JP2012097991A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2012097991A
JP2012097991A JP2010247625A JP2010247625A JP2012097991A JP 2012097991 A JP2012097991 A JP 2012097991A JP 2010247625 A JP2010247625 A JP 2010247625A JP 2010247625 A JP2010247625 A JP 2010247625A JP 2012097991 A JP2012097991 A JP 2012097991A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
wall
tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010247625A
Other languages
Japanese (ja)
Inventor
Yukifumi Sakai
幸文 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010247625A priority Critical patent/JP2012097991A/en
Publication of JP2012097991A publication Critical patent/JP2012097991A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger having durability and excellent heat resistance and corrosion resistance in a combustion exhaust gas flow path for waste or the like, and capable of performing heat exchange with high efficiency.SOLUTION: The heat exchanger 1 includes a heat transfer tube 2 whose rear end is open and front end is composed of closed ceramic, and a metal inner tube 3 arranged to an inner wall of the heat transfer tube via a predetermined gap and communicated with the gap, and is configured such that the front end of the heat transfer tube is arranged in the combustion exhaust gas flow path while being tilted to a downstream side of combustion exhaust gas, and liquid introduced inside the heat transfer tube from the rear end of the heat transfer tube reaches to the front end of the heat transfer tube through a gap between the inner wall of the heat transfer tube 2 and the metal inner tube 3, flows into the inside of the metal inner tube 3 at the front end, and is derived to the outside from another end of the metal inner tube 3.

Description

本発明は熱交換器に関し、例えば、廃棄物等を焼却する焼却炉等の燃焼排ガス流路に設置され、燃焼排ガスとの間で熱交換を行う熱交換器に関する。   The present invention relates to a heat exchanger, for example, a heat exchanger that is installed in a combustion exhaust gas passage such as an incinerator that incinerates waste and performs heat exchange with the combustion exhaust gas.

産業廃棄物等を焼却する焼却炉等においては、焼却によって発生する燃焼排ガスの熱エネルギーを、低温の気体あるいは液体と熱交換して回収し、回収したエネルギーを有効利用することが行われている。   In incinerators that incinerate industrial waste, etc., the thermal energy of combustion exhaust gas generated by incineration is recovered by exchanging heat with a low-temperature gas or liquid, and the recovered energy is effectively used. .

この種の熱交換器としては、例えば特許文献1に示された熱交換器が提案されている。この熱交換器について図6に基づいて説明する。
図6に示すように、熱交換器30は、セラミックス製の伝熱管31と、前記伝熱管31の内部に、伝熱管31の内壁と所定の隙間を介して配置された金属内管32を備えている。また、前記伝熱管31には気体配管33が接続され、金属内管32には気体配管34が接続されている。
As this type of heat exchanger, for example, a heat exchanger disclosed in Patent Document 1 has been proposed. This heat exchanger will be described with reference to FIG.
As shown in FIG. 6, the heat exchanger 30 includes a ceramic heat transfer tube 31 and a metal inner tube 32 disposed inside the heat transfer tube 31 with a predetermined gap from an inner wall of the heat transfer tube 31. ing. A gas pipe 33 is connected to the heat transfer pipe 31, and a gas pipe 34 is connected to the metal inner pipe 32.

また、前記伝熱管31は、上部伝熱管31aと下部伝熱管31bとが非金属の耐火性材料のカップリング31cで連結されて一体的に形成されている。また、前記伝熱管31の上端部にはフランジ31dが形成されている。
このフランジ31dが、水平方向に延設された燃焼排ガス流路40の上壁40aに係止、吊設されることにより、伝熱管31(熱交換器30)が燃焼排ガス流路40の壁面に固定される。
The heat transfer tube 31 is integrally formed by connecting an upper heat transfer tube 31a and a lower heat transfer tube 31b with a coupling 31c of a non-metallic refractory material. A flange 31d is formed at the upper end of the heat transfer tube 31.
The flange 31d is engaged with and suspended from the upper wall 40a of the flue gas passage 40 extending in the horizontal direction, so that the heat transfer tube 31 (heat exchanger 30) is attached to the wall surface of the flue gas passage 40. Fixed.

そして、燃焼排ガス流路40内を流れる燃焼排ガスGが熱交換器30に当たると、伝熱管31を介して、気体配管33から供給される低温の気体Laと燃焼排ガスGとの間で熱交換が行われる。
前記気体Laは、熱交換がなされながら伝熱管31の内壁と金属内管32とのすき間を通じて伝熱管31の先端部まで達する。その後、熱交換によって高温になされた気体Haは、伝熱管31の先端部で金属内管32に流入し、気体配管34から外部に導出される。
When the combustion exhaust gas G flowing in the combustion exhaust gas flow path 40 hits the heat exchanger 30, heat exchange is performed between the low-temperature gas La supplied from the gas pipe 33 and the combustion exhaust gas G via the heat transfer pipe 31. Done.
The gas La reaches the tip of the heat transfer tube 31 through a gap between the inner wall of the heat transfer tube 31 and the metal inner tube 32 while heat exchange is performed. Thereafter, the gas Ha heated to a high temperature by heat exchange flows into the metal inner tube 32 at the tip of the heat transfer tube 31 and is led out from the gas pipe 34 to the outside.

この熱交換器30にあっては、燃焼排ガスGと接する伝熱管31がセラミックスで構成されているため、優れた耐食性を有し、燃焼排ガスG中に、NOx、SOxの他に、塩素、フッ素、硫黄やアルカリ元素などの腐食性の高いガスが含まれている場合にも、好適に用いることができる。   In this heat exchanger 30, since the heat transfer tube 31 in contact with the combustion exhaust gas G is made of ceramics, it has excellent corrosion resistance. In addition to NOx and SOx, chlorine, fluorine is contained in the combustion exhaust gas G. Also, when a highly corrosive gas such as sulfur or alkali element is contained, it can be suitably used.

特開2006−162103号公報JP 2006-162103 A

ところで、上記した熱交換器は、燃焼排ガスと気体との間で熱交換がなされるものであり、高効率に熱交換を行うことができないという課題があった。即ち、本発明者は、高効率に熱交換を行うため、燃焼ガスと水などの液体との間で熱交換を行う熱交換器であって、しかも廃棄物等を焼却する焼却炉等の燃焼排ガス流路において好適に用いることができる熱交換器を鋭意検討し、本発明を想到するに至った。   By the way, the above-mentioned heat exchanger performs heat exchange between combustion exhaust gas and gas, and has a problem that heat exchange cannot be performed with high efficiency. That is, the present inventor is a heat exchanger that performs heat exchange between a combustion gas and a liquid such as water in order to perform heat exchange with high efficiency, and in addition, a combustion such as an incinerator that incinerates waste or the like. The present inventors have come up with the present invention by intensively studying heat exchangers that can be suitably used in exhaust gas passages.

本発明の目的は、廃棄物等を焼却する焼却炉等の燃焼排ガス流路において耐熱性および耐食性に優れて耐久性があり、高効率に熱交換を行える熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that is excellent in heat resistance and corrosion resistance in a combustion exhaust gas passage such as an incinerator for incinerating wastes and the like, is durable, and can perform heat exchange with high efficiency.

上記目的を達成するため本発明の熱交換器は、垂直方向に延設され、燃焼排ガスが上方から下方に垂直に流下するように構成された燃焼排ガス流路の壁に設置される熱交換器であって、前記熱交換器は、後端部が開口すると共に、先端部が閉口したセラミックスからなる伝熱管と、前記伝熱管の内壁に対して所定の隙間を介して配置されており、前記隙間と連通する金属内管とを備え、前記伝熱管の先端部が、燃焼排ガスの下流側に傾倒した状態になるよう燃焼排ガス流路内に配置され、前記伝熱管後端部から伝熱管内部に導入された液体が、伝熱管の内壁と金属内管とのすき間を通じて伝熱管の先端部まで達し、先端部で金属内管内部に流入して、前記金属内管の他端部から外部に導出するように構成されていることを特徴としている。   In order to achieve the above object, a heat exchanger according to the present invention is installed in a wall of a combustion exhaust gas passage that extends in the vertical direction and is configured such that the combustion exhaust gas flows vertically downward from above. The heat exchanger is disposed through a predetermined gap with respect to the heat transfer tube made of ceramics whose rear end portion is open and the front end portion is closed, and the inner wall of the heat transfer tube, A metal inner pipe communicating with the gap, the tip of the heat transfer tube is disposed in the combustion exhaust gas flow path so as to be inclined to the downstream side of the combustion exhaust gas, and from the rear end of the heat transfer tube to the inside of the heat transfer tube The liquid introduced into the heat transfer tube reaches the tip of the heat transfer tube through the gap between the inner wall of the heat transfer tube and the metal inner tube, flows into the metal inner tube at the tip, and flows from the other end of the metal inner tube to the outside. It is characterized by being configured to derive.

このように、前記伝熱管を燃焼排ガス流路内において、燃焼排ガスの下流側に傾倒した状態に配置することによって、従来例で示したような燃焼排ガスの流れに伝熱管を垂直あるいは水平に比べ、熱伝達率が大きくなり、熱交換を高効率に行うことができる。
特に、前記伝熱管に流入した液体は、伝熱管の内壁と金属内管とのすき間で沸騰し、沸騰によって生じる気泡は伝熱管の開口端側(後端側)に移動し、伝熱管の開口端側から供給される液体と衝突し撹拌され、最終的に高温になった液体が伝熱管の先端部で金属内管内部に流入して、前記金属内管の他端部から外部に流出するため、十分な熱交換がなされる。
更に、前記伝熱管の外表面に結露が生じた際にも、前記結露による、硫酸、硝酸等の成分を含む水滴が、燃焼排ガス流路の壁側(内表面側)に流れないため、伝熱管を取付けるための部材等の腐食を抑制することができる。
In this way, by arranging the heat transfer tube in a state where the heat transfer tube is tilted to the downstream side of the combustion exhaust gas, the heat transfer tube is compared with the vertical or horizontal flow of the combustion exhaust gas as shown in the conventional example. As a result, the heat transfer coefficient is increased and heat exchange can be performed with high efficiency.
In particular, the liquid that has flowed into the heat transfer tube boils in the gap between the inner wall of the heat transfer tube and the metal inner tube, and bubbles generated by the boiling move to the open end side (rear end side) of the heat transfer tube, thereby opening the heat transfer tube. The liquid which collides with the liquid supplied from the end side and is stirred and finally becomes high temperature flows into the inner metal tube at the tip of the heat transfer tube, and flows out from the other end of the inner metal tube to the outside. Therefore, sufficient heat exchange is performed.
Further, even when condensation occurs on the outer surface of the heat transfer tube, water droplets containing components such as sulfuric acid and nitric acid due to the condensation do not flow to the wall side (inner surface side) of the combustion exhaust gas channel. Corrosion of a member or the like for attaching the heat pipe can be suppressed.

ここで、前記燃焼排ガス流路の壁に、この壁に対する垂線と平行に貫通孔が形成され、この貫通孔に、燃焼排ガス流路の内壁面に相当する位置において屈曲する形状に形成された伝熱管が設置されていることが望ましい。   Here, a through hole is formed in the wall of the flue gas flow path in parallel with a perpendicular to the wall, and the through hole is formed in a shape bent at a position corresponding to the inner wall surface of the flue gas flow path. It is desirable to install a heat pipe.

また、前記燃焼排ガス流路の壁に、この壁に対する垂線から燃焼排ガス流路の下流側に、所定角度傾斜した貫通孔を形成し、この貫通孔に直線状の伝熱管が設置されることが望ましい。
更に、前記伝熱管が、燃焼排ガス流路の壁に相対向して、高さ方向において交互に配置されていることが望ましい。
In addition, a through hole inclined at a predetermined angle may be formed on the wall of the flue gas flow channel on the downstream side of the flue gas flow channel from a perpendicular to the wall, and a linear heat transfer tube may be installed in the through hole. desirable.
Furthermore, it is desirable that the heat transfer tubes are alternately arranged in the height direction so as to face the wall of the combustion exhaust gas flow path.

本発明によれば、廃棄物等を焼却する焼却炉等の燃焼排ガス流路において耐熱性および耐食性に優れて耐久性があり、高効率に熱交換を行える熱交換器を得ることができる。   According to the present invention, it is possible to obtain a heat exchanger that is excellent in heat resistance and corrosion resistance in a combustion exhaust gas passage such as an incinerator that incinerates waste, has durability, and can perform heat exchange with high efficiency.

本発明の一実施形態にかかる熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger concerning one Embodiment of this invention. 図1に示された一つの熱交換器を示す断面図である。It is sectional drawing which shows one heat exchanger shown by FIG. 図2に示された熱交換器の要部拡大図である。It is a principal part enlarged view of the heat exchanger shown by FIG. 図3のI−I断面図である。It is II sectional drawing of FIG. 本発明にかかる熱交換器の変形例を示す断面図である。It is sectional drawing which shows the modification of the heat exchanger concerning this invention. 従来の熱交換器を示す断面図である。It is sectional drawing which shows the conventional heat exchanger.

以下、本発明の熱交換器にかかる実施形態を図1乃至図4基づいて説明する。
この熱交換器1は、図1に示すように、焼却炉や溶融炉等30と、脱硫、脱硝装置等の浄化装置20との間の燃焼排ガス流路10の壁10aに設置される。
この熱交換器1が設置される燃焼排ガス流路10は垂直方向に延設され、燃焼排ガスGが燃焼排ガス流路10の上方から下方に位置する浄化装置20に向けて垂直に流下するように構成されている。
熱交換器1は、図2に示すように、燃焼排ガス流路10の壁10aの内壁面側を不定形耐火物11により固定され、壁10aの外壁面側を固定部材12(例えば、ゴムなどの弾性体)により固定されている。固定部材12により固定することで、伝熱管2にかかる応力を緩和し、伝熱管2の破損を防止することができる。
Hereinafter, an embodiment according to a heat exchanger of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the heat exchanger 1 is installed on a wall 10a of a flue gas passage 10 between an incinerator 30 or a melting furnace 30 and a purification device 20 such as a desulfurization or denitration device.
The flue gas flow path 10 in which the heat exchanger 1 is installed is extended in the vertical direction so that the flue gas G flows down vertically from the upper side of the flue gas flow path 10 toward the purification device 20 located below. It is configured.
As shown in FIG. 2, in the heat exchanger 1, the inner wall surface side of the wall 10a of the flue gas passage 10 is fixed by an irregular refractory 11, and the outer wall surface side of the wall 10a is fixed by a fixing member 12 (for example, rubber or the like). The elastic body is fixed. By fixing with the fixing member 12, the stress concerning the heat exchanger tube 2 can be relieved and the heat exchanger tube 2 can be prevented from being damaged.

前記熱交換器1は、後端部が開口すると共に、先端部が閉口したセラミックスからなる伝熱管2と、前記伝熱管2の内部に挿入、配置される金属内管3を備えている。この金属内管3は、図2,3に示すように前記伝熱管2の内壁に対して所定の隙間を介して配置されており、前記隙間と金属内管3の内部とは連通している。   The heat exchanger 1 includes a heat transfer tube 2 made of ceramics having a rear end opened and a front end closed, and an inner metal tube 3 inserted and arranged in the heat transfer tube 2. As shown in FIGS. 2 and 3, the metal inner tube 3 is arranged with a predetermined gap with respect to the inner wall of the heat transfer tube 2, and the gap and the inside of the metal inner tube 3 communicate with each other. .

前記伝熱管2の後端部には、図2,3に示すようにフランジ2aが形成され、このフランジ部2aには、液体Lの導入口4aが形成された、ステンレスあるいはフッ素樹脂コートされたステンレス製の導入板4が取り付けられている。
そして、この導入板4の中心部分には、図4に示すように、前記金属内管3が挿通しており、前記導入口4aは金属内管3の周囲に4個の貫通孔として形成されている。尚、この導入口4aの数は、特に限定されるものではなく、必要に応じて増減することができる。
The rear end portion of the heat transfer tubes 2, the flange 2a is formed as shown in FIGS. 2 and 3, the flange portion 2a, inlet 4a of the liquid L L is formed is stainless or fluorine resin coating A stainless steel introduction plate 4 is attached.
Then, as shown in FIG. 4, the inner metal tube 3 is inserted through the central portion of the introduction plate 4, and the introduction port 4 a is formed as four through holes around the inner metal tube 3. ing. The number of the inlets 4a is not particularly limited and can be increased or decreased as necessary.

更に、図2,3に示すように、前記の外側に、液体Lを貯留する、ステンレスあるいはフッ素樹脂コートされたステンレス製の貯留部5が形成されている。この貯留部5には、液体Lを貯留部5に導入するための導入管5aが取り付けられている。
このように、導入板4の外側に液体Lを貯留する貯留部5が形成されているため、導入管5aが導入された液体Lは、貯留部5を介して導入板4の導入口4aから伝熱管2の内部に供給される。尚、前記貯留部5及び前記導入板4は、一体的な一つの部材として構成されているのが、熱交換器1を組立てる上からも好ましい。
Further, as shown in FIGS. 2 and 3, a stainless steel or fluororesin-coated stainless steel storage portion 5 for storing the liquid L L is formed outside the above. The reservoir 5, inlet tube 5a for introducing the liquid L L in reservoir 5 is attached.
Thus, since the reservoir 5 for storing the liquid L L outside the introducing plate 4 is formed, the liquid L L which inlet tube 5a is introduced, introduction port introducing plate 4 through the reservoir 5 It is supplied into the heat transfer tube 2 from 4a. In addition, it is preferable from the standpoint of assembling the heat exchanger 1 that the storage part 5 and the introduction plate 4 are configured as one integral member.

前記伝熱管2の内部に供給される液体は、水、工業用水、純水等を用いることができる。特に、伝熱管2および金属内管3への付着・沈着物による閉塞防止の観点から純水を用いるのが好ましい。   The liquid supplied into the heat transfer tube 2 can be water, industrial water, pure water, or the like. In particular, it is preferable to use pure water from the viewpoint of preventing the heat transfer tube 2 and the metal inner tube 3 from being blocked by deposits and deposits.

また、図中の符号6は,伝熱管2のフランジ2aと燃焼排ガス流路10の壁10aとの間に配置されたシール部材であって、材質としてはゴム等が用いられる。このシール部材6は、炉壁10aから燃焼排ガスが漏れないようになすこと、及び伝熱管2を固定するために用いられる。尚、前記した固定部材12とこのシール部材6とを一体として形成し、一つの部材とするのが、熱交換器1の組立て上、好ましい。
また、図2,3において、符号13は、前記伝熱管2、導入板4、貯留部5等を燃焼排ガス流路10の壁10aに取り付けるためのボルトであって、導入板4、受けフランジ14を挿通し、シール部材6に螺合するように構成され、前記伝熱管2のフランジ2aは、導入板4と受けフランジ14によって固定される。尚、図中、符号15はOリングである。
Reference numeral 6 in the figure denotes a seal member disposed between the flange 2a of the heat transfer tube 2 and the wall 10a of the combustion exhaust gas passage 10, and a material such as rubber is used. The seal member 6 is used to prevent combustion exhaust gas from leaking from the furnace wall 10a and to fix the heat transfer tube 2. It is preferable that the fixing member 12 and the sealing member 6 are integrally formed as one member in terms of assembling the heat exchanger 1.
2 and 3, reference numeral 13 denotes a bolt for attaching the heat transfer tube 2, the introduction plate 4, the storage portion 5, and the like to the wall 10 a of the combustion exhaust gas passage 10, and the introduction plate 4 and the receiving flange 14. The flange 2 a of the heat transfer tube 2 is fixed by the introduction plate 4 and the receiving flange 14. In the figure, reference numeral 15 denotes an O-ring.

更に、前記伝熱管2の構成について詳述する。この伝熱管2は、直線状の管(直管)として形成されている。
図2に示すように、燃焼排ガス流路10の壁10aに前記伝熱管2を挿通する貫通孔10cを、壁10aに対する垂線Yから燃焼排ガスGの下流側に、角度θh傾斜して形成する。また、焼排ガス流路10の外表面10dと伝熱管2のフランジ2aの間に、所定の角度で傾斜した傾斜面を有するシール部材6を介して、前記伝熱管が2が取り付けられている。尚、金属内管42についても直線状の管(直管)として形成されている。
具体的には、図2,3に示すように、燃焼排ガス流路10内の伝熱管2は、燃焼排ガス流路10の壁10aの垂線Yに対して燃焼排ガスGの下流側に、角度θ傾倒した状態に配置される。
Further, the configuration of the heat transfer tube 2 will be described in detail. The heat transfer tube 2 is formed as a straight tube (straight tube).
As shown in FIG. 2, a through hole 10c through which the heat transfer tube 2 is inserted into the wall 10a of the flue gas passage 10 is formed at an angle θh inclined from the perpendicular line Y to the wall 10a on the downstream side of the flue gas G. Further, the heat transfer tube 2 is attached between the outer surface 10d of the flue gas passage 10 and the flange 2a of the heat transfer tube 2 via a seal member 6 having an inclined surface inclined at a predetermined angle. The inner metal pipe 42 is also formed as a straight pipe (straight pipe).
Specifically, as shown in FIGS. 2 and 3, the heat transfer pipe 2 in the flue gas passage 10 is disposed at an angle θ on the downstream side of the flue gas G with respect to the vertical line Y of the wall 10 a of the flue gas passage 10. Arranged in a tilted state.

この角度が20度未満の場合には、前記伝熱管2の炉内長を十分に確保できず熱交換を高効率に行うことができない。また前記伝熱管2の表面で結露した腐食性を有する液体が燃焼排ガスGの流れによって燃焼排ガス流路壁10aに接触する虞れがあり好ましくない。一方、この角度が65度超える場合には、前記伝熱管2と前記シール部材6aとの間のシール性が低下する虞れがある。また隣り合う導入板4、貯留部5、伝熱管2等が近接し、距離が狭くなり設置のためのスペースを確保できない虞があり、または交換作業効率が低下する虞れがあるため好ましくない。したがって、前記角度θは、20〜65度の範囲が好ましい。   When this angle is less than 20 degrees, the furnace length of the heat transfer tube 2 cannot be sufficiently secured, and heat exchange cannot be performed with high efficiency. Moreover, there is a possibility that the corrosive liquid condensed on the surface of the heat transfer tube 2 may come into contact with the combustion exhaust gas passage wall 10a by the flow of the combustion exhaust gas G. On the other hand, when this angle exceeds 65 degrees, the sealing performance between the heat transfer tube 2 and the seal member 6a may be deteriorated. Moreover, since the adjacent introduction plate 4, the storage part 5, the heat transfer tube 2 and the like are close to each other and the distance becomes narrow and a space for installation cannot be secured, or replacement work efficiency may be lowered, it is not preferable. Therefore, the angle θ is preferably in the range of 20 to 65 degrees.

このように、前記伝熱管2が燃焼排ガスGの下流側に傾倒した状態に配置されることにより、従来例で示したような燃焼排ガスGの流れに垂直に配置した場合よりも、前記伝熱管2における燃焼排ガスGとの接触面積を大きくなすことができ、熱交換を高効率に行うことができる。   In this way, the heat transfer tube 2 is disposed in a state of being inclined to the downstream side of the combustion exhaust gas G, so that the heat transfer tube is more than the case where it is disposed perpendicular to the flow of the combustion exhaust gas G as shown in the conventional example. The contact area with the combustion exhaust gas G in 2 can be increased, and heat exchange can be performed with high efficiency.

また、燃焼排ガス流路10中を流れる燃焼排ガスGが伝熱管2と接触した際、硫酸、硝酸等の成分を含む結露が生じることがある。この際、前記伝熱管2は燃焼排ガスGの下流側に傾倒した状態に配置されているため、硫酸、硝酸等の成分を含む水滴は、伝熱管2の先端部側に流れ落ちる。
このように、前記結露による、硫酸、硝酸等の成分を含む水滴が、燃焼排ガス流路10の内表面10b側に流れないため、燃焼排ガス流路壁10a、不定形耐火物11、シール部材6などの腐食を抑制することができる。またこの結露による水滴は、前記伝熱管2の先端部側から下方向に位置する浄化装置20に落下し、処理される。
Further, when the combustion exhaust gas G flowing through the combustion exhaust gas passage 10 comes into contact with the heat transfer tube 2, condensation including components such as sulfuric acid and nitric acid may occur. At this time, since the heat transfer tube 2 is disposed in a state of being inclined to the downstream side of the combustion exhaust gas G, water droplets containing components such as sulfuric acid and nitric acid flow down to the tip end side of the heat transfer tube 2.
In this way, water droplets containing components such as sulfuric acid and nitric acid due to the condensation do not flow to the inner surface 10b side of the flue gas passage 10, so the flue gas passage wall 10a, the indeterminate refractory 11, and the seal member 6 Corrosion such as can be suppressed. Further, the water droplets due to this condensation fall from the distal end side of the heat transfer tube 2 to the purification device 20 positioned downward and are processed.

また、図1に示すように、前記伝熱管2が燃焼排ガス流路の壁に相対向して、高さ方向において交互に配置されている。具体的には、左右に夫々3本の伝熱管2を設けているが、これに限定されることなく、数多くの伝熱管2を設置することにより、高効率な熱交換をなすことができる。
また、燃焼排ガスGには、NOx、SOxの他に、塩素、フッ素、硫黄やアルカリ元素などの非常に強い腐食性物質を含んでいるため、前記伝熱管2は、焼却灰の成分と反応しにくく耐食性に優れ、耐熱性のある炭化珪素、炭化チタン、炭化ジルコニウム等のセラミックスを用いることが好ましい。尚、これらのセラミックスは、熱伝導性にも優れ、熱交換率を向上させることが可能となる。
Moreover, as shown in FIG. 1, the said heat exchanger tube 2 is alternately arrange | positioned in the height direction facing the wall of a combustion exhaust gas flow path. Specifically, three heat transfer tubes 2 are provided on the left and right, respectively, but the present invention is not limited to this, and by installing a large number of heat transfer tubes 2, high-efficiency heat exchange can be achieved.
Further, since the combustion exhaust gas G contains very strong corrosive substances such as chlorine, fluorine, sulfur and alkali elements in addition to NOx and SOx, the heat transfer tube 2 reacts with components of incineration ash. It is preferable to use ceramics such as silicon carbide, titanium carbide and zirconium carbide which are difficult to resist and have excellent corrosion resistance and heat resistance. In addition, these ceramics are excellent also in heat conductivity, and it becomes possible to improve a heat exchange rate.

また、伝熱管2の長さAは、図1、図2に示すように、燃焼排ガス流路10の断面が円形状の場合には、燃焼排ガス流路10の直径Bの1/2〜3/2が好ましい。このときの前記伝熱管2の外径Dは、熱媒体の流量により適宜選択できるがφ40〜φ280mm、肉厚が5〜15mmであることが好ましい。   The length A of the heat transfer tube 2 is ½ to 3 of the diameter B of the flue gas passage 10 when the cross section of the flue gas passage 10 is circular as shown in FIGS. / 2 is preferred. The outer diameter D of the heat transfer tube 2 at this time can be appropriately selected depending on the flow rate of the heat medium, but is preferably φ40 to φ280 mm and a wall thickness of 5 to 15 mm.

また、伝熱管の内表面の表面粗さRaは0.3μm〜200μmが好ましい。より好ましくは表面粗さRaは50μm〜100μmである。上記範囲とすることにより、熱媒体の核沸騰において適度な大きさの気泡が発生して効率良く熱交換することができる。   Moreover, the surface roughness Ra of the inner surface of the heat transfer tube is preferably 0.3 μm to 200 μm. More preferably, the surface roughness Ra is 50 μm to 100 μm. By setting it as the said range, the bubble of a moderate magnitude | size will generate | occur | produce in the nucleate boiling of a heat medium, and it can heat-exchange efficiently.

また、金属内管3は、高腐食性ガスに晒されることはないが、耐食性および耐熱性に優れたステンレス、Ni基合金等を用いるのが好ましい。
この金属内管3は、伝熱管の長さよりも短く、伝熱管2の先端部において隙間Sが伝熱管2の内径dの1/2から内径相当に形成されるのが好ましい。伝熱管2の先端部内表面と、金属内管3の先端部の隙間Sが伝熱管2の内径dの1/2未満の場合には、隙間S部の内圧が高くなり、伝熱管2の内径d相当以上の場合には先端まで熱媒体(液体)が流れないため好ましくない。
The inner metal pipe 3 is not exposed to highly corrosive gas, but it is preferable to use stainless steel, Ni-base alloy, etc., which are excellent in corrosion resistance and heat resistance.
The inner metal tube 3 is preferably shorter than the length of the heat transfer tube, and the gap S is preferably formed at the tip of the heat transfer tube 2 so as to have an inner diameter corresponding to 1/2 of the inner diameter d of the heat transfer tube 2. When the gap S between the inner surface of the tip of the heat transfer tube 2 and the tip of the metal inner tube 3 is less than ½ of the inner diameter d of the heat transfer tube 2, the internal pressure of the gap S increases and the inner diameter of the heat transfer tube 2 increases. If it is equal to or more than d, the heat medium (liquid) does not flow to the tip, which is not preferable.

また、金属内管3の内側断面積は、伝熱管2の内側断面積(金属内管3の断面積を除く)の100%〜130%で形成されるのが好ましい。
金属内管3の内側断面積が伝熱管2の内側断面積より小さい場合には、加熱された熱媒体(液体)の体積膨張により内圧が上昇し、熱媒体の流量が低下してしまうため好ましくない。一方、金属内管3の内側断面積が伝熱管2の内側断面積の130%より大きい場合には、伝熱管2内を流れる熱媒体(液体)の流量が減少し熱交換を高効率におこなうことができないため好ましくない。
Further, the inner cross-sectional area of the inner metal tube 3 is preferably formed to be 100% to 130% of the inner cross-sectional area of the heat transfer tube 2 (excluding the cross-sectional area of the inner metal tube 3).
When the inner cross-sectional area of the metal inner tube 3 is smaller than the inner cross-sectional area of the heat transfer tube 2, the internal pressure increases due to the volume expansion of the heated heat medium (liquid), and the flow rate of the heat medium decreases. Absent. On the other hand, when the inner cross-sectional area of the metal inner tube 3 is larger than 130% of the inner cross-sectional area of the heat transfer tube 2, the flow rate of the heat medium (liquid) flowing in the heat transfer tube 2 is reduced, and heat exchange is performed with high efficiency. It is not preferable because it cannot be done.

また、金属内管5の外周面表面粗さは圧力損失を低くするため滑らかな方が好ましい。管長手方向でRa≦1μmであることが好ましい。   Also, the outer peripheral surface roughness of the inner metal tube 5 is preferably smooth in order to reduce the pressure loss. It is preferable that Ra ≦ 1 μm in the longitudinal direction of the tube.

次に、本発明にかかる熱交換器1の動作、作用について説明する。まず、液体導入管5aから貯留部5に導入された液体L(例えば、水)は、導入板4の導入口4aから伝熱管2の内部に導出される。そして、この液体はL伝熱管2の内壁と金属内管3とのすき間を通じて伝熱管2の先端部まで達し、先端部で金属内管3内部に流入して、前記金属内管3の他端部から外部に流出する。 Next, the operation and action of the heat exchanger 1 according to the present invention will be described. First, the liquid L L (for example, water) introduced from the liquid introduction pipe 5 a into the storage unit 5 is led out from the introduction port 4 a of the introduction plate 4 to the inside of the heat transfer pipe 2. The liquid reaches the tip of the heat transfer tube 2 through the gap between the inner wall of the LL heat transfer tube 2 and the metal inner tube 3, flows into the metal inner tube 3 at the tip, and other than the metal inner tube 3. Outflow from the end.

このとき、前記伝熱管2は、燃焼排ガス流路10を流通する燃焼排ガスGによって加熱されており、前記伝熱管2に流入した液体は、熱交換によって高温の液体Lとなって前記金属内管3の他端部から外部に導出される。 At this time, the heat transfer tube 2 is heated by the combustion exhaust gas G flowing through the combustion exhaust gas flow path 10, and the liquid flowing into the heat transfer tube 2 becomes a high-temperature liquid L H by heat exchange. It is led out from the other end of the tube 3 to the outside.

このとき、燃焼排ガスGの温度は一般的に100〜300℃であるため、前記伝熱管2の温度も前記温度に加熱される。
その結果、前記伝熱管2に流入した液体は、伝熱管2の内壁と金属内管3とのすき間で沸騰する。図2に示すように、この沸騰によって生じる気泡Fは伝熱管2の開口端側に移動し、伝熱管2の開口端側から供給される液体と衝突し、十分な熱交換がなされる。
そして、最終的に高温になった液体Lが伝熱管2の先端部で金属内管3内部に流入して、前記金属内管3の他端部から外部に流出する。
At this time, since the temperature of the combustion exhaust gas G is generally 100 to 300 ° C., the temperature of the heat transfer tube 2 is also heated to the temperature.
As a result, the liquid flowing into the heat transfer tube 2 boils in the gap between the inner wall of the heat transfer tube 2 and the metal inner tube 3. As shown in FIG. 2, the bubbles F generated by the boiling move to the opening end side of the heat transfer tube 2, collide with the liquid supplied from the opening end side of the heat transfer tube 2, and sufficient heat exchange is performed.
Then, finally the liquid L H became hot flows into 3 inside the pipe metal at the tip of the heat transfer tube 2, it flows out from the other end of the metal inner tube 3.

次に、本発明にかかる熱交換器の変形例を図5に示す。この熱交換器40は、前記した実施形態における伝熱管2のように直線状の形状ではなく、燃焼排ガス流路10の内壁面10bに相当する位置において屈曲した形状に形成された、屈曲管が用いられている点に特徴がある。即ち、この伝熱管41は、図5に示すように、燃焼排ガス流路壁10aの内表面10bの位置する箇所で屈曲し、前記伝熱管2の先端部が燃焼排ガスGの下流側に傾倒した状態になるように配置されている。   Next, the modification of the heat exchanger concerning this invention is shown in FIG. The heat exchanger 40 is not a linear shape like the heat transfer tube 2 in the above-described embodiment, but a bent tube formed in a bent shape at a position corresponding to the inner wall surface 10b of the combustion exhaust gas passage 10. It is characterized in that it is used. That is, as shown in FIG. 5, the heat transfer tube 41 is bent at a position on the inner surface 10b of the combustion exhaust gas passage wall 10a, and the tip of the heat transfer tube 2 is tilted to the downstream side of the combustion exhaust gas G. It is arranged to be in a state.

具体的には、図5に示すように、燃焼排ガス流路10内の伝熱管41は、燃焼排ガス流路10の壁10aの垂線Yに対して燃焼排ガスGの下流側に、角度θ傾倒した状態に配置される。また、金属内管42についても、燃焼排ガス流路壁10aの内表面10bの位置する箇所で屈曲し、前記金属内管42の先端部が燃焼排ガスGの下流側に傾倒した状態になるように配置されている。尚、屈曲した伝熱管41が用いられるため、シール部材43は、前記した傾斜面を有するシール部材6と異なり、傾斜面を有しないものを用いることができる。   Specifically, as shown in FIG. 5, the heat transfer pipe 41 in the flue gas passage 10 is tilted at an angle θ to the downstream side of the flue gas G with respect to the perpendicular Y of the wall 10 a of the flue gas passage 10. Placed in a state. Further, the inner metal pipe 42 is also bent at a position where the inner surface 10b of the flue gas passage wall 10a is located so that the tip of the inner metal pipe 42 is inclined to the downstream side of the flue gas G. Has been placed. In addition, since the bent heat transfer tube 41 is used, the seal member 43 can be a member having no inclined surface unlike the seal member 6 having the inclined surface.

1 熱交換器
2 伝熱管
2a フランジ
3 金属内管
4 導入板
5 貯留部
6 シール部材
10 燃焼排ガス流路
10a 壁
10b 内表面
10c 貫通孔
10d 外表面
20 浄化装置
40 熱交換器
41 伝熱管
42 金属内管
43 シール部材
θ 燃焼排ガス流路の壁面に対する垂線と、伝熱管とのなす角度
θh 燃焼排ガス流路の壁面に対する垂線と、伝熱管を挿通する貫通孔がなす角度
1 Heat exchanger 2 Heat transfer tube
2a Flange
3 Metal inner pipe 4 Introduction plate 5 Storage section 6 Seal member 10 Combustion exhaust gas flow path 10a Wall 10b Inner surface 10c Through hole 10d Outer surface 20 Purification device 40 Heat exchanger 41 Heat transfer tube 42 Metal inner tube 43 Seal member θ Combustion exhaust gas flow Angle formed between the perpendicular to the wall of the road and the heat transfer tube θh Angle formed between the perpendicular to the wall of the flue gas flow path and the through hole that passes through the heat transfer tube

Claims (4)

垂直方向に延設され、燃焼排ガスが上方から下方に垂直に流下するように構成された燃焼排ガス流路の壁に設置される熱交換器であって、
前記熱交換器は、後端部が開口すると共に、先端部が閉口したセラミックスからなる伝熱管と、前記伝熱管の内壁に対して所定の隙間を介して配置されており、前記隙間と連通する金属内管とを備え、前記伝熱管の先端部が、燃焼排ガスの下流側に傾倒した状態になるよう燃焼排ガス流路内に配置され、
前記伝熱管後端部から伝熱管内部に導入された液体が、伝熱管の内壁と金属内管とのすき間を通じて伝熱管の先端部まで達し、先端部で金属内管内部に流入して、前記金属内管の他端部から外部に導出するように構成されていることを特徴とする熱交換器。
A heat exchanger that is installed in a wall of a flue gas passage that extends vertically and is configured such that flue gas flows vertically downward from above,
The heat exchanger is disposed through a predetermined gap with respect to an inner wall of the heat transfer tube and a heat transfer tube made of ceramics having a rear end portion opened and a front end portion closed, and communicates with the gap. An inner metal pipe, and the tip of the heat transfer tube is disposed in the combustion exhaust gas passage so as to be inclined to the downstream side of the combustion exhaust gas,
The liquid introduced into the heat transfer tube from the rear end of the heat transfer tube reaches the tip of the heat transfer tube through the gap between the inner wall of the heat transfer tube and the metal inner tube, flows into the metal inner tube at the tip, A heat exchanger configured to be led out from the other end of the metal inner tube.
前記燃焼排ガス流路の壁に、この壁に対する垂線と平行に貫通孔が形成され、この貫通孔に、燃焼排ガス流路の内壁面に相当する位置において屈曲する形状に形成された伝熱管が設置されていることを特徴とする請求項1記載の熱交換器。   A through hole is formed in the wall of the flue gas passage in parallel with the perpendicular to the wall, and a heat transfer tube formed in a shape that bends at a position corresponding to the inner wall surface of the flue gas passage is installed in the through hole. The heat exchanger according to claim 1, wherein the heat exchanger is provided. 前記燃焼排ガス流路の壁に、この壁に対する垂線から燃焼排ガス流路の下流側に、所定角度傾斜した貫通孔を形成し、この貫通孔に直線状の伝熱管が設置されていることを特徴とする請求項1記載の熱交換器。   A through-hole inclined at a predetermined angle is formed on the wall of the flue gas passage from the perpendicular to the wall to the downstream side of the flue gas passage, and a linear heat transfer tube is installed in the through-hole. The heat exchanger according to claim 1. 前記伝熱管が、燃焼排ガス流路の壁に相対向して、高さ方向において交互に配置されていることを特徴とする請求項1乃至請求項3のいずれかに記載された熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the heat transfer tubes are alternately arranged in the height direction so as to face the wall of the combustion exhaust gas flow path.
JP2010247625A 2010-11-04 2010-11-04 Heat exchanger Pending JP2012097991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247625A JP2012097991A (en) 2010-11-04 2010-11-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247625A JP2012097991A (en) 2010-11-04 2010-11-04 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2012097991A true JP2012097991A (en) 2012-05-24

Family

ID=46390099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247625A Pending JP2012097991A (en) 2010-11-04 2010-11-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2012097991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181325A1 (en) * 2017-03-28 2018-10-04 住友重機械工業株式会社 Air preheater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131028U (en) * 1975-04-15 1976-10-22
JPS6438467U (en) * 1987-08-28 1989-03-08
US5954128A (en) * 1996-03-06 1999-09-21 Solar Turbines High pressure ceramic heat exchanger
JPH11264677A (en) * 1998-03-18 1999-09-28 Ishikawajima Harima Heavy Ind Co Ltd Crossflow bayonet heat exchanger
JP2000199693A (en) * 1998-10-29 2000-07-18 Kyocera Corp Heating tube for heat exchanger
JP2001280863A (en) * 2000-03-29 2001-10-10 Ebara Corp Heat exchanger and electric power generator comprising it
JP2003185123A (en) * 2001-12-17 2003-07-03 Ebara Corp High temperature dust collecting equipment
JP2006162103A (en) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd Heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131028U (en) * 1975-04-15 1976-10-22
JPS6438467U (en) * 1987-08-28 1989-03-08
US5954128A (en) * 1996-03-06 1999-09-21 Solar Turbines High pressure ceramic heat exchanger
JPH11264677A (en) * 1998-03-18 1999-09-28 Ishikawajima Harima Heavy Ind Co Ltd Crossflow bayonet heat exchanger
JP2000199693A (en) * 1998-10-29 2000-07-18 Kyocera Corp Heating tube for heat exchanger
JP2001280863A (en) * 2000-03-29 2001-10-10 Ebara Corp Heat exchanger and electric power generator comprising it
JP2003185123A (en) * 2001-12-17 2003-07-03 Ebara Corp High temperature dust collecting equipment
JP2006162103A (en) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181325A1 (en) * 2017-03-28 2018-10-04 住友重機械工業株式会社 Air preheater
JPWO2018181325A1 (en) * 2017-03-28 2020-02-06 住友重機械工業株式会社 Air preheater

Similar Documents

Publication Publication Date Title
JP5746353B2 (en) Waste heat boiler
JP5030981B2 (en) Heat exchanger
JP2012097991A (en) Heat exchanger
WO2014182255A2 (en) Heat exchange equipment combustion products - water
KR20100054383A (en) Condensing gas for boiler latent heat heat exchanger
JP4157534B2 (en) High temperature air heater
CN205424990U (en) Durable air heater
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
JP5374349B2 (en) Waste heat recovery boiler
CN211575543U (en) Fire tube type condensation heat exchanger
JP2002310594A (en) Heat exchanger with heat exchanger tube
CN209386313U (en) Segmented water- to-water heat exchanger
CN208365813U (en) A kind of condensate vacuum hot-water boiler
JP5622323B2 (en) Heat exchanger
WO2009070129A2 (en) Combined condensing heat exchanger
JP5134393B2 (en) Marine boiler
JPH01296088A (en) Bayonet type heat exchanger made of ceramic
JP7311655B2 (en) Heat exchanger
JP2001336835A (en) Pipe passage connecting structure and heat exchanger
CN110567157A (en) Fire tube type condensation heat exchanger
WO2022137755A1 (en) Heat exchanger
JP2006162103A (en) Heat exchanger
CN208588261U (en) A kind of novel plate heat exchanger
KR101822142B1 (en) A apparatus for heat exchange coupled with cyclone
JP2023019314A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201