JPH01296088A - Bayonet type heat exchanger made of ceramic - Google Patents

Bayonet type heat exchanger made of ceramic

Info

Publication number
JPH01296088A
JPH01296088A JP63121827A JP12182788A JPH01296088A JP H01296088 A JPH01296088 A JP H01296088A JP 63121827 A JP63121827 A JP 63121827A JP 12182788 A JP12182788 A JP 12182788A JP H01296088 A JPH01296088 A JP H01296088A
Authority
JP
Japan
Prior art keywords
tube
outer tube
inner tube
heat exchanger
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63121827A
Other languages
Japanese (ja)
Other versions
JP2630427B2 (en
Inventor
Chikao Satoie
千賀男 郷家
Takahiro Oshita
孝裕 大下
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ibiden Co Ltd
Original Assignee
Ebara Corp
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ibiden Co Ltd filed Critical Ebara Corp
Priority to JP63121827A priority Critical patent/JP2630427B2/en
Publication of JPH01296088A publication Critical patent/JPH01296088A/en
Application granted granted Critical
Publication of JP2630427B2 publication Critical patent/JP2630427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type

Abstract

PURPOSE:To prevent the breakage of an outer tube made of ceramics due to heat shock, by a method wherein a distance between the closed end face of the outer tube and the outlet of an inner tube is limited within a specified range or a guide cap for converting the flow of fluid is provided at the outlet of the inner tube. CONSTITUTION:When a distance L between the closed surface of an outer tube and the end of an inner tube is specified as shown by a formula L>=3d with respect to the inner diameter (d) of an inner tube, turbulent flow zone is grown and a flow speed at a converting part of the flow of fluid as well as a flow speed in the outlet of the inner tube become sufficiently small and a temperature difference between the inner surface of the outer tube made of ceramics and the outer surface of the same is not generated whereby the breakage of the outer tube due to heat shock will never be generated. When the value of the distance L becomes 30d or more, dead water zone of the flow of gas is grown and thereby deteriorating the performance of the title heat exchanger. Accordingly, the distance is preferably within the range of 3d<=L<=30d. On the other hand, a metallic guide cap 13 is provided at the outlet of the inner tube whereby the breakage of the outer tube made of ceramics due to heat shock may be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温ガス、特に高温で腐食性を有するガスか
ら熱エネルギーを回収する空気予熱器として好適なセラ
ミックス製バイlネット式熱交換器に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a ceramic bilayer net heat exchanger suitable as an air preheater for recovering thermal energy from high-temperature gases, particularly gases that are corrosive at high temperatures. It is related to.

〔従来の技術〕[Conventional technology]

都市とみ等の焼却排ガスに代表される高温で腐食性を有
するガスから熱エネルギーを回収する空気予熱器として
従来の鋼管製空気予熱器は、耐熱性及び耐食性に問題が
あシ、使用するのが困難でありな、そのため、従来は高
温ガスを腐食の少ない温度領域まで一担冷却してから熱
回収を行なうのが一般的であった。しかしながらこのよ
うな手段を採用してもある程度の延命化はできるものの
、完全とは云い難い。
Conventional air preheaters made of steel pipes are used as air preheaters to recover thermal energy from high-temperature, corrosive gases such as urban incineration exhaust gas, but they have problems with heat resistance and corrosion resistance, making them difficult to use. This is difficult, so conventionally it has been common practice to cool the high-temperature gas to a temperature range where corrosion is less likely and then recover the heat. However, although it is possible to prolong life to some extent by adopting such measures, it is far from perfect.

近年、高温ガスから熱回収する熱交換器として、セラミ
ックス製伝熱管を有する種々の熱交換器の開発が盛んに
行なわれている。
In recent years, various heat exchangers having ceramic heat exchanger tubes have been actively developed as heat exchangers for recovering heat from high-temperature gas.

セラミックス製熱交換器の一形式としてバイlネット式
熱交換器が提案されている(実開昭61−141571
号公報、特開昭61−285597号公報)。
A bail net heat exchanger has been proposed as a type of ceramic heat exchanger (Utility Model Publication No. 61-141571).
(Japanese Patent Application Laid-Open No. 61-285597).

バイlネット式熱交換器は、内管と外管との熱膨張差に
基づく移動が完全に自由な構造となっているため、外管
外側流体と管側流体との温度差が極端に大きい場合に用
いられる方式の熱交換器である。即ち、高温の燃焼排ガ
スから熱エネルギーを回収して、常温ガスの予熱を行な
う方式としては最良の熱交換器である。
Because the bail net heat exchanger has a structure that allows completely free movement based on the difference in thermal expansion between the inner and outer tubes, the temperature difference between the fluid outside the outer tube and the fluid on the tube side is extremely large. This is a type of heat exchanger used in some cases. In other words, it is the best heat exchanger for recovering thermal energy from high-temperature combustion exhaust gas and preheating room-temperature gas.

セラミックスは金属に比較して耐熱性、耐食性及び耐摩
耗性は優れているものの、脆く、熱衝撃Kilいと云う
欠点がある。特に、内管の一端から低温流体を流入させ
、他熾から内管と外管の関に導き、外管の取シ付は増側
から流出させる場合には、内管出口付近の外管が熱衝撃
により破損するという問題があるが前記公報にはこの問
題を解決する手段は同等記載されていない。
Although ceramics have superior heat resistance, corrosion resistance, and wear resistance compared to metals, they have the disadvantage of being brittle and susceptible to thermal shock. In particular, when low-temperature fluid is introduced from one end of the inner tube and guided from the other end to the junction between the inner and outer tubes, and when the outer tube is attached, the outer tube near the outlet of the inner tube is Although there is a problem of damage due to thermal shock, the above-mentioned publication does not describe any means for solving this problem.

また、内管の外径と外管の外径の比が比較的小さいバイ
lネット式熱交換器は効率が高いが、この場合内管と外
管との接触によりセラミックスが破損するという問題が
ある。特に、複数個のバイlネット式熱交換器を組み合
わせて使用する場合、及びバイlネット式熱交換器を垂
直に対して一定の角度をもって設置するような重力くよ
り内管と外管が接触する恐れのある場合、上記問題点を
解決することは特に重要となる。
In addition, although the efficiency of the bail net heat exchanger is high because the ratio of the outer diameter of the inner tube to the outer diameter of the outer tube is relatively small, in this case, there is a problem that the ceramics may be damaged due to contact between the inner tube and the outer tube. be. In particular, when using a combination of multiple bail net heat exchangers, or when the bail net heat exchanger is installed at a certain angle to the vertical, the inner tube and outer tube come into contact with each other. It is especially important to solve the above problems when there is a risk of this happening.

このように従来のセラミックス製バイlネット式熱交換
器は、セラミックスの本質的欠点である熱衝撃に対する
対策が不十分である。同時に、内管と外管との相互接触
に対する考慮がなされていないので、相互接触を避ける
ために厳しい寸法精度を要求され高価になったシ、大型
化が困難であつ九プ、組立時にセラミックスの破損を招
い九シ、内管と外管を垂直に対しである角度を持って設
置することが困難であるというの欠点を有していた。
As described above, conventional ceramic bi-net heat exchangers have insufficient measures against thermal shock, which is an essential drawback of ceramics. At the same time, since no consideration was given to mutual contact between the inner tube and outer tube, strict dimensional accuracy was required to avoid mutual contact, making it expensive, difficult to upsize, and requiring the use of ceramics during assembly. This method has the disadvantage that it is difficult to install the inner tube and the outer tube at a certain angle with respect to the vertical.

このような対策への欠如がセラミックス製バイlネット
式熱交換器の商業ベースでの実用化を遅らせていた。
The lack of such countermeasures has delayed the commercialization of ceramic bilayer net heat exchangers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述しえように、セラミックス製バイlネット式熱交換
器は、 ・ 内管の一端から低温流体を流入させる場合、内管出
口で熱衝撃により外管が破損する恐れがある。
As mentioned above, the ceramic bi-net type heat exchanger has the following problems: - When low-temperature fluid is introduced from one end of the inner tube, there is a risk that the outer tube may be damaged due to thermal shock at the outlet of the inner tube.

・ 大型化が困難である。・It is difficult to increase the size.

・ 内管と外管ftaiI直に対しである角度を持って
設置することが困難である。
- It is difficult to install the inner pipe and outer pipe at a certain angle.

等の問題点を有してい友。A friend who has similar problems.

本発明は、上記問題点を解決したセラミックス製バイl
ネット式熱交換器を提供するものである。
The present invention solves the above problems.
It provides a net type heat exchanger.

〔問題点を解決する丸めの手段〕[Rounding method to solve problems]

本発明者らは、前記従来の問題点に鑑みてなされたもの
で、本発明は、内管の一端から低温流体を流入させるセ
ラミックス襲パイ冒ネット式熱交換器において、加熱流
体である高a側流体と被加熱流体である低温側流体の温
度差が極端に大きい場合であっても、外管の閉鎖された
増面と内管の出口との距離りをある範囲内に規定するか
、または内管出口に金属製の流れを反転させるガイドキ
ャップを設けた、セラミックス製外管が熱衝撃によって
破損しない構造のセラミックス製パイヨネット式熱交換
器であシ、また、内管のうち、外管に挿入されていない
部分に伸縮継手を設け・、さらには、上記内管にスペー
サを具有させる仁とによって、上記セラミックス製外管
に無理な力が作用せず、内管と外管の間隔を一定に保つ
ことが可能にな夛、大型化が容易で、内管と外管を垂直
に対しである角度を持って設置することが可能なセラミ
ックス製パイヨネット式熱交換器である。
The present inventors have made it in view of the above-mentioned conventional problems, and the present invention provides a ceramic pipe-filled heat exchanger in which a low-temperature fluid is introduced from one end of the inner tube. Even if the temperature difference between the side fluid and the low-temperature side fluid, which is the fluid to be heated, is extremely large, the distance between the closed surface area of the outer tube and the outlet of the inner tube is defined within a certain range, or Alternatively, a ceramic pionet heat exchanger with a metal guide cap at the outlet of the inner tube to reverse the flow, and a structure in which the outer ceramic tube is not damaged by thermal shock, is also available. By providing an expansion joint in the part that is not inserted into the tube, and by providing a spacer in the inner tube, no unreasonable force is applied to the ceramic outer tube, and the distance between the inner tube and the outer tube is reduced. This is a piellonet type heat exchanger made of ceramics that can maintain a constant temperature, easily scale up, and allow the inner and outer tubes to be installed at a certain angle to the vertical.

なお、特に、後で説明するように、伸縮継手やスペーサ
を具備する場合、熱交換器内の流れ方向は限定されない
、即ち、管IEIIの外管から流入させ、外管の閉鎖端
側の内管開口側に導き、内管の管板に支持された側から
流出させてもよい、その理由は、流体が外管の内II 
K FBって流れるので外管の内部に沿って流れる際境
膜が生じ外管が熱衝撃を受は破損するおそれがないから
である。この場合外管の閉鎖された端部と内管の開放端
部との距離りはガスの流れ抵抗に留意するの入でよく、
3d≦Lの関係くある必要はない。
In particular, as will be explained later, when an expansion joint or a spacer is provided, the flow direction in the heat exchanger is not limited. The fluid may be directed to the tube opening side and flowed out from the side supported by the tube plate of the inner tube, since the fluid flows through the inner tube of the outer tube.
This is because KFB flows, so when it flows along the inside of the outer tube, a boundary film is created and the outer tube is not subject to thermal shock and there is no risk of damage. In this case, the distance between the closed end of the outer tube and the open end of the inner tube may be determined by taking into account the gas flow resistance.
There is no need for the relationship 3d≦L.

次に本発明を図面に基づいて詳細に説明する。Next, the present invention will be explained in detail based on the drawings.

第1図は、七うミックス製パイ璽ネット式熱交換器の縦
断面図を示す。第1図において、符号1はセラミックス
製外管を示し、2は金属製の内管を示す。外管1は、固
定ボルト4によって固定された押えリング3によって、
クツションリング6を介して管板9に固定されている。
FIG. 1 shows a vertical cross-sectional view of a piezo net type heat exchanger manufactured by Nanau Mix. In FIG. 1, reference numeral 1 indicates a ceramic outer tube, and 2 indicates a metal inner tube. The outer tube 1 is held by a retaining ring 3 fixed by a fixing bolt 4.
It is fixed to the tube plate 9 via the cushion ring 6.

一方内管2は、管板10に第1図に示すように固定され
ている。高温貴ガスは外管の外1mを流れてシシ、低a
Imガスは内管入口から矢印の方向流入し、内管外側の
ガスと熱交換されながら、八 内管出口(開放端)に達し、こ\で流れは反転され、さ
らに高温側ガスと熱交換をしながら内管と外管の間を通
って流出する。低温側ガスが内管内を通過する場合、そ
の低温側ガスは熱交換量が少なく、内管への入口温度と
内管の出口(開放南部)温度は殆んど同じであるので、
高温側ガスと低温側ガスとの温度差が700C以上と大
きく、外管の閉鎖され外面と内管出口の距離りが小さい
と外管の閉鎖された面の内外において高い温度差が発生
し、8iC,アルミナ等に代表される耐熱衝撃温度差5
50C以下の通常のセラミックスでは、大きな熱応力が
発生し、ついには破損するに至る。
On the other hand, the inner tube 2 is fixed to the tube plate 10 as shown in FIG. High-temperature noble gas flows 1m outside the outer tube and is at a low temperature.
Im gas flows in from the inner tube inlet in the direction of the arrow, and while exchanging heat with the gas on the outside of the inner tube, it reaches the eight inner tube outlet (open end), where the flow is reversed and it further exchanges heat with the high temperature side gas. It flows out through the space between the inner and outer tubes. When the low-temperature gas passes through the inner tube, the amount of heat exchanged by the low-temperature gas is small, and the temperature at the entrance to the inner tube and the temperature at the outlet (open south) of the inner tube are almost the same.
If the temperature difference between the high-temperature side gas and the low-temperature side gas is as large as 700C or more, and the distance between the closed outer surface of the outer tube and the outlet of the inner tube is small, a high temperature difference will occur between the inside and outside of the closed surface of the outer tube. Thermal shock resistance temperature difference 5 represented by 8iC, alumina, etc.
Ordinary ceramics with a temperature of 50C or less generate large thermal stress and eventually break.

また、;−デイエライト、窒化珪素に代表される耐熱衝
撃温度差が550C以上のものであっても、高温貴ガス
と低温側ガスとの温度差がさらに大きくなると同様の事
態が発生する。
Moreover, even if the thermal shock resistance temperature difference represented by ;-dayerite and silicon nitride is 550 C or more, a similar situation will occur if the temperature difference between the high-temperature noble gas and the low-temperature side gas becomes even larger.

発明者らは、このような条件下においてもセラミックス
製外管の熱衝撃による破損が発生しない構造を実験によ
り見い出した。
Through experiments, the inventors discovered a structure in which the ceramic outer tube does not suffer damage due to thermal shock even under such conditions.

即ち、七うンツクス製外管く熱衝撃破壊を起こさせなi
ためには、直接高温側ガスと温度差のある低温側ガスを
外管の閉鎖された面に直接衝突させないことが重要であ
る。異体的には、外管の閉鎖された面と内管の開放端部
の距離をLとし内管の内径t−dとし九場合L≧3dで
あることが必要であり、x−が5dよ〕小であると自由
噴流におけるポテンシャルコア領域と同じように、ガス
の中心流速は外管の閉鎖された面に到達するまて噴出流
速とはy等しく、これが外管の閉鎖された[K激しく衝
突し、その表面に境膜が形成されずセラミックス製外管
に大キな温度差が生じ、ついには外管閉鎖端部が熱衝撃
によ)破壊するに至る。
In other words, the outer tube made of 7-units should not be damaged by thermal shock.
In order to achieve this, it is important not to allow the low-temperature side gas, which has a temperature difference from the high-temperature side gas, to directly collide with the closed surface of the outer tube. Alternatively, if the distance between the closed surface of the outer tube and the open end of the inner tube is L, and the inner diameter of the inner tube is t-d, it is necessary that L≧3d, and if x- is less than 5d. Similar to the potential core region in a free jet, the central flow velocity of the gas reaches the closed surface of the outer tube. Upon collision, a film is not formed on the surface and a large temperature difference occurs in the ceramic outer tube, which eventually causes the closed end of the outer tube to break due to thermal shock.

一方し≧3dKなると、乱流領域が発達し、反転部の流
速も内管出口における流速に比較して十分小さくなり、
境膜が発達してくるため、セラミックス製外管内面と外
面との温度差はセラミックス内での熱伝導が支配的とな
る。このため、大塾な温度差は発生しないので、熱衝撃
による破損も発生しない。
On the other hand, when ≧3 dK, a turbulent flow region develops and the flow velocity at the reversal section becomes sufficiently small compared to the flow velocity at the inner tube outlet.
As the membrane develops, the temperature difference between the inner and outer surfaces of the ceramic outer tube becomes dominated by heat conduction within the ceramic. Therefore, no significant temperature difference occurs, and no damage due to thermal shock occurs.

以上の結果より、セラミックス製パイヨネット式熱交換
器の寸法りには適切な範囲があシ、その範囲唸 3d≦L≦30d である。
From the above results, there is an appropriate range for the dimensions of the ceramic piellonet heat exchanger, and the range is 3d≦L≦30d.

さらに、Lの値が301以上になると、ガス流れのなh
死水領域が発達し、熱交換器の有効面積が減少し、パイ
ヨネット式熱交換器としての性能が低下してしまうので
、54≦L30(1の範囲が望ましい。
Furthermore, when the value of L exceeds 301, the gas flow becomes
A dead water region develops, the effective area of the heat exchanger decreases, and the performance as a piellonet heat exchanger deteriorates, so a range of 54≦L30 (1 is desirable).

尚、このような構造にすることにより、内管出口部にお
ける局所圧力損失係数が小さくと丸さらに内管長さも小
さくすることができるので熱交換器としての効率が低下
することなく、圧力損失の小さいセラミックス製バイヨ
ネツ)E熱交換器を得ることができる。
By adopting this structure, if the local pressure loss coefficient at the outlet of the inner tube is small, the length of the inner tube can be made smaller, so the efficiency as a heat exchanger will not decrease and the pressure loss will be small. A ceramic Bayonets) E heat exchanger can be obtained.

また本発明者らは、第2図に示すように、内管の出口部
に金属製の流れを反転させる丸めのガイドキャップ13
を設けて、低温ガスが直接外管1の閉鎖された面に高速
で衝突しない構造することによって七フィックス製外管
の熱衝撃による破損を防止できることを見いだした。第
5図は第2図のA −A’llKおける断WJを示した
ものである。こξでガイドキャップ15と外管1の閉鎖
され丸面とのすき間は互いに接触しない距離を有してい
ればよい。
The inventors also proposed a round guide cap 13 for reversing the flow made of metal at the outlet of the inner tube, as shown in FIG.
It has been found that damage to the Seven Fix outer tube due to thermal shock can be prevented by creating a structure in which low-temperature gas does not directly collide with the closed surface of the outer tube 1 at high speed. FIG. 5 shows the section WJ at A-A'llK in FIG. In this case, the gap between the guide cap 15 and the closed round surface of the outer tube 1 may be a distance such that they do not come into contact with each other.

ガイドキャップの材料は、金属に限らず、低温側ガスを
反転させる機能を低下させないものであれば何を用いて
もよい。さらにガイドキャップの構造は、一端が閉鎖さ
れ、他端が開放されてiる円柱状、角柱状のいずれの形
のものでもよく、要は内管から噴き出る流体のぶつつか
る面が全閉であればよく、側面に切)込み穴があっても
よい。
The material of the guide cap is not limited to metal, and any material may be used as long as it does not reduce the function of inverting the low temperature side gas. Furthermore, the structure of the guide cap may be either cylindrical or prismatic, with one end closed and the other open, and the point is that the surface against which the fluid ejected from the inner tube collides is completely closed. There may also be holes cut into the side.

ま九本発明者らは、第1図に示すよ5に外管1と内管2
とが完全に固定されている場合には、組立精度を非常に
よく製作しないと、組立時に外管1と内管2とが接触し
、セラミックス製外管1に無理な力が作用し、ついには
破損に至らしめるが、第4図に示すような伸縮継手15
を内管2の外管11/c挿入されていない部分に設ける
ことKよって、外管1と内管とが接触しても外管に無理
な力が加わることがないので製作が容易になることを見
いだし友。
9. As shown in FIG.
If the outer tube 1 and the inner tube 2 are completely fixed, unless the assembly precision is very high, the outer tube 1 and the inner tube 2 will come into contact during assembly, and an unreasonable force will be applied to the ceramic outer tube 1. may lead to damage, but expansion joints 15 as shown in FIG.
By providing K in the part of the inner tube 2 where the outer tube 11/c is not inserted, even if the outer tube 1 and the inner tube come into contact, no unreasonable force is applied to the outer tube, which facilitates manufacturing. A friend who found out.

このような構造にすることくよって、IP#に外管1と
内管2の組合せが複数組となる大型O熱交換器や、内管
と外管t−m直に対しである角度を持って設置する場合
にも熱交換IIを容易に製作することができることとな
り九。
By adopting such a structure, IP# can be used for large O heat exchangers in which there are multiple combinations of outer tube 1 and inner tube 2, and for IP This means that the heat exchanger II can be easily manufactured even when installed in a

さらに、第4図に示す如くスペーサ16.17を内管上
に設置することによって、外管1と内管2の間隔をほば
一定に保つことが可能となる。
Furthermore, by installing spacers 16 and 17 on the inner tube as shown in FIG. 4, it is possible to maintain the distance between the outer tube 1 and the inner tube 2 almost constant.

このウチ、スペーサ16t−押えリング5に接触する位
置に取付け、さらに、押えリング5の内径を外管1の内
径よ)もほんのわずか小さくすることにより、意図的に
スペーサ16が押えリング5に接触させるようにするこ
とにより、外管1と内管2との中心の位置ずれが生じて
も内管2は、スペーサ16を介して押えリング5に:よ
り押りけられ、伸縮継手15によって、矯正される。押
しつける力のうち大部分は伸縮継手15によって吸収さ
れ、セラミックス製外管1と接触するスペーサ17にお
いて働く力は非常に小さくすることが可能である。
In this case, by attaching the spacer 16t at a position where it contacts the presser ring 5, and also making the inner diameter of the presser ring 5 slightly smaller than the inner diameter of the outer tube 1, the spacer 16 intentionally comes into contact with the presser ring 5. By doing so, even if the centers of the outer tube 1 and the inner tube 2 are misaligned, the inner tube 2 is pushed by the holding ring 5 via the spacer 16, and the expansion joint 15 be corrected. Most of the pressing force is absorbed by the expansion joint 15, and the force acting on the spacer 17 in contact with the ceramic outer tube 1 can be made very small.

な訃、スペーサ17の位置が内管の開放gIIIK近い
程内管と外管の中心軸の平行度のズレ(角度#)は小さ
くなるが、スペーサ17の位置は特に解放端部近傍に限
定されるものではない。
However, the closer the position of the spacer 17 is to the opening of the inner tube, the smaller the deviation in parallelism (angle #) between the central axes of the inner tube and the outer tube, but the position of the spacer 17 is particularly limited to the vicinity of the open end. It's not something you can do.

このように、外管1と内管2との心ずれが生じても、セ
ラミックス製外管1には、はとんど力が作用しない構造
となシ、結果として、外管1と内管2の組合せを複数組
設けた大型熱交換も容易に作成でき、ま九内管と外管を
垂直に対しである角Rを持って設置することも可能とな
った。
In this way, even if the outer tube 1 and the inner tube 2 are misaligned, the structure is such that almost no force is applied to the ceramic outer tube 1, and as a result, the outer tube 1 and the inner tube It is now possible to easily create a large-scale heat exchanger with a plurality of combinations of 2, and it has also become possible to install the inner tube and outer tube at a certain angle R with respect to the vertical direction.

尚第5図及び第6図にはスペーサの取付は例を示す。Incidentally, FIGS. 5 and 6 show examples of how to attach the spacer.

〔実施例〕〔Example〕

第7図K、都市ごみ焼却炉の燃焼排ガスから熱回収を行
なう場合の実施例を示す。
FIG. 7K shows an embodiment in which heat is recovered from combustion exhaust gas of a municipal waste incinerator.

高温側ガスとして都市ごみ焼却排ガス、低温側ガスとし
て常温空気を用いている。
Municipal waste incineration exhaust gas is used as the high temperature side gas, and room temperature air is used as the low temperature side gas.

低温ガスは内管2の一方端である低温側ガス入口ノズル
18より流入し、もう一方の端である内管2の出口を出
たあと流れが反転し、内管と外管の間を高温側ガスと熱
交換しながら反対方向に流れ、低温側ガス出口ノズル1
9よプ加熱され流出する。一方高温側ガスは外管1の外
部を流れている。
The low-temperature gas flows in from the low-temperature side gas inlet nozzle 18 at one end of the inner tube 2, and after leaving the outlet of the inner tube 2 at the other end, the flow is reversed, causing a high temperature to flow between the inner tube and the outer tube. It flows in the opposite direction while exchanging heat with the side gas, and the low temperature side gas outlet nozzle 1
9. It gets heated and flows out. On the other hand, the high temperature side gas flows outside the outer tube 1.

外管1は内径が80wのp −sicからなるセラミッ
クス製であり、内管2は内径((1)が42.6關のス
テンレスパイプにより構成されている。
The outer tube 1 is made of ceramics made of p-sic and has an inner diameter of 80 W, and the inner tube 2 is made of a stainless steel pipe with an inner diameter (1) of 42.6 mm.

さらに、内管2は、伸縮継手15、スペーサ16及びス
ペーサ17が設けられておシ、第7図に示すように水平
方向に設置して使用する場合においても、取付が容易で
ある。またスペーサ16は、押えリング5と接触する位
置にあシ、スペーサ17は、内管出口付近に取付けられ
てiる。押えリング5の内径は、78■であシ、セラミ
ックス製外管1よりも小さな径を有している。このよう
にすることにより、セラミックス製外管1に無理な力が
働かない構造となっている。
Furthermore, since the inner tube 2 is provided with an expansion joint 15, a spacer 16, and a spacer 17, it can be easily attached even when it is used horizontally as shown in FIG. Further, the spacer 16 is installed at a position where it contacts the presser ring 5, and the spacer 17 is installed near the inner tube outlet. The inner diameter of the retainer ring 5 is 78 mm, which is smaller than the outer tube 1 made of ceramics. By doing so, the structure is such that no unreasonable force is applied to the ceramic outer tube 1.

この実施例において、セラミックス製外管1の閉鎖され
た面と内管2の出口との距離L;5Gsowとした場合
(これはI、a−el、2tlK相当する。)Kは運転
中、セラミックス製外管1の閉鎖され九端部において、
熱衝撃による破損が発生し九。
In this example, when the distance L between the closed surface of the ceramic outer tube 1 and the outlet of the inner tube 2 is 5Gsow (this corresponds to I, a-el, 2tlK), K is the distance between the ceramic outer tube 1 and the outlet of the inner tube 2. At the closed nine end of the outer tube 1,
Damage due to thermal shock occurred.

このときの運転条件は、低温側ガス入口温度が30Cで
あ)、低温側ガス出口19の温度は250Cであつ九。
The operating conditions at this time were that the low temperature side gas inlet temperature was 30C, and the low temperature side gas outlet 19 temperature was 250C.

ま九高温側ガス温度は820Cであつ九、このような条
件下では内管2の出口温度は約40Gであり%Lが小さ
いため熱衝撃による破損が生じたものである。
The gas temperature on the high temperature side was 820C, and under these conditions the outlet temperature of the inner tube 2 was about 40G and %L was small, so damage occurred due to thermal shock.

一方、L111250■即ちL謬5.9dにて同一条件
にて運転したところ、熱交換器としての性能が同じで熱
衝撃破損も発生しないで、500時間以上の連続運転が
可能であった。
On the other hand, when L111250■, that is, L5.9d, was operated under the same conditions, the performance as a heat exchanger was the same, no thermal shock damage occurred, and continuous operation for more than 500 hours was possible.

第8図及び第9図に別の実施例を示す、    −第8
図及び第9図は内管及び外管よりなる複数の熱交換チュ
ーブを設けた大容量のセラミックス製パイヨネット式熱
交換器であって、水平に設置した場合で、伸縮継手15
、スペーサ16、スペーサ171に設けることにより、
容易に組立てることが可能となる。なお、第9図は第8
図のB−B’線にシける断面図である。
Another embodiment is shown in FIGS. 8 and 9.
9 and 9 show a large-capacity ceramic pionet type heat exchanger equipped with a plurality of heat exchange tubes consisting of an inner tube and an outer tube, when installed horizontally, and an expansion joint 15.
, by providing the spacer 16 and the spacer 171,
It becomes possible to assemble easily. In addition, Fig. 9 is the 8th
It is a sectional view taken along the line BB' in the figure.

〔発明の効果〕〔Effect of the invention〕

本発明によるセラミックス製I(イヨネット式熱交換器
は、低温側ガス温度と高温側ガス温度との温度差が極端
に大きい場合であっても、セラミックス製外管の熱衝撃
による破砕が発生することなくさらに、内管に伸縮継手
とスペーサの設置により、セラミックス製外管と内管の
組合せが多数必要となる大型の熱間換器であっても、ま
た外管と内管が垂直に対しである角度をもって設置する
場合であってもセラミックス製外管に無理な力が作用し
ないので容易に製作ム組立てることができる。
In the ceramic I (ionet type heat exchanger) according to the present invention, even if the temperature difference between the low-temperature side gas temperature and the high-temperature side gas temperature is extremely large, the ceramic outer tube may fracture due to thermal shock. In addition, by installing expansion joints and spacers in the inner tube, even in large heat exchangers that require many combinations of ceramic outer tubes and inner tubes, it is possible to prevent the outer tube and inner tube from being perpendicular to each other. Even when installed at a certain angle, no unreasonable force is applied to the ceramic outer tube, making it easy to manufacture and assemble.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図及び第4図は本発明のパイ璽ネット式
熱交換器の縦断面図、第5図は第2図OA −A’線に
おける断面図、第5図及び第6図はスペーサの取付は例
を示す図、第7図は本発明の詳細な説明するための図面
、第8図及び第9図は複数本のバイ盲ネット式熱交換器
金組みあわせた例を示す図面であって、第9図は第8図
OB −B’線における断面図である。 1°゛外管、2°−内管、3・・・押えリング、4・・
・IJ定ボルト、5・・・スズリングワッシャ、6・・
・クツションリング、7・・・パツキン、B・・・位置
決めパイプ、9.10・・・管板、11・・・キャスタ
ブル、12・・・キャスタブルアンカー、13・・・ガ
イドキャップ、14・・・ナポート、15・・・伸縮継
手、14.17・・・スペーサ、18・−低温側ガス入
口ノズル、19・・・低温側ガス出口ノズル、d・・・
内管内径、L・・・外管の閉鎖された面と内管出口の距
離、θ・・・外管と内管のずれ角度 第1図 第2図 I+5 第31g1 第4図 第5図   第6TIJ 第8図
1, 2, and 4 are longitudinal sectional views of the piezo net type heat exchanger of the present invention, FIG. 5 is a sectional view taken along line OA-A' in FIG. 2, and FIGS. 5 and 6. Figure 7 shows an example of spacer installation, Figure 7 is a detailed explanation of the present invention, and Figures 8 and 9 show an example of a combination of multiple bi-blind net heat exchangers. 9 is a sectional view taken along the line OB-B' in FIG. 8. 1°-outer tube, 2°-inner tube, 3...presser ring, 4...
・IJ fixed bolt, 5...Stain ring washer, 6...
- Cushion ring, 7... Packing, B... Positioning pipe, 9.10... Tube plate, 11... Castable, 12... Castable anchor, 13... Guide cap, 14... - Naport, 15... Expansion joint, 14.17... Spacer, 18... Low temperature side gas inlet nozzle, 19... Low temperature side gas outlet nozzle, d...
Inner tube inner diameter, L...distance between the closed surface of the outer tube and the outlet of the inner tube, θ...displacement angle between the outer tube and the inner tube Fig. 1 Fig. 2 I+5 Fig. 31g1 Fig. 4 Fig. 5 6TIJ Figure 8

Claims (1)

【特許請求の範囲】 1、一端が管板に支持され他端が閉鎖されたセラミック
ス製外管と、一端が他の管板に支持されて前記外管内に
挿入され他端が開放された内管とで構成され、内管の管
板側の一端より低温流体を流入させ他方の開放端から内
管と外管の間へ導き、外管の管板に支持された側から流
出させるバイヨネット式熱交換器において、前記外管の
閉鎖された端部と前記内管の開放端部との距離Lが次式
で示す範囲内にあることを特徴とするセラミックス製バ
イヨネット式熱交換器。 3d≦Lこゝでdは内管の内径を示す。 2、前記外管の閉鎖された端部と前記内管の開放端部と
の距離Lが次式で示す範囲内にある特許請求の範囲第1
項記載のセラミックス製バイヨネット式熱交換器。 3d≦L≦30d ここでdは内管の内径を示す。 3、一端が管板に支持され他端が閉鎖されたセラミック
ス製外管と、一端が他の管板に支持され前記外管内に挿
入され他端が開放された内管とで構成され、内管の管板
側の一端より低温流体を流入させ他方の開放端部から内
管と外管の間へ導き、外管の管板に支持された側から流
出させるバイヨネット式熱交換器において、前記外管の
閉鎖された端部側の前記内管の開放端部に低温流体を反
転させるガイドキャップを設けたことを特徴とするセラ
ミックス製バイヨネット式熱交換器。 4、一端が管板に支持され他端が閉鎖されたセラミック
ス製外管と、一端が他の管板に支持され前記外管内に挿
入され他端が開放された内管とで構成されたバイヨネッ
ト式熱交換器において、前記内管の外管内に挿入されて
いない部分に伸縮継手を設けたことを特徴とするセラミ
ックス製バイヨネット式熱交換器。 5、特許請求の範囲第3項記載のセラミックス製バイヨ
ネット式熱交換器において内管の外管への挿入部分と開
放端部近傍の外側にスペーサを設けてなるセラミックス
製バイヨネット式熱交換器。
[Claims] 1. A ceramic outer tube with one end supported by a tube sheet and the other end closed, and an inner tube with one end supported by another tube sheet and inserted into the outer tube with the other end open. A bayonet type system in which low-temperature fluid flows in from one end of the inner tube on the tube plate side, guides it between the inner tube and outer tube from the other open end, and flows out from the side of the outer tube supported by the tube plate. A bayonet heat exchanger made of ceramics, characterized in that a distance L between the closed end of the outer tube and the open end of the inner tube is within a range expressed by the following formula. 3d≦L, where d indicates the inner diameter of the inner tube. 2. Claim 1, wherein the distance L between the closed end of the outer tube and the open end of the inner tube is within a range expressed by the following formula:
Ceramic bayonet heat exchanger as described in section. 3d≦L≦30d where d indicates the inner diameter of the inner tube. 3. It is composed of a ceramic outer tube whose one end is supported by a tube sheet and whose other end is closed, and an inner tube whose one end is supported by another tube sheet and which is inserted into the outer tube and whose other end is open. In the bayonet type heat exchanger, the low-temperature fluid is introduced from one end on the tube plate side of the tube, guided from the other open end to between the inner tube and the outer tube, and flows out from the side of the outer tube supported by the tube plate. A bayonet heat exchanger made of ceramics, characterized in that a guide cap for reversing low temperature fluid is provided at the open end of the inner tube on the closed end side of the outer tube. 4. A bayonet consisting of a ceramic outer tube with one end supported by a tube sheet and the other end closed, and an inner tube with one end supported by another tube sheet, inserted into the outer tube, and the other end open. A bayonet type heat exchanger made of ceramics, characterized in that an expansion joint is provided in a portion of the inner tube that is not inserted into the outer tube. 5. The ceramic bayonet heat exchanger according to claim 3, wherein a spacer is provided at the insertion portion of the inner tube into the outer tube and on the outside near the open end.
JP63121827A 1988-05-20 1988-05-20 Ceramic bayonet heat exchanger Expired - Lifetime JP2630427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121827A JP2630427B2 (en) 1988-05-20 1988-05-20 Ceramic bayonet heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121827A JP2630427B2 (en) 1988-05-20 1988-05-20 Ceramic bayonet heat exchanger

Publications (2)

Publication Number Publication Date
JPH01296088A true JPH01296088A (en) 1989-11-29
JP2630427B2 JP2630427B2 (en) 1997-07-16

Family

ID=14820910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121827A Expired - Lifetime JP2630427B2 (en) 1988-05-20 1988-05-20 Ceramic bayonet heat exchanger

Country Status (1)

Country Link
JP (1) JP2630427B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239250A2 (en) * 2001-03-06 2002-09-11 ANSALDO RICERCHE S.r.l. Method and system for regenerating energy from the combustion exhaust gas of an industrial furnace, in particular a glass-melting furnace
JP2005274109A (en) * 2004-03-26 2005-10-06 Mitsui Eng & Shipbuild Co Ltd Air heater
JP2011163647A (en) * 2010-02-09 2011-08-25 Covalent Materials Corp Heat exchange device
RU2571886C2 (en) * 2014-02-06 2015-12-27 Общество с ограниченной ответственностью "Краснодарский Компрессорный Завод" Tubular heat exchanger
JP2017081816A (en) * 2012-03-22 2017-05-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Sintering-coupled ceramic article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240118034A1 (en) * 2022-10-06 2024-04-11 Raytheon Technologies Corporation Tube-in-tube unified shell heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112209A (en) * 1973-11-12 1975-09-03
JPS5677692A (en) * 1979-11-27 1981-06-26 Toyo Eng Corp Heat exchanger
JPS5786186A (en) * 1980-11-17 1982-05-29 Hitachi Ltd Magnetic bubble memory element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112209A (en) * 1973-11-12 1975-09-03
JPS5677692A (en) * 1979-11-27 1981-06-26 Toyo Eng Corp Heat exchanger
JPS5786186A (en) * 1980-11-17 1982-05-29 Hitachi Ltd Magnetic bubble memory element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239250A2 (en) * 2001-03-06 2002-09-11 ANSALDO RICERCHE S.r.l. Method and system for regenerating energy from the combustion exhaust gas of an industrial furnace, in particular a glass-melting furnace
EP1239250A3 (en) * 2001-03-06 2003-04-16 ANSALDO RICERCHE S.r.l. Method and system for regenerating energy from the combustion exhaust gas of an industrial furnace, in particular a glass-melting furnace
JP2005274109A (en) * 2004-03-26 2005-10-06 Mitsui Eng & Shipbuild Co Ltd Air heater
JP2011163647A (en) * 2010-02-09 2011-08-25 Covalent Materials Corp Heat exchange device
JP2017081816A (en) * 2012-03-22 2017-05-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Sintering-coupled ceramic article
RU2571886C2 (en) * 2014-02-06 2015-12-27 Общество с ограниченной ответственностью "Краснодарский Компрессорный Завод" Tubular heat exchanger

Also Published As

Publication number Publication date
JP2630427B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US4083400A (en) Heat recuperative apparatus incorporating a cellular ceramic core
CA2218042A1 (en) Ceramic heat exchanger system
JPH04200B2 (en)
WO1996032617B1 (en) Ceramic heat exchanger system
JP2001330394A (en) Exhaust gas heat exchanger
JPH01296088A (en) Bayonet type heat exchanger made of ceramic
CN201210027Y (en) Heat-transfer pipe applying to air preheater
US5979543A (en) Low to medium pressure high temperature all-ceramic air to air indirect heat exchangers with novel ball joints and assemblies
US4300627A (en) Insulated housing for ceramic heat recuperators and assembly
JP2705545B2 (en) Low temperature corrosion prevention structure of heat exchanger
US4279297A (en) Housing for ceramic heat recuperators and assembly
JP2002310594A (en) Heat exchanger with heat exchanger tube
JPH10500203A (en) Plate heat exchanger
CN103134376A (en) Heat transfer tube
JPH07167580A (en) Operating method of plate fin type heat exhanger
US6695522B1 (en) Low to medium pressure high temperature all-ceramic air to air indirect heat exchangers with novel ball joints and assemblies
KR101611364B1 (en) Channel type recuperator
JP3541377B2 (en) Fastening structure between metal plate of ceramic heat exchanger tube and air header
CN211527155U (en) High pressure resistant finned tube air cooler structure
CN216558433U (en) Heat exchange tube and heat exchanger
JPH0245670Y2 (en)
KR0150564B1 (en) Ceramic tube heat exchanger and changing method thereof
SU1562656A1 (en) Shell-and-pipe heat-exchanger
KR910008896B1 (en) Heat exchanger
SU1307212A1 (en) Limiter of heat-transfer medium flow between tubes and casing in heat exchanging apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12