and easily based on these values together with the measured values of the fluorescence luminance. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test which enables measurement of each component concentration and improves measurement accuracy and workability.

請求項に記載の発明によれば、紫外線検出器および赤外線検出器は、測定具を挟んで光源の対向位置に設置するので、紫外線LEDランプおよび赤外線LEDランプから検査液に入射し、液中を略直進的に透過した紫外線および赤外線の透過光を、各成分の吸光濃度として正確かつ安定的に測定することができる。従って、簡単な構成で測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 According to the second aspect of the present invention, since the ultraviolet detector and the infrared detector are installed at a position opposite to the light source with the measuring tool sandwiched therebetween, the ultraviolet LED lamp and the infrared LED lamp enter the inspection liquid and enter the liquid. The transmitted light of ultraviolet rays and infrared rays transmitted substantially straight through can be accurately and stably measured as the absorbance concentration of each component. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with a simple configuration and improved measurement accuracy.

請求項に記載の発明によれば、各成分は、蛍光磁粉と、分散剤と、スケールとを含むので、被検査体の探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう検査液中に混入したスケールの濃度や、その他検査液中に混合されている防錆剤など、従来では測定できなかった検査液中に含まれる各成分の濃度を容易に測定することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 According to the third aspect of the present invention, each component includes fluorescent magnetic powder, a dispersant, and a scale. Therefore, when flaw detection is performed on the object to be inspected, the adhesion of the fluorescent magnetic powder to the flaw is inhibited, and flaw detection is performed. Easily adjust the concentration of each component contained in the test solution, which could not be measured in the past, such as the concentration of scale mixed in the test solution that would significantly reduce the accuracy, and other anti-corrosive agents mixed in the test solution Can be measured. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test which enables measurement of each component concentration and improves measurement accuracy and workability.

請求項に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、金属表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置であって、この成分濃度測定装置は、検査液を導入する測定具と、検査液の流れを制御するポンプと、この測定具内の検査液に紫外線を照射する光源の紫外線LEDランプと、この測定具内の検査液に赤外線を照射する光源の赤外線LEDランプと、紫外線照射により検査液から得られた透過光を検出する紫外線検出器と、赤外線照射により検査液から得られた透過光を検出する赤外線検出器と、紫外線照射により検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、ポンプの動作時および停止時の検査液の、紫外線検出器、赤外線検出器および蛍光輝度検出器による各検出値に基づいて、それぞれ検査液に含有する蛍光磁粉の濃度、分散剤の濃度、防錆剤濃度、スケール濃度を算出する情報処理部とを備えるので、検査液中に含まれる各成分の濃度を瞬時かつ高精度で、容易に測定することができる。 According to the fourth aspect of the present invention, the test liquid formed by mixing at least the fluorescent magnetic powder is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is collected and adhered to the scratched portion of the metal surface. Is a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by using a measuring tool for introducing the test solution, a pump for controlling the flow of the test solution, and the like. , An ultraviolet LED lamp as a light source for irradiating the test liquid in the measuring tool with ultraviolet light, an infrared LED lamp as a light source for irradiating the test liquid in the measuring tool with infrared light, and transmitted light obtained from the test liquid by the ultraviolet irradiation UV detector that detects UV light, infrared detector that detects the transmitted light obtained from the test solution by infrared irradiation, and fluorescent light that detects the excited and emitted visible light obtained from the test solution by UV irradiation. Based on the detection values of the detector and the inspection liquid at the time of operation and stoppage of the pump by the ultraviolet detector, the infrared detector and the fluorescence luminance detector, the concentration of the fluorescent magnetic powder contained in the inspection liquid and the dispersant Since the information processing unit for calculating the concentration, the rust inhibitor concentration, and the scale concentration is provided, the concentration of each component contained in the test liquid can be easily measured with high accuracy and instantaneously.

請求項に記載の発明によれば、測定具は、暗箱体内に設置するとともに、紫外線LEDランプと、赤外線LEDランプと、紫外線検出器と、赤外線検出器と、蛍光輝度検出器とは、暗箱体内に備えるので、暗室内において、検査液からの紫外線の透過光や蛍光輝度および赤外線の透過光を正確に測定することができる。従って、測定精度を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。 According to the fifth aspect of the present invention, the measuring tool is installed in the dark box, and the ultraviolet LED lamp, the infrared LED lamp, the ultraviolet detector, the infrared detector, and the fluorescence luminance detector are the dark box. Since it is provided in the body, it is possible to accurately measure the transmitted light of ultraviolet rays, the fluorescence luminance, and the transmitted light of infrared rays from the test solution in the dark room. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy.

請求項に記載の発明によれば、少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項4〜5に記載の成分濃度測定装置を備え、移送手段が、探傷部に検査液を圧送する試験用配管であって、この試験用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。 According to the sixth aspect of the present invention, a test liquid tank for storing a test liquid formed by mixing at least the fluorescent magnetic powder, and taking out the test liquid in the test liquid tank by the circulation means and returning to the test liquid tank A wet fluorescent magnetic particle flaw detection test apparatus comprising: a transfer means that causes the test liquid in the transfer means to contact the magnetized metal surface of the object to be inspected to detect a flaw on the surface. The transfer means comprises the component concentration measuring device according to claim 4 , which measures the component concentration of the test liquid, and the transfer means is a test pipe for pumping the test liquid to the flaw detection part. Since the measuring instrument of the component concentration measuring device is connected to the pipe for the component, the component concentration measuring device is configured integrally with the wet fluorescent magnetic particle flaw detection test device, and the inspection liquid is sampled as in the conventional method, which is different from the flaw detection test device. Measure the component concentration at the place There is no required.

また、式中のUVは紫外線(ultraviolet)、IRは赤外線(infrared)を示す。なお、攪拌中の検査液における紫外線吸光濃度、赤外線吸光濃度、紫外線沈降吸光濃度は、上述した式1に基づいて、それぞれ実測値を対数処理したものである。 Further, UV in the formula represents ultraviolet (ultraviolet), and IR represents infrared (infrared). Incidentally, ultraviolet absorption concentration that put the test liquid in the agitation, the infrared absorption concentration, ultraviolet sedimentation absorption concentration, based on the equation 1 described above, in which the respective measured value logarithmically processed.

Claims (8)

被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、
該成分濃度測定方法は、撹拌された前記検査液を透明な測定具に導入し、光源の光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する検出器および前記励起して発光した可視光を検出する検出器の各検出値および前記各成分の時間経過に伴う沈降特性の違いによって得られる前記各検出器の検出値の変化から、前記検査液の各成分濃度を測定することを特徴とする、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。
Wet fluorescence for flaw detection by bringing a test liquid made by mixing at least fluorescent magnetic powder into contact with the magnetized metal surface of the object to be inspected, and collecting and adhering the fluorescent magnetic powder to the scratch on the surface. A method for measuring the concentration of a component of the test liquid used in a magnetic particle testing,
The component concentration measurement method includes introducing the stirred test solution into a transparent measurement tool, and exciting the transmitted light obtained by irradiating the test solution with light from a light source from one side of the measurement tool. Using the visible light emitted in this way, the detection value of the detector for detecting the transmitted light and the detection value of the detector for detecting the visible light emitted by excitation and the difference in the sedimentation characteristics of each component with time A method for measuring a component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test, wherein the concentration of each component of the test liquid is measured from a change in a detection value of each detector.
前記光源は、紫外線LEDランプおよび赤外線LEDランプであることを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The method of measuring a component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test according to claim 1, wherein the light source is an ultraviolet LED lamp or an infrared LED lamp. 前記透過光を検出する検出器は、紫外線検出器および赤外線検出器であることを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The method of measuring a component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test according to claim 1, wherein the detectors that detect the transmitted light are an ultraviolet detector and an infrared detector. 前記紫外線検出器および前記赤外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The component concentration measurement of the test liquid used for the wet fluorescent magnetic particle flaw detection test according to claim 1, wherein the ultraviolet detector and the infrared detector are installed at a position opposite to the light source with the measuring tool interposed therebetween. Method. 前記各成分は、蛍光磁粉と、分散剤と、スケールとを含むことを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The method of claim 1, wherein each of the components includes a fluorescent magnetic powder, a dispersing agent, and a scale. 被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、
該成分濃度測定装置は、前記検査液を導入する測定具と、
前記検査液の流れを制御するポンプと、
該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、
該測定具内の前記検査液に赤外線を照射する光源の赤外線LEDランプと、
前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、
前記赤外線照射により前記検査液から得られた透過光を検出する赤外線検出器と、
前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、
前記ポンプの動作時および停止時の前記検査液の、前記紫外線検出器、前記赤外線検出器および前記蛍光輝度検出器による各検出値に基づいて、それぞれ前記検査液に含有する前記蛍光磁粉の濃度、前記分散剤の濃度、防錆剤濃度、スケール濃度を算出する情報処理部と、
を備えることを特徴とする、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。
A wet type for flaw detection by bringing a test liquid made by mixing at least fluorescent magnetic powder into contact with the magnetized metal surface of the object to be inspected, and collecting and attaching the fluorescent magnetic powder to the scratched part on the metal surface. An apparatus for measuring a concentration of a component of the test liquid used in a fluorescent magnetic particle flaw detection test,
The component concentration measuring device includes a measuring tool for introducing the test solution;
A pump for controlling the flow of the test solution;
An ultraviolet LED lamp as a light source for irradiating the test solution in the measuring instrument with ultraviolet rays;
An infrared LED lamp as a light source for irradiating the test solution in the measuring instrument with infrared rays;
An ultraviolet detector for detecting transmitted light obtained from the test solution by the ultraviolet irradiation;
An infrared detector for detecting transmitted light obtained from the test solution by the infrared irradiation;
A fluorescence luminance detector that detects visible light emitted from the test solution by the ultraviolet irradiation and excited to emit light;
The concentration of the fluorescent magnetic powder contained in the test liquid, based on the detection values of the test liquid at the time of operation and stop of the pump, based on the detection values by the ultraviolet detector, the infrared detector, and the fluorescence luminance detector, An information processing unit for calculating the concentration of the dispersant, the concentration of the rust inhibitor, and the scale concentration;
An apparatus for measuring a concentration of a component of a test liquid used for a wet fluorescent magnetic particle flaw detection test, comprising:
前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記赤外線LEDランプと、前記紫外線検出器と、前記赤外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする、請求項6に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。   The measuring instrument is installed in a dark box, and the ultraviolet LED lamp, the infrared LED lamp, the ultraviolet detector, the infrared detector, and the fluorescence luminance detector are provided in the dark box. The apparatus for measuring the concentration of a component of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to claim 6. 少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、
該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、
該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、
前記移送手段は、前記検査液の成分濃度を測定する、請求項6〜7に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする湿式蛍光磁粉探傷試験装置。
A test solution tank for storing a test solution formed by mixing at least fluorescent magnetic powder;
A transfer means for taking out the test liquid in the test liquid tank by a circulation means and refluxing the test liquid in the test liquid tank;
A wet fluorescent magnetic particle testing apparatus comprising a flaw detection unit for contacting the surface of a magnetized metal of the object to be inspected with the inspection liquid in the transfer means and performing a flaw detection on the surface flaw,
The transfer means includes the component concentration measurement device according to claim 6, which measures the component concentration of the test solution, and the transfer means is a test pipe that pumps the test solution to the flaw detection unit. The wet fluorescent magnetic particle flaw detection test apparatus, wherein the measuring instrument of the component concentration measuring apparatus is connected to the test pipe.
JP2010257667A 2010-05-07 2010-11-18 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test Active JP4750221B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010257667A JP4750221B1 (en) 2010-11-18 2010-11-18 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
PCT/JP2010/071864 WO2011138843A1 (en) 2010-05-07 2010-12-07 Method and apparatus for measuring the concentration of component in inspection liquid used for wet-type fluorescent magnetic particle testing
CN201080066652.5A CN102884417B (en) 2010-05-07 2010-12-07 The assay method of the constituent concentration in the inspection liquid used in the test of wet type fluorescent magnetic particle flaw detection and determinator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257667A JP4750221B1 (en) 2010-11-18 2010-11-18 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test

Publications (2)

Publication Number Publication Date
JP4750221B1 JP4750221B1 (en) 2011-08-17
JP2012108023A true JP2012108023A (en) 2012-06-07

Family

ID=44597077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257667A Active JP4750221B1 (en) 2010-05-07 2010-11-18 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test

Country Status (1)

Country Link
JP (1) JP4750221B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525958A (en) * 2016-10-31 2017-03-22 广州电力机车有限公司 Spring maintenance method
JP2018194494A (en) * 2017-05-19 2018-12-06 電子磁気工業株式会社 Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658091B2 (en) * 2011-05-25 2015-01-21 マークテック株式会社 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
CN109319901B (en) * 2018-11-28 2024-04-19 中冶京诚工程技术有限公司 Water body purifying device
CN110031411A (en) * 2019-04-17 2019-07-19 南京邮电大学 A kind of spectrum imaging system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621750A (en) * 1979-07-24 1981-02-28 Akitoshi Kitano Cutting method of torsion rotor
JPS62147358A (en) * 1985-12-20 1987-07-01 Kawasaki Steel Corp Magnetic flaw detector
JP2970944B2 (en) * 1991-01-22 1999-11-02 電子磁気工業株式会社 Magnetic powder liquid analyzer
JPH0894582A (en) * 1994-09-22 1996-04-12 Sumitomo Metal Ind Ltd Measuring device for performance of fluorescent magnetic particle liquid
JP2000241394A (en) * 1999-02-25 2000-09-08 Nippon Kogyo Kensa Kk Magnetic particle liquid supply method and magnetic particle liquid-supplying apparatus
JP2004157018A (en) * 2002-11-06 2004-06-03 Dkk Toa Corp Sensitivity calibration method of fluorescence detection apparatus and fluorescence detection apparatus
JP4258381B2 (en) * 2003-01-24 2009-04-30 三菱化学株式会社 Polyester production method
JP5051039B2 (en) * 2008-07-23 2012-10-17 株式会社デンソー Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525958A (en) * 2016-10-31 2017-03-22 广州电力机车有限公司 Spring maintenance method
JP2018194494A (en) * 2017-05-19 2018-12-06 電子磁気工業株式会社 Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid

Also Published As

Publication number Publication date
JP4750221B1 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2011138843A1 (en) Method and apparatus for measuring the concentration of component in inspection liquid used for wet-type fluorescent magnetic particle testing
JP4750221B1 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
JP4871404B2 (en) Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing
JP5658091B2 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
JP5531286B2 (en) Magnetic powder concentration measuring apparatus and magnetic powder concentration measuring method
CN103901003A (en) Method for detecting and monitoring cracks of mechanical parts by utilizing fluorescent quantum dots
US20230366816A1 (en) Turbidimeter
CN105866157A (en) X fluorescence spectrometer for PM2.5 heavy metal online detection
JP2970944B2 (en) Magnetic powder liquid analyzer
JP6603265B2 (en) Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
CN202159018U (en) Inherent fluorescent characteristic test device for oily carrier liquid
RU2806246C1 (en) Method of magnetic powder flaw detection and device implementing it
JPS60117148A (en) Characteristic measuring apparatus for inspection liquid for detecting flaw and flaw detection of steel material
CN108426836A (en) Water monitoring device
KR100939259B1 (en) Improved apparatus for maintaining density of magnetic powder
JP2018072072A (en) Magnetic particle flaw detection device and magnetic particle flaw detection method
JPH0894582A (en) Measuring device for performance of fluorescent magnetic particle liquid
KR100903633B1 (en) Apparatus for keeping magnetic powder
JP2018100917A (en) Magnetic particle flaw detection device, magnetic particle flaw detection method, and suspension for magnetic particle flaw detection
JP3170649B2 (en) Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method
CN205562574U (en) Aquatic permanganate index autoanalyzer
CN102759516B (en) Oiliness carrier fluid primary fluorescence characteristic test device and method of testing thereof
JP2011085450A (en) System and method for concentration measurement
JP2018021791A (en) Device and method for measuring concentration of component
US8922642B2 (en) Device and method for controlling test material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4750221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250