JP2012102967A - Screw refrigerating machine - Google Patents

Screw refrigerating machine Download PDF

Info

Publication number
JP2012102967A
JP2012102967A JP2010253520A JP2010253520A JP2012102967A JP 2012102967 A JP2012102967 A JP 2012102967A JP 2010253520 A JP2010253520 A JP 2010253520A JP 2010253520 A JP2010253520 A JP 2010253520A JP 2012102967 A JP2012102967 A JP 2012102967A
Authority
JP
Japan
Prior art keywords
pressure
low
stage
stage compression
slide valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010253520A
Other languages
Japanese (ja)
Other versions
JP5634228B2 (en
Inventor
Kazuyuki Tsukamoto
和幸 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010253520A priority Critical patent/JP5634228B2/en
Publication of JP2012102967A publication Critical patent/JP2012102967A/en
Application granted granted Critical
Publication of JP5634228B2 publication Critical patent/JP5634228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a screw refrigerating machine equipped with a two-stage screw compressor capable of exerting cooling capacity matching to a load even under a condition that high pressure is low and low pressure is high and capable of avoiding the occurrence of motor overheating abnormality and the seizure of a screw rotor and a casing in a high stage compression section.SOLUTION: A high pressure detector 61 detects the pressure (high pressure) of a refrigerant discharged from the high stage compression section 23, an intermediate pressure detector 62 detects the pressure (intermediate pressure) of the refrigerant discharged from a low stage compression section 22, and a low pressure detector 63 detects suction pressure (low pressure) of the low stage compression section 22. The low stage compression section 22 and the high stage compression section 23 are provided with pistons, rods and volume control devices formed of slide valves for controlling the volume of the compressed refrigerant, respectively. A control section 64, based on the output of the high pressure detector 61 and the output of the intermediate pressure detector 62, calculates a pressure ratio of the high pressure to the intermediate pressure and controls the low stage volume control device 66 to vary an operation load of the low stage compression section 22 according to the magnitude of the pressure ratio.

Description

この発明は、2個もしくは2対のスクリューローターにより、二段階の冷媒圧縮を行う二段スクリュー圧縮機を備えたスクリュー冷凍機に関するものであり、特に各圧縮部に容量制御装置を備えた二段スクリュー圧縮機の容量制御に関する。   The present invention relates to a screw refrigerator having a two-stage screw compressor that performs two-stage refrigerant compression by two or two pairs of screw rotors, and in particular, a two-stage having a capacity control device in each compression section. The present invention relates to capacity control of a screw compressor.

従来の二段スクリュー圧縮機(以下、単にスクリュー圧縮機あるいは圧縮機と呼ぶこともある)には、低段圧縮部、高段圧縮部のそれぞれにピストンによって駆動される容量制御装置を有し、外部に設けている電磁弁の開閉により、これら低段側と高段側のピストンへそれぞれ差圧を与えることでピストンを駆動し、冷媒ガスの流量を調節するスライドバルブを移動させて容量の調節を行うものが知られている(例えば、特許文献1参照)。
また、低段圧縮部にピストンを用いた容量制御装置を有し、外部に設けている電磁弁の開閉により、これら低段側のピストンへ差圧を与えることでこのピストンを駆動し、冷媒ガスの流量を調節することで容量の調節を行うものが知られている(例えば、特許文献2参照)。
この特許文献2の二段スクリュー圧縮機を搭載したスクリュー冷凍機の一般的な構成を図11及び図12に示す。スクリュー冷凍機1は、圧縮機2、油分離器12、凝縮器13、膨張弁14、蒸発器15、油冷却器25、およびこれらの構成要素を連結し、冷媒を循環させる冷媒配管を備えている。圧縮機2は、1つの電動機により駆動される低段圧縮部22および高段圧縮部23を有する二段形であり、低段圧縮部22の吐出口と高段圧縮部23の吸込口は連通している。油分離器12にて分離された油24は、油冷却器25を経てスクリュー圧縮機2の低段圧縮部22および高段圧縮部23のそれぞれの軸受へ供給される。低段側の容量制御装置であるピストン38には貫通孔39が穿設されており、ピストン移動に伴い、冷媒ガスを低圧部にバイパスする貫通孔の数が変化する。このためピストンの移動を制御して貫通孔数を調整することで、容量制御が可能となる。
なお、特許文献2にて示されている二段スクリュー圧縮機2は、インバーターによって駆動され、高段側に容量制御装置を有していない。
A conventional two-stage screw compressor (hereinafter sometimes simply referred to as a screw compressor or a compressor) has a capacity control device driven by a piston in each of a low-stage compression section and a high-stage compression section, By opening and closing the solenoid valve provided outside, the piston is driven by applying differential pressure to each of the low-stage and high-stage pistons, and the slide valve that adjusts the flow rate of the refrigerant gas is moved to adjust the capacity. Is known (for example, see Patent Document 1).
In addition, the low-stage compression unit has a capacity control device using a piston, and the piston is driven by applying a differential pressure to these low-stage pistons by opening and closing an electromagnetic valve provided outside. There is known one that adjusts the volume by adjusting the flow rate of (see, for example, Patent Document 2).
A general configuration of a screw refrigerator equipped with the two-stage screw compressor of Patent Document 2 is shown in FIGS. The screw refrigerator 1 includes a compressor 2, an oil separator 12, a condenser 13, an expansion valve 14, an evaporator 15, an oil cooler 25, and a refrigerant pipe that connects these components and circulates a refrigerant. Yes. The compressor 2 is a two-stage type having a low-stage compression unit 22 and a high-stage compression unit 23 driven by a single electric motor, and the discharge port of the low-stage compression unit 22 and the suction port of the high-stage compression unit 23 communicate with each other. is doing. The oil 24 separated by the oil separator 12 is supplied to the respective bearings of the low-stage compression section 22 and the high-stage compression section 23 of the screw compressor 2 through the oil cooler 25. A through-hole 39 is formed in the piston 38, which is a low-stage capacity control device, and the number of through-holes that bypass the refrigerant gas to the low-pressure portion changes as the piston moves. For this reason, capacity control becomes possible by controlling the movement of the piston and adjusting the number of through holes.
In addition, the two-stage screw compressor 2 shown in Patent Document 2 is driven by an inverter and does not have a capacity control device on the higher stage side.

従来のスクリュー冷凍機1の始動時の容量制御を図13に示す。これはスター・デルタ始動の場合であり、インバーターによる可変周波数運転を行わない運転周波数が一定の冷凍機の例である。スクリュー冷凍機1を始動させる際は先ず、スクリュー圧縮機2の容量は、低段、高段ともに最小容量、例えば12%にホールドされる。一定時間のスター結線による運転の後、デルタ結線へ切り替わる。デルタ結線への切替え後、設定時間を経過すると高段側を100%までオンロードさせる。この状態を便宜的に20%運転と言う。この後、さらに設定時間経過後に低段側を50%までオンロードさせる。この状態を便宜的に60%運転と言う。さらにこの60%運転を一定時間経過した後は、冷凍機に対する負荷に応じて、高段、低段ともに100%の100%運転(高段を100%に保持した状態で運転させるとともに低段も100%までオンロードさせる)、先の60%運転(高段を100%に保持した状態で運転させ、低段も60%に保持した状態で運転させる)、20%運転(高段を100%に保持した状態で運転させ、低段を20%までアンロード運転させる)のいずれかの容量へ制御を行い定常運転となる。
定常運転においては、高圧圧力すなわち高段の吐出圧力、中間圧力すなわち高段吸込圧力、低圧圧力すなわち低段の吸込圧力の3つの圧力の大小に関らず、冷凍機の負荷、つまり、蒸発器15を流れるブライン入口温度、もしくはブライン出口温度、蒸発温度、外部からの容量制御信号によって運転容量の制御を行っている。
The capacity control at the time of starting the conventional screw refrigerator 1 is shown in FIG. This is a case of star delta start, and is an example of a refrigerator having a constant operation frequency in which variable frequency operation by an inverter is not performed. When starting the screw refrigerator 1, first, the capacity of the screw compressor 2 is held at the minimum capacity, for example, 12%, for both the low stage and the high stage. After operation with a star connection for a certain time, it switches to the delta connection. After switching to the delta connection, when the set time elapses, the high stage is on-loaded to 100%. This state is called 20% operation for convenience. Thereafter, after the set time has elapsed, the lower stage is on-loaded to 50%. This state is called 60% operation for convenience. Furthermore, after this 60% operation has passed for a certain period of time, depending on the load on the refrigerator, both the high and low stages are 100% 100% operation (the high stage is kept at 100% and the low stage is On-load to 100%), previous 60% operation (operating with the high stage held at 100%, operating with the low stage kept at 60%), 20% operation (high stage at 100% The operation is carried out in a state in which the motor is held at a low level and the low stage is unloaded up to 20%).
In steady operation, the load on the refrigerator, i.e., the evaporator, regardless of the magnitude of the three pressures: high pressure, ie high stage discharge pressure, intermediate pressure, ie high stage suction pressure, and low pressure, ie low stage suction pressure. The operation capacity is controlled by the brine inlet temperature flowing through 15, the brine outlet temperature, the evaporation temperature, or a capacity control signal from the outside.

特公平7−59951号公報Japanese Patent Publication No. 7-59951 特許第3837298号公報(第1頁および第3頁、第1図および第2図)Japanese Patent No. 3837298 (first page and third page, FIGS. 1 and 2)

従来のスクリュー冷凍機の容量制御は前記のように定常運転においては、高圧圧力すなわち高段の吐出圧力、中間圧力すなわち高段吸込圧力、低圧圧力すなわち低段の吸込圧力の3つの圧力の大小に関らず、冷凍機の負荷、つまり、蒸発器15を流れるブライン入口温度、もしくはブライン出口温度、蒸発温度、外部からの容量制御信号によって運転容量の制御を行っている。高圧圧力すなわち冷媒の凝縮温度は、凝縮器13と熱交換をする空気や水に応じて変化する。低圧圧力すなわち冷媒の蒸発温度は、負荷側すなわち蒸発器15と熱交換するブラインや空気に応じて変化する。   As described above, the capacity control of the conventional screw refrigerator is, in steady operation, the magnitude of three pressures: high pressure, that is, high stage discharge pressure, intermediate pressure, that is, high stage suction pressure, and low pressure, that is, low stage suction pressure. Regardless, the operating capacity is controlled by the load of the refrigerator, that is, the brine inlet temperature flowing through the evaporator 15, or the brine outlet temperature, the evaporation temperature, and an external capacity control signal. The high pressure, that is, the condensing temperature of the refrigerant varies depending on the air and water that exchange heat with the condenser 13. The low-pressure pressure, that is, the evaporation temperature of the refrigerant varies depending on the load side, that is, the brine or air that exchanges heat with the evaporator 15.

秋から春にかけて一般に外気温度が低い環境や寒冷地のように年間を通して外気温度が低い地域においては、凝縮器13と熱交換する空気や水の温度が低く、冷媒の凝縮温度が低くなり、高圧圧力の絶対値が低くなる。さらに負荷が高く蒸発器15と熱交換する空気やブラインの温度が高い場合は、冷媒の蒸発温度が高くなり、低圧圧力の絶対値が高くなる。このような条件では、低段の吐出圧力、すなわち中間圧力が高圧圧力よりも高くなることがある。   From autumn to spring, the temperature of air and water exchanging heat with the condenser 13 is low in an environment where the outside air temperature is low throughout the year, such as an environment where the outside air temperature is generally low and cold regions. The absolute value of pressure decreases. Further, when the load is high and the temperature of air or brine that exchanges heat with the evaporator 15 is high, the evaporation temperature of the refrigerant is high, and the absolute value of the low pressure is high. Under such conditions, the low-stage discharge pressure, that is, the intermediate pressure may be higher than the high pressure.

上記のように中間圧力が高圧圧力よりも高くなると、特許文献1に示された従来例では、高段の容量制御装置を駆動できなくなり、結果として高段圧縮部23ではオンロード運転ができなくなり、負荷に見合った冷却能力を発揮できないという問題が発生する。
その理由について、図14を用いて具体的に説明する。図14に示すように、スクリュー圧縮機2の高段容量制御装置67は、スライドバルブ71と呼ばれる容量調節弁とこれにロッド72によって連結された容量制御ピストン74、ケーシング51、ピストン74とケーシング51によって形成されるピストン室76、バネ73、電磁弁75によって構成される。
As described above, when the intermediate pressure becomes higher than the high pressure, in the conventional example shown in Patent Document 1, the high-stage capacity control device cannot be driven, and as a result, the high-stage compression unit 23 cannot perform on-road operation. The problem that the cooling capacity corresponding to the load cannot be exhibited occurs.
The reason will be specifically described with reference to FIG. As shown in FIG. 14, the high stage capacity control device 67 of the screw compressor 2 includes a capacity control valve called a slide valve 71 and a capacity control piston 74, a casing 51, a piston 74 and a casing 51 connected to the capacity control valve by a rod 72. The piston chamber 76, the spring 73, and the electromagnetic valve 75 formed by

また、ピストン室76はピストン74によってスライド弁側室(図14における右室)761と反スライド弁側室(図14における左室)762に区画され、スライド弁側室761には、ピストン74を左側に押圧するバネ73が設けられており、常時高段圧縮部23から高圧圧力HPが与えられている。一方、反スライド弁側室762には電磁弁75の開閉により高段圧縮部の吐出直前のこの冷凍サイクルにおいて最も高い高圧圧力HP+α1(これをHP1とする。)が与えられるかあるいは中間圧力が与えられる。また、スライドバルブ71には図14に示すようにその片面に高段圧縮部23の吐出圧力すなわち高圧圧力が作用し、その反対面には低段圧縮部22の吐出圧力すなわち高段圧縮部23の吸い込み圧力である中間圧力が作用している。   The piston chamber 76 is divided into a slide valve side chamber (right chamber in FIG. 14) 761 and an anti-slide valve side chamber (left chamber in FIG. 14) 762 by the piston 74. The slide valve side chamber 761 presses the piston 74 to the left side. The high-pressure pressure HP is always given from the high stage compression part 23. On the other hand, the anti-slide valve side chamber 762 is given the highest high pressure HP + α1 (referred to as HP1) in this refrigeration cycle immediately before discharge of the high-stage compression section by opening / closing the electromagnetic valve 75, or an intermediate pressure. Given. Further, as shown in FIG. 14, the discharge pressure of the high stage compression unit 23, that is, the high pressure, acts on the slide valve 71 on one side, and the discharge pressure of the low stage compression unit 22, that is, the high stage compression unit 23, on the opposite side. The intermediate pressure, which is the suction pressure, is acting.

このような状況において、中間圧力が高圧圧力よりも高くなると、高段圧縮部23をオンロードさせようとする場合、制御部は容量制御信号を高段容量制御装置67に送る。これにより、電磁弁の駆動装置は、電磁弁75をオフとすることでピストン室76の反スライド弁側室762内を高圧圧力HP1に保つ。これにより、ピストン74のスライド弁側室(図14における右室)761に対し反スライド弁側室(図14における左室)762の圧力がα1だけ高くなる。一方、スライドバルブ71の片側に高圧圧力HP、反対側に高圧圧力HPよりも高圧の中間圧力MPが作用しているため、総合した差圧はアンロード方向(図14の左向き)に作用し、アンロード方向に付勢力が作用するバネ力も加勢するので、アンロード方向へ移動する。すなわち、スライドバルブ71はオンロード方向(図14の右側)へ移動できない。
この結果、高段圧縮部23ではオンロード運転ができなくなり、負荷に見合った冷却能力を発揮できなくなる。以上が理由である。
In such a situation, when the intermediate pressure becomes higher than the high pressure, the control unit sends a capacity control signal to the high stage capacity control device 67 when trying to onload the high stage compression unit 23. Thus, the electromagnetic valve drive device keeps the inside of the anti-slide valve side chamber 762 of the piston chamber 76 at the high pressure HP1 by turning off the electromagnetic valve 75. As a result, the pressure of the anti-slide valve side chamber (left chamber in FIG. 14) 762 is higher by α1 than the slide valve side chamber (right chamber in FIG. 14) 761 of the piston 74. On the other hand, since the high pressure HP acts on one side of the slide valve 71 and the intermediate pressure MP higher than the high pressure HP acts on the opposite side, the total differential pressure acts in the unload direction (leftward in FIG. 14), Since the spring force acting on the urging force in the unloading direction is also urged, it moves in the unloading direction. That is, the slide valve 71 cannot move in the on-road direction (right side in FIG. 14).
As a result, the high-stage compression unit 23 cannot perform on-road operation and cannot exhibit a cooling capacity commensurate with the load. This is the reason.

一方、スクリュー圧縮機2のモーター冷却は高圧圧力の冷媒液を断熱膨張により減圧し、中間圧力室であるモーター室へ断熱膨張によって得られた冷却冷媒を注入することで、実現している。また、高段圧縮部23へスクリューローターとケーシング51の焼付きを防止するために油分離器12内の高圧圧力を搬送力として油インジェクションを注入している。中間圧力が高圧圧力よりも高くなると、モーター冷却用の冷媒を流すことができなくなり、モーター21が過熱し異常停止する。また、油インジェクションが注入できなくなり、高段圧縮部23のスクリューローターとケーシング51の焼付きが発生し、圧縮ができなくなる。   On the other hand, the motor cooling of the screw compressor 2 is realized by reducing the pressure of the high-pressure refrigerant liquid by adiabatic expansion and injecting the cooling refrigerant obtained by adiabatic expansion into the motor chamber which is an intermediate pressure chamber. Further, in order to prevent seizure of the screw rotor and the casing 51, oil injection is injected into the high-stage compression section 23 using the high pressure in the oil separator 12 as a conveying force. When the intermediate pressure becomes higher than the high pressure, the motor cooling refrigerant cannot flow, and the motor 21 is overheated and abnormally stops. Further, oil injection cannot be injected, and the screw rotor of the high-stage compression unit 23 and the casing 51 are seized, and compression cannot be performed.

以上のように従来の二段スクリュー圧縮機を搭載したスクリュー冷凍機において、高圧圧力が低く、低圧圧力が高いという条件において、高段圧縮部23のオンロード運転ができなくなり、負荷に見合った冷却能力を発揮できないという問題があった。また、モーター冷却冷媒を流すことができなくなりモーター過熱異常が発生するという問題があった。さらに、油インジェクションが注入できなくなり、高段圧縮部23のスクリューローターとケーシング51の焼付きが発生し、圧縮ができなくなるという問題があった。   As described above, in a screw refrigerator equipped with a conventional two-stage screw compressor, on-load operation of the high-stage compression section 23 becomes impossible under the condition that the high-pressure pressure is low and the low-pressure pressure is high, and cooling corresponding to the load is performed. There was a problem that the ability could not be demonstrated. Further, there is a problem that the motor cooling refrigerant cannot flow and motor overheating abnormality occurs. Furthermore, there is a problem that oil injection cannot be injected, and the screw rotor of the high-stage compression section 23 and the casing 51 are seized and cannot be compressed.

このように高圧圧力が低く、低圧圧力が高いという条件の場合、特許文献2にて示されたスクリュー冷凍機においては、差圧調節器が高段圧縮部である第二段圧縮部の吐出圧力すなわち高圧圧力と、低段圧縮部である第一段圧縮部の吐出圧力すなわち中間圧力との圧力差、いわゆる差圧を検出して、この差圧に基づいて第一段圧縮部(低段圧縮部)を負荷調節手段により、部分負荷運転させることにより、第一段圧縮部22の吐出圧力すなわち中間圧力を下げ、オンロード運転不可能に陥る事態の発生を未然に防ぐことで運転継続を可能にしている。   In such a condition that the high pressure is low and the low pressure is high, in the screw refrigerator shown in Patent Document 2, the discharge pressure of the second stage compression unit in which the differential pressure regulator is a high stage compression unit. That is, the pressure difference between the high pressure and the discharge pressure of the first stage compression section, which is the low stage compression section, that is, the intermediate pressure is detected, so-called differential pressure, and the first stage compression section (low stage compression) is detected based on this differential pressure. Can be continued by reducing the discharge pressure, that is, the intermediate pressure of the first stage compression unit 22 and preventing the on-load operation from occurring. I have to.

しかしながら、特許文献2の二段スクリュー圧縮機の容量制御は差圧に基づいているため、高圧圧力が低く、低圧圧力が高いという条件において、外気温度条件の急激な変化に対してオンロード運転不可能に陥る事態の発生を未然に防ぐことに不安があり、さらに予防能力の改善された容量制御が望まれている。   However, since the capacity control of the two-stage screw compressor of Patent Document 2 is based on the differential pressure, on-road operation is not possible against a sudden change in the outside air temperature condition under the condition that the high pressure is low and the low pressure is high. There is anxiety about preventing the occurrence of a situation that becomes possible, and further, capacity control with improved preventive ability is desired.

この発明は、上記のような課題を解決するためになされたものであり、第1の目的は高圧圧力が低く、低圧圧力が高いという条件において、高段圧縮部のオンロード運転を特許文献1に示す従来よりも確実に可能とし、負荷に見合った冷却能力を発揮できるようにする二段スクリュー圧縮機を搭載したスクリュー冷凍機を得ることにある。また、第2の目的は、モーター冷却冷媒を流すことを可能とし、モーター過熱異常の発生を回避し、高段圧縮部のスクリューローターとケーシングの焼付きを回避して圧縮を行うことができる二段スクリュー圧縮機を搭載したスクリュー冷凍機を得ることにある。   The present invention has been made to solve the above-described problems. The first object is to perform on-load operation of a high-stage compression section under the condition that the high pressure is low and the low pressure is high. It is possible to obtain a screw refrigerator equipped with a two-stage screw compressor that can be surely made than the conventional one and can exhibit a cooling capacity corresponding to a load. The second object is to allow the motor cooling refrigerant to flow, to avoid the occurrence of abnormal motor overheating, and to avoid the seizure of the screw rotor and casing of the high-stage compression section and perform the compression. The object is to obtain a screw refrigerator equipped with a stage screw compressor.

この発明に係るスクリュー冷凍機は、第1の冷媒ガスを吸い込んで圧縮し、第1の冷媒ガスよりも高温且つ高圧の第2の冷媒ガスを第1の圧縮室に吐出する低段圧縮部と、この低段圧縮部から吐出された第2の冷媒ガスを吸い込んで圧縮し、第2の冷媒ガスよりも高温且つ高圧の第3の冷媒ガスを第2の圧縮室に吐出する高段圧縮部と、を有するスクリュー型二段圧縮機と、低段圧縮部から吐出された第2の冷媒の圧力すなわち中間圧力を検出する第1の圧力検出器と、高段圧縮部から吐出された第3の冷媒の圧力すなわち高圧圧力を検出する第2の圧力検出器と、を備え、スクリュー型二段圧縮機は、低段圧縮部の第1圧縮室の冷媒の容量を制御する第1の容量制御装置と、高段圧縮部の第2圧縮室の冷媒の容量を制御する第2の容量制御装置とを備え、第1の圧力検出器の出力と第2の圧力検出器の出力に基づき、高圧圧力と中間圧力の圧力比を演算し、算出された圧力比の大小に応じて低段圧縮部の運転負荷を変えるように低段圧縮部の第1の容量制御装置を制御する制御部を備えたものである。   The screw refrigerator according to the present invention includes a low-stage compression unit that sucks and compresses the first refrigerant gas and discharges the second refrigerant gas having a temperature higher than that of the first refrigerant gas to a first compression chamber. The high-stage compression section that sucks and compresses the second refrigerant gas discharged from the low-stage compression section and discharges the third refrigerant gas having a temperature higher and higher than that of the second refrigerant gas to the second compression chamber. A first pressure detector that detects the pressure of the second refrigerant discharged from the low-stage compression section, that is, an intermediate pressure, and a third pressure discharged from the high-stage compression section. And a second pressure detector for detecting the pressure of the refrigerant, that is, the high pressure, and the screw type two-stage compressor controls the capacity of the refrigerant in the first compression chamber of the low-stage compression section. Apparatus and second capacity control for controlling the capacity of refrigerant in the second compression chamber of the high-stage compression section And calculating the pressure ratio between the high pressure and the intermediate pressure based on the output of the first pressure detector and the output of the second pressure detector, and performing low-stage compression according to the calculated pressure ratio The control part which controls the 1st capacity | capacitance control apparatus of a low stage compression part so that the driving | operation load of a part may be changed is provided.

この発明によれば、制御部は、第1の圧力検出器によって検出された高圧圧力の絶対圧力を第2の圧力検出器によって検出された中間圧力の絶対圧力により除算することで圧力比を算出し、予め十分な余裕を見込んで設定した圧力比よりも算出した実際の圧力比が高い場合は、低段圧縮部がほぼ100%へオンロード(全負荷)運転することを許可し、予め設定した圧力比より実際の圧力比が低い場合は、低段圧縮部を部分負荷運転すなわち60%運転するように容量制御装置の調節を行うので、高圧圧力が低く、低圧圧力が高いという条件において、高段圧縮部のオンロード運転を可能とし、負荷に見合った冷却能力を発揮できるようにするとともに、モーター冷却冷媒を流すことを可能とし、モーター過熱異常の発生を回避し、圧縮を行うことができる。さらに、高段圧縮部のスクリューローターとケーシングの焼付きを回避することができる。   According to this invention, the control unit calculates the pressure ratio by dividing the absolute pressure of the high pressure detected by the first pressure detector by the absolute pressure of the intermediate pressure detected by the second pressure detector. If the actual pressure ratio calculated is higher than the pressure ratio set with sufficient margin in advance, the low-stage compression section is allowed to be on-load (full load) operation to almost 100% and set in advance. When the actual pressure ratio is lower than the measured pressure ratio, the capacity control device is adjusted so that the low-stage compression section is partially loaded, that is, 60%, so that the high pressure is low and the low pressure is high. Enables on-load operation of the high-stage compression section, allows the cooling capacity suitable for the load to be exhibited, allows the motor cooling refrigerant to flow, prevents the occurrence of motor overheating abnormalities, and performs compression. It is possible. Furthermore, seizure of the screw rotor and casing of the high-stage compression section can be avoided.

この発明の実施の形態1に係るスクリュー冷凍機の全体構成を示す図である。It is a figure which shows the whole structure of the screw refrigerator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るスクリュー冷凍機の二段スクリュー圧縮機の側断面図である。It is a sectional side view of the two-stage screw compressor of the screw refrigerator which concerns on Embodiment 1 of this invention. 一般的なスクリュー圧縮機のスライド弁による容量制御機構を表す図である。It is a figure showing the capacity | capacitance control mechanism by the slide valve of a general screw compressor. この発明の実施の形態1に係るスクリュー冷凍機の二段スクリュー圧縮機の低段容量制御装置図である。It is a low stage capacity | capacitance control apparatus figure of the two stage screw compressor of the screw refrigerator which concerns on Embodiment 1 of this invention. 図3において、アンロード動作を表す図である。In FIG. 3, it is a figure showing unloading operation. 図3において、オンロード動作を表す図である。In FIG. 3, it is a figure showing on-load operation | movement. 中間圧力が高圧圧力より低いときの高段容量制御装置の状態を表す図である。It is a figure showing the state of a high stage capacity | capacitance control apparatus when an intermediate pressure is lower than a high pressure. この発明の実施の形態1によって低段圧縮部22の容量制御を行う圧力条件を示した図である。It is the figure which showed the pressure conditions which perform capacity | capacitance control of the low stage compression part 22 by Embodiment 1 of this invention. この発明の実施の形態1に係るスクリュー冷凍機の制御系統の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the screw refrigerator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るスクリュー冷凍機の制御部の容量制御フローチャートである。It is a capacity | capacitance control flowchart of the control part of the screw refrigerator which concerns on Embodiment 1 of this invention. この発明の実施の形態1によって低段圧縮部22の容量制御を行う圧力条件と特許文献1により、低段圧縮部22の容量制御を行う圧力条件を示した図である。It is the figure which showed the pressure condition which performs capacity | capacitance control of the low stage compression part 22 by Embodiment 1 of this invention, and the pressure condition which performs capacity | capacitance control of the low stage compression part 22 by patent document 1. FIG. 従来の二段スクリュー冷凍機1の全体構成を示す図である。It is a figure which shows the whole two-stage screw refrigerator 1 whole structure. 特許文献1に示されている二段スクリュー圧縮機2の断面図である。1 is a cross-sectional view of a two-stage screw compressor 2 disclosed in Patent Document 1. FIG. 従来の二段スクリュー圧縮機2の始動時の容量制御を表した図である。It is a figure showing capacity control at the time of starting of the conventional two-stage screw compressor 2. 中間圧力が高圧圧力より高いときの高段容量制御装置の状態を表す図である。It is a figure showing the state of a high stage capacity | capacitance control apparatus when intermediate pressure is higher than high pressure.

実施の形態1.
(1.1)構成の詳細な説明
図1は、この発明の実施の形態1であるスクリュー冷凍機の全体構成図である。
図1において、スクリュー冷凍機1は、二段スクリュー圧縮機(以下、単にスクリュー圧縮機あるいは圧縮機と呼ぶこともある)2、油分離器12、凝縮器13、膨張弁14a、14b、蒸発器15、油冷却器25、電磁弁68およびこれらの構成要素を連結し、冷媒を循環させる冷媒配管を備えている。圧縮機2は、1つのモーター21により駆動される低段圧縮部22および高段圧縮部23を有する二段形のもので、低段圧縮部22の吐出口と高段圧縮部23の吸込口は連通している。圧縮機2の吐出圧力である高圧圧力を検出する圧力検出器61、圧縮機2の内部の高段吸込圧力すなわち低段吐出圧力である中間圧力を検出する圧力検出器62、圧縮機2の吸い込み圧力(低圧圧力)を検出する低圧圧力検出器63、圧力検出器61、62より得られた圧力信号より圧力比を算出し、圧縮機2の高段容量制御装置67へ容量制御信号を出す制御部64を備えている。なお、膨張弁14aは冷凍サイクルの主流を流れる冷媒(主液)を減圧するためのものであり、膨張弁14bは油冷却器25を冷却するために設けられたものであり、冷媒を減圧して低温の冷媒を油冷却器25に流し込んでいる。また、電磁弁68は、二段スクリュー圧縮機2が停止したとき、この電磁弁68を同時に閉じることで蒸発器15内の冷媒を全て凝縮器13内に集めて待避させておくことができる。運転再開時には、この電磁弁68を開くことで、凝縮器13に溜まっていた冷媒を冷凍サイクル内に戻すことができる。
Embodiment 1 FIG.
(1.1) Detailed Description of Configuration FIG. 1 is an overall configuration diagram of a screw refrigerator that is Embodiment 1 of the present invention.
In FIG. 1, a screw refrigerator 1 includes a two-stage screw compressor (hereinafter sometimes simply referred to as a screw compressor or a compressor) 2, an oil separator 12, a condenser 13, expansion valves 14a and 14b, and an evaporator. 15, the oil cooler 25, the electromagnetic valve 68, and these components are connected, and the refrigerant | coolant piping which circulates a refrigerant | coolant is provided. The compressor 2 is a two-stage compressor having a low-stage compressor 22 and a high-stage compressor 23 driven by a single motor 21, and has a discharge port for the low-stage compressor 22 and a suction port for the high-stage compressor 23. Are communicating. A pressure detector 61 that detects a high pressure that is the discharge pressure of the compressor 2, a pressure detector 62 that detects an intermediate pressure that is a high stage suction pressure inside the compressor 2, that is, a low stage discharge pressure, and a suction of the compressor 2 Control which calculates a pressure ratio from the pressure signal obtained from the low pressure detector 63 which detects a pressure (low pressure), and the pressure detectors 61 and 62, and outputs a capacity | capacitance control signal to the high stage capacity | capacitance control device 67 of the compressor 2. A portion 64 is provided. The expansion valve 14a is for depressurizing the refrigerant (main liquid) flowing through the main flow of the refrigeration cycle, and the expansion valve 14b is provided for cooling the oil cooler 25, and depressurizes the refrigerant. Thus, a low-temperature refrigerant is poured into the oil cooler 25. Further, when the two-stage screw compressor 2 is stopped, the electromagnetic valve 68 can simultaneously close all the electromagnetic valves 68 to collect all the refrigerant in the evaporator 15 in the condenser 13 and keep it away. When the operation is resumed, the refrigerant accumulated in the condenser 13 can be returned to the refrigeration cycle by opening the electromagnetic valve 68.

図2は、この発明の実施の形態1に係るスクリュー冷凍機の二段スクリュー圧縮機の側断面図である。上述したように、圧縮機2は、1つのモーター21により駆動される低段圧縮部22および高段圧縮部23を有する二段形のもので、低段圧縮部22の吐出口と高段圧縮部23の吸込口は連通している。圧縮部は低段、高段それぞれ1つのスクリューローターと2つのゲートローターによって構成されるシングルスクリュータイプであるが、低段は2つのゲートローター、高段は1つのゲートローターによって構成されるシングルスクリュータイプであっても同様に本実施の形態1は成立する。また、図示していない低段、高段それぞれ1対のスクリューローターによって構成されるツインスクリュータイプであっても本実施の形態1は成立する。低段圧縮部22、高段圧縮部23はそれぞれ容量制御装置66、67を備えており、圧縮機2内の高圧圧力、中間圧力、低圧圧力の大小関係を利用して、駆動される。なお、低段スクリューローターと高段スクリューローターは同一の軸に連結されている。低段および高段スクリューローターの偏心を防止するために低段・高段それぞれ1対のゲートローター同士を軸の周方向に互いに180度対称の位置に配置している。また、高段ゲートローターが1つのタイプにあっては、高段ゲートローター86を低段ゲートローター87に対し、軸の周方向に90度ずらして配置している。
低段容量制御装置66は、スライドバルブ84、ロッド91、ピストン85を備えており、高段容量制御装置67は、スライドバルブ71、ロッド72、バネ73、ピストン74を備えている。
図2Aは,一般的なスライドバルブによる容量制御機構を表した図であり、低段側圧縮部および高段側圧縮部ともに構成は同じであるため、便宜上高段側圧縮部で説明する。
図2Aの右側の図は左側の図を拡大した図であり、スライドバルブ71がアンロードの場合の様子を示している。オンロード(100%)運転時、スライドバルブ71が図の破線の位置まで移動し、バイパスを塞ぐため、スクリューローター52と高段ゲートローター86の噛み合いにより圧縮された冷媒ガスは最大の吐出圧を有するガスとなって冷媒回路へ吐き出される。一方、アンロード運転の場合、一部の冷媒がバイパスされるため、スクリューローター52と高段ゲートローター86の噛み合いにより圧縮された冷媒ガスは圧力がその分低くなった状態で冷媒回路へ吐き出される。
FIG. 2 is a side sectional view of the two-stage screw compressor of the screw refrigerator according to Embodiment 1 of the present invention. As described above, the compressor 2 is a two-stage compressor having the low-stage compression unit 22 and the high-stage compression unit 23 driven by the single motor 21, and the discharge port and the high-stage compression of the low-stage compression unit 22. The suction port of the part 23 is in communication. The compression part is a single screw type consisting of one screw rotor and two gate rotors for each of the low and high stages, but the low stage is composed of two gate rotors and the high stage is composed of one gate rotor. Even if it is a type, the first embodiment is similarly established. Further, the present embodiment 1 is established even with a twin screw type that is constituted by a pair of screw rotors, each not shown. The low-stage compression unit 22 and the high-stage compression unit 23 include capacity control devices 66 and 67, respectively, and are driven by using the magnitude relationship among the high pressure, the intermediate pressure, and the low pressure in the compressor 2. The low stage screw rotor and the high stage screw rotor are connected to the same shaft. In order to prevent eccentricity of the low-stage and high-stage screw rotors, a pair of low-stage and high-stage gate rotors are disposed at positions 180 degrees symmetrical to each other in the circumferential direction of the shaft. In the case of one type of high-stage gate rotor, the high-stage gate rotor 86 is arranged 90 degrees away from the low-stage gate rotor 87 in the circumferential direction of the shaft.
The low stage capacity control device 66 includes a slide valve 84, a rod 91, and a piston 85, and the high stage capacity control device 67 includes a slide valve 71, a rod 72, a spring 73, and a piston 74.
FIG. 2A is a diagram showing a capacity control mechanism using a general slide valve. Since both the low-stage compression section and the high-stage compression section have the same configuration, the high-stage compression section will be described for the sake of convenience.
The right side of FIG. 2A is an enlarged view of the left side, and shows a state where the slide valve 71 is unloaded. During on-road (100%) operation, the slide valve 71 moves to the position of the broken line in the figure and closes the bypass, so that the refrigerant gas compressed by the engagement of the screw rotor 52 and the high-stage gate rotor 86 has the maximum discharge pressure. It becomes the gas which has, and is discharged to a refrigerant circuit. On the other hand, in the case of unloading operation, a part of the refrigerant is bypassed, so that the refrigerant gas compressed by the engagement of the screw rotor 52 and the high stage gate rotor 86 is discharged to the refrigerant circuit in a state where the pressure is lowered by that amount. .

図3は低段圧縮部22の低段容量制御装置66を表した図である。図3に示すように、低段圧縮部22の低段容量制御装置66は、スライドバルブ84と、ピストン85と、ピストン85とスライドバルブ84とを連結するロッド91および連結アーム96から構成されている。ピストン85は、ピストン室93内に収容され、ピストン室93内をスライド弁側室(図3における右室)931と反スライド弁側室(図3における左室)932に区画している。また、ロッド91には、ピストン85をアンロード側(図3中の左向き)に付勢力を作用するバネ92が設けられている。スライド弁側室931には、常時低段圧縮部22の吐出側から中間圧力MPが与えられている。この図では、説明を簡単にするために、連結アーム96の長手方向の中心を軸としてピストン85と対称位置に有るもう一方のスライドバルブ84についての記載を省略している。   FIG. 3 is a diagram showing the low stage capacity controller 66 of the low stage compressor 22. As shown in FIG. 3, the low stage capacity control device 66 of the low stage compression unit 22 includes a slide valve 84, a piston 85, a rod 91 that connects the piston 85 and the slide valve 84, and a connecting arm 96. Yes. The piston 85 is accommodated in the piston chamber 93 and divides the inside of the piston chamber 93 into a slide valve side chamber (right chamber in FIG. 3) 931 and an anti-slide valve side chamber (left chamber in FIG. 3) 932. Further, the rod 91 is provided with a spring 92 that applies a biasing force to the piston 85 on the unload side (leftward in FIG. 3). An intermediate pressure MP is constantly applied to the slide valve side chamber 931 from the discharge side of the low-stage compression unit 22. In this figure, in order to simplify the description, the description of the other slide valve 84 that is in a symmetrical position with the piston 85 about the center in the longitudinal direction of the connecting arm 96 is omitted.

次に動作について説明する。容量制御は、冷媒ガスがバイパスするためのポートを、スライドバルブ84を移動させることによって開閉させて行う。スライドバルブ84の両端には、それぞれ図3に示すように中間圧力MPと低圧圧力LPが作用しており、中間圧力が高圧圧力より高いとき、制御部64は圧力比に基づいて中間圧力MPが高圧圧力HPより高いことを検出すると、容量制御装置66に対して、アンロードさせるように容量制御信号を出力する。これにより、アンロードが実行される。この場合、図示しない電磁弁駆動装置の駆動により図4に示すように電磁弁94を開き(ON)、ピストン室93の反スライド弁側室(図3における左室)932に作用している高段圧縮開始後の中間圧力よりα2だけ高い中間圧力MP+α2(これをMP1とする。)ガスを低圧圧力部側へ逃がす。これにより、ピストン室93の反スライド弁側室(図3における左室)932にはピストン85を右向きに押す低圧圧力が作用する。一方、反スライド弁側室(図3における右室)932にはピストン85を左向きに押す中間圧力MPとともに連結アーム96を介して、左向きに押す比較的弱いバネ力が作用している。また、スライドバルブ84には右向きに押す中間圧力MPと左向きに押す低圧圧力LPが作用している。ピストン85に作用する中間圧力MPと低圧圧力LPの左向きの差圧とスライドバルブ84に作用する中間圧力MPと低圧圧力LPの右向きの差圧がほぼ等しくなるが、ピストン85の受圧面積がスライドバルブ84の受圧面積に比べてはるかに大きいこと、さらに、ピストン85には左向きに押すバネ力が作用するのでスライドバルブ84を図4に示すようにアンロード側(左向き)へ移動する。
これにより、低段圧縮部22は容量制御され、冷媒ガスがバイパスされるため、吐出される冷媒の中間圧力は低下する。従って、中間圧力が高圧圧力よりも低くなることにより、高段圧縮部23でのオンロード運転が可能となる。
Next, the operation will be described. The capacity control is performed by opening and closing a port for bypassing the refrigerant gas by moving the slide valve 84. As shown in FIG. 3, an intermediate pressure MP and a low pressure LP are applied to both ends of the slide valve 84. When the intermediate pressure is higher than the high pressure, the control unit 64 determines the intermediate pressure MP based on the pressure ratio. When it is detected that the pressure is higher than the high pressure HP, a capacity control signal is output to the capacity controller 66 so as to be unloaded. Thereby, unloading is executed. In this case, the solenoid valve 94 is opened (ON) as shown in FIG. 4 by driving a solenoid valve drive device (not shown), and the high stage acting on the anti-slide valve side chamber (left chamber in FIG. 3) 932 of the piston chamber 93. Intermediate pressure MP + α2 (referred to as MP1) that is higher by α2 than the intermediate pressure after the start of compression is released to the low-pressure part. Thereby, a low pressure pressure that pushes the piston 85 to the right acts on the anti-slide valve side chamber (the left chamber in FIG. 3) 932 of the piston chamber 93. On the other hand, a relatively weak spring force that pushes leftward is applied to the anti-slide valve side chamber (right chamber in FIG. 3) 932 through the connecting arm 96 together with an intermediate pressure MP that pushes the piston 85 leftward. Further, an intermediate pressure MP that pushes right and a low pressure LP that pushes leftward act on the slide valve 84. The leftward differential pressure between the intermediate pressure MP and the low pressure LP acting on the piston 85 and the rightward differential pressure between the intermediate pressure MP and the low pressure LP acting on the slide valve 84 are substantially equal, but the pressure receiving area of the piston 85 is the slide valve. The piston 85 is much larger than the pressure receiving area 84, and a spring force that pushes it to the left acts on the piston 85, so that the slide valve 84 moves to the unload side (leftward) as shown in FIG.
Accordingly, the capacity of the low-stage compression unit 22 is controlled and the refrigerant gas is bypassed, so that the intermediate pressure of the discharged refrigerant is reduced. Therefore, when the intermediate pressure becomes lower than the high pressure, the on-load operation at the high stage compression unit 23 becomes possible.

一方、中間圧力が高圧圧力より低いとき、制御部64は圧力比に基づいて中間圧力が高圧圧力より低いことを検出し、低段容量制御装置66に対して、オンロードさせるように容量制御信号を出力する。これにより、図示しない電磁弁駆動装置が図5に示すように電磁弁94・95を閉(OFF)とし、ピストン室93の反スライド弁側室932内を高段圧縮開始直後の中間圧力よりα2だけ高い中間圧力MP+α2(MP1)とする。これにより、ピストン室93の反スライド弁側室(図3における左室)932にはピストン85を右向きに押す中間圧力MP1が作用する。一方、スライド弁側室(図3における右室)931にはピストン85を左向きに押す中間圧力MPと左向きに押す比較的弱いバネ力が作用している。また、スライドバルブ84には右向きに押す中間圧力MPと左向きに押す低圧圧力LPが作用している。ピストン85に作用する中間圧力MP1と中間圧力MPの差圧α2と、スライドバルブ84に作用する中間圧力MPと低圧圧力LPによる右向きの差圧がロッドに作用し右向きの力が加勢されるため、力のバランスより左向きの比較的弱いバネ力に打ち勝ち、スライドバルブ84はオンロード方向へ移動する。
なお、この場合は、中間圧力が高圧圧力より低いので、高段圧縮部23でもオンロード運転が可能である。
高段圧縮部23でほぼ100%の全負荷運転を行うために、高段圧縮部23の高段容量制御装置67によりオンロード動作させる必要がある。以下、これについて説明する。
高段側をオンロードさせる場合、制御部64は、高段容量制御装置67に対して、オンロードさせるように容量制御信号を出力する。これにより、図示しない電磁弁駆動装置が図6に示すように電磁弁75を閉(OFF)とし、ピストン室76の反スライド弁側室762内を高圧圧力HP+α1とする。これにより、ピストン室76の反スライド弁側室(図6における左室)762にはピストン74を右向きに押す高圧圧力HP1が作用する。一方、スライド弁側室(図6における右室)761にはピストン74を左向きに押す高圧圧力HPと左向きに押す比較的弱いバネ力が作用している。また、スライドバルブ71には右向きに押す高圧圧力HPと左向きに押す中間圧力MPが作用している。この場合、中間圧力MPは低段側容量制御により高圧圧力HPよりも低くなっている。ピストン74に作用する高圧圧力HP1と高圧圧力HPによる右向きの差圧α1とスライドバルブ71に作用する高圧圧力HPと中間圧力MPによる右向きの差圧がロッド72に作用し右向きの力が加勢されるため、力のバランスより左向きの比較的弱いバネ力に打ち勝ち、スライドバルブ71はオンロード方向へ移動する。
On the other hand, when the intermediate pressure is lower than the high pressure, the control unit 64 detects that the intermediate pressure is lower than the high pressure based on the pressure ratio, and the capacity control signal so that the low stage capacity controller 66 is on-loaded. Is output. As a result, a solenoid valve drive device (not shown) closes (OFF) the solenoid valves 94 and 95 as shown in FIG. 5, and the inside of the anti-slide valve side chamber 932 of the piston chamber 93 is only α2 from the intermediate pressure immediately after the start of high-stage compression. High intermediate pressure MP + α2 (MP1). Thus, an intermediate pressure MP1 that pushes the piston 85 to the right acts on the anti-slide valve side chamber (the left chamber in FIG. 3) 932 of the piston chamber 93. On the other hand, an intermediate pressure MP that pushes the piston 85 leftward and a relatively weak spring force that pushes leftward act on the slide valve side chamber (right chamber in FIG. 3) 931. Further, an intermediate pressure MP that pushes right and a low pressure LP that pushes leftward act on the slide valve 84. Since the differential pressure α2 between the intermediate pressure MP1 and the intermediate pressure MP acting on the piston 85 and the rightward differential pressure due to the intermediate pressure MP and the low pressure LP acting on the slide valve 84 act on the rod and a rightward force is applied, The slide valve 84 moves in the on-road direction by overcoming the relatively weak spring force leftward from the force balance.
In this case, since the intermediate pressure is lower than the high pressure, the high-stage compression unit 23 can perform on-road operation.
In order to perform almost 100% full load operation in the high stage compression unit 23, it is necessary to perform an on-load operation by the high stage capacity control device 67 of the high stage compression unit 23. This will be described below.
When the high stage side is onloaded, the control unit 64 outputs a capacity control signal to the high stage capacity control device 67 so as to be onloaded. As a result, a solenoid valve driving device (not shown) closes (OFF) the solenoid valve 75 as shown in FIG. 6, and sets the inside of the anti-slide valve side chamber 762 of the piston chamber 76 to the high pressure HP + α1. As a result, a high pressure HP1 that pushes the piston 74 to the right acts on the anti-slide valve side chamber (left chamber in FIG. 6) 762 of the piston chamber 76. On the other hand, a high pressure HP pushing the piston 74 leftward and a relatively weak spring force pushing leftward act on the slide valve side chamber (right chamber in FIG. 6) 761. Further, a high pressure HP that pushes right and an intermediate pressure MP that pushes leftward act on the slide valve 71. In this case, the intermediate pressure MP is lower than the high pressure HP due to low stage side capacity control. The high pressure HP1 acting on the piston 74 and the right differential pressure α1 due to the high pressure HP and the right differential pressure α1 due to the high pressure HP acting on the slide valve 71 and the intermediate pressure MP act on the rod 72 and a rightward force is applied. Therefore, the spring force that is relatively weak to the left than the force balance is overcome, and the slide valve 71 moves in the on-road direction.

なお、高段側をオンロード方向へ移動するためには、以下の条件が成立しなければならない。
高圧圧力をHP、中間圧力をMP、ピストン受圧面積をA、スライドバルブ受圧面積をa、ロッド受圧面積をb、バネ定数をk、バネ変位をxとして、
In order to move the high stage side in the on-road direction, the following conditions must be satisfied.
High pressure is HP, intermediate pressure is MP, piston pressure receiving area is A, slide valve pressure receiving area is a, rod pressure receiving area is b, spring constant is k, spring displacement is x,

(HP+α1)×A−k×x−HP×(A−b)+HP×(a−b)−MP×a>0…(式1)
k×x=F、とおいて、式1を整理すると
HP> MP+(F−α1×A)/a…(式2)
(HP + α1) × A−k × x−HP × (A−b) + HP × (ab) −MP × a> 0 (Equation 1)
If k × x = F, and rearranging Equation 1, HP> MP + (F−α1 × A) / a (Equation 2)

以上の内容をまとめると、以下の通りとなる。
スクリュー冷凍機1において、高圧圧力よりも中間圧力が高くなると図14に示すように、制御部64が高段容量制御装置67をオンロードさせようとしても力のバランスより、スライドバルブ71をオンロード方向へ移動させることができない場合が生じる。
高段圧縮部23をオンロードできないと、負荷に見合った冷却能力を発揮できないという問題が生じる。また、モーター冷却冷媒を流すことができなくなりモーター21が異常に過熱するといった問題を生じる。さらに、油インジェクションが注入できなくなり、高段圧縮部23のスクリューローターとケーシング51の焼付きが発生し、圧縮ができなくなるという問題があった。このような状態になることを防止するために、制御部64は、常に高圧圧力と中間圧力を圧力検出器61、62により検出し、この圧力検出器61、62より得られた圧力信号より圧力比を算出し、圧力比が予め設定した値を下回ると、低段圧縮部22をアンロードさせるよう圧縮機の低段容量制御装置66へ容量制御信号を出力する。この容量制御信号に基づき、低段圧縮部22が例えば60%容量へアンロードすると、低段圧縮部22の吐出圧力すなわち中間圧力が低下する。中間圧力が低下することによって、高圧圧力との圧力比が予め設定した値を上回り、高段圧縮部23のスライドバルブ71を駆動することができるようになる。
The above contents are summarized as follows.
In the screw refrigerator 1, when the intermediate pressure becomes higher than the high pressure, as shown in FIG. 14, even if the control unit 64 tries to load the high stage capacity control device 67, the slide valve 71 is loaded on the basis of the balance of force. There are cases where it cannot be moved in the direction.
If the high-stage compression unit 23 cannot be on-loaded, there arises a problem that the cooling capacity corresponding to the load cannot be exhibited. Further, there is a problem that the motor cooling refrigerant cannot flow and the motor 21 is abnormally overheated. Furthermore, there is a problem that oil injection cannot be injected, and the screw rotor of the high-stage compression section 23 and the casing 51 are seized and cannot be compressed. In order to prevent such a state, the control unit 64 always detects the high pressure and the intermediate pressure with the pressure detectors 61 and 62, and the pressure signal obtained from the pressure detectors 61 and 62 determines the pressure. When the ratio is calculated and the pressure ratio falls below a preset value, a capacity control signal is output to the low stage capacity control device 66 of the compressor so as to unload the low stage compressor 22. When the low-stage compression unit 22 unloads to, for example, 60% capacity based on the capacity control signal, the discharge pressure, that is, the intermediate pressure of the low-stage compression unit 22 decreases. As the intermediate pressure decreases, the pressure ratio with the high pressure exceeds a preset value, and the slide valve 71 of the high-stage compression unit 23 can be driven.

図7にこの制御により運転が可能となる運転領域の一例を示す。圧力比が1.5となる線を破線、高圧圧力と中間圧力が等しくなる線を実線で示す。図7において、領域1は、高圧圧力>中間圧力×圧力比設定値となる領域であり、安定して高段圧縮部23をオンロードさせることができる領域である。
領域2は、中間圧力<高圧圧力≦中間圧力×圧力比設定値となる領域であり、この領域では高段圧縮部23のオンロード動作が不安定となり、前記のような機能面、信頼性面での問題が発生する。このため、低段圧縮部22をアンロードさせ、中間圧力を低下させる制御を行い、これらの問題の発生を防止する領域である。
領域3は、高圧圧力≦中間圧力となる領域であり、この領域では、高段圧縮部23のオンロード動作が不可能となり、前記のような機能面、信頼性面での問題が発生する。このため、低段圧縮部22をアンロードさせ、中間圧力を低下させる制御を行い、これらの問題の発生を防止する領域である。
FIG. 7 shows an example of an operation region in which operation is possible by this control. A line where the pressure ratio is 1.5 is indicated by a broken line, and a line where the high pressure and the intermediate pressure are equal is indicated by a solid line. In FIG. 7, a region 1 is a region where high pressure> intermediate pressure × pressure ratio set value, and is a region where the high-stage compression unit 23 can be stably on-loaded.
Region 2 is a region where intermediate pressure <high pressure ≦ intermediate pressure × pressure ratio set value. In this region, the on-load operation of the high-stage compression unit 23 becomes unstable, and the above-described functional aspects and reliability aspects Problems occur. For this reason, it is an area | region which performs control which unloads the low stage compression part 22 and reduces an intermediate pressure, and prevents generation | occurrence | production of these problems.
The region 3 is a region where the high pressure ≦ the intermediate pressure. In this region, the on-load operation of the high-stage compression unit 23 becomes impossible, and the above-described problems in terms of function and reliability occur. For this reason, it is an area | region which performs control which unloads the low stage compression part 22 and reduces an intermediate pressure, and prevents generation | occurrence | production of these problems.

図8はこの発明の実施の形態1に係るスクリュー冷凍機の制御系統の構成を示すブロック図である。図8において、制御部64は、例えばマイコンやDSPなどから構成されており、入出力バス65を介して、高圧圧力検出器61、中間圧力検出器62、低圧圧力検出器63と接続されており、これらから検出信号を入力する。また、低段容量制御装置66及び高段容量制御装置67とも接続され、低段容量制御装置66に対しては、電磁弁駆動装置94cを介して電磁弁94・95の開閉を制御する。また、高段容量制御装置67に対しては、電磁弁駆動装置75cを介して電磁弁75の開閉を制御する。
また、図9はスクリュー冷凍機1の制御部64による容量制御の動作を示すフローチャートである。フローを簡素に説明するために、これらに付随する保護制御や電子膨張弁制御の制約については省略しているが、本制御へそのような冷凍機を保護する制御および機能を確保するための電子膨張弁などの冷凍機構成要素の制御を条件として付加することは、差し支えない。
FIG. 8 is a block diagram showing the configuration of the control system of the screw refrigerator according to Embodiment 1 of the present invention. In FIG. 8, the control unit 64 includes, for example, a microcomputer and a DSP, and is connected to a high pressure detector 61, an intermediate pressure detector 62, and a low pressure detector 63 via an input / output bus 65. From these, a detection signal is input. The low stage capacity control device 66 and the high stage capacity control device 67 are also connected, and the low stage capacity control device 66 is controlled to open and close the solenoid valves 94 and 95 via the solenoid valve driving device 94c. For the high stage capacity control device 67, the opening and closing of the electromagnetic valve 75 is controlled via the electromagnetic valve driving device 75c.
FIG. 9 is a flowchart showing the operation of capacity control by the control unit 64 of the screw refrigerator 1. In order to explain the flow in a simple manner, the restrictions of protection control and electronic expansion valve control associated with these are omitted, but electronic control for securing control and functions for protecting such a refrigerator to this control is omitted. It is acceptable to add the control of the refrigerator components such as the expansion valve as a condition.

次に制御部64の動作を図8〜図9を用いて説明する。制御部64は、常に高圧圧力と中間圧力を圧力検出器61、62の出力を取得し(ステップS1)、中間圧力に対する高圧圧力の比を圧力比として演算する(ステップS2)。この圧力比を予め十分に余裕を見込んで設定した値と比較し(ステップS3)、圧力比が設定値を下回るならば、中間圧力が高圧圧力よりも大きいため高段側をオンロードできず、モーター過熱の虞があって危険であるから低段圧縮部22を例えば圧縮機容量60%へアンロード(容量ダウン)させた(ステップS4)上でステップS1から同様の処理を繰り返す。この低段圧縮部22のアンロードにより、低段圧縮部22の吐出圧力すなわち中間圧力が低下する。そして、ステップS3の比較において、圧力比が上記設定値より大きくなれば、低段圧縮部22がオンロード運転しても高段圧縮部23は安全な状態でオンロード運転できるから制御部64は、低段圧縮部22のオンロードを許可し(ステップS5)、さらにステップS1から同様の処理を繰り返す。   Next, the operation of the control unit 64 will be described with reference to FIGS. The controller 64 always obtains the outputs of the pressure detectors 61 and 62 for the high pressure and the intermediate pressure (step S1), and calculates the ratio of the high pressure to the intermediate pressure as the pressure ratio (step S2). This pressure ratio is compared with a value set with a sufficient margin in advance (step S3). If the pressure ratio is lower than the set value, the intermediate pressure is larger than the high pressure, so the high stage cannot be on-loaded. Since there is a risk of overheating of the motor, the low-stage compression unit 22 is unloaded (capacity down) to, for example, a compressor capacity of 60% (step S4), and the same processing is repeated from step S1. Due to the unloading of the low-stage compression unit 22, the discharge pressure, that is, the intermediate pressure of the low-stage compression unit 22 decreases. Then, in the comparison of step S3, if the pressure ratio is larger than the set value, the control unit 64 is able to perform the on-load operation in a safe state even if the low-stage compression unit 22 is on-road operated. Then, the on-load of the low-stage compression unit 22 is permitted (step S5), and the same processing is repeated from step S1.

この高圧圧力と圧力比による制御により低段圧縮部22をアンロードさせる領域と従来の特許文献1に示されている高圧圧力と中間圧力の差圧に基づき制御を行う領域の比較を図10に示す。一例として、圧力比1.5の線を破線、差圧0.15MPaの線を二点鎖線、0.3MPaの線を一点鎖線、高圧圧力=中間圧力の線を実線で示している。領域Aは高圧圧力と中間圧力の差圧が0.15MPa以下となる領域で従来の制御が作用する領域例である。この領域は、圧力比1.5となる領域よりも同じ高圧圧力に対し、中間圧力が高くならないと制御が発動しないため、運転の過程において、中間圧力が次第に上昇してくるときに、制御開始が遅くなり、信頼性の面において、不具合が生じ易くなる。領域Bは高圧圧力と中間圧力の差圧が0.3MPa以下となる領域で従来の制御が作用する領域例である。この場合、高圧圧力が高い場合は、同じ高圧圧力において、圧力比1.5で容量制御を行う場合よりも中間圧力が高くならないと制御が発動しないため、運転の過程において、中間圧力が次第に上昇してくるときに、制御開始が遅くなり、信頼性の面において、不具合が生じ易くなる。高圧圧力が低い場合は、同じ高圧圧力において、圧力比1.5で容量制御を行う場合よりも中間圧力が低くならないと制御が発動しないため、運転の過程において、中間圧力が次第に上昇してくるときに、制御開始が早くなり、機能面において低段圧縮側の周波数制御による容量制御が早く作動し、冷却能力の確保の点で劣る。   FIG. 10 shows a comparison between a region where the low-stage compression unit 22 is unloaded by the control based on the high pressure and the pressure ratio and a region where the control is performed based on the differential pressure between the high pressure and the intermediate pressure disclosed in Patent Document 1. Show. As an example, a line with a pressure ratio of 1.5 is indicated by a broken line, a line with a differential pressure of 0.15 MPa is indicated by a two-dot chain line, a line of 0.3 MPa is indicated by a one-dot chain line, and a line of high pressure = intermediate pressure is indicated by a solid line. Region A is an example of a region where conventional control acts in a region where the differential pressure between the high pressure and the intermediate pressure is 0.15 MPa or less. In this region, control is not triggered unless the intermediate pressure is higher than the same high pressure as in the region where the pressure ratio is 1.5. Therefore, when the intermediate pressure gradually increases during the operation, the control starts. However, in terms of reliability, problems are likely to occur. Region B is an example of a region where conventional control acts in a region where the differential pressure between the high pressure and the intermediate pressure is 0.3 MPa or less. In this case, if the high pressure is high, the control will not be triggered unless the intermediate pressure is higher than the case where capacity control is performed at the pressure ratio of 1.5 at the same high pressure. Therefore, the intermediate pressure gradually increases during the operation. At this time, the start of control is delayed, and problems are likely to occur in terms of reliability. When the high pressure is low, the control is not activated unless the intermediate pressure is lower than the capacity control at the same high pressure with a pressure ratio of 1.5. Therefore, the intermediate pressure gradually increases during the operation. Sometimes, the start of control becomes early, and the capacity control by the frequency control on the low-stage compression side operates quickly in terms of function, and is inferior in terms of ensuring the cooling capacity.

このように高圧圧力と中間圧力の圧力比で容量制御を行うことにより、特許文献2よりもより適切に機能面の維持、信頼性の確保が可能となる。
なお、上記の例では、圧力比に基づいて低段圧縮部の容量を制御するように構成したが、所定の圧力未満では従来の技術である高圧圧力と前記中間圧力との差圧に基づいて低段圧縮部の容量制御を行い、所定の圧力以上では前記圧力比に基づいて容量制御を行うようにしても良い。即ち、図10において、中間圧力が0.6MPa(abs)未満では、圧力比の破線(HP=MP×1.5の線)よりも差圧の一点鎖線(HP=MP+0.3の線)の方が高圧圧力が高いため、差圧で判断した方が安全である。一方、中間圧力が0.6MPa(abs)以上では、逆に差圧の一点鎖線よりも圧力比の破線の方が高圧圧力が高いので、圧力比で判断した方が安全である。従って、このような場合には、制御部は、中間圧力が0.6MPa(abs)未満では、差圧により容量制御し、0.6MPa(abs)以上では、圧力比で容量制御する。
Thus, by performing capacity control with the pressure ratio between the high pressure and the intermediate pressure, it is possible to maintain the function and ensure the reliability more appropriately than in Patent Document 2.
In the above example, the capacity of the low-stage compression unit is controlled based on the pressure ratio. However, if the pressure is less than a predetermined pressure, the capacity is based on the differential pressure between the high pressure and the intermediate pressure, which is a conventional technique. The capacity control of the low-stage compression unit may be performed, and the capacity control may be performed based on the pressure ratio above a predetermined pressure. That is, in FIG. 10, when the intermediate pressure is less than 0.6 MPa (abs), the dash-dot line (HP = MP + 0.3 line) of the differential pressure is larger than the pressure ratio broken line (HP = MP × 1.5 line). Since the high pressure is higher, it is safer to judge by the differential pressure. On the other hand, when the intermediate pressure is 0.6 MPa (abs) or higher, the high pressure is higher on the broken line of the pressure ratio than on the alternate long and short dash line, so it is safer to judge based on the pressure ratio. Therefore, in such a case, the control unit performs capacity control by the differential pressure when the intermediate pressure is less than 0.6 MPa (abs), and performs capacity control by the pressure ratio when the intermediate pressure is 0.6 MPa (abs) or more.

1 スクリュー冷凍機、2 スクリュー圧縮機、12 油分離器、13 凝縮器、14、14a 膨張弁(主液)、14b 膨張弁(油冷却器)、15 蒸発器、21 モーター、22 第一段圧縮部(低段圧縮部)、23 第二段圧縮部(高段圧縮部)、24 油、25 油冷却器、51 ケーシング、52 スクリューローター、61 高圧圧力検出器、62 中間圧力検出器、63 低圧圧力検出器、64 制御部、65 入出力バス、66 低段容量制御装置、67 高段容量制御装置、68 電磁弁、71 スライドバルブ、72 高段容量制御用ロッド、73 バネ、74 ピストン、75 電磁弁、75C 電磁弁駆動装置、76 ピストン室、761 スライド弁側室、762 反スライド弁側室、84 スライドバルブ、85 ピストン、86 高段ゲートローター、87 低段ゲートローター、88 主軸受、89 中間軸受、90 副軸受、91 ロッド、92 バネ、93 ピストン室、931 スライド弁側室、932 反スライド弁側室、94 電磁弁、94C 電磁弁駆動装置、95 電磁弁、96 連結アーム、HP 高圧圧力、HP1 高圧圧力(吐出直前)、α1 吐出直前高圧圧力と高圧圧力の差圧、MP 中間圧力、MP1 中間圧力(高段圧縮開始後)、α2 高段圧縮開始後中間圧力と中間圧力の差圧、LP 低圧圧力。   DESCRIPTION OF SYMBOLS 1 Screw refrigerator, 2 Screw compressor, 12 Oil separator, 13 Condenser, 14, 14a Expansion valve (main liquid), 14b Expansion valve (oil cooler), 15 Evaporator, 21 Motor, 22 First stage compression Part (low stage compression part), 23 second stage compression part (high stage compression part), 24 oil, 25 oil cooler, 51 casing, 52 screw rotor, 61 high pressure detector, 62 intermediate pressure detector, 63 low pressure Pressure detector, 64 control unit, 65 input / output bus, 66 low stage capacity controller, 67 high stage capacity controller, 68 solenoid valve, 71 slide valve, 72 high stage capacity control rod, 73 spring, 74 piston, 75 Solenoid valve, 75C Solenoid valve drive device, 76 piston chamber, 761 slide valve side chamber, 762 anti slide valve side chamber, 84 slide valve, 85 piston, 86 Stage gate rotor, 87 Low stage gate rotor, 88 Main bearing, 89 Intermediate bearing, 90 Sub bearing, 91 Rod, 92 Spring, 93 Piston chamber, 931 Slide valve side chamber, 932 Anti slide valve side chamber, 94 Solenoid valve, 94C Solenoid valve Drive device, 95 solenoid valve, 96 connecting arm, HP high pressure, HP1 high pressure (immediately before discharge), α1 differential pressure between high pressure just before discharge and high pressure, MP intermediate pressure, MP1 intermediate pressure (after starting high-stage compression), α2 Differential pressure between intermediate pressure and intermediate pressure after starting high-stage compression, LP low pressure.

Claims (6)

第1の冷媒ガスを吸い込んで圧縮し、前記第1の冷媒ガスよりも高温且つ高圧の第2の冷媒ガスを第1の圧縮室に吐出する低段圧縮部と、この低段圧縮部から吐出された第2の冷媒ガスを吸い込んで圧縮し、前記第2の冷媒ガスよりも高温且つ高圧の第3の冷媒ガスを第2の圧縮室に吐出する高段圧縮部と、を有するスクリュー型二段圧縮機と、
前記低段圧縮部から吐出された前記第2の冷媒の圧力すなわち中間圧力を検出する第1の圧力検出器と、
前記高段圧縮部から吐出された前記第3の冷媒の圧力すなわち高圧圧力を検出する第2の圧力検出器と、を備え、
前記スクリュー型二段圧縮機は、前記低段圧縮部の第1圧縮室の冷媒の容量を制御する第1の容量制御装置と、前記高段圧縮部の第2圧縮室の冷媒の容量を制御する第2の容量制御装置とを備え、
前記第1の圧力検出器の出力と前記第2の圧力検出器の出力に基づき、前記高圧圧力と前記中間圧力の圧力比を演算し、算出された圧力比の大小に応じて前記低段圧縮部の運転負荷を変えるように前記低段圧縮部の第1の容量制御装置を制御する制御部を備えたことを特徴とするスクリュー冷凍機。
A first refrigerant gas is sucked and compressed, and a second refrigerant gas having a temperature higher than that of the first refrigerant gas and discharged to the first compression chamber is discharged to the first compression chamber, and discharged from the lower stage compressor. A high-stage compression section that sucks and compresses the second refrigerant gas that has been discharged and discharges a third refrigerant gas having a temperature higher and higher than that of the second refrigerant gas into the second compression chamber. A stage compressor;
A first pressure detector that detects a pressure of the second refrigerant discharged from the low-stage compression unit, that is, an intermediate pressure;
A second pressure detector that detects the pressure of the third refrigerant discharged from the high-stage compression section, that is, a high pressure, and
The screw-type two-stage compressor controls a refrigerant capacity of a first compression chamber of the first compression chamber of the low-stage compression section and a refrigerant capacity of a second compression chamber of the high-stage compression section. A second capacity control device,
Based on the output of the first pressure detector and the output of the second pressure detector, a pressure ratio between the high pressure and the intermediate pressure is calculated, and the low-stage compression is performed according to the calculated pressure ratio. A screw refrigerator comprising a control unit that controls the first capacity control device of the low-stage compression unit so as to change an operation load of the unit.
前記圧力比は、前記高圧圧力を前記中間圧力で除算した値であり、
前記制御部は、前記圧力比が予め設定した基準値よりも大きい場合に、第1の負荷で運転するように前記低段圧縮部の第1の容量制御装置を制御し、前記算出された圧力比が前記基準値以下である場合に、前記第1の負荷よりも小さい第2の負荷で運転するように前記低段圧縮部の容量制御装置を制御することを特徴とする請求項1に記載のスクリュー冷凍機。
The pressure ratio is a value obtained by dividing the high pressure by the intermediate pressure,
The control unit controls the first capacity control device of the low-stage compression unit to operate with a first load when the pressure ratio is larger than a preset reference value, and the calculated pressure The capacity control device of the low-stage compression unit is controlled to operate with a second load smaller than the first load when the ratio is equal to or less than the reference value. Screw refrigerator.
前記第1の負荷での運転は、ほぼ100%の負荷で運転する全負荷運転であり、前記第2の負荷での運転は、前記100%よりも小さい所定の負荷で運転する部分負荷運転であることを特徴とする請求項2に記載のスクリュー冷凍機。   The operation at the first load is a full load operation that operates at a load of almost 100%, and the operation at the second load is a partial load operation that operates at a predetermined load smaller than the 100%. The screw refrigerator according to claim 2, wherein the screw refrigerator is provided. 前記第1の容量制御装置は、所定の方向に移動することで前記低段圧縮部の第1の圧縮室の容量を調節するスライドバルブと、
ピストン室と、
前記スライドバルブとロッドを介して連結され、前記ピストン室を反スライド弁側室と、常時中間圧力が与えられるスライド弁側室に区画するピストンと、
前記反スライド弁側室に付与する冷媒の圧力を高段圧縮開始後の中間圧力にするか低圧圧力にするかを制御する電磁弁と、
前記スライド弁側室に配置され前記ピストンを反スライド弁側に押圧するバネと、を備え、
前記制御部は、前記圧力比に基づき、前記電磁弁の開閉を制御して前記ピストンに前記中間圧力と前記低圧圧力の差圧または前記高段圧縮開始後の中間圧力と前記中間圧力の差圧を与えることで前記ピストンを所定の方向またはその逆方向に駆動して、前記スライドバルブを前記ピストンと同じ方向に移動させることを特徴とする請求項1〜3のいずれか一項に記載のスクリュー冷凍機。
The first capacity control device includes a slide valve that adjusts the capacity of the first compression chamber of the low-stage compression unit by moving in a predetermined direction;
A piston chamber;
A piston that is connected to the slide valve via a rod and divides the piston chamber into an anti-slide valve side chamber and a slide valve side chamber to which an intermediate pressure is always applied;
A solenoid valve for controlling whether the pressure of the refrigerant to be applied to the anti-slide valve side chamber is an intermediate pressure or a low pressure after the start of high-stage compression;
A spring disposed in the slide valve side chamber and pressing the piston toward the anti-slide valve side,
The control unit controls the opening and closing of the solenoid valve based on the pressure ratio to cause a differential pressure between the intermediate pressure and the low pressure pressure or a differential pressure between the intermediate pressure and the intermediate pressure after the start of the high-stage compression to the piston. The screw according to any one of claims 1 to 3, wherein the piston is driven in a predetermined direction or the opposite direction by moving the slide valve to move in the same direction as the piston. refrigerator.
前記制御部は、前記圧力比に基づいて前記中間圧力が前記高圧圧力以下であることを検出したとき、前記電磁弁を閉じることで、前記反スライド弁側室の内圧を高段圧縮開始後の中間圧力にし、前記スライドバルブに作用する中間圧力と低圧圧力との差圧により前記ピストンをオンロード側に移動させ、前記圧力比に基づいて前記中間圧力が前記高圧圧力よりも高いことを検出したとき、前記電磁弁を開くことで、前記反スライド弁側室の内圧を低圧圧力にし、前記中間圧力と前記低圧圧力の差圧により前記ピストンをアンロード側に移動させることを特徴とする請求項4に記載のスクリュー冷凍機。   When the control unit detects that the intermediate pressure is equal to or lower than the high pressure based on the pressure ratio, the control unit closes the electromagnetic valve to reduce the internal pressure of the anti-slide valve side chamber to an intermediate level after the start of high-stage compression. When the piston is moved to the on-load side by the differential pressure between the intermediate pressure acting on the slide valve and the low pressure, and the intermediate pressure is detected to be higher than the high pressure based on the pressure ratio The opening of the solenoid valve makes the internal pressure of the anti-slide valve side chamber a low pressure, and the piston is moved to the unload side by the differential pressure between the intermediate pressure and the low pressure. The screw refrigerator as described. 前記制御部は、前記中間圧力が所定の圧力を下回るとき、前記高圧圧力と前記中間圧力との差圧に基づいて容量制御を行い、前記所定の圧力以上のときには前記圧力比の大小による容量制御を行うことを特徴とする請求項1〜5のいずれか一項に記載のスクリュー冷凍機。   The control unit performs capacity control based on a differential pressure between the high pressure and the intermediate pressure when the intermediate pressure is lower than a predetermined pressure, and controls the capacity according to the magnitude of the pressure ratio when the intermediate pressure is equal to or higher than the predetermined pressure. The screw refrigerator as described in any one of Claims 1-5 characterized by performing.
JP2010253520A 2010-11-12 2010-11-12 Screw refrigerator Active JP5634228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253520A JP5634228B2 (en) 2010-11-12 2010-11-12 Screw refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253520A JP5634228B2 (en) 2010-11-12 2010-11-12 Screw refrigerator

Publications (2)

Publication Number Publication Date
JP2012102967A true JP2012102967A (en) 2012-05-31
JP5634228B2 JP5634228B2 (en) 2014-12-03

Family

ID=46393568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253520A Active JP5634228B2 (en) 2010-11-12 2010-11-12 Screw refrigerator

Country Status (1)

Country Link
JP (1) JP5634228B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949366A (en) * 2014-03-31 2015-09-30 三菱电机株式会社 Refrigerator
US20170138645A1 (en) * 2014-05-12 2017-05-18 Panasonic Intellectual Property Management Co. Ltd. Refrigeration cycle device
CN106705519A (en) * 2015-11-12 2017-05-24 新特能源股份有限公司 Multistage refrigerating device and control method thereof
CN112033036A (en) * 2020-08-17 2020-12-04 珠海格力电器股份有限公司 Refrigerating system, control method and air conditioner
WO2020245932A1 (en) * 2019-06-05 2020-12-10 三菱電機株式会社 Screw compressor, and refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231368A (en) * 1991-07-09 1993-09-07 Ebara Corp Operation control system for vacuum pump
JPH0759951B2 (en) * 1989-03-20 1995-06-28 ダイキン工業株式会社 Capacity control device for screw type two-stage compressor
JP2005147511A (en) * 2003-11-14 2005-06-09 Kobe Steel Ltd Refrigerator
JP2005240561A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Expander
JP3837298B2 (en) * 2001-03-07 2006-10-25 株式会社神戸製鋼所 Screw refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759951B2 (en) * 1989-03-20 1995-06-28 ダイキン工業株式会社 Capacity control device for screw type two-stage compressor
JPH05231368A (en) * 1991-07-09 1993-09-07 Ebara Corp Operation control system for vacuum pump
JP3837298B2 (en) * 2001-03-07 2006-10-25 株式会社神戸製鋼所 Screw refrigerator
JP2005147511A (en) * 2003-11-14 2005-06-09 Kobe Steel Ltd Refrigerator
JP2005240561A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Expander

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949366A (en) * 2014-03-31 2015-09-30 三菱电机株式会社 Refrigerator
TWI568982B (en) * 2014-03-31 2017-02-01 Mitsubishi Electric Corp Freezer
US20170138645A1 (en) * 2014-05-12 2017-05-18 Panasonic Intellectual Property Management Co. Ltd. Refrigeration cycle device
US10591188B2 (en) * 2014-05-12 2020-03-17 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device using working fluid containing 1,1,2-trifluoroethylene (R1123) and difluoromethane (R32)
CN106705519A (en) * 2015-11-12 2017-05-24 新特能源股份有限公司 Multistage refrigerating device and control method thereof
CN106705519B (en) * 2015-11-12 2019-04-19 新特能源股份有限公司 Multistage refrigerating plant and its control method
WO2020245932A1 (en) * 2019-06-05 2020-12-10 三菱電機株式会社 Screw compressor, and refrigeration cycle device
CN112033036A (en) * 2020-08-17 2020-12-04 珠海格力电器股份有限公司 Refrigerating system, control method and air conditioner
CN112033036B (en) * 2020-08-17 2024-02-23 珠海格力电器股份有限公司 Refrigerating system, control method and air conditioner

Also Published As

Publication number Publication date
JP5634228B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
EP2329206B1 (en) Flash tank economizer cycle control
EP2551612B1 (en) Supercritical-cycle heat pump
JP5634228B2 (en) Screw refrigerator
JP6713439B2 (en) Refueling air compressor
JP2008190377A (en) Multistage compressor
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
EP1692440A1 (en) Compressor with unloader valve between economizer line and evaporator inlet
JP2006258397A (en) Refrigerator
JP5372880B2 (en) Two-stage compression refrigeration system
KR20110074711A (en) Freezing device
WO2016117037A1 (en) Refrigeration device
JP5484890B2 (en) Refrigeration equipment
JP2007232230A (en) Refrigerating device
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
KR101220663B1 (en) Freezing device
JP2012202565A (en) Refrigeration device
JP6080031B2 (en) Refrigeration equipment
KR101332478B1 (en) Freezing device
JP2010002173A (en) Refrigerator
KR20110074712A (en) Freezing device
KR101429363B1 (en) Oil-cooled two-stage compressor and heat pump
KR102126815B1 (en) Refrigeration apparatus
KR101268207B1 (en) Freezing device
JP6373034B2 (en) refrigerator
JP5538061B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250