WO2018181325A1 - Air preheater - Google Patents

Air preheater Download PDF

Info

Publication number
WO2018181325A1
WO2018181325A1 PCT/JP2018/012452 JP2018012452W WO2018181325A1 WO 2018181325 A1 WO2018181325 A1 WO 2018181325A1 JP 2018012452 W JP2018012452 W JP 2018012452W WO 2018181325 A1 WO2018181325 A1 WO 2018181325A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
air
exhaust gas
temperature
air preheater
Prior art date
Application number
PCT/JP2018/012452
Other languages
French (fr)
Japanese (ja)
Inventor
建聖 渡邊
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to MYPI2019005329A priority Critical patent/MY195370A/en
Priority to JP2019509892A priority patent/JP6952108B2/en
Publication of WO2018181325A1 publication Critical patent/WO2018181325A1/en
Priority to PH12019502107A priority patent/PH12019502107A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an air preheater.
  • Patent Document 1 As a conventional boiler system, one that heats a heat transfer medium by burning fuel is known (see, for example, Patent Document 1).
  • the heated heat transfer medium circulates in a circulation system in the system. Further, the combustion gas generated by the combustion of the fuel is subjected to a heat exchange process or the like, and then discharged to the outside as an exhaust gas.
  • an object of the present invention is to provide an air preheater that can suppress the corrosion of the tube while suppressing a decrease in boiler efficiency.
  • An air preheater is an air preheater that recovers heat of exhaust gas from a boiler and preheats air, and includes a first tube provided in an exhaust gas passage that allows exhaust gas to pass through, A second tube that surrounds the first tube from the outer peripheral side and extends along the first tube. Air flows through the first tube, and the first tube flows through the second tube. Air with a higher temperature than air flows.
  • An air preheater includes a first tube provided in an exhaust gas passage.
  • the first tube can recover the heat of the exhaust gas flowing through the exhaust gas flow path by the air flowing through the first tube.
  • the air preheater includes a second tube that surrounds the first tube from the outer peripheral side and extends along the first tube.
  • a double tube is comprised by the 1st tube and the 2nd tube.
  • air having a higher temperature than the air flowing through the first tube flows through the second tube, which is a tube outside the double tube.
  • the air after passing through the first tube at least once may flow through the second tube. Since the air that has passed through the first tube at least once has recovered the heat of the exhaust gas, the temperature is higher than the air that is passing through the first tube on the most downstream side. Therefore, by flowing the air through the second tube, a structure for securing high-temperature air for flowing from the place other than the air preheater to the second tube becomes unnecessary.
  • a plurality of first tubes may be provided in the exhaust gas flow path, and a second tube may be provided for a part of the plurality of first tubes.
  • the second tube is provided only for those having a low exhaust gas temperature passing through and having a high possibility of low temperature end corrosion, and the passing exhaust gas temperature is high and there is a possibility of low temperature end corrosion.
  • the second tube is not provided for low ones. Thereby, the manufacturing cost of an air preheater can be suppressed.
  • the air preheater which concerns on one form detects the temperature of the exhaust gas in the downstream from the area
  • An exhaust gas temperature detection unit that controls the flow rate of air that flows to the second tube based on detection results of the air temperature detection unit and the exhaust gas temperature detection unit. By performing such control, it is possible to flow air at an appropriate flow rate to the second tube.
  • FIG. 1 It is a schematic structure figure of a boiler system provided with an air preheater concerning an embodiment of the present invention. It is a figure which shows schematic structure of the air preheater shown in FIG. It is a figure which shows schematic structure of the corrosion suppression structure of the air preheater shown in FIG.
  • the boiler system 100 is an external circulation type (circulating fluidized bed type) circulating fluidized bed boiler.
  • the boiler system 100 includes a fluidized bed furnace 3 having a vertically long cylindrical shape.
  • a fuel supply port 3a for supplying fuel is provided in the middle part of the furnace 3, and a gas outlet 3b for discharging combustion gas is provided in the upper part.
  • the fuel supplied from the fuel supply device 5 to the furnace 3 is supplied into the furnace 3 through the fuel supply port 3a.
  • a cyclone 7 that functions as a solid-gas separator is connected to the gas outlet 3 b of the furnace 3.
  • the discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line.
  • a return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the furnace 3.
  • the solid material containing the fuel supplied from the fuel supply port 3a flows by the combustion / flowing air introduced from the lower air supply line 3c, and the fuel flows while the fuel flows, for example, about 800 to 900.
  • Burn at °C. A combustion gas generated in the furnace 3 is introduced into the cyclone 7 with accompanying solid particles.
  • the cyclone 7 separates solid particles and gas by a centrifugal separation action, returns the solid particles separated via the return line 9 to the furnace 3, and removes the combustion gas from which the solid particles have been removed from the discharge port 7 a to the gas line. To the subsequent gas processing system.
  • in-furnace bed material a solid material called “in-furnace bed material” is generated and collected at the bottom, and the bed material is sintered and melted and solidified by the concentration of impurities (low melting point materials, etc.) in the in-furnace bed material, or It is necessary to suppress malfunctions caused by incombustible impurities. For this reason, in the furnace 3, the in-furnace bed material is discharged
  • the gas treatment system includes a gas heat exchange device 13 connected to the discharge port 7a of the cyclone 7 via a gas line, and a dust collector 15 connected to the discharge port 13a of the gas heat exchange device 13 via a gas line. And.
  • the gas heat exchanger 13 is provided with a boiler tube 13b that superheats steam so as to cross the exhaust gas flow path.
  • An air preheater 50 that recovers the heat of the exhaust gas and preheats the air is provided at the discharge port 13a in the gas heat exchanger 13.
  • the configuration of the air preheater 50 will be described later.
  • the dust collector 15 removes fine particles such as fly ash that are still accompanying the combustible gas.
  • a bag filter or an electric dust collector is adopted as the dust collector 15.
  • the clean gas discharged from the discharge port 15 a of the dust collector 15 is discharged to the outside through the gas line and the pump 17 from the chimney 19.
  • Solid particles generated in the furnace 3 circulate in the circulation system 21 including the furnace 3, the cyclone 7, and the return line 9.
  • the fluid of solid particles is referred to as a heat transfer medium.
  • a heat exchange chamber 20 is formed between the return line 9 and the bottom of the furnace 3.
  • a heat transfer medium is stored in the heat exchange chamber 20.
  • a heat exchanger 22 is provided in the heat exchange chamber 20.
  • the gas heat exchange device 13 includes an exhaust gas passage 101 through which the exhaust gas EG passes.
  • the exhaust gas flow channel 101 includes side wall portions 101a and 101b that face each other and side wall portions (not shown) that face each other in the front-rear direction of the paper surface.
  • the direction in which the exhaust gas EG flows in the exhaust gas channel 101 is referred to as the Z-axis direction.
  • the upstream side with respect to the flow of the exhaust gas EG is the negative side in the Z-axis direction, and the downstream side is the positive side in the Z-axis direction.
  • the direction in which the side wall portions 101a and 101b face each other is the X-axis direction.
  • the direction in which the side wall 101a is arranged is the negative side in the X-axis direction, and the side in which the side wall 101b is arranged (the right side in the drawing) is the positive side in the X-axis direction.
  • the front-rear direction on the paper is the Y-axis direction.
  • the back side of the paper is the negative side in the Y-axis direction, and the front side of the paper is the positive side in the Y-axis direction.
  • the air preheater 50 recovers heat from the exhaust gas EG in the exhaust gas channel 101 and preheats the air.
  • the air preheater 50 includes a plurality (three in this case) of heat exchange units 51A, 51B, and 51C provided in the exhaust gas passage 101.
  • the heat exchange units 51A, 51B, and 51C are provided in this order from the upstream side to the downstream side with respect to the flow of the exhaust gas EG, that is, from the negative side to the positive side in the Z-axis direction.
  • the heat exchange units 51 ⁇ / b> A, 51 ⁇ / b> B, 51 ⁇ / b> C include a plurality of first tubes 52 provided in the exhaust gas passage 101, an inlet portion 53 communicating with each inlet of the plurality of first tubes 52, and a plurality of first tubes. And an outlet 54 that communicates with each outlet of the tube 52.
  • the first tube 52 extends in the X-axis direction between the side wall 101a and the side wall 101b. In the first tube 52, air that exchanges heat with the exhaust gas EG flowing through the exhaust gas passage 101 flows.
  • the first tube 52 extends at least over the entire length between the side wall 101a and the side wall 101b.
  • the first tube 52 passes through the side wall 101a and opens outside the exhaust gas passage 101, and passes through the side wall 101b and opens outside the exhaust gas passage 101 (see, for example, FIG. 3).
  • the plurality of first tubes 52 are arranged so as to be parallel to each other so as to be arranged in the Z-axis direction and the Y-axis direction.
  • a gap is provided between the first tubes 52 adjacent to each other so that the exhaust gas EG can pass therethrough.
  • the inlet portion 53 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that the inflow ports of the plurality of first tubes 52 communicate with the internal space.
  • the inlet portion 53 expands the flow of air in the internal space so as to distribute the supplied air to each of the plurality of first tubes 52.
  • the outlet portion 54 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that the outlets of the plurality of first tubes 52 and the internal space communicate with each other.
  • the outlet 54 collects the air that has flowed out from the plurality of first tubes 52.
  • the inlet 53 of the heat exchange unit 51A is provided on the positive side wall 101b in the X-axis direction, and the outlet 54 is provided on the negative side wall 101a in the X-axis direction.
  • the inlet part 53 of the heat exchange unit 51B is provided on the negative side wall part 101a in the X-axis direction, and the outlet part 54 is provided on the positive side wall part 101b in the X-axis direction.
  • the inlet 53 of the heat exchange unit 51C is provided on the positive side wall 101b in the X axis direction, and the outlet 54 is provided on the negative side wall 101a in the X axis direction.
  • heat exchange air is supplied in the order of the heat exchange units 51C, 51B, and 51A.
  • a line L1 for supplying air from the outside of the air preheater 50 is connected to the inlet 53 of the heat exchange unit 51C.
  • the outlet part 54 of the heat exchange unit 51C and the inlet part 53 of the heat exchange unit 51B are connected via a line L2.
  • the outlet part 54 of the heat exchange unit 51B and the inlet part 53 of the heat exchange unit 51A are connected via a line L3.
  • a line L4 is connected to the outlet portion 54 of the heat exchange unit 51A to allow preheated air to flow out to the outside in the air preheater 50.
  • the air preheated by the air preheater 50 is supplied to various places where air is used in the boiler.
  • the air preheated by the air preheater 50 may be used as secondary combustion air for the furnace 3, or may be used as fluidizing air or combustion air at the bottom of the furnace 3.
  • the air preheater 50 configured as described above has a corrosion suppression structure 70 for suppressing low temperature end corrosion (acid dew point corrosion) of the first tube 52 at a position on the downstream end side in the flow of the exhaust gas EG.
  • a corrosion suppression structure 70 for suppressing low temperature end corrosion (acid dew point corrosion) of the first tube 52 at a position on the downstream end side in the flow of the exhaust gas EG.
  • Such corrosion at a low temperature is likely to occur when the moisture contained in the exhaust gas is large, when the sulfur content is high, or when the moisture and sulfur content is high.
  • fuels that easily generate exhaust gas include coal having a high sulfur content, petroleum coke, coal having a high moisture content, and woody fuel such as forest land residue.
  • the corrosion suppressing structure 70 is provided in the heat exchange unit 51C that is disposed on the most downstream side with respect to the flow of the exhaust gas EG.
  • the corrosion suppression structure 70 is provided with respect to the multiple 1st tube 52 arrange
  • the corrosion inhibiting structure 70 is not provided for the first tubes 52 of the upstream side of the first tubes 52 of the heat exchange units 51A and 51B and the heat exchange units 51C.
  • the corrosion suppression structure 70 includes a first tube 52, a second tube 71, an inlet portion 72 for the second tube 71, and an outlet portion 73 for the second tube 71.
  • the end portion 52a on the outflow side of the first tube 52 in the corrosion suppressing structure 70 extends so as to protrude to the negative side in the X-axis direction from the side wall portion 101a in order to provide the inlet portion 72.
  • the end portion 52b on the inflow side of the first tube 52 in the corrosion suppressing structure 70 extends so as to protrude to the positive side in the X-axis direction from the side wall portion 101b in order to provide the outlet portion 73.
  • the second tube 71 surrounds the first tube 52 from the outer peripheral side and extends along the first tube 52.
  • the central axis of the second tube 71 and the central axis of the first tube 52 may extend so as to coincide with each other. However, the central axis of the first tube 52 is deviated as long as the air flow is not affected. Also good.
  • the end portion 71a on the inflow side of the second tube 71 extends so as to protrude to the negative side in the X-axis direction from the side wall portion 101a. However, the end portion 71a has a smaller protruding amount than the end portion 52a of the first tube 52, and is disposed on the positive side in the X-axis direction with respect to the end portion 52a.
  • the end portion 71b on the outflow side of the second tube 71 extends from the side wall portion 101b so as to protrude to the positive side in the X-axis direction.
  • the end portion 71b has a smaller protruding amount than the end portion 52b of the first tube 52, and is disposed on the negative side in the X-axis direction than the end portion 52b.
  • the end portions 71a and 71b of the second tube 71 do not have to protrude from the side wall portions 101a and 101b, and need only extend at least over the entire length between the side wall portion 101a and the side wall portion 101b.
  • the 2nd tube 71 is provided with respect to all the 1st tubes 52 shown by FIG.
  • the 2nd tube 71 is with respect to a part of several 1st tube 52. It is provided. That is, the second tube 71 is not provided in the first tube 52 on the upstream side with respect to the flow of the exhaust gas EG, and is exposed to the exhaust gas EG.
  • the material of the first tube 52 and the second tube 71 is not particularly limited, but a general material such as carbon steel may be applied in order to reduce the material cost. That is, by adopting the corrosion inhibiting structure 70, it is not necessary to employ an expensive material resistant to corrosion as the tube material itself. However, the present invention does not exclude the use of these expensive materials as the material of the first tube 52 and the second tube 71.
  • the inlet portion 72 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that the inflow ports of the plurality of second tubes 71 communicate with the internal space.
  • the inlet part 72 expands the flow of air in the internal space so as to distribute the supplied air to each of the plurality of second tubes 71.
  • the inlet portion 72 for the second tube 71 is provided inside the outlet portion 54 of the heat exchange unit 51C, and airtightness is ensured so as not to communicate with the internal space of the outlet portion 54.
  • the end portion 52 a of the first tube 52 extends so as to penetrate the inlet portion 72 and is disposed so as to open in the internal space of the outlet portion 54.
  • the outlet part 73 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that each outlet of the plurality of second tubes 71 and the internal space communicate with each other.
  • the outlet portion 73 collects the air that has flowed out from the plurality of second tubes 71.
  • the outlet portion 73 for the second tube 71 is provided inside the inlet portion 53 of the heat exchange unit 51C, and airtightness is ensured so as not to communicate with the inner space of the inlet portion 53.
  • the end portion 52 b of the first tube 52 extends so as to penetrate the outlet portion 73 and is disposed so as to open in the internal space of the inlet portion 53.
  • air A2 having a higher temperature than the air A1 flowing through the first tube 52 flows.
  • air supplied from anywhere may be adopted as long as the temperature is higher than that of the air A1.
  • the temperature of the air A1 is not particularly limited, but may be about 30 to 90 ° C.
  • the air after passing through the first tube 52 flows through the second tube 71 at least once.
  • air discharged from the heat exchange unit 51A is employed as the air A2.
  • the temperature of such air A2 may be approximately 200 ° C. or higher.
  • the inlet 72 is connected to a line L6 branched from the line L4 extending from the outlet 54 of the heat exchange unit 51A (see also FIG. 2).
  • the air supplied from the line L ⁇ b> 6 flows to the second tube 71 through the inlet portion 72.
  • a line L7 is connected to the outlet portion 73.
  • the connection destination of the line L7 is not particularly limited, it may be connected to various places where air is used in the boiler, similarly to the line L4.
  • the air A2 passes through the second tube 71 outside the double pipe, the air pressure decreases. Therefore, the line L7 can reuse the recovered heat by supplying air to a position where high pressure is not required (for example, the upper part of the furnace or the seal air).
  • the flow rate of the air A2 with respect to the second tube 71 may be controlled according to the situation.
  • the corrosion suppression structure 70 may include an air temperature detection unit 81, an exhaust gas temperature detection unit 82, a flow rate adjustment unit 83, and a control unit 84.
  • the air temperature detector 81 detects the temperature of the air A ⁇ b> 2 flowing through the second tube 71.
  • the air temperature detection unit 81 may directly measure the air A2 in the second tube 71.
  • the air temperature detection unit 81 may be a position immediately before flowing into the second tube 71 (for example, the line L6 and the inlet 72) or immediately after flowing out. (For example, the line L7 and the outlet 73) may be measured.
  • the exhaust gas temperature detector 82 detects the temperature of the exhaust gas EG downstream of the region of the exhaust gas flow channel 101 where the first tube 52 is provided. That is, the exhaust gas temperature detection unit 82 detects the temperature of the exhaust gas EG in the region of the exhaust gas flow channel 101 on the downstream side of the heat exchange unit 51C of the air preheater 50.
  • the flow rate adjusting unit 83 adjusts the flow rate of the air A ⁇ b> 2 with respect to the second tube 71.
  • the flow rate adjusting unit 83 may be configured by, for example, a valve provided in the line L6.
  • the control unit 84 controls the flow rate of air that flows to the second tube 71 based on the detection results of the air temperature detection unit 81 and the exhaust gas temperature detection unit 82.
  • the control unit 84 adjusts the flow rate of the air A ⁇ b> 2 by sending a control signal corresponding to the flow rate to the flow rate adjustment unit 83.
  • the air preheater according to the comparative example is not provided with the corrosion suppressing structure 70 as in the present embodiment, and the second tube 71 is not provided in the first tube 52 on the most downstream side, and the exhaust gas EG is not provided. It is exposed to.
  • the exhaust gas EG generated by burning the fuel contains a large amount of moisture.
  • the acid dew point sulfuric acid dew point
  • the acid dew point increases (although it differs depending on the fuel used, it is generally 110 to 130 ° C).
  • the low temperature end corrosion (acid dew point corrosion) in which the first tube 52 disposed at the downstream end where the temperature of the exhaust gas EG becomes low is corroded. ) May occur.
  • the air preheater 50 includes a first tube 52 provided in the exhaust gas passage 101.
  • the first tube 52 can recover the heat of the exhaust gas EG flowing through the exhaust gas flow channel 101 by the air flowing through the first tube 52.
  • the air preheater 50 includes a second tube 71 that surrounds the first tube 52 from the outer peripheral side and extends along the first tube 52.
  • the first tube 52 and the second tube 71 constitute a double tube.
  • air having a higher temperature than the air flowing through the first tube 52 flows through the second tube 71 that is the outer tube of the double tube.
  • the first tube 52 is surrounded by the second tube 71 through which high-temperature air flows. Corrosion by low temperature exhaust gas EG can be suppressed. As mentioned above, corrosion of a tube can be suppressed, suppressing the fall of boiler efficiency.
  • the temperature of the tube wall of the second tube 71 is also maintained at a temperature at which low temperature end corrosion does not occur. it can. Therefore, it is not necessary to use a high-grade material that is resistant to corrosion as the material of the first tube 52 and the second tube 71, and thus the manufacturing cost can be suppressed.
  • the air after passing through the first tube 52 flows through the second tube 71 at least once. Since the air that has passed through the first tube 52 at least once has recovered the heat of the exhaust gas EG, it is more than the air A1 that is passing through the first tube 52 of the most downstream side corrosion suppression structure 70. The temperature is high. Therefore, by flowing the air through the second tube 71, a structure for securing high-temperature air for flowing into the second tube 71 from a place other than the air preheater 50 becomes unnecessary.
  • a plurality of first tubes 52 are provided in the exhaust gas flow path 101, and a second tube 71 is provided for a part of the plurality of first tubes 52.
  • the second tube 71 is provided only for those having a low exhaust gas temperature passing through and having a high possibility of low temperature end corrosion, and passing through the exhaust gas temperature is high, allowing low temperature end corrosion.
  • the second tube 71 is not provided for those having low properties. Thereby, the manufacturing cost of the air preheater 50 can be suppressed.
  • the air preheater 50 includes an air temperature detector 81 that detects the temperature of the air flowing through the second tube 71, and the temperature of the exhaust gas EG downstream of the region of the exhaust gas channel 101 where the first tube 52 is provided. And a control unit 84 that controls the flow rate of the air flowing to the second tube 71 based on the detection results of the air temperature detection unit 81 and the exhaust gas temperature detection unit 82. By performing such control, air having an appropriate flow rate can be flowed to the second tube 71.
  • the present invention is not limited to the embodiment described above.
  • the order of introduction of air into the heat exchange unit may be changed, and air may be simultaneously supplied in parallel to each of the heat exchange units 51A, 51B, 51C.
  • the air A2 is drawn from the line L4, but the drawing position of the air A2 is not particularly limited.
  • the air A2 may be drawn from the lines L2, L3, etc.
  • auxiliary heating may be performed when the temperature of the air drawn out from the lines L2 and L3 is not sufficient.
  • air A2 and air A1 flow so as to face each other, but they may flow in the same direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

An air preheater that recovers heat from boiler exhaust gas and preheats air, said air preheater being equipped with a first tube provided inside an exhaust gas flow passage through which exhaust gas passes, and a second tube surrounding the first tube from the outer circumferential side thereof and extending along the first tube. Air flows in the first tube, and air at a higher temperature than the air flowing in the first tube flows in the second tube.

Description

空気予熱器Air preheater
 本発明は、空気予熱器に関する。 The present invention relates to an air preheater.
 従来のボイラシステムとして、燃料を燃焼させることによって伝熱媒体を加熱するものが知られている(例えば、特許文献1参照)。加熱された伝熱媒体は、システム内の循環系を循環している。また、燃料の燃焼によって生じた燃焼ガスは、熱交換等の処理がなされた後、排ガスとして外部へ排出される。 As a conventional boiler system, one that heats a heat transfer medium by burning fuel is known (see, for example, Patent Document 1). The heated heat transfer medium circulates in a circulation system in the system. Further, the combustion gas generated by the combustion of the fuel is subjected to a heat exchange process or the like, and then discharged to the outside as an exhaust gas.
特開2001-41415号公報JP 2001-41415 A
 近年、高水分、高硫黄分の燃料がボイラの燃料として用いられる傾向にある。このような燃料を燃焼することで発生する排ガスには水分が多く含まれる。排ガス中の水分が増加すると、酸露点(硫酸露点)が上昇する。ここで、上述のようなボイラシステムには、排ガスの熱を回収して空気を予熱する空気予熱器が設けられる場合がある。排ガスの酸露点が高い場合、排ガスの温度が低くなる下流側の端部に配置されるチューブが腐食される低温端腐食(酸露点腐食)が発生する場合がある。 In recent years, high moisture and high sulfur fuels tend to be used as boiler fuel. Exhaust gas generated by burning such fuel contains a lot of moisture. As moisture in the exhaust gas increases, the acid dew point (sulfuric acid dew point) increases. Here, the boiler system as described above may be provided with an air preheater that recovers heat of exhaust gas and preheats air. When the acid dew point of the exhaust gas is high, low temperature end corrosion (acid dew point corrosion) in which the tube disposed at the downstream end where the temperature of the exhaust gas becomes low may corrode may occur.
 このような低温端腐食の発生を抑制するための方法として、排ガスの温度を高く維持する方法が挙げられる。しかしながら、排ガスの温度を高くするということは排ガスの顕熱損失が増加するということであるため、結果的にボイラのボイラ効率が低下することになる。 As a method for suppressing the occurrence of such low temperature end corrosion, there is a method of maintaining the exhaust gas temperature at a high level. However, increasing the temperature of the exhaust gas means increasing the sensible heat loss of the exhaust gas, resulting in a decrease in boiler efficiency of the boiler.
 以上より、ボイラ効率の低下を抑制しつつ、チューブの腐食を抑制できる空気予熱器を提供することを目的とする。 Accordingly, an object of the present invention is to provide an air preheater that can suppress the corrosion of the tube while suppressing a decrease in boiler efficiency.
 本発明の一形態に係る空気予熱器は、ボイラの排ガスの熱を回収して、空気を予熱する空気予熱器であって、排ガスを通過させる排ガス流路内に設けられる第1のチューブと、第1のチューブを外周側から取り囲むと共に第1のチューブに沿って延びる第2のチューブと、を備え、第1のチューブには空気が流れ、第2のチューブには、第1のチューブを流れる空気より温度が高い空気が流れる。 An air preheater according to an aspect of the present invention is an air preheater that recovers heat of exhaust gas from a boiler and preheats air, and includes a first tube provided in an exhaust gas passage that allows exhaust gas to pass through, A second tube that surrounds the first tube from the outer peripheral side and extends along the first tube. Air flows through the first tube, and the first tube flows through the second tube. Air with a higher temperature than air flows.
 本発明の一形態に係る空気予熱器は、排ガス流路内に設けられる第1のチューブを備える。第1のチューブは、当該第1のチューブを流れる空気により、排ガス流路を流れる排ガスの熱を回収できる。ここで、空気予熱器は、第1のチューブを外周側から取り囲むと共に第1のチューブに沿って延びる第2のチューブを備えている。このように、第1のチューブと第2のチューブとによって二重管が構成される。また、二重管の外側のチューブである第2のチューブには、第1のチューブを流れる空気より温度が高い空気が流れる。これにより、熱を除去されることで排ガスが低温になっても、第1のチューブは温度の高い空気が流れる第2のチューブに取り囲まれているため、当該第1のチューブが低温の排ガスにより腐食されることを抑制できる。以上より、ボイラ効率の低下を抑制しつつ、チューブの腐食を抑制できる。 An air preheater according to an embodiment of the present invention includes a first tube provided in an exhaust gas passage. The first tube can recover the heat of the exhaust gas flowing through the exhaust gas flow path by the air flowing through the first tube. Here, the air preheater includes a second tube that surrounds the first tube from the outer peripheral side and extends along the first tube. Thus, a double tube is comprised by the 1st tube and the 2nd tube. In addition, air having a higher temperature than the air flowing through the first tube flows through the second tube, which is a tube outside the double tube. Thereby, even if the exhaust gas becomes low temperature by removing heat, the first tube is surrounded by the second tube through which high-temperature air flows. Corrosion can be suppressed. As mentioned above, corrosion of a tube can be suppressed, suppressing the fall of boiler efficiency.
 一形態に係る空気予熱器において、第2のチューブには、少なくとも一度第1のチューブを通過した後の空気が流れてよい。少なくとも一度第1のチューブを通過した空気は、排ガスの熱を回収しているため、最下流側の第1のチューブを通過している最中の空気よりも温度が高い。従って、当該空気を第2のチューブに流すことで、空気予熱器以外の場所から第2のチューブに流すための高温の空気を確保する構造が不要となる。 In the air preheater according to one embodiment, the air after passing through the first tube at least once may flow through the second tube. Since the air that has passed through the first tube at least once has recovered the heat of the exhaust gas, the temperature is higher than the air that is passing through the first tube on the most downstream side. Therefore, by flowing the air through the second tube, a structure for securing high-temperature air for flowing from the place other than the air preheater to the second tube becomes unnecessary.
 一形態に係る空気予熱器において、第1のチューブは排ガス流路内に複数設けられ、第2のチューブは、複数の第1のチューブの一部に対して設けられてよい。複数の第1のチューブのうち、通過する排ガス温度が低く、低温端腐食の可能性が高いものに対してのみ第2のチューブを設け、通過する排ガス温度が高く、低温端腐食の可能性が低いものに対しては第2のチューブを設けない。これによって、空気予熱器の製造コストを抑制することができる。 In the air preheater according to one aspect, a plurality of first tubes may be provided in the exhaust gas flow path, and a second tube may be provided for a part of the plurality of first tubes. Among the plurality of first tubes, the second tube is provided only for those having a low exhaust gas temperature passing through and having a high possibility of low temperature end corrosion, and the passing exhaust gas temperature is high and there is a possibility of low temperature end corrosion. The second tube is not provided for low ones. Thereby, the manufacturing cost of an air preheater can be suppressed.
 一形態に係る空気予熱器は、第2のチューブを流れる空気の温度を検出する空気温度検出部と、排ガス流路のうち第1のチューブが設けられる領域よりも下流側における排ガスの温度を検出する排ガス温度検出部と、空気温度検出部及び排ガス温度検出部の検出結果に基づいて第2のチューブへ流す空気の流量を制御する制御部と、を備えてよい。このような制御を行うことにより、第2のチューブに対して適切な流量の空気を流すことができる。 The air preheater which concerns on one form detects the temperature of the exhaust gas in the downstream from the area | region where the 1st tube is provided among the air temperature detection parts which detect the temperature of the air which flows through a 2nd tube, and an exhaust gas flow path An exhaust gas temperature detection unit that controls the flow rate of air that flows to the second tube based on detection results of the air temperature detection unit and the exhaust gas temperature detection unit. By performing such control, it is possible to flow air at an appropriate flow rate to the second tube.
 本発明によれば、ボイラ効率の低下を抑制しつつ、チューブの腐食を抑制できる空気予熱器を提供することができる。 According to the present invention, it is possible to provide an air preheater that can suppress the corrosion of the tube while suppressing a decrease in boiler efficiency.
本発明の実施形態に係る空気予熱器を備えるボイラシステムの概略構成図である。It is a schematic structure figure of a boiler system provided with an air preheater concerning an embodiment of the present invention. 図1に示す空気予熱器の概略構成を示す図である。It is a figure which shows schematic structure of the air preheater shown in FIG. 図1に示す空気予熱器の腐食抑制構造の概略構成を示す図である。It is a figure which shows schematic structure of the corrosion suppression structure of the air preheater shown in FIG.
 本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. However, the following embodiments are merely examples for explaining the present invention and are not intended to limit the present invention to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 図1を参照して、本実施形態に係る空気予熱器50を備えたボイラシステム100の構成について説明する。ボイラシステム100は、外部循環型(Circulating Fluidized Bed型)の循環流動層ボイラである。このボイラシステム100は、縦長の筒形状をなす流動層型の火炉3を備えている。火炉3の中間部には、燃料を供給する燃料供給口3aと、上部には燃焼ガスを排出するガス出口3bと、が設けられている。燃料供給装置5からこの火炉3に供給される燃料は、燃料供給口3aを介して火炉3の内部に供給される。 With reference to FIG. 1, the structure of the boiler system 100 provided with the air preheater 50 which concerns on this embodiment is demonstrated. The boiler system 100 is an external circulation type (circulating fluidized bed type) circulating fluidized bed boiler. The boiler system 100 includes a fluidized bed furnace 3 having a vertically long cylindrical shape. A fuel supply port 3a for supplying fuel is provided in the middle part of the furnace 3, and a gas outlet 3b for discharging combustion gas is provided in the upper part. The fuel supplied from the fuel supply device 5 to the furnace 3 is supplied into the furnace 3 through the fuel supply port 3a.
 火炉3のガス出口3bには固気分離装置として機能するサイクロン7が接続されている。サイクロン7の排出口7aはガスラインを介して後段のガス処理系に接続されている。また、サイクロン7の底部出口からはダウンカマーと称されるリターンライン9が下方に延びており、リターンライン9の下端は火炉3の中間部側面に接続されている。 A cyclone 7 that functions as a solid-gas separator is connected to the gas outlet 3 b of the furnace 3. The discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line. A return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the furnace 3.
 火炉3内では、下部の給気ライン3cから導入される燃焼・流動用の空気により、燃料供給口3aから供給された燃料を含む固形物が流動し、燃料は流動しながら例えば約800~900℃で燃焼する。サイクロン7には、火炉3で発生した燃焼ガスが固体粒子を同伴しながら導入される。サイクロン7は、遠心分離作用により固体粒子と気体とを分離し、リターンライン9を介して分離された固体粒子を火炉3に戻すと共に、固体粒子が除かれた燃焼ガスを排出口7aからガスラインを通じて後段のガス処理系に送出する。 In the furnace 3, the solid material containing the fuel supplied from the fuel supply port 3a flows by the combustion / flowing air introduced from the lower air supply line 3c, and the fuel flows while the fuel flows, for example, about 800 to 900. Burn at ℃. A combustion gas generated in the furnace 3 is introduced into the cyclone 7 with accompanying solid particles. The cyclone 7 separates solid particles and gas by a centrifugal separation action, returns the solid particles separated via the return line 9 to the furnace 3, and removes the combustion gas from which the solid particles have been removed from the discharge port 7 a to the gas line. To the subsequent gas processing system.
 この火炉3では「炉内ベット材」と呼ばれる固形物が発生し底部に溜まるが、この炉内ベット材で不純物(低融点物質等)が濃縮されて起こるベット材の焼結及び溶融固化、或いは不燃夾雑物による動作不良を抑制することが必要である。このため、火炉3では、底部の排出口3dから炉内ベット材が定期的または連続的に外部に排出されている。排出されたベット材は、循環ライン(図示せず)上で金属や粗大粒径などの不適物を取り除いた後、再び火炉3に供給される。 In this furnace 3, a solid material called “in-furnace bed material” is generated and collected at the bottom, and the bed material is sintered and melted and solidified by the concentration of impurities (low melting point materials, etc.) in the in-furnace bed material, or It is necessary to suppress malfunctions caused by incombustible impurities. For this reason, in the furnace 3, the in-furnace bed material is discharged | emitted regularly or continuously outside from the discharge port 3d of the bottom part. The discharged bed material is supplied to the furnace 3 again after removing unsuitable materials such as metal and coarse particle diameter on a circulation line (not shown).
 上記のガス処理系は、サイクロン7の排出口7aにガスラインを介して接続されたガス熱交換装置13と、このガス熱交換装置13の排出口13aにガスラインを介して接続された集塵機15とを備えている。ガス熱交換装置13には、排ガスの流路を横切るように蒸気を過熱するボイラチューブ13bが設けられている。サイクロン7から送られた高温の排ガスがこのボイラチューブ13bに接触することで、排ガスの熱がチューブ内の蒸気に回収され、発生した高温の蒸気がボイラチューブ13bを通じて発電用のタービンに送られる。ガス熱交換装置13内における排出口13aには、排ガスの熱を回収して空気を予熱する空気予熱器50が設けられている。空気予熱器50の構成については後述する。集塵機15は、この可燃性ガスに未だ同伴している飛灰等の微粒子を除去する。集塵機15として、例えばバグフィルタや電気集塵機などが採用される。集塵機15の排出口15aから排出された清浄なガスはガスライン及びポンプ17を経由して煙突19から外部に排出される。 The gas treatment system includes a gas heat exchange device 13 connected to the discharge port 7a of the cyclone 7 via a gas line, and a dust collector 15 connected to the discharge port 13a of the gas heat exchange device 13 via a gas line. And. The gas heat exchanger 13 is provided with a boiler tube 13b that superheats steam so as to cross the exhaust gas flow path. When the high-temperature exhaust gas sent from the cyclone 7 comes into contact with the boiler tube 13b, the heat of the exhaust gas is recovered into the steam in the tube, and the generated high-temperature steam is sent to the power generation turbine through the boiler tube 13b. An air preheater 50 that recovers the heat of the exhaust gas and preheats the air is provided at the discharge port 13a in the gas heat exchanger 13. The configuration of the air preheater 50 will be described later. The dust collector 15 removes fine particles such as fly ash that are still accompanying the combustible gas. As the dust collector 15, for example, a bag filter or an electric dust collector is adopted. The clean gas discharged from the discharge port 15 a of the dust collector 15 is discharged to the outside through the gas line and the pump 17 from the chimney 19.
 火炉3で発生した固体粒子は、火炉3、サイクロン7、及びリターンライン9で構成される循環系21内を循環する。なお、以降の説明においては、固体粒子の流動物を伝熱媒体と称する。循環系21のうち、リターンライン9と火炉3の底部との間には熱交換チャンバ20が形成される。熱交換チャンバ20内には伝熱媒体が貯められる。また、熱交換チャンバ20内には、熱交換器22が設けられている。 Solid particles generated in the furnace 3 circulate in the circulation system 21 including the furnace 3, the cyclone 7, and the return line 9. In the following description, the fluid of solid particles is referred to as a heat transfer medium. In the circulation system 21, a heat exchange chamber 20 is formed between the return line 9 and the bottom of the furnace 3. A heat transfer medium is stored in the heat exchange chamber 20. A heat exchanger 22 is provided in the heat exchange chamber 20.
 次に、図2を参照して、空気予熱器50の概略構成について説明する。図2に示すように、ガス熱交換装置13は排ガスEGを通過させる排ガス流路101を備えている。排ガス流路101は、互いに対向する側壁部101a,101bと、紙面前後方向において互いに対向する側壁部(不図示)と、を備えている。なお、以降の説明においては、排ガス流路101内を排ガスEGが流れる方向をZ軸方向とする。排ガスEGの流れに対する上流側をZ軸方向の負側とし、下流側をZ軸方向の正側とする。側壁部101a,101bが対向する方向(図においては紙面左右方向)をX軸方向とする。側壁部101aが配置される方向(紙面左側)をX軸方向の負側とし、側壁部101bが配置される側(紙面右側)をX軸方向の正側とする。紙面前後方向をY軸方向とする。紙面裏側をY軸方向の負側とし、紙面前側をY軸方向の正側とする。 Next, a schematic configuration of the air preheater 50 will be described with reference to FIG. As shown in FIG. 2, the gas heat exchange device 13 includes an exhaust gas passage 101 through which the exhaust gas EG passes. The exhaust gas flow channel 101 includes side wall portions 101a and 101b that face each other and side wall portions (not shown) that face each other in the front-rear direction of the paper surface. In the following description, the direction in which the exhaust gas EG flows in the exhaust gas channel 101 is referred to as the Z-axis direction. The upstream side with respect to the flow of the exhaust gas EG is the negative side in the Z-axis direction, and the downstream side is the positive side in the Z-axis direction. The direction in which the side wall portions 101a and 101b face each other (the left and right direction in the drawing) is the X-axis direction. The direction in which the side wall 101a is arranged (the left side in the drawing) is the negative side in the X-axis direction, and the side in which the side wall 101b is arranged (the right side in the drawing) is the positive side in the X-axis direction. The front-rear direction on the paper is the Y-axis direction. The back side of the paper is the negative side in the Y-axis direction, and the front side of the paper is the positive side in the Y-axis direction.
 空気予熱器50は、排ガス流路101の排ガスEGから熱を回収し、空気を予熱する。空気予熱器50は、排ガス流路101内に設けられる複数(ここでは3つ)の熱交換ユニット51A,51B,51Cを備えている。なお、排ガスEGの流れに対して上流側から下流側へ向かって、すなわちZ軸方向における負側から正側へ向かって、熱交換ユニット51A,51B,51Cの順番で設けられる。 The air preheater 50 recovers heat from the exhaust gas EG in the exhaust gas channel 101 and preheats the air. The air preheater 50 includes a plurality (three in this case) of heat exchange units 51A, 51B, and 51C provided in the exhaust gas passage 101. The heat exchange units 51A, 51B, and 51C are provided in this order from the upstream side to the downstream side with respect to the flow of the exhaust gas EG, that is, from the negative side to the positive side in the Z-axis direction.
 熱交換ユニット51A,51B,51Cは、排ガス流路101内に設けられる複数の第1のチューブ52と、複数の第1のチューブ52の各流入口と連通する入口部53と、複数の第1のチューブ52の各流出口と連通する出口部54と、を備えている。第1のチューブ52は、側壁部101aと側壁部101bとの間でX軸方向に延びる。第1のチューブ52には、排ガス流路101を流れる排ガスEGとの間で熱交換を行う空気が流れる。第1のチューブ52は、少なくとも側壁部101aと側壁部101bとの間の全長にわたって延びている。第1のチューブ52は、側壁部101aを貫通して排ガス流路101の外部で開口し、側壁部101bを貫通して排ガス流路101の外部で開口している(例えば図3参照)。複数の第1のチューブ52は、Z軸方向及びY軸方向に配列するように、互いに平行をなすように並べられている。互いに隣り合う第1のチューブ52同士の間には、排ガスEGが通過できる程度の隙間が設けられている。 The heat exchange units 51 </ b> A, 51 </ b> B, 51 </ b> C include a plurality of first tubes 52 provided in the exhaust gas passage 101, an inlet portion 53 communicating with each inlet of the plurality of first tubes 52, and a plurality of first tubes. And an outlet 54 that communicates with each outlet of the tube 52. The first tube 52 extends in the X-axis direction between the side wall 101a and the side wall 101b. In the first tube 52, air that exchanges heat with the exhaust gas EG flowing through the exhaust gas passage 101 flows. The first tube 52 extends at least over the entire length between the side wall 101a and the side wall 101b. The first tube 52 passes through the side wall 101a and opens outside the exhaust gas passage 101, and passes through the side wall 101b and opens outside the exhaust gas passage 101 (see, for example, FIG. 3). The plurality of first tubes 52 are arranged so as to be parallel to each other so as to be arranged in the Z-axis direction and the Y-axis direction. A gap is provided between the first tubes 52 adjacent to each other so that the exhaust gas EG can pass therethrough.
 入口部53は、内部空間を有する箱状の部材であり、排ガス流路101の外側に設けられ、複数の第1のチューブ52の各流入口と内部空間が連通するように設けられる。入口部53は、供給された空気を複数の第1のチューブ52のそれぞれへ分配するように、内部空間で空気の流れを拡張する。出口部54は、内部空間を有する箱状の部材であり、排ガス流路101の外側に設けられ、複数の第1のチューブ52の各流出口と内部空間が連通するように設けられる。出口部54は、複数の第1のチューブ52からそれぞれ流出した空気を集約する。 The inlet portion 53 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that the inflow ports of the plurality of first tubes 52 communicate with the internal space. The inlet portion 53 expands the flow of air in the internal space so as to distribute the supplied air to each of the plurality of first tubes 52. The outlet portion 54 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that the outlets of the plurality of first tubes 52 and the internal space communicate with each other. The outlet 54 collects the air that has flowed out from the plurality of first tubes 52.
 本実施形態では、熱交換ユニット51Aの入口部53はX軸方向の正側の側壁部101bに設けられ、出口部54はX軸方向の負側の側壁部101aに設けられる。熱交換ユニット51Bの入口部53はX軸方向の負側の側壁部101aに設けられ、出口部54はX軸方向の正側の側壁部101bに設けられる。熱交換ユニット51Cの入口部53はX軸方向の正側の側壁部101bに設けられ、出口部54はX軸方向の負側の側壁部101aに設けられる。 In the present embodiment, the inlet 53 of the heat exchange unit 51A is provided on the positive side wall 101b in the X-axis direction, and the outlet 54 is provided on the negative side wall 101a in the X-axis direction. The inlet part 53 of the heat exchange unit 51B is provided on the negative side wall part 101a in the X-axis direction, and the outlet part 54 is provided on the positive side wall part 101b in the X-axis direction. The inlet 53 of the heat exchange unit 51C is provided on the positive side wall 101b in the X axis direction, and the outlet 54 is provided on the negative side wall 101a in the X axis direction.
 本実施形態では、熱交換用の空気は、熱交換ユニット51C,51B,51Aの順で供給される。具体的には、熱交換ユニット51Cの入口部53には、空気予熱器50の外部からの空気を供給するためのラインL1が接続されている。熱交換ユニット51Cの出口部54と熱交換ユニット51Bの入口部53とは、ラインL2を介して接続されている。熱交換ユニット51Bの出口部54と熱交換ユニット51Aの入口部53とは、ラインL3を介して接続されている。熱交換ユニット51Aの出口部54には、予熱した空気を空気予熱器50での外部へ流出させるためのラインL4が接続されている。空気予熱器50で予熱された空気は、ボイラ内で空気が用いられる各所へ供給される。例えば、空気予熱器50で予熱された空気は、火炉3の二次燃焼用の空気として用いられてもよく、火炉3の底部で流動化用空気や燃焼空気として用いられてもよい。 In the present embodiment, heat exchange air is supplied in the order of the heat exchange units 51C, 51B, and 51A. Specifically, a line L1 for supplying air from the outside of the air preheater 50 is connected to the inlet 53 of the heat exchange unit 51C. The outlet part 54 of the heat exchange unit 51C and the inlet part 53 of the heat exchange unit 51B are connected via a line L2. The outlet part 54 of the heat exchange unit 51B and the inlet part 53 of the heat exchange unit 51A are connected via a line L3. A line L4 is connected to the outlet portion 54 of the heat exchange unit 51A to allow preheated air to flow out to the outside in the air preheater 50. The air preheated by the air preheater 50 is supplied to various places where air is used in the boiler. For example, the air preheated by the air preheater 50 may be used as secondary combustion air for the furnace 3, or may be used as fluidizing air or combustion air at the bottom of the furnace 3.
 上述のように構成された空気予熱器50は、排ガスEGの流れにおける下流の端部側の位置に、第1のチューブ52の低温端腐食(酸露点腐食)を抑制するための腐食抑制構造70を備える。なお、このような低温での腐食は、排ガスに含まれる水分が多い場合、または硫黄分が多い場合、あるいは水分及び硫黄分が多い場合に生じやすい。このような排ガスが生じ易い燃料としては、高硫黄含有率を有する石炭、石油コークス、高水分含有率を有する石炭、林地残材などの木質燃料等が挙げられる。本実施形態では、排ガスEGの流れに対して最も下流側に配置される熱交換ユニット51Cに腐食抑制構造70が設けられる。また、熱交換ユニット51Cの中でも、排ガスEGの流れに対して最も下流側に配置される複数本の第1のチューブ52に対して腐食抑制構造70が設けられる。すなわち、腐食抑制構造70は、流れる排ガスEGの温度が高いことにより、低温端腐食を起こす可能性が低い箇所には設けられない。ここでは、腐食抑制構造70は、熱交換ユニット51A,51Bの第1のチューブ52、及び熱交換ユニット51Cのうち、上流側の一部の第1のチューブ52に対しては設けられない。 The air preheater 50 configured as described above has a corrosion suppression structure 70 for suppressing low temperature end corrosion (acid dew point corrosion) of the first tube 52 at a position on the downstream end side in the flow of the exhaust gas EG. Is provided. Such corrosion at a low temperature is likely to occur when the moisture contained in the exhaust gas is large, when the sulfur content is high, or when the moisture and sulfur content is high. Examples of fuels that easily generate exhaust gas include coal having a high sulfur content, petroleum coke, coal having a high moisture content, and woody fuel such as forest land residue. In the present embodiment, the corrosion suppressing structure 70 is provided in the heat exchange unit 51C that is disposed on the most downstream side with respect to the flow of the exhaust gas EG. Moreover, the corrosion suppression structure 70 is provided with respect to the multiple 1st tube 52 arrange | positioned most downstream with respect to the flow of waste gas EG among the heat exchange units 51C. That is, the corrosion suppression structure 70 is not provided at a location where the temperature of the flowing exhaust gas EG is high and the possibility of low temperature end corrosion is low. Here, the corrosion inhibiting structure 70 is not provided for the first tubes 52 of the upstream side of the first tubes 52 of the heat exchange units 51A and 51B and the heat exchange units 51C.
 図3を参照して、腐食抑制構造70の詳細な構成について説明する。腐食抑制構造70は、第1のチューブ52と、第2のチューブ71と、第2のチューブ71に対する入口部72と、第2のチューブ71に対する出口部73と、を備えている。腐食抑制構造70における第1のチューブ52の流出側の端部52aは、入口部72を設けるために、側壁部101aよりもX軸方向における負側へ突出するように延びている。腐食抑制構造70における第1のチューブ52の流入側の端部52bは、出口部73を設けるために、側壁部101bよりもX軸方向における正側へ突出するように延びている。 Referring to FIG. 3, the detailed configuration of the corrosion inhibiting structure 70 will be described. The corrosion suppression structure 70 includes a first tube 52, a second tube 71, an inlet portion 72 for the second tube 71, and an outlet portion 73 for the second tube 71. The end portion 52a on the outflow side of the first tube 52 in the corrosion suppressing structure 70 extends so as to protrude to the negative side in the X-axis direction from the side wall portion 101a in order to provide the inlet portion 72. The end portion 52b on the inflow side of the first tube 52 in the corrosion suppressing structure 70 extends so as to protrude to the positive side in the X-axis direction from the side wall portion 101b in order to provide the outlet portion 73.
 第2のチューブ71は、第1のチューブ52を外周側から取り囲むと共に第1のチューブ52に沿って延びる。第2のチューブ71の中心軸線、第1のチューブ52の中心軸線と一致するように延びていてよいが、空気の流れに影響がない範囲で、第1のチューブ52の中心軸線とずれていてもよい。第2のチューブ71の流入側の端部71aは、側壁部101aよりもX軸方向における負側へ突出するように延びている。ただし、当該端部71aは、第1のチューブ52の端部52aよりも突出量が少なく、端部52aよりもX軸方向における正側に配置されている。第2のチューブ71の流出側の端部71bは、側壁部101bよりもX軸方向における正側へ突出するように延びている。ただし、当該端部71bは、第1のチューブ52の端部52bよりも突出量が少なく、端部52bよりもX軸方向における負側に配置されている。なお、第2のチューブ71の端部71a,71bは側壁部101a,101bから突出していなくともよく、少なくとも側壁部101aと側壁部101bとの間の全長にわたって延びていればよい。なお、図3に示されている第1のチューブ52の全てに対して第2のチューブ71が設けられているが、第2のチューブ71は、複数の第1のチューブ52の一部に対して設けられている。すなわち、排ガスEGの流れに対する上流側の第1のチューブ52には第2のチューブ71は設けられておらず、排ガスEGに対して露出している。 The second tube 71 surrounds the first tube 52 from the outer peripheral side and extends along the first tube 52. The central axis of the second tube 71 and the central axis of the first tube 52 may extend so as to coincide with each other. However, the central axis of the first tube 52 is deviated as long as the air flow is not affected. Also good. The end portion 71a on the inflow side of the second tube 71 extends so as to protrude to the negative side in the X-axis direction from the side wall portion 101a. However, the end portion 71a has a smaller protruding amount than the end portion 52a of the first tube 52, and is disposed on the positive side in the X-axis direction with respect to the end portion 52a. The end portion 71b on the outflow side of the second tube 71 extends from the side wall portion 101b so as to protrude to the positive side in the X-axis direction. However, the end portion 71b has a smaller protruding amount than the end portion 52b of the first tube 52, and is disposed on the negative side in the X-axis direction than the end portion 52b. Note that the end portions 71a and 71b of the second tube 71 do not have to protrude from the side wall portions 101a and 101b, and need only extend at least over the entire length between the side wall portion 101a and the side wall portion 101b. In addition, although the 2nd tube 71 is provided with respect to all the 1st tubes 52 shown by FIG. 3, the 2nd tube 71 is with respect to a part of several 1st tube 52. It is provided. That is, the second tube 71 is not provided in the first tube 52 on the upstream side with respect to the flow of the exhaust gas EG, and is exposed to the exhaust gas EG.
 第1のチューブ52と第2のチューブ71の材料は、特に限定されないが、材料コストを抑制するために、炭素鋼などの一般的な材料を適用してよい。すなわち、腐食抑制構造70を採用することで、チューブの材料自体を腐食に強い高価な材料を採用しなくともよい。ただし、本発明は、第1のチューブ52と第2のチューブ71の材料として、それらの高価な材料を用いることを排除するものではない。 The material of the first tube 52 and the second tube 71 is not particularly limited, but a general material such as carbon steel may be applied in order to reduce the material cost. That is, by adopting the corrosion inhibiting structure 70, it is not necessary to employ an expensive material resistant to corrosion as the tube material itself. However, the present invention does not exclude the use of these expensive materials as the material of the first tube 52 and the second tube 71.
 入口部72は、内部空間を有する箱状の部材であり、排ガス流路101の外側に設けられ、複数の第2のチューブ71の各流入口と内部空間が連通するように設けられる。入口部72は、供給された空気を複数の第2のチューブ71のそれぞれへ分配するように、内部空間で空気の流れを拡張する。第2のチューブ71に対する入口部72は、熱交換ユニット51Cの出口部54の内部に設けられており、当該出口部54の内部空間と連通しないように気密性が確保されている。なお、第1のチューブ52の端部52aは、入口部72を貫通するように延びており、出口部54の内部空間で開口するように配置されている。 The inlet portion 72 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that the inflow ports of the plurality of second tubes 71 communicate with the internal space. The inlet part 72 expands the flow of air in the internal space so as to distribute the supplied air to each of the plurality of second tubes 71. The inlet portion 72 for the second tube 71 is provided inside the outlet portion 54 of the heat exchange unit 51C, and airtightness is ensured so as not to communicate with the internal space of the outlet portion 54. The end portion 52 a of the first tube 52 extends so as to penetrate the inlet portion 72 and is disposed so as to open in the internal space of the outlet portion 54.
 出口部73は、内部空間を有する箱状の部材であり、排ガス流路101の外側に設けられ、複数の第2のチューブ71の各流出口と内部空間が連通するように設けられる。出口部73は、複数の第2のチューブ71からそれぞれ流出した空気を集約する。第2のチューブ71に対する出口部73は、熱交換ユニット51Cの入口部53の内部に設けられており、当該入口部53の内部空間と連通しないように気密性が確保されている。なお、第1のチューブ52の端部52bは、出口部73を貫通するように延びており、入口部53の内部空間で開口するように配置されている。 The outlet part 73 is a box-shaped member having an internal space, is provided outside the exhaust gas flow channel 101, and is provided so that each outlet of the plurality of second tubes 71 and the internal space communicate with each other. The outlet portion 73 collects the air that has flowed out from the plurality of second tubes 71. The outlet portion 73 for the second tube 71 is provided inside the inlet portion 53 of the heat exchange unit 51C, and airtightness is ensured so as not to communicate with the inner space of the inlet portion 53. The end portion 52 b of the first tube 52 extends so as to penetrate the outlet portion 73 and is disposed so as to open in the internal space of the inlet portion 53.
 第2のチューブ71には、第1のチューブ52を流れる空気A1より温度が高い空気A2が流れる。第2のチューブ71に流れる空気A2は、空気A1より温度が高ければ、どこから供給される空気を採用してもよい。なお、空気A1の温度は、特に限定されないが、30~90℃程度であってよい。ただし、本実施形態では、第2のチューブ71には、少なくとも一度、第1のチューブ52を通過した後の空気が流れる。本実施形態においては、空気A2として、熱交換ユニット51Aから排出された空気が採用される。このような空気A2の温度は、概ね200℃以上であってよい。従って、入口部72は、熱交換ユニット51Aの出口部54から延びるラインL4から分岐したラインL6と接続される(図2も参照)。これにより、ラインL6から供給された空気は、入口部72を介して第2のチューブ71へ流れる。また、出口部73にはラインL7が接続されている。ラインL7の接続先は特に限定されないが、ラインL4と同様、ボイラ内において空気が用いられる各所に接続されてもよい。ただし、空気A2は、二重管の外側の第2のチューブ71を通過するため、空気圧力が低下する。従って、ラインL7は、高い圧力を必要としない位置(例えば、火炉上部やシール空気等)に空気を供給することで、回収熱を再利用できる。 In the second tube 71, air A2 having a higher temperature than the air A1 flowing through the first tube 52 flows. As the air A2 flowing through the second tube 71, air supplied from anywhere may be adopted as long as the temperature is higher than that of the air A1. The temperature of the air A1 is not particularly limited, but may be about 30 to 90 ° C. However, in the present embodiment, the air after passing through the first tube 52 flows through the second tube 71 at least once. In the present embodiment, air discharged from the heat exchange unit 51A is employed as the air A2. The temperature of such air A2 may be approximately 200 ° C. or higher. Accordingly, the inlet 72 is connected to a line L6 branched from the line L4 extending from the outlet 54 of the heat exchange unit 51A (see also FIG. 2). Thereby, the air supplied from the line L <b> 6 flows to the second tube 71 through the inlet portion 72. A line L7 is connected to the outlet portion 73. Although the connection destination of the line L7 is not particularly limited, it may be connected to various places where air is used in the boiler, similarly to the line L4. However, since the air A2 passes through the second tube 71 outside the double pipe, the air pressure decreases. Therefore, the line L7 can reuse the recovered heat by supplying air to a position where high pressure is not required (for example, the upper part of the furnace or the seal air).
 第2のチューブ71に対する空気A2の流量は、状況に合わせて制御されてもよい。具体的には、腐食抑制構造70は、空気温度検出部81と、排ガス温度検出部82と、流量調整部83と、制御部84と、を備えてよい。空気温度検出部81は、第2のチューブ71を流れる空気A2の温度を検出する。なお、空気温度検出部81は、第2のチューブ71内の空気A2を直接測定してもよいが、第2のチューブ71に流入する直前位置(例えばラインL6及び入口部72)か、流出直後の位置(例えばラインL7及び出口部73)を測定してもよい。排ガス温度検出部82は、排ガス流路101のうち第1のチューブ52が設けられる領域よりも下流側における排ガスEGの温度を検出する。すなわち、排ガス温度検出部82は、排ガス流路101のうち、空気予熱器50の熱交換ユニット51Cよりも下流側の領域における排ガスEGの温度を検出する。流量調整部83は、第2のチューブ71に対する空気A2の流量を調整する。流量調整部83は、例えばラインL6に設けられた弁によって構成されてよい。制御部84は、空気温度検出部81及び排ガス温度検出部82の検出結果に基づいて第2のチューブ71へ流す空気の流量を制御する。制御部84は、流量調整部83に流量に応じた制御信号を送付することで、空気A2の流量を調整する。 The flow rate of the air A2 with respect to the second tube 71 may be controlled according to the situation. Specifically, the corrosion suppression structure 70 may include an air temperature detection unit 81, an exhaust gas temperature detection unit 82, a flow rate adjustment unit 83, and a control unit 84. The air temperature detector 81 detects the temperature of the air A <b> 2 flowing through the second tube 71. Note that the air temperature detection unit 81 may directly measure the air A2 in the second tube 71. However, the air temperature detection unit 81 may be a position immediately before flowing into the second tube 71 (for example, the line L6 and the inlet 72) or immediately after flowing out. (For example, the line L7 and the outlet 73) may be measured. The exhaust gas temperature detector 82 detects the temperature of the exhaust gas EG downstream of the region of the exhaust gas flow channel 101 where the first tube 52 is provided. That is, the exhaust gas temperature detection unit 82 detects the temperature of the exhaust gas EG in the region of the exhaust gas flow channel 101 on the downstream side of the heat exchange unit 51C of the air preheater 50. The flow rate adjusting unit 83 adjusts the flow rate of the air A <b> 2 with respect to the second tube 71. The flow rate adjusting unit 83 may be configured by, for example, a valve provided in the line L6. The control unit 84 controls the flow rate of air that flows to the second tube 71 based on the detection results of the air temperature detection unit 81 and the exhaust gas temperature detection unit 82. The control unit 84 adjusts the flow rate of the air A <b> 2 by sending a control signal corresponding to the flow rate to the flow rate adjustment unit 83.
 次に、本実施形態に係る空気予熱器50の作用・効果について説明する。 Next, functions and effects of the air preheater 50 according to the present embodiment will be described.
 まず、比較例に係る空気予熱器について説明する。比較例に係る空気予熱器は、本実施形態のような腐食抑制構造70が設けられておらず、最下流側の第1のチューブ52に第2のチューブ71が設けられることなく、排ガスEGに対して露出している。ここで、ボイラの燃料として高水分、高硫黄分の燃料を用いた場合、当該燃料を燃焼することで発生する排ガスEGには水分が多く含まれる。排ガス中の水分が増加すると、酸露点(硫酸露点)が上昇する(使用燃料毎に異なるが概ね110~130℃)。排ガスEGの酸露点が高い場合、比較例に係る空気予熱器では、排ガスEGの温度が低くなる下流側の端部に配置される第1のチューブ52が腐食される低温端腐食(酸露点腐食)が発生する場合がある。 First, an air preheater according to a comparative example will be described. The air preheater according to the comparative example is not provided with the corrosion suppressing structure 70 as in the present embodiment, and the second tube 71 is not provided in the first tube 52 on the most downstream side, and the exhaust gas EG is not provided. It is exposed to. Here, when high moisture and high sulfur fuel are used as the fuel for the boiler, the exhaust gas EG generated by burning the fuel contains a large amount of moisture. As the moisture in the exhaust gas increases, the acid dew point (sulfuric acid dew point) increases (although it differs depending on the fuel used, it is generally 110 to 130 ° C). When the acid dew point of the exhaust gas EG is high, in the air preheater according to the comparative example, the low temperature end corrosion (acid dew point corrosion) in which the first tube 52 disposed at the downstream end where the temperature of the exhaust gas EG becomes low is corroded. ) May occur.
 このような低温端腐食の発生を抑制するための方法として、排ガスEGの温度を高く維持する方法が挙げられる。しかしながら、排ガスEGの温度を高くするということは排ガスEGの顕熱損失が増加するということであるため、結果的にボイラのボイラ効率が低下することになる。また、第1のチューブ52を腐食に強い材料で構成する場合、材料として高級なものを採用しなくてはならず、製造コストが増加するという問題がある。 As a method for suppressing the occurrence of such low temperature end corrosion, there is a method of maintaining the temperature of the exhaust gas EG high. However, increasing the temperature of the exhaust gas EG means that the sensible heat loss of the exhaust gas EG increases, and as a result, the boiler efficiency of the boiler decreases. Further, when the first tube 52 is made of a material that is resistant to corrosion, a high-grade material must be used, which increases the manufacturing cost.
 これに対し、本実施形態に係る空気予熱器50は、排ガス流路101内に設けられる第1のチューブ52を備える。第1のチューブ52は、当該第1のチューブ52を流れる空気により、排ガス流路101を流れる排ガスEGの熱を回収できる。ここで、空気予熱器50は、第1のチューブ52を外周側から取り囲むと共に第1のチューブ52に沿って延びる第2のチューブ71を備えている。このように、第1のチューブ52と第2のチューブ71とによって二重管が構成される。また、二重管の外側のチューブである第2のチューブ71には、第1のチューブ52を流れる空気より温度が高い空気が流れる。これにより、熱を除去されることで排ガスEGが低温になっても、第1のチューブ52は温度の高い空気が流れる第2のチューブ71に取り囲まれているため、当該第1のチューブ52が低温の排ガスEGにより腐食されることを抑制できる。以上より、ボイラ効率の低下を抑制しつつ、チューブの腐食を抑制できる。 On the other hand, the air preheater 50 according to this embodiment includes a first tube 52 provided in the exhaust gas passage 101. The first tube 52 can recover the heat of the exhaust gas EG flowing through the exhaust gas flow channel 101 by the air flowing through the first tube 52. Here, the air preheater 50 includes a second tube 71 that surrounds the first tube 52 from the outer peripheral side and extends along the first tube 52. Thus, the first tube 52 and the second tube 71 constitute a double tube. In addition, air having a higher temperature than the air flowing through the first tube 52 flows through the second tube 71 that is the outer tube of the double tube. Thereby, even if the exhaust gas EG becomes low temperature by removing heat, the first tube 52 is surrounded by the second tube 71 through which high-temperature air flows. Corrosion by low temperature exhaust gas EG can be suppressed. As mentioned above, corrosion of a tube can be suppressed, suppressing the fall of boiler efficiency.
 また、空気予熱器50では、排ガスEGに晒される第2のチューブ71には高い温度の空気が流れるため、第2のチューブ71の管壁の温度も低温端腐食が起きない程度の温度に維持できる。従って、第1のチューブ52及び第2のチューブ71の材料として、腐食に強い高級な材料を用いずともよいため、製造コストを抑制することができる。 Moreover, in the air preheater 50, since the high temperature air flows through the second tube 71 exposed to the exhaust gas EG, the temperature of the tube wall of the second tube 71 is also maintained at a temperature at which low temperature end corrosion does not occur. it can. Therefore, it is not necessary to use a high-grade material that is resistant to corrosion as the material of the first tube 52 and the second tube 71, and thus the manufacturing cost can be suppressed.
 空気予熱器50において、第2のチューブ71には、少なくとも一度第1のチューブ52を通過した後の空気が流れる。少なくとも一度第1のチューブ52を通過した空気は、排ガスEGの熱を回収しているため、最下流側の腐食抑制構造70の第1のチューブ52を通過している最中の空気A1よりも温度が高い。従って、当該空気を第2のチューブ71に流すことで、空気予熱器50以外の場所から第2のチューブ71に流すための高温の空気を確保する構造が不要となる。 In the air preheater 50, the air after passing through the first tube 52 flows through the second tube 71 at least once. Since the air that has passed through the first tube 52 at least once has recovered the heat of the exhaust gas EG, it is more than the air A1 that is passing through the first tube 52 of the most downstream side corrosion suppression structure 70. The temperature is high. Therefore, by flowing the air through the second tube 71, a structure for securing high-temperature air for flowing into the second tube 71 from a place other than the air preheater 50 becomes unnecessary.
 空気予熱器50において、第1のチューブ52は排ガス流路101内に複数設けられ、第2のチューブ71は、複数の第1のチューブ52の一部に対して設けられている。複数の第1のチューブ52のうち、通過する排ガス温度が低く、低温端腐食の可能性が高いものに対してのみ第2のチューブ71を設け、通過する排ガス温度が高く、低温端腐食の可能性が低いものに対しては第2のチューブ71を設けない。これによって、空気予熱器50の製造コストを抑制することができる。 In the air preheater 50, a plurality of first tubes 52 are provided in the exhaust gas flow path 101, and a second tube 71 is provided for a part of the plurality of first tubes 52. Among the plurality of first tubes 52, the second tube 71 is provided only for those having a low exhaust gas temperature passing through and having a high possibility of low temperature end corrosion, and passing through the exhaust gas temperature is high, allowing low temperature end corrosion. The second tube 71 is not provided for those having low properties. Thereby, the manufacturing cost of the air preheater 50 can be suppressed.
 空気予熱器50は、第2のチューブ71を流れる空気の温度を検出する空気温度検出部81と、排ガス流路101のうち第1のチューブ52が設けられる領域よりも下流側における排ガスEGの温度を検出する排ガス温度検出部82と、空気温度検出部81及び排ガス温度検出部82の検出結果に基づいて第2のチューブ71へ流す空気の流量を制御する制御部84と、を備える。このような制御を行うことにより、第2のチューブ71に対して適切な流量の空気を流すことができる。 The air preheater 50 includes an air temperature detector 81 that detects the temperature of the air flowing through the second tube 71, and the temperature of the exhaust gas EG downstream of the region of the exhaust gas channel 101 where the first tube 52 is provided. And a control unit 84 that controls the flow rate of the air flowing to the second tube 71 based on the detection results of the air temperature detection unit 81 and the exhaust gas temperature detection unit 82. By performing such control, air having an appropriate flow rate can be flowed to the second tube 71.
 本発明は、上述の実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、上述の実施形態では、各熱交換ユニットに対して、下流側の熱交換ユニット51Cから熱交換ユニット51B、熱交換ユニット51Aの順に空気が流れていた。これに代えて、例えば、熱交換ユニットに対する空気の導入順序を変更してもよく、各熱交換ユニット51A,51B,51Cに対して、並列に同時に空気を供給してよい。 For example, in the above-described embodiment, air flows in the order from the heat exchange unit 51C on the downstream side to the heat exchange unit 51B and the heat exchange unit 51A for each heat exchange unit. Instead of this, for example, the order of introduction of air into the heat exchange unit may be changed, and air may be simultaneously supplied in parallel to each of the heat exchange units 51A, 51B, 51C.
 また、上述の実施形態では、空気A2はラインL4から引き出されていたが、空気A2の引き出し箇所は特に限定されない。例えば、ラインL2,L3等から空気A2を引き出してもよい。なお、ラインL2,L3から引き出す空気の温度が十分出ない場合は、補助的な加熱を行ってよい。 In the above-described embodiment, the air A2 is drawn from the line L4, but the drawing position of the air A2 is not particularly limited. For example, the air A2 may be drawn from the lines L2, L3, etc. In addition, when the temperature of the air drawn out from the lines L2 and L3 is not sufficient, auxiliary heating may be performed.
 また、上述の実施形態では、空気A2と空気A1は互いに対向するように流れていたが、同方向に流れてもよい。 In the above-described embodiment, air A2 and air A1 flow so as to face each other, but they may flow in the same direction.
 50…空気予熱器、52…第1のチューブ、71…第2のチューブ、81…空気温度検出部、82…排ガス温度検出部、84…制御部、101…排ガス流路。 DESCRIPTION OF SYMBOLS 50 ... Air preheater, 52 ... 1st tube, 71 ... 2nd tube, 81 ... Air temperature detection part, 82 ... Exhaust gas temperature detection part, 84 ... Control part, 101 ... Exhaust gas flow path.

Claims (4)

  1.  ボイラの排ガスの熱を回収して、空気を予熱する空気予熱器であって、
     前記排ガスを通過させる排ガス流路内に設けられる第1のチューブと、
     前記第1のチューブを外周側から取り囲むと共に前記第1のチューブに沿って延びる第2のチューブと、を備え、
     前記第1のチューブには空気が流れ、
     前記第2のチューブには、前記第1のチューブを流れる空気より温度が高い空気が流れる、空気予熱器。
    An air preheater that recovers heat of boiler exhaust gas and preheats air,
    A first tube provided in an exhaust gas passage for allowing the exhaust gas to pass through;
    A second tube surrounding the first tube from the outer peripheral side and extending along the first tube;
    Air flows through the first tube,
    An air preheater in which air having a higher temperature flows through the second tube than air flowing through the first tube.
  2.  前記第2のチューブには、少なくとも一度、前記第1のチューブを通過した後の空気が流れる、請求項1に記載の空気予熱器。 The air preheater according to claim 1, wherein the air after passing through the first tube flows through the second tube at least once.
  3.  前記第1のチューブは前記排ガス流路内に複数設けられ、
     前記第2のチューブは、複数の前記第1のチューブの一部に対して設けられる、請求項1又は2に記載の空気予熱器。
    A plurality of the first tubes are provided in the exhaust gas flow path,
    The air preheater according to claim 1 or 2, wherein the second tube is provided for a part of the plurality of first tubes.
  4.  前記第2のチューブを流れる空気の温度を検出する空気温度検出部と、
     前記排ガス流路のうち前記第1のチューブが設けられる領域よりも下流側における前記排ガスの温度を検出する排ガス温度検出部と、
     前記空気温度検出部及び前記排ガス温度検出部の検出結果に基づいて前記第2のチューブへ流す空気の流量を制御する制御部と、を備える、請求項1~3の何れか一項に記載の空気予熱器。
    An air temperature detector for detecting the temperature of the air flowing through the second tube;
    An exhaust gas temperature detector for detecting the temperature of the exhaust gas downstream of the region where the first tube is provided in the exhaust gas flow path;
    The control unit according to any one of claims 1 to 3, further comprising: a control unit that controls a flow rate of air flowing to the second tube based on detection results of the air temperature detection unit and the exhaust gas temperature detection unit. Air preheater.
PCT/JP2018/012452 2017-03-28 2018-03-27 Air preheater WO2018181325A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2019005329A MY195370A (en) 2017-03-28 2018-03-27 Air preheater
JP2019509892A JP6952108B2 (en) 2017-03-28 2018-03-27 Air preheater
PH12019502107A PH12019502107A1 (en) 2017-03-28 2019-09-13 Air preheater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062888 2017-03-28
JP2017-062888 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181325A1 true WO2018181325A1 (en) 2018-10-04

Family

ID=63676166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012452 WO2018181325A1 (en) 2017-03-28 2018-03-27 Air preheater

Country Status (4)

Country Link
JP (1) JP6952108B2 (en)
MY (1) MY195370A (en)
PH (1) PH12019502107A1 (en)
WO (1) WO2018181325A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259385A (en) * 1987-03-26 1988-10-26 コウパーミル リミテッド Heat regenerator
JPH06163068A (en) * 1992-11-16 1994-06-10 Fujikura Ltd Solid electrolytic fuel cell stack
JPH11264677A (en) * 1998-03-18 1999-09-28 Ishikawajima Harima Heavy Ind Co Ltd Crossflow bayonet heat exchanger
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device
JP2001280863A (en) * 2000-03-29 2001-10-10 Ebara Corp Heat exchanger and electric power generator comprising it
JP2001520360A (en) * 1998-10-14 2001-10-30 株式会社荏原製作所 Waste combustion power generation method and apparatus
JP2002081871A (en) * 2000-09-05 2002-03-22 Mitsui Eng & Shipbuild Co Ltd Air heater
WO2003073031A1 (en) * 2002-02-26 2003-09-04 Wärtsilä Finland Oy Heat exchanger arrangement and a method used in a heat exchanger
JP2012097991A (en) * 2010-11-04 2012-05-24 Covalent Materials Corp Heat exchanger
WO2014182255A2 (en) * 2013-05-06 2014-11-13 Žilinská Univerzita V Žiline Heat exchange equipment combustion products - water
EP3165863A1 (en) * 2015-11-04 2017-05-10 Linde Aktiengesellschaft Waste heat recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016132U (en) * 1995-03-08 1995-09-26 株式会社プランテック Air heating device with low temperature corrosion protection device
JP2002081872A (en) * 2000-09-05 2002-03-22 Mitsui Eng & Shipbuild Co Ltd Air heater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259385A (en) * 1987-03-26 1988-10-26 コウパーミル リミテッド Heat regenerator
JPH06163068A (en) * 1992-11-16 1994-06-10 Fujikura Ltd Solid electrolytic fuel cell stack
JPH11264677A (en) * 1998-03-18 1999-09-28 Ishikawajima Harima Heavy Ind Co Ltd Crossflow bayonet heat exchanger
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device
JP2001520360A (en) * 1998-10-14 2001-10-30 株式会社荏原製作所 Waste combustion power generation method and apparatus
JP2001280863A (en) * 2000-03-29 2001-10-10 Ebara Corp Heat exchanger and electric power generator comprising it
JP2002081871A (en) * 2000-09-05 2002-03-22 Mitsui Eng & Shipbuild Co Ltd Air heater
WO2003073031A1 (en) * 2002-02-26 2003-09-04 Wärtsilä Finland Oy Heat exchanger arrangement and a method used in a heat exchanger
JP2012097991A (en) * 2010-11-04 2012-05-24 Covalent Materials Corp Heat exchanger
WO2014182255A2 (en) * 2013-05-06 2014-11-13 Žilinská Univerzita V Žiline Heat exchange equipment combustion products - water
EP3165863A1 (en) * 2015-11-04 2017-05-10 Linde Aktiengesellschaft Waste heat recovery

Also Published As

Publication number Publication date
MY195370A (en) 2023-01-16
PH12019502107A1 (en) 2020-03-09
JPWO2018181325A1 (en) 2020-02-06
JP6952108B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
JP5563098B2 (en) Method and apparatus for recovering heat from bottom ash
JP5336898B2 (en) Bubble type fluidized bed boiler and operation method thereof
US3194214A (en) Air heater having by-pass to prevent cold-end corrosion
US5953898A (en) Power generation method including control of temperature of flue gases entering a high temperature ceramic filter
WO2018181325A1 (en) Air preheater
KR100709794B1 (en) Fossil-fuel fired continuous steam generator
CN104676617B (en) A kind of burning boiler flue accumulation prevention structure
JP2020067205A (en) Boiler, ash processing device, method of operating boiler, and method of operating ash processing device
CN108350369B (en) Gasification device, control device, gasification combined power generation facility, and control method
JP5422514B2 (en) Solid fuel fired boiler
US20220228742A1 (en) Incineration plant for solid material and method for replacing its nozzle insert
TW202124029A (en) Exhaust gas treatment device and exhaust gas treatment method
JP4157519B2 (en) Circulating fluidized bed boiler equipment
Bhatt et al. Performance enhancement in coal fired thermal power plants. Part I: Boilers
CN110041967A (en) The second level whirlwind feed back and afterheat utilizing system of high temperature and high pressure flue gas
US11835298B2 (en) Heat exchanger for a loopseal of a circulating fluidized bed boiler and a circulating fluidized bed boiler
CN109631030A (en) A kind of soot blower system of heating pulverized-coal fired boiler
KR20150145339A (en) Coal drying apparatus of a reheating type using low-pressure superheated steam
CN102865567B (en) Integrated gasification combined cycle (IGCC) process gas waste heat boiler
JPS61231301A (en) Once-through boiler
JP2018077025A (en) Multistage type boiler heat exchange device
JP3218482U (en) Multistage boiler heat exchanger
US2242762A (en) Furnace
US20240003534A1 (en) A method for heating a heat exchange medium in a fluidized bed boiler, a fluidized bed boiler, and a loopseal heat exchanger
KR102337478B1 (en) boiler system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778260

Country of ref document: EP

Kind code of ref document: A1