JP2012097267A - Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method - Google Patents

Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method Download PDF

Info

Publication number
JP2012097267A
JP2012097267A JP2011272988A JP2011272988A JP2012097267A JP 2012097267 A JP2012097267 A JP 2012097267A JP 2011272988 A JP2011272988 A JP 2011272988A JP 2011272988 A JP2011272988 A JP 2011272988A JP 2012097267 A JP2012097267 A JP 2012097267A
Authority
JP
Japan
Prior art keywords
group
water
composite film
substance
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011272988A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011272988A priority Critical patent/JP2012097267A/en
Publication of JP2012097267A publication Critical patent/JP2012097267A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water and oil repellency composite film-forming solution which, without generating hydrochloric acid (or can even reducing it sharply) when water and oil repellency antifouling film excellent in abrasion resistance, weather resistance and water droplet repellency is produced for windows of automobiles or buildings for which a water and oil repellency antifouling feature is demanded, or top plates of electromagnetic cookers, is excellent in durability, such as abrasion resistance and weather resistance, as well as water droplet repellency (also called water slipping property), and anti-fouling property (releasing property).SOLUTION: To achieve the objective, the water and oil repellency composite film-producing solution is provided as a water and oil repellency composite film-forming solution containing a substance having at least a carbon fluoride group, a hydrocarbon group and a chlorosilyl group as principal components, a substance having an alkoxysilyl group as a principal component, and a non-aqueous organic solvent.

Description

本発明は、高耐久性の撥水撥油性複合膜形成溶液とそれを用いた撥水撥油性複合膜の製造方法とそれを用いた撥水撥油性複合膜形成溶液に関するものである。詳しくは、撥水撥油防汚機能が要求される自動車や建物の窓用ガラス板あるいは電磁調理器のトッププレート用ガラス板の撥水処理に用いる撥水撥油性複合膜形成溶液に関するものである。さらに、それを用いた撥水撥油性複合膜の製造方法とその方法を用いて製造した撥水撥油性複合膜に関するものである。 The present invention relates to a highly durable water / oil repellent composite film forming solution, a method for producing a water / oil repellent composite film using the same, and a water / oil repellent composite film forming solution using the same. More specifically, the present invention relates to a water / oil / oil repellent composite film forming solution used for water / oil repellent treatment of glass plates for windows of automobiles and buildings or glass plates for top plates of electromagnetic cookers that require water / oil / oil repellent functions. . Furthermore, the present invention relates to a method for producing a water / oil repellent composite film using the same and a water / oil repellent composite film produced using the method.

一般にフッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水性化学吸着膜を形成できることはすでによく知られている(例えば、特許文献1参照。)。 It is already well known that a chemisorbed liquid consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular water-repellent chemisorbed film. (For example, refer to Patent Document 1).

このような溶液中での化学吸着単分子膜の製造原理は、基材表面の水酸基などの活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。
特開平02−258032号 公報
The principle of production of a chemisorbed monolayer in such a solution is to form a monolayer using a dehydrochlorination reaction between active hydrogen such as hydroxyl groups on the substrate surface and chlorosilyl groups of chlorosilane-based adsorbents. It is in.
Japanese Patent Laid-Open No. 02-258032

しかしながら、従来の化学吸着膜は吸着剤と基材表面との化学結合のみを用いているため、耐摩耗性に乏しいという課題があった。また、クロロシラン系界面活性剤を用いた方法では、製膜時に塩酸が多量に発生するため、製造は、特別な脱塩酸設備を備えた隔離された場所で行わなければならないという課題があった。 However, since the conventional chemical adsorption film uses only a chemical bond between the adsorbent and the substrate surface, there is a problem that the wear resistance is poor. In addition, in the method using a chlorosilane-based surfactant, a large amount of hydrochloric acid is generated during film formation, so that the production has to be performed in an isolated place equipped with a special dehydrochlorination facility.

本発明は、撥水撥油防汚機能が要求される自動車や建物の窓用ガラス板あるいは電磁調理器のトッププレートにおいて、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性の向上を目的とする。また、ガラス板上に撥水撥油防汚膜を形成する際、塩酸を発生させずに(あるいは大幅に減少できる)、耐摩耗性および耐候性等の耐久性、および水滴離水性(滑水性ともいう)、防汚性(汚れ防止や付着物の剥離性)に優れた撥水撥油性複合膜を提供することを目的とする。 The present invention relates to durability such as abrasion resistance and weather resistance, water droplet separation (both water slidability) in glass plates for automobiles and buildings or top plates of electromagnetic cookers that require water / oil / oil repellent functions. The purpose is to improve antifouling properties. In addition, when forming a water- and oil-repellent and antifouling film on a glass plate, it does not generate hydrochloric acid (or can be greatly reduced), durability such as abrasion resistance and weather resistance, and water droplet separation (sliding properties) Another object is to provide a water- and oil-repellent composite film excellent in antifouling properties (stain prevention and peelability of deposits).

前記目的を達成するため、第1番目の発明は、少なくともフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質と非水系有機溶媒を含むことを特徴とする撥水撥油性複合膜形成溶液を提供することを要旨とする。 In order to achieve the above object, the first invention includes at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, a substance mainly composed of an alkoxysilyl group, and a non-aqueous organic solvent. The gist of the present invention is to provide a water / oil repellent composite film forming solution.

フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質を合わせて用いると、クロロシリル基が加水分解して発生する塩酸がアルコキシシシリル基の脱アルコール反応の触媒として働き製膜時間を短縮する上で都合がよい。また、アルコキシシシリル基を主成分とする物質を合わせて用いることにより、全てクロロシリル基を含む物質を用いる場合に比べて、クロロシリル基が加水分解して発生する塩酸を低減できて好都合である。
なお、このとき、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質の分子組成比が、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐久性を大幅に向上させる上でさらに都合がよい。
When a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of an alkoxysilyl group are used in combination, the hydrochloric acid generated by hydrolysis of the chlorosilyl group is converted into an alkoxysilyl group. It works as a catalyst for dealcoholization reaction, which is convenient for shortening the film formation time. In addition, the combined use of substances having an alkoxysilyl group as a main component is advantageous in that hydrochloric acid generated by hydrolysis of the chlorosilyl group can be reduced as compared with the case where a substance containing all chlorosilyl groups is used.
At this time, the molecular composition ratio of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group and a substance mainly composed of an alkoxysilyl group is 1:10 to 10: 1, more preferably When it is set to 1: 3 to 5: 1, it is more convenient for greatly improving the durability.

第2番目の発明は、第1番目の発明において、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、アルコキシシシリル基を主成分とする物質としてSi(OCH、Si(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用いることを特徴とする撥水撥油性複合膜形成溶液を提供する。 According to a second invention, in the first invention, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) as a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group. ) And Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 ( Where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (wherein m is an integer) is used to provide a water / oil repellent composite film forming solution.

第3番目の発明は、少なくともフッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とクロロシリル基を主成分とする物質と非水系有機溶媒を含むことを特徴とする撥水撥油性複合膜形成溶液を提供することを要旨とする。 According to a third aspect of the present invention, there is provided a water repellent comprising at least a substance mainly comprising a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, a substance mainly comprising a chlorosilyl group, and a non-aqueous organic solvent. The gist is to provide an oil-repellent composite film forming solution.

フッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とクロロシリル基を主成分とする物質を合わせて用いると、クロロシリル基が加水分解して発生する塩酸がアルコキシシシリル基の脱アルコール反応の触媒として働き製膜時間を短縮する上で都合がよい。また、フッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質を合わせて用いることにより、全てクロロシリル基を含む物質を用いる場合に比べて、クロロシリル基が加水分解して発生する塩酸を大幅に低減できて好都合である。
なお、このとき、フッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とクロロシリル基を主成分とする物質の分子組成比が、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐久性を大幅に向上させる上でさらに都合がよい。
When a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group is used together with a substance mainly composed of a chlorosilyl group, the hydrochloric acid generated by hydrolysis of the chlorosilyl group is converted into an alkoxysilyl group. It works as a catalyst for dealcoholization reaction, which is convenient for shortening the film formation time. In addition, by using a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, the chlorosilyl group is generated by hydrolysis compared to the case of using a substance containing all chlorosilyl groups. Conveniently, hydrochloric acid can be greatly reduced.
At this time, the molecular composition ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and the substance mainly composed of a chlorosilyl group is 1:10 to 10: 1, more preferably When it is set to 1: 3 to 5: 1, it is more convenient for greatly improving the durability.

第4番目の発明は、第3番目の発明において、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、クロロシリル基を主成分とする物質としてSiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いることを特徴とする撥水撥油性複合膜形成溶液を提供する。 According to a fourth aspect, in the third aspect, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. , [CF 3 (CF 2 ) n (CH 2 ) 2 ] 2 Si (OA) 2 , or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group) Water / oil repellency characterized by using SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) as a substance having a chlorosilyl group as a main component. A composite film forming solution is provided.

第5番目の発明は、少なくともフッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質とシラノール縮合触媒または酸触媒を含むことを特徴とする撥水撥油性複合膜形成溶液を提供することを要旨とする。 The fifth invention is characterized in that it contains at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, a substance mainly composed of an alkoxysilyl group, and a silanol condensation catalyst or an acid catalyst. The gist is to provide a water / oil repellent composite film forming solution.

第6番目の発明は、第5番目の発明において、少なくとも酸触媒が有機酸であることを特徴とする撥水撥油性複合膜形成溶液を提供する。 A sixth invention provides the water / oil repellent composite film forming solution according to the fifth invention, wherein at least the acid catalyst is an organic acid.

フッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質の脱アルコール反応触媒として有機酸を用いると、安価で、クロロシリル基を含む物質を用いる場合に比べて、クロロシリル基が加水分解して発生する塩酸を全く発生させずに被膜を形成できて好都合である。
なお、このとき、フッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質の分子組成比が、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐久性を大幅に向上させる上でさらに都合がよい。
Substances that are inexpensive and contain chlorosilyl groups when organic acids are used as the dealcoholization reaction catalyst for substances containing fluorocarbon groups, hydrocarbon groups, and alkoxysilyl groups as main components and substances containing alkoxysilyl groups as main components As compared with the case of using, it is advantageous that a film can be formed without generating any hydrochloric acid generated by hydrolysis of chlorosilyl groups.
At this time, the molecular composition ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group to the substance mainly composed of the alkoxysilyl group is 1:10 to 10: 1. The ratio of 1: 3 to 5: 1 is more convenient for greatly improving the durability.

第7番目の発明は、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシシリル基を主成分とする物質としてSi(OCH、Si(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用いることを特徴とする撥水撥油性複合膜形成溶液である。この様な物質を用いれば、クロロシリル基を全く含まないので、塩酸が発生することは皆無であり、製造においては都合がよい。 In a seventh invention, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) N (CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group) Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH ( OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer) A water / oil repellent composite film forming solution characterized by being used. If such a substance is used, since it does not contain any chlorosilyl group, hydrochloric acid is never generated, which is convenient in production.

第8番目の発明は、第1乃至7の発明の撥水撥油性複合膜形成溶液に基材を接触反応させて表面に撥水撥油性複合膜を形成することを特徴とする撥水撥油防汚性複合膜の製造方法を提供することを要旨とする。 An eighth invention is characterized in that a water / oil repellent composite film is formed on a surface by contacting a substrate with the water / oil repellent composite film forming solution of the first to seventh inventions. The gist is to provide a method for producing an antifouling composite membrane.

第9番目の発明は、第8の発明の製造方法を用いて作成されたことを特徴とする撥水撥油防汚性複合膜を提供するものである。 A ninth invention provides a water / oil repellent antifouling composite film produced by using the production method of the eighth invention.

第1乃至6の発明の撥水撥油性複合膜形成溶液を用いて作成した撥水撥油防汚性複合膜は、シロキサン結合の網目構造の中にフッ化炭素基が突き出た構造となり、撥水性能の耐久性を向上する上で、好都合である。 The water / oil repellent / antifouling composite film prepared using the water / oil repellent composite film forming solution of the first to sixth inventions has a structure in which a fluorocarbon group protrudes into a network structure of siloxane bonds, and the This is advantageous in improving the durability of water performance.

本発明の撥水撥油防汚性ガラス板の製造工程を示したものであり、(a)は実施例1における被膜形成後のガラス板表面、(b)は実施例1における焼成後の撥水撥油防汚膜が形成されたガラス板表面、(c)は実施例2における2層構造の撥水撥油防汚膜が形成されたガラス板表面をそれぞれ分子レベルまで拡大した断面概念図。The manufacturing process of the water repellent / oil repellent antifouling glass plate of the present invention is shown, (a) is the surface of the glass plate after the film formation in Example 1, (b) is the repellent after firing in Example 1. The glass plate surface on which the water / oil repellent antifouling film is formed, (c) is a conceptual cross-sectional view in which the glass plate surface on which the water / oil repellent / antifouling film having a two-layer structure in Example 2 is formed is enlarged to the molecular level. . 実施例1および2と比較例1で製作した撥水撥油防汚性ガラス板の耐摩耗性試験結果を比較して示した図。The figure which compared and showed the abrasion resistance test result of the water-repellent | oil-repellent | oil-repellent antifouling glass plate manufactured in Example 1 and 2 and the comparative example 1. 本発明を行うに当たり、予備実験で得たデータをプロットしたものであり、水に対する接触角と転落角の関係を示した図。The figure which plotted the data obtained by the preliminary experiment in performing this invention, and showed the relationship between the contact angle with respect to water, and a fall angle. 本発明の撥水撥油防汚ガラス板の製造工程を示したものであり、(a)は実施例5における被膜形成後のガラス板表面、(b)は実施例5における焼成後の撥水撥油防汚膜が形成されたガラス板表面、(c)は実施例7における焼成後の2層構造の撥水撥油防汚膜が形成されたガラス板表面をそれぞれ分子レベルまで拡大した断面概念図。The manufacturing process of the water-repellent / oil-repellent antifouling glass plate of the present invention is shown, (a) is the surface of the glass plate after the film formation in Example 5, and (b) is the water-repellent after firing in Example 5. The surface of the glass plate on which the oil-repellent antifouling film is formed, and (c) is a cross-sectional view in which the surface of the glass plate on which the water- and oil-repellent antifouling film having a two-layer structure after firing in Example 7 is formed is enlarged to the molecular level. Conceptual diagram. 実施例5および6、7で製作した撥水撥油防汚ガラス板の耐摩耗性試験結果を比較して示した図。The figure which compared and showed the abrasion resistance test result of the water-repellent | oil-repellent | oil-repellent antifouling glass plate manufactured in Example 5, 6, and 7. FIG.

以下、本発明の実施の形態を詳細に説明する。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described in detail.
(Embodiment 1)

まず、第1番目の発明である自動車や建物の窓用ガラス板、あるいは電磁調理器のトッププレートに用いる撥水撥油防汚性ガラス板について製造方法(第3および第4番目の発明)と共に説明する。 First, the manufacturing method (the third and fourth inventions) of the water- and oil-repellent and antifouling glass plate used for the glass plate for windows of automobiles and buildings or the top plate of an electromagnetic cooker according to the first invention. explain.

例えば、乾燥雰囲気中(湿度35%以下が良い。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質として、CF3(CF2(CHSiCl3(nは正数)と、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリルキ基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)にそれぞれ0.01M/Lの濃度になるように溶解して(この場合、前者と後者の分子組成比1:1になる)複合膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is good) Is a positive number) and a substance having a chlorosilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or a chlorosilyloxy group as a main component Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5) 3, SiH 2 (OC 2 H 5) 2 or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5,) 2) m OC 2 H 5 (but, m is an integer), Yes, contains almost no non-aqueous water Solvents (e.g., hexadecane) each dissolved to a concentration of 0.01 M / L (in this case, the former and the latter molecular composition ratio 1: 1) to create a composite film-forming solution.

次に、風冷強化された自動車窓用ガラス板(建物窓用ガラス板あるいは電磁調理器の耐熱トッププレート用ガラス板を用いても同様であった。)をよく洗浄し、乾燥後、自動車の外側となる面に前記複合膜形成溶液を塗布し1、2時間反応させる。 Next, the glass plate for an automobile window tempered by air cooling (the same applies even if a glass plate for a building window or a glass plate for a heat-resistant top plate of an electromagnetic cooker) is thoroughly washed, and after drying, The composite film forming solution is applied to the outer surface and allowed to react for 1 to 2 hours.

このとき、ガラス基板表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記ガラス板表面で二つの物質のSiCl3基と前記水酸基や吸着水とが脱塩酸反応して、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質が混合反応した状態で−SiO−結合を介して前記ガラス板表面に結合する。 At this time, since the surface of the glass substrate contains many hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the SiCl 3 groups of the two substances and the hydroxyl group or adsorbed water undergo dehydrochlorination reaction on the glass plate surface. In addition, a substance having a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group as main components and a substance having a chlorosilyl group as main components are bonded to the glass plate surface via —SiO— bonds in a mixed reaction state.

すなわち、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1に変化して前記−SiO−結合を介して、ガラス板3表面やシロキサン基を主成分とする物質2と結合し、一方、クロロシリル基を主成分とする物質は、シロキサン基を主成分とする物質2に変化して前前記−SiO−結合介して、ガラス板3表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質1と結合する。 That is, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group is changed to the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and is changed through the -SiO- bond. Then, the surface of the glass plate 3 and the substance 2 having a siloxane group as a main component are combined, and the substance having a chlorosilyl group as a main component is changed to the substance 2 having a siloxane group as a main component before the -SiO- Through bonding, the surface of the glass plate 3 and the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group are bonded.

その後、表面の余分な複合膜形成溶液を洗浄除去する(第4番目の発明、有機溶媒を用いてふき取り除去しても良い。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2を含み、且つ露出している水酸基4や内部の水酸基4’を多数含む複合膜5(可視光に対する透過率は、99%以上)を前記ガラス板3表面に形成できる。(図1(a)) Thereafter, the excess composite film forming solution on the surface is removed by washing (fourth invention, may be wiped off using an organic solvent). When the fluorocarbon group and hydrocarbon group are several nanometers thick, A composite film 5 containing a substance 1 having a silyl group as a main component and a substance 2 having a siloxane group as a main component, and having a large number of exposed hydroxyl groups 4 and internal hydroxyl groups 4 '(transmittance to visible light is 99 % Or more) can be formed on the surface of the glass plate 3. (Fig. 1 (a))

なお、前記洗浄工程を省き、前記非水系有機溶媒を蒸発させる(第3番目の発明)か、あるいは布等でふき取ると、数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2を含み、且つ水酸基を多数含む複合膜(可視光に対する透過率は、98%以上)が前記ガラス板表面に形成できた。この場合、洗浄した場合に比べ厚さが厚くなり、透明性は洗浄除去した場合に比べ劣るが、利点は、より耐久性を向上できることにある。 If the non-aqueous organic solvent is evaporated (third invention) or wiped off with a cloth or the like without the washing step, a fluorocarbon group, hydrocarbon group and silyl group having a thickness of several tens of nanometers are formed. A composite film containing a substance 1 having a main component and a substance 2 having a siloxane group as a main component and containing many hydroxyl groups (transmittance to visible light of 98% or more) could be formed on the surface of the glass plate. In this case, the thickness is greater than that obtained by washing, and the transparency is inferior to that obtained by washing and removal, but the advantage is that durability can be further improved.

その後、前記複合膜(洗浄したもの、あるいは溶媒を蒸発させた、又はふき取ったものでも良い。)が形成されたそれぞれのガラス板を300〜450℃、30〜120分程度の条件で加熱処理を行うと、膜中に残っていた水酸基4が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜6に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる耐摩耗性で且つ耐候性が高い撥水撥油性の複合膜7となり、高耐久性撥水撥油防汚性ガラス板を製造できる(図1(b))。 Thereafter, each glass plate on which the composite film (which has been washed, or the solvent has been evaporated or wiped off) is formed is subjected to heat treatment at 300 to 450 ° C. for about 30 to 120 minutes. When this is done, the hydroxyl group 4 remaining in the film undergoes a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 6. As a result, the water- and oil-repellent composite film 7 having high wear resistance and high weather resistance, comprising the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and the substance 2 mainly composed of a siloxane group. Thus, a highly durable water / oil repellent antifouling glass plate can be produced (FIG. 1B).

なお、300〜450℃で焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても被膜が酸化することなく焼成できる。 When using nitrogen gas containing 3% hydrogen (explosion limit is 4%) as the atmosphere gas when firing at 300 to 450 ° C., the coating film is formed even if some oxygen is mixed into the furnace when the furnace door is opened and closed. It can be fired without oxidation.

このときの撥水撥油防汚性ガラス板の水に対する接触角は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の組成に依存するので、組成を変えれば、95±10度に制御できる。また、0.02mlの水滴に対する転落角は35度以下に制御できる。 At this time, the water contact angle of the water / oil / oil repellent antifouling glass plate is determined by the composition of the substance 1 mainly composed of fluorocarbon group, hydrocarbon group and silyl group and the substance 2 mainly composed of siloxane group. Since it depends, it can be controlled to 95 ± 10 degrees by changing the composition. Moreover, the falling angle for 0.02 ml water droplets can be controlled to 35 degrees or less.

なお、複合膜形成溶液の溶媒を蒸発させて被膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では50〜150℃程度がよい。 When forming a film by evaporating the solvent of the composite film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is because it can be removed by evaporation earlier. About 50-150 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では150〜350℃程度がよい。 On the other hand, when washing with a non-aqueous organic solvent, the higher the boiling point of the non-aqueous solvent used in the composite film-forming solution is, the more stable it is.

また、複合膜形成溶液のフッ化炭素基と炭化水素基とロシリル基を主成分とする物質とクロロシリル基を主成分とする物質の分子組成比を変えて、複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の分子組成比を、好ましくは1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質100%で作成した被膜の場合に比べて大幅に耐摩耗性を向上できる。 In addition, the fluorocarbon group contained in the composite film can be changed by changing the molecular composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and rosilyl group and substance mainly composed of chlorosilyl group in the composite film forming solution. And the molecular composition ratio of the substance 1 mainly composed of hydrocarbon group and silyl group and the substance 2 mainly composed of siloxane group is preferably 1:10 to 10: 1 (more preferably 1: 1 to 6: 1). ), The wear resistance can be greatly improved as compared with the case of a film made of 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group.

参考として、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質がCF3(CF2(CHSiClであり、クロロシリル基を主成分とする物質がSiClであり、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質が100%の被膜(比較例1)と、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質とクロロシリル基を主成分とする物質の組成が2:1の場合の被膜(実施例1)の耐摩耗試験における接触角変化の結果を図2に比較して示す。 As a reference, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group is CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , and a substance mainly composed of a chlorosilyl group is SiCl 4. 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group (Comparative Example 1), and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group. The results of contact angle change in the wear resistance test of the coating (Example 1) when the composition of the substance and the substance mainly composed of chlorosilyl groups is 2: 1 are shown in FIG.

一方、複合膜形成溶液のフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質1とクロロシリル基を主成分とする物質2の分子組成比を1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、水に対する接触角を95±10度(1:1〜6:1の場合は、100±5度)に制御でき、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質100%で作成した被膜(接触角は約110度)の場合に比べて大幅に水滴離水性能を向上(水滴転落角度を小さく)できる。 On the other hand, the molecular composition ratio of the substance 1 mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group and the substance 2 mainly composed of chlorosilyl group in the composite film forming solution is 1:10 to 10: 1 (more preferably Is 1: 1-6: 1), the contact angle with water can be controlled to 95 ± 10 degrees (in the case of 1: 1-6: 1, 100 ± 5 degrees). Compared with the case of a film (contact angle is about 110 degrees) made of 100% of a substance mainly composed of hydrogen groups and chlorosilyl groups, the water-drop separation performance can be greatly improved (the water drop falling angle is reduced).

参考として、各種実験で得た水滴に対する接触角(他の物質を用いて得たデータも含めている。)と転落角の関係を図3に示す。 As a reference, FIG. 3 shows the relationship between the contact angle (including data obtained using other substances) with respect to water droplets obtained in various experiments and the falling angle.

なお、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXpCl3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group include the following substances.
CF 3 (CF 2 ) n (R) m SiX p Cl 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, p is 0, 1 or 2)

さらに、具体的には、以下に示す(1)-(7)が挙げられる。
(1) CF3CH2O(CH215SiCl3
(2) CF3(CH22Si(CH32(CH215SiCl3
(3) CF3(CH26Si(CH32(CH29 SiCl3
(4) CF3COO(CH215SiCl3
(5) CF3(CF27(CH22SiCl3
(6) CF3(CF25(CH22SiCl3
(7) CF3(CF2764SiCl3
More specifically, the following (1) to (7) are mentioned.
(1) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(4) CF 3 COO (CH 2 ) 15 SiCl 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 SiCl 3

また、クロロシリル基を主成分とする物質として、SiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリルキ基を主成分とする物質の代わりにSi(OCHやSi(OCで表される化合物を用いることが可能である。 In addition, as a substance having a chlorosilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or a substance having a chlorosilyl group as a main component Instead, a compound represented by Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4 can be used.

さらに、Si(OCHやSi(OCの代わりに、SiH(OCH3、SiH2(OCH2、または(CHO)3Si(OSi(OCH2OCH(但し、mは整数)や、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)も使用できる。 Furthermore, instead of Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4 , SiH (OCH 3 ) 3 , SiH 2 (OCH 3 ) 2 , or (CH 3 O) 3 Si (OSi (OCH 3 )) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5) 2 ) m OC 2 H 5 (where m is an integer) can also be used.

なお、このとき、Si(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)は、脱塩酸反応はしないが、フッ化炭素基およびクロロシリル基を含む化学吸着剤が反応して発生する塩酸が触媒となり、基材表面とシロキサン結合を形成する。 At this time, Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5, where m is an integer Although no dehydrochlorination reaction is performed, hydrochloric acid generated by the reaction of a chemical adsorbent containing a fluorocarbon group and a chlorosilyl group serves as a catalyst to form a siloxane bond with the substrate surface.

また、上記クロロシラン系の化学吸着剤の代わりに、全てのクロロシリル基をイソシアネート基に置き換えたイソシアネート系の化学吸着剤、例えば下記に示す(1)-(5)が挙げられる。 Further, instead of the chlorosilane-based chemical adsorbent, isocyanate-based chemical adsorbents in which all chlorosilyl groups are replaced with isocyanate groups, for example, (1) to (5) shown below can be mentioned.

(1) CF3(CH2rSiXp(NCO)3-p
(2) CF3(CH2rSiXp(NCO)3-p
(3) CF3(CH2sO(CH2tSiXp(NCO)3-p
(4) CF3(CH2uSi(CH32(CH2vSiXp(NCO)3-p
(5) CF3 COO(CH2wSiXp(NCO)3-p
(但し、好ましい範囲としてrは1〜25、sは0〜12、tは1〜20、uは0〜12、vは1〜20、wは1〜25を示す。)
(1) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(2) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(3) CF 3 (CH 2 ) s O (CH 2 ) t SiX p (NCO) 3-p
(4) CF 3 (CH 2 ) u Si (CH 3 ) 2 (CH 2 ) v SiX p (NCO) 3-p
(5) CF 3 COO (CH 2 ) w SiX p (NCO) 3-p
(However, as a preferable range, r is 1 to 25, s is 0 to 12, t is 1 to 20, u is 0 to 12, v is 1 to 20, and w is 1 to 25.)

さらに、前記の吸着剤に加えて、下記に示す(1)-(7)の具体的吸着化合物が挙げられ、いずれも実施の形態2にも同様に使用できる。 Furthermore, in addition to the adsorbents described above, the following specific adsorbing compounds (1) to (7) can be mentioned, and any of them can be used in the second embodiment as well.

(1) CF3CH2O(CH215Si(NCO)3
(2) CF3(CH22Si(CH32(CH215Si(NCO)3
(3) CF3(CH26Si(CH32(CH29Si(NCO)3
(4) CF3COO(CH215Si(NCO)3
(5) CF3(CF27(CH22Si(NCO)3
(6) CF3(CF25(CH22Si(NCO)3
(7) CF3(CF2764Si(NCO)3
なお、この場合は、塩酸が発生しないメリットがある。
(1) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(4) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (NCO) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (NCO) 3
In this case, there is an advantage that hydrochloric acid is not generated.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent not containing water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specific examples include petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl-modified silicone, polyether silicone, etc. Can do.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

さらにまた、実施の形態1において、一般の下地ガラス板の代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したガラス板を用いると、下地ガラス板からのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。 Furthermore, in Embodiment 1, a silica film or a titanium oxide film formed using a sol-gel method, a CVD method, or a silicon nitride film formed using polysilazane is used as an alkali barrier instead of a general base glass plate. When a glass plate formed with a thickness of several nanometers to several tens of microns is used as the film, elution of alkali components from the base glass plate can be reduced, and weather resistance and water resistance can be further improved.

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、自動車以外で、建物窓用ガラス板や電磁調理器のトッププレート用ガラス板に用いる場合は、必要する耐摩耗性あるいは防汚性に応じて、適宜表面エネルギーを調整して用いればよい。
(実施の形態2)
In addition, when using it for the glass plate for building windows other than a motor vehicle, or the glass plate for top plates of an electromagnetic cooker, surface energy should just be adjusted suitably according to required abrasion resistance or antifouling property.
(Embodiment 2)

次に、第2番目の発明である自動車の窓(建物の窓用ガラス板あるいは電磁調理器のトッププレートも同様である。)に用いる撥水撥油防汚性ガラス板について製造方法(第5および第6番目の発明)と共に説明する。 Next, a method for producing a water- and oil-repellent and antifouling glass plate used for a window of an automobile according to the second invention (the same applies to a glass plate for a building window or a top plate of an electromagnetic cooker) (fifth method). And the sixth invention).

前記実施の形態1において、表面の余分な複合膜形成溶液を洗浄除去し(第4番目の発明の途中)、あるいは前記洗浄工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取って(第3番目の発明の途中)複合膜(実施の形態2では下層複合膜となる。)を形成後、さらにもう1層、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1を含む上層膜を形成する(第5および第6番目の発明)。 In Embodiment 1, excess composite film forming solution on the surface is removed by washing (middle of the fourth invention), or the washing step is omitted and the non-aqueous organic solvent is evaporated, or with a cloth or the like After wiping off (in the middle of the third invention) to form a composite film (which is a lower layer composite film in the second embodiment), another layer is composed of a fluorocarbon group, a hydrocarbon group, and a silyl group as main components. An upper layer film containing the material 1 to be formed is formed (fifth and sixth inventions).

例えば、乾燥雰囲気中(湿度35%以下が良い。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質として、CF3(CF2(CHSiCl3(nは正数)を用い、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)に0.01M/Lの濃度になるように溶解して上層膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is good) Is a positive number) and dissolved in an organic solvent containing almost no non-aqueous water (for example, hexadecane) to a concentration of 0.01 M / L to prepare an upper layer film-forming solution.

次に、下層複合膜の形成された自動車窓用ガラス板を、自動車の外側となる面に前記上層膜形成溶液を塗布し1、2時間反応させる。 Next, the glass plate for automobile windows on which the lower layer composite film is formed is coated with the upper layer film forming solution on the surface that is the outside of the automobile, and reacted for 1 to 2 hours.

このとき、下層複合膜5の形成された自動車窓用ガラス板3の表面は、図1(a)に示すように、水酸基4、4’すなわち活性水素が多数残っている。そこで、前記ガラス板表面でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質のクロロシリル基(−SiCl3)基と前記表面に露出した水酸基4とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1’が−SiO−結合を介して前記ガラス板表面に結合する。 At this time, as shown in FIG. 1A, a large number of hydroxyl groups 4, 4 ′, that is, active hydrogen remains on the surface of the glass plate 3 for an automobile window on which the lower composite film 5 is formed. Therefore, a chlorosilyl group (—SiCl 3 ) group of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group and a hydroxyl group 4 exposed on the surface undergo a dehydrochlorination reaction on the surface of the glass plate, thereby The substance 1 ′ mainly composed of a carbonized carbon group, a hydrocarbon group, and a silyl group is bonded to the surface of the glass plate through a —SiO— bond.

すなわち、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1’に変化して前記−SiO−結合を介して、ガラス板3表面で露出している水酸基4と結合して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1を含む被膜になる。 That is, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group is changed to a substance 1 ′ mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and the —SiO— bond is changed. Thus, a film containing the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is formed by bonding with the hydroxyl group 4 exposed on the surface of the glass plate 3.

その後、表面の余分な上層膜形成溶液を洗浄除去する(第6番目の発明、有機溶媒を用いてふき取り除去しても良い。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる下層複合膜と、前記下層複合膜表面に結合したフッ化炭素基と炭化水素基とシリル基を主成分とする物質1よりなる上層膜8よりなる2層構造の被膜を製造できる。 Thereafter, the excess upper layer film-forming solution on the surface is washed away (sixth invention, may be wiped off using an organic solvent), and a fluorocarbon group and a hydrocarbon group having a thickness of several nanometers A lower layer composite film composed of a substance 1 having a silyl group as a main component and a substance 2 having a siloxane group as a main component, and a fluorocarbon group, a hydrocarbon group and a silyl group bonded to the surface of the lower layer composite film as main components A two-layered film made of the upper film 8 made of the substance 1 can be manufactured.

その後、さらに前記2層構造の被膜(洗浄したもの、あるいは蒸発又はふき取ったものでも良い。)が形成されたそれぞれのガラス板を300〜450℃、30〜120分程度の条件で加熱処理を行うと、膜内部に残っているSiOH基の水酸基4’が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜6’に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる下層複合膜7’とフッ化炭素基と炭化水素基とシリル基を主成分とする物質1よりなる上層膜8は、耐摩耗性、耐候性の高い撥水撥油性の2層膜9となり、水滴の接触角がおおむね110度の高耐久性の撥水撥油防汚性ガラス板を製造できる(図1(c))。この膜は、2層構造でも、可視光に対する透過率はほぼ99%以上である。 Thereafter, each glass plate on which the two-layer coating film (washed or evaporated or wiped) may be further subjected to heat treatment at 300 to 450 ° C. for about 30 to 120 minutes. Then, the hydroxyl group 4 ′ of the SiOH group remaining inside the film undergoes a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 6 ′. As a result, the lower layer composite film 7 ′ made of the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance 2 mainly composed of a siloxane group, the fluorocarbon group, the hydrocarbon group and the silyl group. The upper layer film 8 made of the substance 1 containing as a main component becomes a water- and oil-repellent two-layer film 9 having high wear resistance and weather resistance, and a highly durable water- and oil-repellent oil-repellent oil having a contact angle of about 110 degrees. An antifouling glass plate can be produced (FIG. 1 (c)). Even if this film has a two-layer structure, the transmittance for visible light is approximately 99% or more.

なお、前記洗浄除去する工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取る(第5番目の発明)と、洗浄した場合に比べ厚さが厚い数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1よりなる上層膜(2層構造でも可視光に対する透過率は、98%以上)が前記ガラス板表面に形成できる。なお、この場合には、被膜の膜厚が厚くなり、透明性は洗浄除去した場合に比べ劣るが、実用上は全く問題が無く、より耐久性を向上できる。 If the non-aqueous organic solvent is evaporated or wiped off with a cloth (fifth invention) without the washing and removing step, a tens of nanometer-thick fluorine having a thickness larger than that of the washing is obtained. An upper layer film (substance for visible light having a transmittance of 98% or more even with a two-layer structure) made of the substance 1 mainly composed of carbonized carbon group, hydrocarbon group and silyl group can be formed on the surface of the glass plate. In this case, the film thickness of the film is increased, and the transparency is inferior to that obtained by washing and removal, but there is no problem in practical use and the durability can be further improved.

このときの撥水撥油防汚性ガラス板の水に対する初期接触角は、最表面の上層膜の物性で決まり、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質として、例えば、CF3(CF2(CHSiCl3(nは正数)を用いた場合、おおむね105±10度に制御できる。また、0.02mlの水滴に対する転落角はほぼ45度以下に制御できる。 The initial contact angle with respect to the water of the water-repellent / oil-repellent antifouling glass plate at this time is determined by the physical properties of the uppermost film on the outermost surface, and as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, for example, , CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is a positive number) can be controlled to approximately 105 ± 10 degrees. Moreover, the falling angle with respect to 0.02 ml of water droplets can be controlled to about 45 degrees or less.

なお、上層膜形成溶液の溶媒を蒸発させて上層膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では50〜150℃程度がよい。 When the upper layer film is formed by evaporating the solvent of the upper layer film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is. Then, about 50-150 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では150〜350℃程度がよい。 On the other hand, when washing with a non-aqueous organic solvent, the higher the boiling point of the non-aqueous solvent used in the composite film-forming solution is, the more stable it is.

参考として、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質としてCF3(CF2(CHSiClを用いた場合の2層構造の被膜の(実施例2)の耐摩耗試験における接触角変化の結果を図2に比較して示す。 As a reference, a film having a two-layer structure when CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group (Example) The result of contact angle change in the wear resistance test of 2) is shown in comparison with FIG.

また、水滴の転落角は、20マイクロリットルの水滴の場合、およそ45度であり、実施の形態1に比べ、接触角が大きくなる分、大きくなる(図3参照)欠点があるが、耐摩耗性はさらに大幅に向上できる。 In addition, the drop angle of the water droplet is about 45 degrees in the case of a 20 microliter water droplet, which is larger than the first embodiment as the contact angle increases (see FIG. 3). The sex can be further greatly improved.

なお、上層膜形成用のフッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXpCl3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group for forming the upper layer film include the following substances.
CF 3 (CF 2 ) n (R) m SiX p Cl 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, p is 0, 1 or 2)

さらに、具体的には、以下に示す(1)-(7)が挙げられる。
(1) CF3CH2O(CH215SiCl3
(2) CF3(CH22Si(CH32(CH215SiCl3
(3) CF3(CH26Si(CH32(CH29 SiCl3
(4) CF3COO(CH215SiCl3
(5) CF3(CF27(CH22SiCl3
(6) CF3(CF25(CH22SiCl3
(7) CF3(CF2764SiCl3
More specifically, the following (1) to (7) are mentioned.
(1) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(4) CF 3 COO (CH 2 ) 15 SiCl 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 SiCl 3

また、上記クロロシラン系の化学吸着剤の代わりに、全てのクロロシリル基をイソシアネート基に置き換えたイソシアネート系の化学吸着剤、例えば下記に示す(1)-(5)が挙げられる。 Further, instead of the chlorosilane-based chemical adsorbent, isocyanate-based chemical adsorbents in which all chlorosilyl groups are replaced with isocyanate groups, for example, (1) to (5) shown below can be mentioned.

(1) CF3(CH2rSiXp(NCO)3-p
(2) CF3(CH2rSiXp(NCO)3-p
(3) CF3(CH2sO(CH2tSiXp(NCO)3-p
(4) CF3(CH2uSi(CH32(CH2vSiXp(NCO)3-p
(5) CF3 COO(CH2wSiXp(NCO)3-p
(但し、好ましい範囲としてrは1〜25、sは0〜12、tは1〜20、uは0〜12、vは1〜20、wは1〜25を示す。)
(1) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(2) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(3) CF 3 (CH 2 ) s O (CH 2 ) t SiX p (NCO) 3-p
(4) CF 3 (CH 2 ) u Si (CH 3 ) 2 (CH 2 ) v SiX p (NCO) 3-p
(5) CF 3 COO (CH 2 ) w SiX p (NCO) 3-p
(However, as a preferable range, r is 1 to 25, s is 0 to 12, t is 1 to 20, u is 0 to 12, v is 1 to 20, and w is 1 to 25.)

さらに、前記の吸着剤に加えて、下記に示す(1)-(7)の具体的吸着化合物が挙げられる。 Furthermore, in addition to the above adsorbents, the following specific adsorbing compounds (1) to (7) can be mentioned.

(1) CF3CH2O(CH215Si(NCO)3
(2) CF3(CH22Si(CH32(CH215Si(NCO)3
(3) CF3(CH26Si(CH32(CH29Si(NCO)3
(4) CF3COO(CH215Si(NCO)3
(5) CF3(CF27(CH22Si(NCO)3
(6) CF3(CF25(CH22Si(NCO)3
(7) CF3(CF2764Si(NCO)3
なお、この場合は、塩酸が発生しないメリットがある。
(1) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(4) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (NCO) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (NCO) 3
In this case, there is an advantage that hydrochloric acid is not generated.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent not containing water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specific examples include petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl-modified silicone, polyether silicone, etc. Can do.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

さらにまた、実施の形態2においても、実施の形態1と同様に、一般のガラス板の代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したガラス板を用いると、ガラス板からのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。 Furthermore, in the second embodiment, similarly to the first embodiment, a silica film, a titanium oxide film, or polysilazane formed using a sol-gel method, a CVD method, or the like is used instead of a general glass plate. When a glass plate formed with a thickness of several nanometers to several tens of microns using the silicon nitride film or the like as an alkali barrier film is used, elution of alkali components from the glass plate can be reduced, and weather resistance and water resistance can be further improved.

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、自動車以外で、建物窓用ガラス板や電磁調理器のトッププレート用ガラス板に用いる場合は、必要する耐摩耗性あるいは防汚性に応じて、適宜表面エネルギーを調整して用いればよい。
(実施の形態3)
In addition, when using it for the glass plate for building windows other than a motor vehicle, or the glass plate for top plates of an electromagnetic cooker, surface energy should just be adjusted suitably according to required abrasion resistance or antifouling property.
(Embodiment 3)

さらに、第1番目の発明である自動車や建物の窓用ガラス板あるいは電磁調理器のトッププレートに用いるガラス板について、他の製造方法(第7及び第8番目の発明)と共に説明する。 Furthermore, the glass plate used for the glass plate for windows of automobiles and buildings or the top plate of an electromagnetic cooker according to the first invention will be described together with other manufacturing methods (seventh and eighth inventions).

例えば、乾燥雰囲気中(湿度50%以下が良い。)でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3(nは正数、Aは、メチル基、エチル基等のアルキル基)と、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)とを、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)にそれぞれ0.01M/Lの濃度になるように溶解して(この場合、前者と後者の分子組成比1:1になる)、さらにシラノール縮合触媒を0.0001M/Lの濃度になるように添加溶解して複合膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less). ) 3 (n is a positive number, A is an alkyl group such as a methyl group or an ethyl group) and Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a short-chain alkyl group such as a methyl group, an ethyl group or a propyl group), or alkoxysilyl Instead of the group-based substance, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) contains almost no non-aqueous water. Organic solvents (e.g. In this case, the molecular composition ratio of the former and the latter is 1: 1, and the silanol condensation catalyst is further concentrated to 0.0001 M / L. Thus, a composite film forming solution is prepared by adding and dissolving.

次に、風冷強化された自動車窓用ガラス板(建物窓用ガラス板あるいは電磁調理器の耐熱トッププレート用ガラス板を用いても同様であった。)をよく洗浄し、乾燥後、自動車の外側となる面に前記複合膜形成溶液を塗布し1〜2時間反応させる。 Next, the glass plate for an automobile window tempered by air cooling (the same applies even if a glass plate for a building window or a glass plate for a heat-resistant top plate of an electromagnetic cooker) is thoroughly washed, and after drying, The composite film forming solution is applied to the outer surface and allowed to react for 1 to 2 hours.

このとき、ガラス基板表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記ガラス板表面で二つの物質の−Si(OA)3基と前記水酸基や吸着水とが、シラノール縮合触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質が混合反応した状態で−SiO−結合を介して前記ガラス板表面に結合する。 At this time, since the surface of the glass substrate contains a large number of hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, -Si (OA) 3 groups of the two substances and the hydroxyl groups and adsorbed water on the glass plate surface, In a state where a dealcoholization reaction is carried out in the presence of a silanol condensation catalyst, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and a substance mainly composed of an alkoxysilyl group are mixed and reacted with —SiO—. Bonding to the glass plate surface through bonding.

すなわち、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11に変化して前記−SiO−結合を介して、ガラス板13表面やシロキサン基を主成分とする物質12と結合し、一方、アルコキシシリル基を主成分とする物質は、シロキサン基を主成分とする物質12に変化して前前記−SiO−結合介して、ガラス板13表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質1と結合する。 That is, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group is changed to the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and the —SiO— bond is changed. The substance having the surface of the glass plate 13 and the substance 12 mainly composed of a siloxane group, on the other hand, the substance having an alkoxysilyl group as a main component is changed to the substance 12 having a siloxane group as a main component, and It binds to the surface 1 of the glass plate 13 and the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group through the SiO— bond.

その後、表面の余分な複合膜形成溶液を洗浄除去する(第8番目の発明、有機溶媒を用いてふき取り除去しても良い。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12を含み、且つ露出している水酸基14や内部の水酸基14’を多数含む複合膜15(可視光に対する透過率は、99%以上)を前記ガラス板13表面に形成できる。(図4(a)) Thereafter, the excess composite film forming solution on the surface is washed away (8th invention, may be wiped off using an organic solvent). When the fluorocarbon group and the hydrocarbon group are several nanometers thick, A composite film 15 containing a substance 11 mainly containing a silyl group and a substance 12 containing a siloxane group as a main component and containing many exposed hydroxyl groups 14 and internal hydroxyl groups 14 '(transmittance to visible light is 99 % Or more) can be formed on the surface of the glass plate 13. (Fig. 4 (a))

なお、前記洗浄除去する工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取る(第7番目の発明)と、数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12を含み、且つ水酸基を多数含む複合膜15(可視光に対する透過率は、98%以上)が前記ガラス板13表面に形成できた。この場合、洗浄した場合に比べ厚さが厚くなり、透明性は洗浄除去した場合に比べ劣るが、利点は、より耐久性を向上できることにある。 The step of washing and removing is omitted and the non-aqueous organic solvent is evaporated or wiped off with a cloth (seventh invention) to obtain a tens of nanometer-thick fluorocarbon group, hydrocarbon group and silyl group. A composite film 15 (having a transmittance for visible light of 98% or more) containing a substance 11 containing a group as a main component and a substance 12 containing a siloxane group as a main component and containing many hydroxyl groups can be formed on the surface of the glass plate 13. It was. In this case, the thickness is greater than that obtained by washing, and the transparency is inferior to that obtained by washing and removal, but the advantage is that durability can be further improved.

その後、前記複合膜(洗浄したもの。あるいは溶媒を蒸発させた、又はふき取ったものでも良い。)が形成されたそれぞれのガラス板を300〜450℃、30〜120分程度の条件で加熱処理を行うと、膜中に残っていた水酸基14,14’が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜16に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12よりなる耐摩耗性で且つ耐候性が高い撥水撥油性の複合膜17となり、高耐久性撥水撥油防汚ガラス板を製造できる(図4(b))。 Thereafter, each glass plate on which the composite film (washed, or solvent evaporated or wiped off) is formed can be subjected to heat treatment at 300 to 450 ° C. for about 30 to 120 minutes. When this is done, the hydroxyl groups 14 and 14 ′ remaining in the film undergo a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 16. As a result, the water- and oil-repellent composite film 17 having high wear resistance and high weather resistance is composed of the substance 11 mainly composed of fluorocarbon group, hydrocarbon group and silyl group, and the substance 12 mainly composed of siloxane group. Thus, a highly durable water / oil repellent antifouling glass plate can be produced (FIG. 4B).

このときの撥水撥油防汚ガラス板の水に対する接触角は、物質11と物質12の組成に依存するので、組成を変えれば、ほぼ95±10度に制御できる。また、0.02mlの水滴に対する転落角は35度以下に制御できる。 The water contact angle of the water / oil repellent / antifouling glass plate at this time depends on the composition of the substances 11 and 12, and can be controlled to approximately 95 ± 10 degrees by changing the composition. Moreover, the falling angle for 0.02 ml water droplets can be controlled to 35 degrees or less.

なお、複合膜形成溶液の溶媒を蒸発させて被膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では40〜300℃程度がよい。 When forming a film by evaporating the solvent of the composite film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is because it can be removed by evaporation earlier. About 40-300 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では300〜350℃程度がよい。 On the other hand, in the case of washing with a non-aqueous organic solvent, the boiling point of the non-aqueous solvent used in the composite film forming solution is more stable as it is higher, but is preferably about 300 to 350 ° C. in terms of handling.

なお、前記2つの製造方法において、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると、製造における環境負荷を低減出来る。 In the above two production methods, if the washing is performed with a detergent and water instead of washing with an organic solvent, the environmental load in the production can be reduced.

また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくと、耐久性と離水性を同時に向上出来る。 Further, when the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group is set to 1:10 to 10: 1, durability is maintained. Property and water separation can be improved at the same time.

さらにまた、複合膜形成溶液のフッ化炭素基と炭化水素基とロシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の分子組成比を変えて、複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12の分子組成比を、好ましくは1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質100%で作成した被膜の場合に比べて大幅に耐摩耗性を向上できる。 Furthermore, the fluorination contained in the composite film can be changed by changing the molecular composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and rosilyl group and the substance mainly composed of alkoxysilyl group in the composite film forming solution. The molecular composition ratio of the substance 11 mainly composed of carbon group, hydrocarbon group and silyl group to the substance 12 mainly composed of siloxane group is preferably 1:10 to 10: 1 (more preferably 1: 1 to 6). 1), the wear resistance can be greatly improved as compared with the case of a film made of 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group.

参考として、フッ化炭素基と炭化水素基とアルコキシシリル基のみを主成分とする物質がCF3(CF2(CHSi(OA)であり、アルコキシシリル基を主成分とする物質がSi(OA)であり、シラノール触媒としてジブチル錫ジアセチルアセトナートを用いた場合、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の組成が2:1の場合の被膜(実施例5)と、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質のみの(100%)の被膜(実施例6)との耐摩耗試験における接触角変化の結果を図5に比較して示す。 As a reference, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group is CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OA) 3 , and the alkoxysilyl group is a main component. When the substance to be used is Si (OA) 4 and dibutyltin diacetylacetonate is used as the silanol catalyst, the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, and the alkoxysilyl group as a main component A film having a composition of 2: 1 (Example 5), and a film having only 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group (Example 6) The result of the contact angle change in the abrasion resistance test is compared with FIG.

なお、複合膜形成溶液のフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質11とアルコキシシリル基を主成分とする物質12の分子組成比を1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、水に対する接触角を95±10度(1:1〜6:1の場合は、100±5度)に制御でき、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質100%で作成した被膜(接触角は約110度)の場合に比べて大幅に水滴離水性能を向上(水滴転落角度を小さく)できる。 Note that the molecular composition ratio of the substance 11 mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group and substance 12 mainly composed of alkoxysilyl group in the composite film forming solution is 1:10 to 10: 1 ( More preferably, the contact angle with respect to water can be controlled to 95 ± 10 degrees (in the case of 1: 1 to 6: 1, 100 ± 5 degrees). Compared with the case of a film (contact angle is about 110 degrees) made of 100% of a substance mainly composed of a hydrocarbon group and an alkoxysilyl group, the water-drop water separation performance can be greatly improved (the water drop falling angle is reduced).

なお、フッ化炭素基と炭化水素基とアルコキシシリル基のみを主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXp(OA)3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group include the following substances.
CF 3 (CF 2 ) n (R) m SiX p (OA) 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, A is a short-chain alkyl group such as methyl group, ethyl group or propyl group, p is 0, 1 or 2)

より具体的には、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、あるいは[CF3(CF2(CHSiOA(nは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)が上げられる。 More specifically, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) can be used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ) N (CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is a short group such as a methyl group, an ethyl group, or a propyl group) Chain alkyl group).

さらに、具体的には、以下に示す(1)〜(18)があげられる。
(1) CF3CH2O(CH215Si(OCH3
(2) CF3(CH22Si(CH32(CH215Si(OCH3
(3) CF3(CH26Si(CH32(CH29 Si(OCH3
(4) CF3COO(CH215Si(OCH3
(5) CF3(CF27(CH22Si(OCH3
(6) CF3(CF25(CH22Si(OCH3
(7) CF3(CF2764Si(OCH3
(8) CF3CH2O(CH215Si(OC3
(9) CF3(CH22Si(CH32(CH215Si(OC3
(10) CF3(CH26Si(CH32(CH29 Si(OC3
(11) CF3COO(CH215Si(OC3
(12) CF3(CF27(CH22Si(OC3
(13) CF3(CF25(CH22Si(OC3
(14) CF3(CF2764Si(OC3
(15)[CF3(CF2(CH222Si(OCH32
(16)[CF3(CF2(CH222Si(OC22
(17)[CF3(CF2(CH22SiOCH3
(18)[CF3(CF2(CH22SiOC2
が上げられる。
More specifically, the following (1) to (18) are mentioned.
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (OCH 3 ) 3
(8) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CH 2 ) 2 Si (CH 3) 2 (CH 2) 15 Si (OC 2 H 5) 3
(10) CF 3 (CH 2 ) 6 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(13) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(14) CF 3 (CF 2 ) 7 C 6 H 4 Si (OC 2 H 5 ) 3
(15) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OCH 3 ) 2
(16) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OC 2 H 5 ) 2
(17) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOCH 3
(18) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOC 2 H 5
Is raised.

また、アルコキシシリル基を主成分とする物質として、Si(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物を用いることが可能である。 Moreover, Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (provided that the alkoxysilyl group is a main component) m is an integer, and A is a short chain alkyl group such as a methyl group, an ethyl group, or a propyl group).

さらに、アルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)も使用できる。なお、これらの物質を添加すれば、基材表面と脱塩酸反応して少量の塩酸を生じるので、実質的に助触媒として働き、さらに製膜速度を速める効果がある。 Further, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) can be used in place of the substance having an alkoxysilyl group as a main component. If these substances are added, a small amount of hydrochloric acid is generated by dehydrochlorination reaction with the surface of the base material, so that it substantially acts as a promoter and further has an effect of increasing the film forming speed.

さらにまた、シラノール縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能である。 Furthermore, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate can be used.

なお、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、反応時間を2倍程度早くでき、製膜時間を半分程度に短縮できる。 If a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the reaction time can be shortened by about twice and the film formation time can be halved. It can be shortened to the extent.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1)して用いると、さらに反応時間を数倍程度早くでき、製膜時間を数分の一に短縮できる。 Moreover, when a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed and used (1: 9 to 9: 1), the reaction time is several times longer. The film formation time can be shortened to a fraction.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が40〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent that does not contain water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 40 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、ノナン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specifically usable are petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, nonane, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl modified silicone, polyether silicone, etc. Can be mentioned.

また、フッ化炭素系溶媒には、フロン系溶媒の365LIVE(大和化学工業(株)製品)や、フロリナート(3M社製品)、アフルード(旭硝子社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を少量添加しても良い。 In addition, fluorocarbon solvents include fluorocarbon solvents 365 LIVE (Daiwa Chemical Industry Co., Ltd. product), Fluorinert (3M product), Afludo (Asahi Glass product), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, a small amount of an organic chlorine-based solvent such as chloroform may be added.

さらにまた、実施の形態3において、一般のガラス板の代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したガラス板を用いると、下地ガラス板からのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。 Furthermore, in Embodiment 3, instead of a general glass plate, a silica film or a titanium oxide film formed using a sol-gel method or a CVD method, or a silicon nitride film formed using polysilazane or the like is used as an alkali barrier film. When a glass plate formed with a thickness of several nanometers to several tens of microns is used, elution of alkali components from the base glass plate can be reduced, and weather resistance and water resistance can be further improved.

さらにまた、下地ガラス板としてフロートガラスを用い、スズを含む面に被膜を形成すると、耐摩耗性を向上出来る。 Furthermore, when float glass is used as the base glass plate and a coating is formed on the surface containing tin, the wear resistance can be improved.

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、自動車以外で、建物窓用ガラス板や電磁調理器のトッププレート用ガラス板に用いる場合は、必要する耐摩耗性あるいは防汚性に応じて、組成比を変え適宜表面エネルギーを調整して用いればよい。
(実施の形態4)
In addition to automobiles, when used for glass plates for building windows and glass plates for top plates of electromagnetic cookers, the surface energy is adjusted appropriately by changing the composition ratio according to the required wear resistance or antifouling properties. Use it.
(Embodiment 4)

また、第2番目の発明である自動車や建物の窓用ガラス板あるいは電磁調理器のトッププレートに用いるガラス板について、もう一つの製造方法(第9及び第10番目の発明)と共に説明する。 Moreover, the glass plate used for the glass plate for windows of automobiles and buildings or the top plate of an electromagnetic cooker according to the second invention will be described together with another manufacturing method (the ninth and tenth inventions).

前記実施の形態3において、表面の余分な複合膜形成溶液を洗浄除去し(第10番目の発明の途中)、あるいは前記洗浄工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取って(第9番目の発明の途中)、複合膜(本実施の形態4では下層複合膜となる。)を形成後、さらにもう1層、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11を含む上層膜を形成する。 In Embodiment 3, the excess composite film forming solution on the surface is removed by washing (middle of the tenth invention), or the washing step is omitted and the non-aqueous organic solvent is evaporated, or with a cloth or the like After wiping (in the middle of the ninth invention) to form a composite film (which is a lower layer composite film in the fourth embodiment), another layer, mainly a fluorocarbon group, a hydrocarbon group, and a silyl group, is formed. An upper film containing the substance 11 as a component is formed.

例えば、乾燥雰囲気中(湿度50%以下が良い。)でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3(nは正数)を用い、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)に0.01M/Lの濃度になるように溶解し、さらにシラノール縮合触媒を0.0001M/Lの濃度になるように添加溶解して上層膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less). ) 3 (n is a positive number), dissolved in an organic solvent containing almost no non-aqueous water (for example, hexadecane) to a concentration of 0.01 M / L, and further a silanol condensation catalyst was added to 0.0001 M / L. An upper layer film-forming solution is prepared by adding and dissolving to a concentration of L.

次に、自動車の外側となる面に実施の形態3と同様の方法で形成され、まだ焼成されてない下層複合膜の形成された自動車窓用ガラス板表面に、前記上層膜形成溶液を塗布し1乃至2時間反応させる。 Next, the upper-layer film-forming solution is applied to the surface of the glass plate for an automobile window, which is formed on the outer surface of the automobile by the same method as in the third embodiment and has not yet been baked. React for 1 to 2 hours.

このとき、下層複合膜15の形成された自動車窓用ガラス板13の表面は、図4(a)に示すように、水酸基14、14’すなわち活性水素が多数残っている。そこで、前記ガラス板表面でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質のアルコキシシリル基(−Si(OA)3)基と前記表面に露出した水酸基14とがシラノール縮合触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11’が−SiO−結合を介して前記ガラス板表面に結合する。 At this time, the surface of the automobile window glass plate 13 on which the lower composite film 15 is formed has a large number of hydroxyl groups 14, 14 ', that is, active hydrogen, as shown in FIG. Therefore, silanol condensation occurs between the alkoxysilyl group (—Si (OA) 3 ) group of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group on the surface of the glass plate and the hydroxyl group 14 exposed on the surface. A dealcoholization reaction is performed in the presence of a catalyst, and a substance 11 ′ mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is bonded to the surface of the glass plate through a —SiO— bond.

すなわち、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11’に変化して前記−SiO−結合を介して、ガラス板13表面で露出している水酸基14と結合して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11を含む被膜になる。 That is, the substance having a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as main components is changed to a substance 11 ′ having a fluorocarbon group, a hydrocarbon group, and a silyl group as main components, and the —SiO— bond is changed. Thus, a film containing the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is formed by bonding with the hydroxyl group 14 exposed on the surface of the glass plate 13.

その後、表面の余分な上層膜形成溶液を洗浄除去する(有機溶媒を用いてふき取り除去しても良い。第10番目の発明。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12よりなる下層複合膜と、前記下層複合膜表面に結合したフッ化炭素基と炭化水素基とシリル基を主成分とする物質11よりなる上層膜18よりなる2層構造の被膜19を製造できる。 Thereafter, the excess upper layer film-forming solution on the surface is washed away (it may be removed by wiping with an organic solvent. The tenth invention), and a fluorocarbon group and a hydrocarbon group having a thickness of several nanometers A lower layer composite film composed of a substance 11 mainly containing a silyl group and a substance 12 mainly containing a siloxane group, and a fluorocarbon group, a hydrocarbon group and a silyl group bonded to the surface of the lower layer composite film. A coating 19 having a two-layer structure made of the upper film 18 made of the substance 11 can be manufactured.

その後、さらに前記2層構造の被膜(洗浄したもの、あるいは蒸発又はふき取ったものでも良い。)が形成されたそれぞれのガラス板を300〜450℃、(より好ましくは、400±20℃が良い。)30〜120分程度の条件で加熱処理を行うと、膜内部に残っているSiOH基の水酸基14’が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜16’に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12よりなる下層複合膜17’とフッ化炭素基と炭化水素基とシリル基を主成分とする物質11よりなる上層膜18は、耐摩耗性、耐候性の高い撥水撥油性の2層膜19となり、水滴の接触角がおおむね105±5度の高耐久性の撥水撥油防汚ガラス板を製造できる(図4(c))。この膜は、2層構造でも、可視光に対する透過率はほぼ98%以上である。 Thereafter, each glass plate on which the two-layered film (washed or evaporated or wiped) may be formed is preferably 300 to 450 ° C. (more preferably 400 ± 20 ° C.). When the heat treatment is performed for about 30 to 120 minutes, the hydroxyl group 14 'of the SiOH group remaining inside the film undergoes a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 16'. As a result, the lower layer composite film 17 ′ composed of the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and the substance 12 mainly composed of a siloxane group, the fluorocarbon group, the hydrocarbon group, and the silyl group. The upper layer film 18 made of the substance 11 having the main component is a water- and oil-repellent two-layer film 19 having high wear resistance and weather resistance, and a highly durable water-repellent water contact angle of approximately 105 ± 5 degrees. An oil repellent and antifouling glass plate can be produced (FIG. 4C). Even if this film has a two-layer structure, the transmittance for visible light is approximately 98% or more.

なお、前記洗浄除去する工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取る(第9番目の発明)と、洗浄した場合に比べ厚さが厚い数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11よりなる上層膜(2層構造でも可視光に対する透過率は、98%以上)が前記ガラス板表面に形成できる。なお、この場合には、被膜の膜厚が厚くなり、透明性は洗浄除去した場合に比べ劣るが、実用上は全く問題が無く、より耐久性を向上できる。 If the non-aqueous organic solvent is evaporated or wiped off with a cloth or the like (the ninth invention) without the washing and removing step, a fluorine film having a thickness of several tens of nanometers is obtained as compared with the case of washing. An upper film (having a transmittance of 98% or more for visible light even in a two-layer structure) made of the substance 11 mainly composed of carbonized carbon group, hydrocarbon group and silyl group can be formed on the surface of the glass plate. In this case, the film thickness of the film is increased, and the transparency is inferior to that obtained by washing and removal, but there is no problem in practical use and the durability can be further improved.

このときの撥水撥油防汚ガラス板の水に対する初期接触角は、最表面の上層膜の物性で決まり、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、例えば、CF3(CF2(CHSi(OA)3(nは正数)を用いた場合、おおむね105±10度に制御できる。また、0.02mlの水滴に対する転落角はほぼ45度以下に制御できる。 The initial contact angle with respect to the water of the water / oil / oil / repellent antifouling glass plate at this time is determined by the physical properties of the uppermost film on the outermost surface, and as a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, for example, When CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 (n is a positive number) is used, it can be controlled to approximately 105 ± 10 degrees. Moreover, the falling angle with respect to 0.02 ml of water droplets can be controlled to about 45 degrees or less.

なお、上層膜形成溶液の溶媒を蒸発させて上層膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では40〜300℃程度がよい。 When the upper layer film is formed by evaporating the solvent of the upper layer film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is. Then, about 40-300 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では300〜350℃程度がよい。 On the other hand, in the case of washing with a non-aqueous organic solvent, the boiling point of the non-aqueous solvent used in the composite film forming solution is more stable as it is higher, but is preferably about 300 to 350 ° C. in terms of handling.

なお、前記2つの製造方法において、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると、製造における環境負荷を低減出来る。 In the above two production methods, if the washing is performed with a detergent and water instead of washing with an organic solvent, the environmental load in the production can be reduced.

参考として、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)を用いた場合の2層構造の被膜の(実施例7)の耐摩耗試験における接触角変化の結果を実施例5および6の結果と共に図5に示す。 As a reference, a film having a two-layer structure when CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OA) 3 is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. The results of contact angle change in the abrasion resistance test of (Example 7) are shown in FIG. 5 together with the results of Examples 5 and 6.

また、水滴の転落角は、20マイクロリットルの水滴の場合、およそ45度であり、実施例5の結果に比べ接触角が大きくなる分、水滴の転落角が大きくなる欠点がある図3参照)が、耐摩耗性はさらに大幅に向上できる。 In addition, the drop angle of the water droplet is about 45 degrees in the case of a 20 microliter water drop, and there is a disadvantage that the drop angle of the water drop becomes larger as the contact angle becomes larger than the result of Example 5). However, the wear resistance can be further greatly improved.

なお、上層膜形成用のフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXp(OA)3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group for forming the upper layer film include the following substances.
CF 3 (CF 2 ) n (R) m SiX p (OA) 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, A is a short-chain alkyl group such as methyl group, ethyl group or propyl group, p is 0, 1 or 2)

より具体的には、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、あるいは[CF3(CF2(CHSiOA(nは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)が上げられる。 More specifically, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) can be used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ) N (CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is a short group such as a methyl group, an ethyl group, or a propyl group) Chain alkyl group).

さらに、具体的には、以下に示す(1)〜(18)が上げられる。
(1) CF3CH2O(CH215Si(OCH3
(2) CF3(CH22Si(CH32(CH215Si(OCH3
(3) CF3(CH26Si(CH32(CH29 Si(OCH3
(4) CF3COO(CH215Si(OCH3
(5) CF3(CF27(CH22Si(OCH3
(6) CF3(CF25(CH22Si(OCH3
(7) CF3(CF2764Si(OCH3
(8) CF3CH2O(CH215Si(OC3
(9) CF3(CH22Si(CH32(CH215Si(OC3
(10) CF3(CH26Si(CH32(CH29 Si(OC3
(11) CF3COO(CH215Si(OC3
(12) CF3(CF27(CH22Si(OC3
(13) CF3(CF25(CH22Si(OC3
(14) CF3(CF2764Si(OC3
(15)[CF3(CF2(CH222Si(OCH32
(16)[CF3(CF2(CH222Si(OC22
(17)[CF3(CF2(CH22SiOCH3
(18)[CF3(CF2(CH22SiOC2
が上げられる。
More specifically, the following (1) to (18) are raised.
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (OCH 3 ) 3
(8) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CH 2 ) 2 Si (CH 3) 2 (CH 2) 15 Si (OC 2 H 5) 3
(10) CF 3 (CH 2 ) 6 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(13) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(14) CF 3 (CF 2 ) 7 C 6 H 4 Si (OC 2 H 5 ) 3
(15) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OCH 3 ) 2
(16) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OC 2 H 5 ) 2
(17) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOCH 3
(18) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOC 2 H 5
Is raised.

また、アルコキシシリル基を主成分とする物質として、Si(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物を用いることが可能である。 Moreover, Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (provided that the alkoxysilyl group is a main component) m is an integer, and A is a short chain alkyl group such as a methyl group, an ethyl group, or a propyl group).

さらに、アルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)も使用できる。なお、これらの物質を添加すれば、基材表面と脱塩酸反応して少量の塩酸を生じるので、実質的に助触媒として働き、さらに製膜速度を速める効果がある。 Further, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) can be used in place of the substance having an alkoxysilyl group as a main component. If these substances are added, a small amount of hydrochloric acid is generated by dehydrochlorination reaction with the surface of the base material, so that it substantially acts as a promoter and further has an effect of increasing the film forming speed.

さらにまた、シラノール縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能である。 Furthermore, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate can be used.

なお、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、反応時間を2倍程度早くでき、製膜時間を短縮できる。 If a ketimine compound, or an organic acid, aldimine compound, enamine compound, oxazolidine compound, or aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the reaction time can be shortened by about twice and the film forming time can be shortened. it can.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1)して用いると、さらに反応時間を数倍程度早くでき、製膜時間を数分の一に短縮できる Moreover, when a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed and used (1: 9 to 9: 1), the reaction time is several times longer. It can be done quickly and the film formation time can be reduced to a fraction of that.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent not containing water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、オクタン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specifically usable are petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, octane, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, alkyl modified silicone, poly Examples include ether silicone.

また、フッ化炭素系溶媒には、フロン系溶媒の365LIVE(大和化学工業(株)製品)や、フロリナート(3M社製品)、アフルード(旭硝子社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を少量添加しても良い。 In addition, fluorocarbon solvents include fluorocarbon solvents 365 LIVE (Daiwa Chemical Industry Co., Ltd. product), Fluorinert (3M product), Afludo (Asahi Glass product), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, a small amount of an organic chlorine-based solvent such as chloroform may be added.

また、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を行わなくとも、耐久性が高く且つ撥水撥油特性にかなり優れたガラス板を提供できる。 Further, it is possible to provide a glass plate having high durability and considerably excellent water and oil repellency without repeating the step of forming the lower layer composite film a plurality of times and without performing the step of forming the upper layer film.

さらにまた、実施の形態4において、一般のガラス板の代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したガラス板を用いると、下地ガラス板からのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。 Furthermore, in Embodiment 4, instead of a general glass plate, a silica film or a titanium oxide film formed using a sol-gel method or a CVD method, or a silicon nitride film formed using polysilazane or the like is used as an alkali barrier film. When a glass plate formed with a thickness of several nanometers to several tens of microns is used, elution of alkali components from the base glass plate can be reduced, and weather resistance and water resistance can be further improved.

さらにまた、下地ガラス板としてフロートガラスを用い、スズを含む面に被膜を形成すると、耐摩耗性を向上出来る。 Furthermore, when float glass is used as the base glass plate and a coating is formed on the surface containing tin, the wear resistance can be improved.

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、自動車以外で、建物窓用ガラス板や電磁調理器のトッププレート用ガラス板に用いる場合は、必要する耐摩耗性あるいは防汚性に応じて、適宜表面エネルギーを調整して用いればよい。
(実施の形態5)
In addition, when using it for the glass plate for building windows other than a motor vehicle, or the glass plate for top plates of an electromagnetic cooker, surface energy should just be adjusted suitably according to required abrasion resistance or antifouling property.
(Embodiment 5)

次に、第11番目の発明である高耐久性の撥水撥油防汚性被膜が形成されたガラス板を窓ガラスとして装着した自動車であって、前記撥水撥油防汚性被膜が、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を少なくとも1層含んでおり、水に対する接触角が95±10度に制御されている自動車、および第12番目の発明である高耐久性の撥水撥油防汚性被膜が形成されたガラス板を窓ガラスとして装着した自動車であって、前記被膜が、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を少なくとも1層含む下層複合膜とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜との複層膜であり、上層膜の水に対する接触角が105±5度に制御されている自動車について説明する。 Next, in an automobile equipped with a glass plate on which a highly durable water / oil repellent / antifouling coating film according to the eleventh invention is formed as a window glass, the water / oil repellent / antifouling coating film comprises: At least one layer of a composite film containing at least a fluorocarbon group, a hydrocarbon group and a silyl group as a main component and a siloxane group as a main component is included, and the contact angle with water is controlled to 95 ± 10 degrees. And an automobile equipped with a glass plate on which a highly durable water- and oil-repellent antifouling coating film according to the twelfth invention is formed as a window glass, the coating film comprising at least a fluorocarbon A lower layer composite film including at least one composite film including a group mainly containing a group, a hydrocarbon group and a silyl group and a substance mainly containing a siloxane group, a fluorocarbon group, a hydrocarbon group, and a silyl group as main components. With the upper layer film containing A membrane, is described vehicle contact angle to water of the upper layer is controlled to 105 ± 5 deg.

自動車の雨天運転時の視認性を向上するためには、撥水撥油防汚性ガラスの水滴離水性、すなわち水に対する転落角は、低いほどよい。 In order to improve the visibility during driving in the rain of an automobile, it is better that the water-repellent / oil-repellent and antifouling glass has a water drop separation, that is, a falling angle with respect to water.

一方、自動車の耐久性を考慮すると、窓ガラス表面に形成される撥水撥油防汚膜の耐摩耗性は高い方がよいが、多少の劣化は防ぎ得ない。 On the other hand, considering the durability of automobiles, the water and oil repellent antifouling film formed on the surface of the window glass should have high wear resistance, but some deterioration cannot be prevented.

また、撥水撥油防汚膜の可視光(波長400〜700nmの光)に対する透過率が悪いと、夜間運転時の視認性が劣化してしまう。一方、被膜の厚みが、波長に近いと光の干渉が生じてしまう。
したがって、安全運転性能の向上をめざせば、膜厚は可視光の波長以下、出来れば一桁以上薄方がよい。可視光透過率は高い程よい。
Moreover, when the transmittance | permeability with respect to visible light (light with a wavelength of 400-700 nm) of a water repellent / oil repellent antifouling film is bad, the visibility at the time of night driving will deteriorate. On the other hand, when the thickness of the coating is close to the wavelength, light interference occurs.
Therefore, for the purpose of improving safe driving performance, the film thickness should be less than the wavelength of visible light, preferably one order of magnitude thinner. The higher the visible light transmittance, the better.

以上の4点を考慮すると、膜厚は略100nm以下で、光透過率は波長400〜700nmの光に対して97%以上が望ましい。 Considering the above four points, it is desirable that the film thickness is about 100 nm or less and the light transmittance is 97% or more for light having a wavelength of 400 to 700 nm.

さらに、摩耗や光による劣化、さらに防汚性を考慮すれば、図2、3より、水滴に対する初期接触角は95±10度、性能をより長く保つためには、より好ましくは100±5度程度に制御しておくべきであると結論される。 Furthermore, in consideration of wear and deterioration due to light, and antifouling properties, as shown in FIGS. 2 and 3, the initial contact angle with respect to water droplets is 95 ± 10 degrees, and more preferably 100 ± 5 degrees to keep the performance longer. It is concluded that the degree should be controlled.

すなわち、実施の形態1で作成された窓ガラスを装着した自動車を製造すれば、上記条件を満たすことはほぼ可能であり、雨天時の安全運転に格別の効果を長期間に亘り発揮する自動車を提供できる。 That is, if an automobile equipped with the window glass prepared in Embodiment 1 is manufactured, the above condition can be almost satisfied, and an automobile that exhibits a special effect for safe driving in the rain for a long period of time. Can be provided.

一方、実施の形態2で作成された窓ガラスを装着した自動車を製造すれば、当初の水滴接触角はおよそ110度となり、上記条件の内、離水性能は当初多少不満足であるが、いずれ使用に伴って劣化して、最適値の95±10度になる。したがって、105度まで劣化するまでの劣化期間が耐久時間に加算されて、結果として耐用年数が大幅に長くなり、産業上の価値は大きい。 On the other hand, if an automobile equipped with the window glass created in the second embodiment is manufactured, the initial water droplet contact angle is about 110 degrees, and among these conditions, the water separation performance is initially somewhat unsatisfactory. Along with this, the optimum value becomes 95 ± 10 degrees. Therefore, the deterioration period until it deteriorates to 105 degrees is added to the endurance time. As a result, the service life is significantly increased, and the industrial value is great.

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

また、実施の形態3で作成された窓ガラスを装着した自動車を製造しても、同様に上記条件を満たすことはほぼ可能であり、雨天時の安全運転に格別の効果を長期間に亘り発揮する自動車を提供できる。 In addition, even if the automobile equipped with the window glass created in the third embodiment is manufactured, it is almost possible to satisfy the above conditions in the same manner, and it exhibits a special effect for a long time in safe driving in rainy weather. Can provide cars.

一方、実施の形態4で作成された窓ガラスを装着した自動車を製造すれば、当初の水滴接触角はおよそ107度となり、上記条件の内、離水性能は当初多少不満足であるが、いずれ使用に伴って劣化して、最適値の95±10度になる。したがって、105度まで劣化するまでの劣化期間が耐久時間に加算されて、結果として耐用年数が大幅に長くなり、産業上の価値は大きい。
(実施の形態6)
On the other hand, if an automobile equipped with the window glass prepared in the fourth embodiment is manufactured, the initial water droplet contact angle is about 107 degrees, and among the above conditions, the water separation performance is initially somewhat unsatisfactory. Along with this, the optimum value becomes 95 ± 10 degrees. Therefore, the deterioration period until it deteriorates to 105 degrees is added to the endurance time. As a result, the service life is significantly increased, and the industrial value is great.
(Embodiment 6)

なお、建物窓用ガラス板や電磁調理器のトッププレート用ガラス板に用いる場合は、実施の形態1乃至4において、必要する耐摩耗性あるいは防汚性に応じて適宜組成比を変え表面エネルギーを調整して用いればよい。また、撥水撥油防汚性被膜が形成されたトッププレートの耐熱性を向上させるためには、あらかじめ耐熱ガラス板の表面に微細な突起(好ましくは0.3〜1mm)を設けておくとよい。この場合、直接鍋底が被膜に接触することがないので、鍋底からの熱輻射や熱伝導を和らげて、トッププレートの耐熱性を向上出来るのみならず、耐摩耗性も向上できる。 In addition, when using it for the glass plate for building windows or the glass plate for the top plate of an electromagnetic cooker, in Embodiments 1 to 4, the composition ratio is appropriately changed according to the required wear resistance or antifouling property, and the surface energy is changed. Adjust and use. Further, in order to improve the heat resistance of the top plate on which the water / oil repellent / antifouling film is formed, a fine protrusion (preferably 0.3 to 1 mm) is provided on the surface of the heat resistant glass plate in advance. Good. In this case, since the pan bottom does not directly come into contact with the coating, the heat radiation and heat conduction from the pan bottom can be moderated to improve not only the heat resistance of the top plate but also the wear resistance.

以下、本発明の具体的な実施例を比較例とともに説明する。なお以下の実施例においては、とくに記載していない限り分子組成比はモル比を意味する。 Hereinafter, specific examples of the present invention will be described together with comparative examples. In the following examples, the molecular composition ratio means a molar ratio unless otherwise specified.

乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3と、クロロシリル基を主成分とする物質としてSiClを、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、それぞれ0.02M/Lと0.01M/Lの濃度(2:1)になるように溶解して、複合膜形成溶液を作成した。 CF as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is preferable. 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , SiCl 4 as a substance mainly composed of a chlorosilyl group, and 0% each in a 5% chloroform-containing dimethyl silicone solution containing almost no water as a non-aqueous organic solvent. A composite film forming solution was prepared by dissolving to a concentration (2: 1) of 0.02 M / L and 0.01 M / L.

次に、風冷強化された自動車窓用ガラス板(建物窓用ガラス板あるいは電磁調理器の耐熱強化トッププレート用ガラス板でも同様に取り扱いできた。)をよく洗浄し、乾燥後、乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で自動車の外側となる面に前記複合膜形成溶液を塗布し、室温で1〜2時間放置反応させた。 Next, air-cooled tempered glass plates for automobile windows (which could be handled in the same way with glass plates for building windows or glass plates for heat-resistant tempered top plates of electromagnetic cookers) were thoroughly washed, dried, and then in a dry atmosphere. (The humidity is preferably 35% or less. When the humidity is higher than this, the film-forming substance is hydrolyzed and the film becomes cloudy.) The reaction was allowed to stand.

このとき、ガラス基板表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記ガラス板表面で二つの物質の≡SiCl基と前記水酸基や吸着水とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質が混合した状態で前記ガラス板表面に結合した。 At this time, since the surface of the glass substrate contains many hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the ≡SiCl group of the two substances and the hydroxyl group or adsorbed water undergo dehydrochlorination reaction on the glass plate surface. Then, a substance having a fluorocarbon group, a hydrocarbon group and a silyl group as main components and a substance having a siloxane group as main components were mixed and bonded to the glass plate surface.

フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、前記シリル基を介して、ガラス板表面やシロキサン基を主成分とする物質と結合し、シロキサン基を主成分とする物質は、シロキサン基を介して、ガラス板表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質と結合した。 A substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group is bonded to a substance mainly composed of a glass plate surface or a siloxane group through the silyl group, and is composed mainly of a siloxane group. Was bonded to a glass plate surface or a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group via a siloxane group.

その後、表面の余分な複合膜形成溶液をエタノールで洗浄除去すると、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記ガラス板表面に形成できた。 Thereafter, when the excess composite film forming solution on the surface is washed away with ethanol, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 5 nm are obtained. A composite film containing it could be formed on the surface of the glass plate.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でガラス板を加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略30nm厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を、前記ガラス板表面に形成できた。また、ふき取った場合には、略10nm厚みとなった。 The non-aqueous organic solvent was evaporated without washing (in this case, when the glass plate was heated at 60 to 100 ° C., the evaporation of the solvent could be accelerated and the evaporation time could be shortened). A composite film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 30 nm could be formed on the glass plate surface. When wiped off, the thickness was approximately 10 nm.

その後、複合膜が形成されたそれぞれのガラス板を実質的に酸素を含まない雰囲気、例えば窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガス中で400℃30分程度の加熱処理を行うと、−SiCl3基が吸着水と反応して生成された≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、耐摩耗性、且つ耐候性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質よりなる撥水撥油性の複合膜となり、250℃以下で焼成した場合に比べおよそ3倍の高耐久性で且つ撥水撥油防汚性のガラス板を製造できた。 Thereafter, when each glass plate on which the composite film is formed is subjected to heat treatment at 400 ° C. for about 30 minutes in an atmosphere substantially free of oxygen, for example, nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit, -Most of the .tbd.SiOH groups produced by the reaction of SiCl 3 groups with adsorbed water undergo a dehydration reaction, forming polysiloxane bonds and changing to a mesh-like silica film, resulting in wear resistance and weather resistance. It becomes a water- and oil-repellent composite film composed of a material mainly composed of high fluorocarbon group, hydrocarbon group and silyl group and material composed mainly of siloxane group, and is approximately 3 times that when fired at 250 ° C or lower. A highly durable, water- and oil-repellent and antifouling glass plate could be produced.

また、400℃30分の焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても被膜が酸化することなく焼成できた。 When nitrogen gas containing 3% hydrogen (explosion limit is 4%) is used as the atmosphere gas during firing at 400 ° C. for 30 minutes, the coating film is formed even if some oxygen is mixed into the furnace when the furnace door is opened and closed. Firing was possible without oxidation.

なお、このとき、複合膜の光透過率は、洗浄の有無基関わらず、波長400〜700nmの光に対して98%以上であった。また、撥水撥油防汚性ガラス板の水に対する接触角は、洗浄の有無に関わらず、略103度であった。 At this time, the light transmittance of the composite film was 98% or more with respect to light having a wavelength of 400 to 700 nm regardless of whether or not cleaning was performed. Moreover, the contact angle with respect to the water of a water-repellent / oil-repellent antifouling glass plate was about 103 degrees irrespective of the presence or absence of washing.

また、0.02mlの水滴の転落角は略30度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復6000回のこすりに対して95度以上を維持できた。さらにまた、あらかじめガラス板表面にアルカリバリア膜を形成したガラス板を用いれば、さらに耐水性を向上できた。 Further, the falling angle of 0.02 ml water droplets was about 30 degrees. Furthermore, in the abrasion test, the contact angle with respect to water was able to maintain 95 degrees or more with respect to the reciprocating 6000 times of rubbing on the conditions of a load of 500 g / 4cm < 2 >. Furthermore, if a glass plate in which an alkali barrier film was previously formed on the glass plate surface was used, the water resistance could be further improved.

さらにまた、一般のガラス板の代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜(酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等でも良い。)をアルカリバリア膜として約十ミクロン程度の厚みで形成したガラス板を用いると、ガラス板からのアルカリ成分溶出を相当削減でき、耐候、耐水性をさらに向上できた。 Furthermore, instead of a general glass plate, a silica film (such as a titanium oxide film or a silicon nitride film formed using polysilazane) formed using a sol-gel method or a CVD method may be used as an alkali barrier film. When a glass plate formed with a thickness of about 10 microns was used, elution of alkali components from the glass plate could be considerably reduced, and the weather resistance and water resistance could be further improved.

ここで、クロロシリルキ基を主成分とする物質であるSiClの代わりに、Si(OCHやSi(OCで表される化合物を用いてもほぼ同様の結果が得られた。
なお、このとき、Si(OCHやSi(OCは、脱塩酸反応はしないが、フッ化炭素基およびクロロシリル基を含む化学吸着剤が反応して発生する塩酸が触媒となり、基材表面とシロキサン結合を形成する。
さらに、SiClの代わりに、SiH(OCH3、SiH2(OCH2、または(CHO)3Si(OSi(OCH2OCH(但し、mは整数)や、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)も使用できた。
(比較例1)
Here, in place of SiCl 4 which is a substance mainly composed of a chlorosilyl group, a similar result can be obtained even if a compound represented by Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4 is used. It was.
At this time, Si (OCH 3 ) 4 and Si (OC 2 H 5 ) 4 do not undergo a dehydrochlorination reaction, but hydrochloric acid generated by reaction of a chemical adsorbent containing a fluorocarbon group and a chlorosilyl group is a catalyst. Thus, a siloxane bond is formed with the substrate surface.
Further, instead of SiCl 4 , SiH (OCH 3 ) 3 , SiH 2 (OCH 3 ) 2 , or (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), , SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is Integer) could also be used.
(Comparative Example 1)

実施例1において、クロロシリル基を主成分とする物質SiClを除き同様の条件で撥水撥油防汚性ガラス板を試作した。基本性能である水に対する接触角を測定すると、112度であった。 In Example 1, a water- and oil-repellent antifouling glass plate was produced under the same conditions except for the substance SiCl 4 mainly composed of chlorosilyl groups. When the contact angle with water, which is the basic performance, was measured, it was 112 degrees.

また、水滴の転落角は、0.02mlの水滴で、当初略50度であった。さらに、摩耗試験を行った。加重500g/4cmの条件下での耐摩耗性評価結果を、実施例1と共に図2に示す。 The drop angle of the water droplet was 0.02 ml, and was about 50 degrees initially. In addition, a wear test was performed. The wear resistance evaluation results under the conditions of weighting 500 g / 4 cm 2, shown in FIG. 2 with Example 1.

実用性を考慮した上で離水性能が最も好都合な接触角95度(図3参照)で見ると、往復2800回までしか耐えられなかった。また、図2から明らかなように、接触角が95度となる点で比較すると、実施例1のガラスに比べ1/2以下の耐摩耗性しか得られなかった。 In view of practicality, the contact angle of 95 degrees (see FIG. 3) with the most favorable water separation performance was able to withstand only up to 2800 round trips. Further, as apparent from FIG. 2, when compared at the point where the contact angle becomes 95 degrees, only wear resistance of ½ or less was obtained as compared with the glass of Example 1.

以上の実験より、従来技術で製造した撥水撥油防汚性ガラス板は、本発明の製造方法を用いて製造した撥水撥油防汚性ガラス板に比べ、水に対する接触角は110度以上と高いが、そのため離水性能が劣るという欠点があることが確かめられた。また、耐摩耗性も劣ることが確認できた。 From the above experiments, the water-repellent / oil-repellent / fouling-resistant glass plate produced by the conventional technique has a contact angle with water of 110 degrees as compared with the water / oil-repellent / fouling-resistant glass plate produced by using the production method of the present invention. Although it was high as mentioned above, it was confirmed that there was a defect that the water separation performance was inferior. It was also confirmed that the wear resistance was inferior.

実施例1において、表面の余分な複合膜形成溶液をエタノールで洗浄除去して、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜を形成した後、引き続いて、以下の工程を追加して2層構造の撥水撥油膜を形成した。 In Example 1, the excess composite film forming solution on the surface was washed and removed with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group having a thickness of about 5 nm and a siloxane group as a main component. After forming the lower layer composite film containing the substance, the following steps were added to form a two-layer water / oil repellent film.

追加した工程を以下に示す。
すなわち、あらかじめ乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3を用い、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、0.01M/Lの濃度になるように溶解して、上層膜形成溶液を作成しておいた。
The added process is shown below.
That is, in a dry atmosphere (humidity of 35% or less is good. If the humidity is higher than this, the film-forming substance is hydrolyzed and the film becomes cloudy), and the main component is a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group. CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is used as the substance to be used, and a concentration of 0.01 M / L is added to a 5% chloroform-containing dimethyl silicone solution containing almost no water, which is a non-aqueous organic solvent. An upper layer film-forming solution was prepared by dissolving in

次に、下層複合膜の形成された自動車窓用ガラス板を準備し、自動車の外側となる面に、前記複合膜形成溶液を乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で塗布し、室温で1〜2時間放置反応させた。 Next, a glass plate for an automobile window on which a lower composite film is formed is prepared, and the composite film forming solution is applied to a surface on the outside of the automobile in a dry atmosphere (humidity is 35% or less. The formed substance was hydrolyzed and the coating became cloudy.) And allowed to react at room temperature for 1-2 hours.

このとき、ガラス板表面の下層複合膜はある程度水酸基すなわち活性水素が露出しているので、前記ガラス板表面でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質の≡SiCl基と前記水酸基とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質が前記ガラス板表面に前記シリル基を介して結合した。 At this time, since the lower layer composite film on the surface of the glass plate is exposed to some extent, that is, active hydrogen, ≡SiCl group of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group on the surface of the glass plate. The hydroxyl group was dehydrochlorinated and a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group was bonded to the glass plate surface via the silyl group.

その後、表面の余分な上層膜形成溶液をエタノールで洗浄除去すると、略7nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を下層とし、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む被膜を上層膜とした2層構造の被膜を前記ガラス板表面に形成できた。 Thereafter, the excess upper layer film forming solution on the surface is removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, having a thickness of about 7 nm. A film having a two-layer structure was formed on the surface of the glass plate, with the composite film including the lower layer as the upper layer and the film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group as the upper layer film.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でガラス板を加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略50nm厚みの2層構造の被膜を前記ガラス板表面に形成できた。
また、ふき取った場合には、略20nm厚みとなった。
The non-aqueous organic solvent was evaporated without washing (in this case, when the glass plate was heated at 60 to 100 ° C., the evaporation of the solvent could be accelerated and the evaporation time could be shortened). A film having a two-layer structure having a thickness of about 50 nm could be formed on the surface of the glass plate.
When wiped off, the thickness was approximately 20 nm.

以下、実施例1と同様に、2層構造の被膜が形成されたそれぞれのガラス板を実質的に酸素を含まない雰囲気、例えば窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガス中で400℃30分程度の加熱処理を行うと、膜中に残っていた≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、実施例1に比べ、さらに撥水性が高く且つ耐摩耗性、耐候性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜よりなる、2層構造の被膜が形成された高耐久性撥水撥油防汚性ガラス板を製造できた。なお、この場合も250℃以下で焼成した場合に比べ、5倍以上の高耐久性で且つ撥水撥油防汚性のガラス板を製造できた。 Hereinafter, in the same manner as in Example 1, each glass plate on which the two-layered film was formed was 400 ° C. in an atmosphere substantially free of oxygen, for example, nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit. When heat treatment is performed for about 30 minutes, most of the ≡SiOH groups remaining in the film undergo a dehydration reaction to form a polysiloxane bond and change to a network-like silica film. Further, a lower layer composite film and a fluorocarbon group containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, which have high water repellency and high wear resistance and weather resistance. In addition, a highly durable water- and oil-repellent and antifouling glass plate having a two-layer coating film comprising an upper layer film containing a substance mainly composed of a hydrocarbon group and a silyl group could be produced. In this case as well, a glass plate having a durability of 5 times or more and water / oil / oil repellent / antifouling property was able to be produced compared with the case of firing at 250 ° C. or lower.

なお、このときも、2層構造の被膜の光透過率は、洗浄の有無基関わらず、波長400〜700nmの光に対して98%以上であった。また、撥水撥油防汚性ガラス板の水に対する接触角は、洗浄の有無に関わらず、略110±3度以内であった。 At this time, the light transmittance of the two-layered film was 98% or more with respect to light having a wavelength of 400 to 700 nm, regardless of whether or not cleaning was performed. Further, the contact angle of the water / oil repellent / antifouling glass plate with respect to water was within about 110 ± 3 degrees regardless of the presence or absence of cleaning.

また、0.02mlの水滴の転落角は略45度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復9000回のこすりに対して95度以上を維持できた。さらにまた、あらかじめガラス板表面にアルカリバリア膜を形成したガラス板を用いれば、さらに耐水性を向上できた。 Further, the falling angle of 0.02 ml water droplets was about 45 degrees. Furthermore, in the abrasion test, the contact angle with water was able to maintain 95 degrees or more with respect to 9000 times of rubbing under conditions of a load of 500 g / 4 cm 2 . Furthermore, if a glass plate in which an alkali barrier film was previously formed on the glass plate surface was used, the water resistance could be further improved.

実施例1で作成したガラス板と同条件で作成した撥水撥油防汚性ガラス板を乗用車のフロント窓ガラス(ウインドシールドともいう、傾斜角略45度)、サイド窓ガラス(傾斜角略70度)、リア窓ガラス(傾斜角略30度)として装着し、雨天走行実験を試みた。 A water and oil repellent and antifouling glass plate prepared under the same conditions as the glass plate prepared in Example 1 was used for a front window glass of a passenger car (also called a windshield, an inclination angle of about 45 degrees), and a side window glass (an inclination angle of about 70). ) And rear window glass (tilt angle of about 30 degrees), and a rainy run experiment was attempted.

まず、停車中の雨水滴の付着状況を確認したが、直径5mm程度以上の水滴の付着は、リアガラスで多少認められたが、それ以外ではほとんど無かった。 First, the state of attachment of rain water droplets while stopping was confirmed, but the adhesion of water droplets having a diameter of about 5 mm or more was somewhat recognized in the rear glass, but there was almost no other than that.

次に、走行実験を試みたが、まずスピードが、45Km/時の場合、雨水滴の付着状況を確認した。直径5mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かった。また、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着したが、直径5mm程度以上の水滴は上後方方向にゆっくり移動し、その後飛散して視界を妨げるほどには残らなかった。さらに速度を上げて60Km/時になると、直径5mm程度以上の水滴は上後方方向に瞬時に移動してほぼ完全に除去された。 Next, a running experiment was attempted. First, when the speed was 45 km / hour, the adhesion of raindrops was confirmed. There was almost no adhesion of water droplets having a diameter of about 5 mm or more on the side window glass and the rear window glass. Also, on the windshield, a large amount of raindrops adhered continuously during running, but water droplets with a diameter of about 5 mm or more moved slowly upward and backward, and did not remain so as to scatter and obstruct visibility. . When the speed was further increased to 60 km / hour, water droplets having a diameter of about 5 mm or more moved instantaneously in the upward and backward directions and were almost completely removed.

なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられなかった。 In the running experiment, the rear view was confirmed through a side window glass plate using a door mirror, but there was almost no visual distortion or visibility deterioration due to raindrops.

また、晴天時、被膜の有無による視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して97%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられなかった。 In addition, the visibility due to the presence / absence of the coating film was compared in clear weather, but the transparency of the coating film was 97% or more with respect to light having a wavelength of 400 to 700 nm, and thus the degradation of visibility compared with the automobile without the coating film. I couldn't feel it at all.

以上の実験より、本発明の自動車が、雨天時の安全運転に格別の効果を発揮することが確認できた。
(比較例2)
From the above experiments, it was confirmed that the automobile of the present invention exerts a special effect on safe driving in rainy weather.
(Comparative Example 2)

比較例1で試作した撥水撥油防汚性ガラス板を、実施例3で使用した自動車に装着し直し、同様の走行実験を行った。 The water / oil / oil repellent antifouling glass plate produced as a prototype in Comparative Example 1 was remounted on the automobile used in Example 3, and a similar running experiment was performed.

まず、停車中の雨水滴の付着状況を確認比較したが、直径5mm程度以上の水滴の付着は、サイド窓ガラスでは、ほとんど無かったが、フロント窓ガラス、及びリア窓ガラスでは、多数残っていた。すなわち、実施例3に比べ離水性能がやや劣っていた。 First, we confirmed and compared the situation of rainwater droplets while stopped, but there was almost no adhesion of waterdrops with a diameter of about 5 mm or more on the side window glass, but many remained on the front window glass and rear window glass. . That is, the water separation performance was slightly inferior to Example 3.

次に、走行実験を試みたが、まずスピードが、45Km/時の場合の雨水滴の付着状況を確認した。直径5mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かったが、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着し、ワイパーを駆けないと運転が出来ないほどの視界不良であった。すなわち、実施例3に比べ離水性能がかなり劣っていた。 Next, a running experiment was attempted. First, the adhesion of raindrops was confirmed when the speed was 45 km / hour. Water droplets with a diameter of about 5 mm or more did not adhere to both the side window glass and the rear window glass, but with the front window glass, a lot of raindrops adhered continuously during driving, and driving was not possible without running the wiper. Visibility was poor. That is, the water separation performance was considerably inferior to Example 3.

さらに速度を上げて60Km/時になると、直径5mm程度以上の水滴は上後方方向にゆっくり移動して飛散し、ほぼワイパーを駆けなくても運転が出来るレベルであったが、実施例2に比べ離水性能はかなり劣っていた。 When the speed was further increased to 60 km / hour, water droplets with a diameter of about 5 mm or more moved slowly and scattered in the upward / backward direction, and the level was such that operation was possible without running the wiper. The performance was quite inferior.

なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられず、実施例3とほぼ同等の結果であった。 In addition, while using a door mirror during a running experiment and confirming the visibility of the rear through the side window glass plate, the distortion of visibility and deterioration of visibility due to rain water droplets were hardly felt, and almost the same as in Example 3. It was a result.

また、晴天時、被膜の有無による視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して98%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられず、実施例3とほぼ同等であった。 In addition, the visibility due to the presence / absence of a coating film was compared in clear weather, and the transparency of the coating film was 98% or more with respect to light having a wavelength of 400 to 700 nm. It was not felt at all and was almost equivalent to Example 3.

以上の実験より、従来の撥水撥油防汚性ガラス板(比較例1で作製)を装着した自動車の窓ガラスでは、第7番目の発明の撥水撥油防汚性ガラス板(実施例1で作製)を装着した自動車の窓ガラスに比べ、水に対する接触角は110度以上と高いが、そのため離水性能が劣るという欠点があることが確かめられた。また、耐摩耗性も劣ることが確認できた。 From the above experiment, in the window glass of an automobile equipped with the conventional water / oil repellent / antifouling glass plate (produced in Comparative Example 1), the water / oil repellent / antifouling glass plate of the seventh invention (Example) Compared with the window glass of the automobile equipped with the (made in 1), the contact angle to water is as high as 110 degrees or more, so that it has been confirmed that there is a disadvantage that the water separation performance is inferior. It was also confirmed that the wear resistance was inferior.

実施例2で試作した撥水撥油防汚性ガラス板を、実施例3および比較例2で使用した自動車に装着し直し、同様の走行実験を行った。 The water / oil repellent / antifouling glass plate produced in Example 2 was remounted on the automobile used in Example 3 and Comparative Example 2, and the same running experiment was conducted.

まず、停車中の雨水滴の付着状況を確認比較したが、直径5mm程度以上の水滴の付着は、サイド窓ガラスでは、ほとんど無かったが、フロント窓ガラス、及びリア窓ガラスでは、多数残っていた。すなわち、比較例2と同様であり、実施例3に比べると離水性能がやや劣っていた。 First, we confirmed and compared the situation of rainwater droplets while stopped, but there was almost no adhesion of waterdrops with a diameter of about 5 mm or more on the side window glass, but many remained on the front window glass and rear window glass. . That is, it was the same as Comparative Example 2, and the water separation performance was slightly inferior compared with Example 3.

次に、走行実験を試みたが、まずスピードが、45Km/時の場合の雨水滴の付着状況を確認した。直径5mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かったが、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着し、ワイパーを駆けないと運転が出来ないほどの視界不良であった。すなわち、比較例2と同様であり、実施例3に比べ離水性能がかなり劣っていた。 Next, a running experiment was attempted. First, the adhesion of raindrops was confirmed when the speed was 45 km / hour. Water droplets with a diameter of about 5 mm or more did not adhere to both the side window glass and the rear window glass, but with the front window glass, a lot of raindrops adhered continuously during driving, and driving was not possible without running the wiper. Visibility was poor. That is, it was the same as Comparative Example 2, and the water separation performance was considerably inferior compared with Example 3.

さらに速度を上げて60Km/時になると、直径5mm程度以上の水滴は上後方方向にゆっくり移動して飛散し、ほぼワイパーを駆けなくても運転が出来るレベルであったが、比較例2と同様であり、実施例3に比べ離水性能はかなり劣っていた。 When the speed was further increased to 60 km / hour, water droplets with a diameter of about 5 mm or more moved slowly and scattered in the upward and backward direction, and it was at a level that could be operated without running a wiper. Yes, water separation performance was considerably inferior to Example 3.

なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられず、比較例2および実施例3とほぼ同等の結果であった。 In addition, while using a door mirror during a running experiment and confirming the visibility of the rear through the side window glass plate, the distortion of visibility and deterioration of visibility due to rain water droplets were hardly felt, and Comparative Example 2 and Example 3 The result was almost the same.

また、晴天時、被膜の有無による視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して98%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられず、比較例2および実施例3とほぼ同等であった。 In addition, the visibility due to the presence / absence of a coating film was compared in clear weather, and the transparency of the coating film was 98% or more with respect to light having a wavelength of 400 to 700 nm. It was not felt at all and was almost the same as Comparative Example 2 and Example 3.

さらにまた、実施例1および2、比較例1の試験サンプルを用い、500g/4cmの条件で水滴接触角が95度間で劣化するまで摩耗耐久試験を行った。その結果(図2)、比較例1の試験サンプルでは、初期水滴接触角は113度であったが、2800回の往復摩耗で95度まで劣化した。これに対して、実施例1の試験サンプル時間では、6000回でほぼ95度になった。また、実施例2の試験サンプル時間では、9000回でも余裕を持って95度を維持できた。 Furthermore, using the test samples of Examples 1 and 2 and Comparative Example 1, a wear durability test was conducted under the condition of 500 g / 4 cm 2 until the water droplet contact angle deteriorated between 95 degrees. As a result (FIG. 2), in the test sample of Comparative Example 1, the initial water droplet contact angle was 113 degrees, but it deteriorated to 95 degrees after 2800 reciprocating wears. On the other hand, in the test sample time of Example 1, it became almost 95 degrees at 6000 times. Moreover, in the test sample time of Example 2, 95 degree | times could be maintained with a margin even 9000 times.

以上の実験より、本実施例4(第8番目の発明)の自動車の窓ガラスでは、従来の撥水撥油防汚性ガラス板(比較例1で作製)を装着した自動車の窓ガラス(比較例2)に比べ、離水性能は同等であるが、耐摩耗性は3倍以上に優れていることが確認できた。また、実施例3に比べても、離水性能は多少劣るが、耐摩耗性は1.5倍以上に優れていることが確認できた。さらにまた、あらかじめガラス板表面にアルカリバリア膜を形成したガラス板を用いれば、さらに屋外耐久性を向上できた。 From the above experiment, in the automobile window glass of Example 4 (8th invention), the window glass of an automobile equipped with a conventional water / oil repellent / antifouling glass plate (produced in Comparative Example 1) (Comparison) Compared to Example 2), the water separation performance was the same, but it was confirmed that the abrasion resistance was more than 3 times better. Moreover, even if compared with Example 3, although water separation performance was somewhat inferior, it has confirmed that abrasion resistance was excellent 1.5 times or more. Furthermore, outdoor durability could be further improved by using a glass plate in which an alkali barrier film was previously formed on the surface of the glass plate.

また、このことは、雨天時の運転で、走行中に風を直接受け、雨滴はほとんど飛散されてしまうが(すなわち、雨滴は、走行中の風で飛ばされるので、離水性はそれほど高くなくても良い。)、ワイパーブレードでこすられる(耐摩耗性が必要)ウインドシールド用ガラス板として適していることを示している。 In addition, this means that when driving in rainy weather, the wind is directly received while traveling, and most of the raindrops are scattered (that is, raindrops are blown by the running wind, so the water separation is not so high. It is also suitable for use as a windshield glass plate that is rubbed with a wiper blade (requires wear resistance).

一方、トッププレート用耐熱ガラス板に実施例1乃至4と同様の方法で撥水撥油防汚被膜を形成して電磁調理器に装着した後、汚れの焼き付き状態を観察のため、砂糖醤油を滴下して250度で焼き付けを10回試みたが、10回とも汚が焼き付くことは全くなかった。さらにまた、撥水撥油防汚性被膜が形成されたトッププレートの耐熱性を向上させる目的で、あらかじめ耐熱ガラス板の表面に微細な突起(好ましくは0.3〜1mm)を設けておくと、直接鍋底が被膜に接触することを防止でき、鍋底からの熱輻射を和らげて、トッププレートの耐熱性を向上出来るのみならず、耐摩耗性も向上できた。 On the other hand, after forming a water- and oil-repellent antifouling coating on the heat-resistant glass plate for the top plate in the same manner as in Examples 1 to 4 and mounting it on an electromagnetic cooker, sugar soy sauce is used for observing the seizure state of the dirt. After dripping, baking was attempted 10 times at 250 ° C., but no dirt was baked in at all 10 times. Furthermore, for the purpose of improving the heat resistance of the top plate on which the water / oil repellent / antifouling film is formed, a fine protrusion (preferably 0.3 to 1 mm) is provided on the surface of the heat resistant glass plate in advance. In addition, it was possible to prevent the pan bottom from coming into direct contact with the coating, to mitigate the heat radiation from the pan bottom, and to improve not only the heat resistance of the top plate but also the wear resistance.

乾燥雰囲気中(湿度50%以下が良い。)でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3と、アルコキシシリル基を主成分とする物質としてSi(OA)(Aは、アルキル基を表す。)を、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、それぞれ0.02M/Lと0.01M/Lの濃度(2:1)になるように溶解し、さらにシラノール縮合触媒としてジブチル錫ジアセチルアセトナートを0.0001M/Lの濃度になるように添加溶解して、複合膜形成溶液を作成した。 CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OA) 3 as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less) , Si (OA) 4 (A represents an alkyl group) as a substance having an alkoxysilyl group as a main component is added to a 5% chloroform-containing dimethylsilicone solution containing almost no water as a non-aqueous organic solvent. Dissolve to a concentration of 02M / L and 0.01M / L (2: 1), and add and dissolve dibutyltin diacetylacetonate as a silanol condensation catalyst to a concentration of 0.0001M / L. A composite film forming solution was prepared.

次に、量風冷強化された自動車窓用ガラス板(建物窓用ガラス板あるいは電磁調理器の耐熱トッププレート用ガラス板を用いても同様であった。)をよく洗浄し、乾燥後、乾燥雰囲気中(湿度50%以下が良い。)で自動車の外側となる面に前記複合膜形成溶液を塗布し、室温で1〜2時間放置反応させた。 Next, the glass plate for automobile windows tempered by air-cooling (same as using glass plates for building windows or glass plates for heat-resistant top plates of electromagnetic cookers) was thoroughly washed, dried and dried. The composite film-forming solution was applied to the surface on the outside of the automobile in an atmosphere (humidity of 50% or less is good) and allowed to react at room temperature for 1 to 2 hours.

このとき、ガラス基板表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記ガラス板表面で二つの物質の≡SiOA基と前記水酸基や吸着水とがシラノール縮合触媒下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質が混合した状態で前記ガラス板表面に結合した。 At this time, since the surface of the glass substrate contains a large number of hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the ≡SiOA group of the two substances and the hydroxyl groups and adsorbed water on the surface of the glass plate under a silanol condensation catalyst. A dealcoholization reaction was performed, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group were mixed and bonded to the surface of the glass plate.

このとき、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質は、前記シリル基を介して、ガラス板表面やシロキサン基を主成分とする物質と結合し、シロキサン基を主成分とする物質は、シロキサン基を介して、ガラス板表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質と結合した。 At this time, the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group is bonded to the glass plate surface or a substance mainly composed of a siloxane group via the silyl group, and the siloxane group is mainly composed. The substance used as a component was bonded to a glass plate surface or a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group via a siloxane group.

その後、表面の余分な複合膜形成溶液をエタノールで洗浄除去すると、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記ガラス板表面に形成できた。 Thereafter, when the excess composite film forming solution on the surface is washed away with ethanol, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 5 nm are obtained. A composite film containing it could be formed on the surface of the glass plate.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60〜100℃でガラス板を加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略30nm厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を、前記ガラス板表面に形成できた。また、単に布でふき取った場合には、略10nm厚みとなった。 The non-aqueous organic solvent was evaporated without washing (in this case, when the glass plate was heated at 60 to 100 ° C., the evaporation of the solvent could be accelerated and the evaporation time could be shortened). A composite film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 30 nm could be formed on the glass plate surface. Moreover, when it wiped off only with the cloth, it became about 10 nm thickness.

その後、複合膜が形成されたそれぞれのガラス板を実質的に酸素を含まない雰囲気、例えば窒素ガス、あるいは爆発限界以下の水素を含む窒素ガス中で400℃20分程度の加熱処理を行うと、≡SiOA基が吸着水と反応して生成された≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、耐摩耗性、且つ耐候性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質よりなる撥水撥油性の複合膜となり、250℃で焼成した場合に比べおよそ3倍の高耐久性で且つ撥水撥油防汚性のガラス板を製造できた。 Thereafter, when each glass plate on which the composite film is formed is subjected to a heat treatment of about 400 ° C. for about 20 minutes in an atmosphere substantially free of oxygen, for example, nitrogen gas or nitrogen gas containing hydrogen below the explosion limit, Most of the ≡SiOH groups produced by the reaction of ≡SiOA groups with adsorbed water undergo a dehydration reaction to form polysiloxane bonds and change to a mesh-like silica film, resulting in high wear resistance and high weather resistance. It becomes a water- and oil-repellent composite film composed of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, and is approximately three times as high as when fired at 250 ° C. A durable, water- and oil-repellent and antifouling glass plate could be produced.

なお、400℃30分の焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉内へ多少の酸素混入があっても被膜が酸化することなく焼成できた。 In addition, when nitrogen gas containing 3% hydrogen (explosion limit is 4%) is used as an atmospheric gas during firing at 400 ° C. for 30 minutes, the coating does not oxidize even if some oxygen is mixed into the furnace. Baked.

なお、このとき、複合膜の光透過率は、洗浄の有無基関わらず、波長400〜700nmの光に対して99%以上であった。また、撥水撥油防汚ガラス板の水に対する接触角は、洗浄の有無に関わらず、略103度であった。 At this time, the light transmittance of the composite film was 99% or more with respect to light having a wavelength of 400 to 700 nm regardless of whether or not cleaning was performed. Moreover, the contact angle with respect to the water of a water-repellent | oil-repellent | oil-repellent antifouling glass board was about 103 degree | times irrespective of the presence or absence of washing | cleaning.

また、0.02mlの水滴の転落角は略30度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復6000回のこすりに対して96度以上を維持できた。 Further, the falling angle of 0.02 ml water droplets was about 30 degrees. Furthermore, in the abrasion test, the contact angle with water was able to maintain 96 degrees or more with respect to 6000 rubbing reciprocations under the condition of a load of 500 g / 4 cm 2 .

さらにまた、一般のガラス板の代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜(酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等でも良い。)をアルカリバリア膜として約十ミクロン程度の厚みで形成したガラス板を用いると、ガラス板からのアルカリ成分溶出を相当削減でき、耐候、耐水性をさらに向上できた。 Furthermore, instead of a general glass plate, a silica film (such as a titanium oxide film or a silicon nitride film formed using polysilazane) formed using a sol-gel method or a CVD method may be used as an alkali barrier film. When a glass plate formed with a thickness of about 10 microns was used, elution of alkali components from the glass plate could be considerably reduced, and the weather resistance and water resistance could be further improved.

なお、アルカリバリア膜を形成しない場合には、フロート硝子の錫を含む面が車外向きになるように窓ガラス板を成形し、錫を含む面の表面に撥水撥油防汚膜を形成したほうが、耐久性の高い被膜が得られた。 When the alkali barrier film is not formed, the window glass plate is formed so that the surface of the float glass containing tin faces outward from the vehicle, and the water / oil repellent / antifouling film is formed on the surface of the surface containing tin. The film with higher durability was obtained.

実施例5において、アルコキシシリル基を主成分とする物質Si(OA)を除き同様の条件で撥水撥油防汚ガラス板を試作した。基本性能である水に対する接触角を測定すると、112度であった。 In Example 5, a water and oil repellent and antifouling glass plate was produced under the same conditions except for the substance Si (OA) 4 having an alkoxysilyl group as a main component. When the contact angle with water, which is the basic performance, was measured, it was 112 degrees.

また、水滴の転落角は、0.02mlの水滴で、当初略50度であった。さらに、摩耗試験を行った。加重500g/4cmの条件下での耐摩耗性評価結果を、実施例5、7と共に図5に示す。 The drop angle of the water droplet was 0.02 ml, and was about 50 degrees initially. In addition, a wear test was performed. FIG. 5 shows the results of evaluation of abrasion resistance under the condition of a weight of 500 g / 4 cm 2 together with Examples 5 and 7.

実用性を考慮した上で離水性能が最も好都合な接触角95度(図3参照)で見ると、往復2800回までしか耐えられなかった。また、図から明らかなように、接触角が95度となる点で比較すると、実施例5のガラスに比べ1/2以下の耐摩耗性しか得られなかった。 In view of practicality, the contact angle of 95 degrees (see FIG. 3) with the most favorable water separation performance was able to withstand only up to 2800 round trips. Further, as is apparent from the figure, when compared at the point where the contact angle becomes 95 degrees, only wear resistance of 1/2 or less was obtained as compared with the glass of Example 5.

以上の実験より、アルコキシシリル基を主成分とする物質Si(OA)を除き製造した撥水撥油防汚ガラス板は、実用性が全くないわけではないが、アルコキシシリル基を主成分とする物質Si(OA)を添加して製造した撥水撥油防汚ガラス板に比べ、水に対する接触角は105度以上と高い故に離水性能が劣るという欠点があることが確かめられた。また、耐摩耗性も劣ることが確認できた。 From the above experiments, the water / oil / oil repellent antifouling glass plate produced by removing the substance Si (OA) 4 mainly composed of alkoxysilyl groups is not not practical at all. It was confirmed that there is a disadvantage that the water separation performance is inferior because the contact angle to water is as high as 105 degrees or more compared to the water- and oil-repellent antifouling glass plate produced by adding the substance Si (OA) 4 . It was also confirmed that the wear resistance was inferior.

実施例5において、表面の余分な複合膜形成溶液をエタノールで洗浄除去して、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜を形成した後、引き続いて、以下の工程を追加して2層構造の撥水撥油膜を形成した。 In Example 5, the excess composite film forming solution on the surface was removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group having a thickness of about 5 nm and a siloxane group as a main component. After forming the lower layer composite film containing the substance, the following steps were added to form a two-layer water / oil repellent film.

追加した工程を以下に示す。
すなわち、あらかじめ乾燥雰囲気中(湿度50%以下が良い。)で、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3を用い、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、0.01M/Lの濃度になるように溶解し、さらにシラノール縮合触媒としてジブチル錫アセテートを0.0001M/Lの濃度になるように添加溶解して、上層膜形成溶液を作成しておいた。
The added process is shown below.
That is, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less) in advance. OA) 3 and dissolved in a 5% chloroform-containing dimethyl silicone solution containing almost no water, which is a non-aqueous organic solvent, so as to have a concentration of 0.01 M / L, and dibutyltin acetate is further added as a silanol condensation catalyst. An upper layer film-forming solution was prepared by adding and dissolving to a concentration of 0.0001 M / L.

次に、下層複合膜の形成された自動車窓用ガラス板を準備し、さらに前記下層複表面に、前記複合膜形成溶液を乾燥雰囲気中(湿度50%以下が良い。)で塗布し、室温で1〜2時間放置反応させた。 Next, a glass plate for an automobile window on which a lower layer composite film is formed is prepared, and further, the composite film forming solution is applied to the lower surface of the lower layer in a dry atmosphere (humidity is preferably 50% or less) at room temperature. The reaction was allowed to stand for 1-2 hours.

このとき、ガラス板表面の下層複合膜の表面にはある程度水酸基すなわち活性水素が露出しているので、前記ガラス板表面でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質の≡SiOA基と前記水酸基とがシラノール触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質が前記ガラス板表面に前記シリル基を介して結合した。 At this time, since a hydroxyl group, that is, active hydrogen is exposed to some extent on the surface of the lower composite film on the surface of the glass plate, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group is exposed on the glass plate surface. ≡SiOA group and hydroxyl group undergo dealcoholization reaction in the presence of silanol catalyst, and a substance mainly composed of fluorocarbon group, hydrocarbon group and silyl group is bonded to the glass plate surface via the silyl group. did.

その後、表面の余分な上層膜形成溶液をエタノールで洗浄除去すると、略7nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を下層とし、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む被膜を上層膜とした2層構造の被膜を前記ガラス板表面に形成できた。 Thereafter, the excess upper layer film forming solution on the surface is removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, having a thickness of about 7 nm. A film having a two-layer structure was formed on the surface of the glass plate, with the composite film including the lower layer as the upper layer and the film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group as the upper layer film.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でガラス板を加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略50nm厚みの2層構造の被膜を前記ガラス板表面に形成できた。
また、布でふき取った場合には、略20nm厚みとなった。
The non-aqueous organic solvent was evaporated without washing (in this case, when the glass plate was heated at 60 to 100 ° C., the evaporation of the solvent could be accelerated and the evaporation time could be shortened). A film having a two-layer structure having a thickness of about 50 nm could be formed on the surface of the glass plate.
Moreover, when it wiped off with the cloth, it became about 20 nm thickness.

以下、実施例5と同様に、2層構造の被膜が形成されたそれぞれのガラス板を実質的に酸素を含まない雰囲気である窒素ガスまたは爆発限界以下の水素を含む窒素ガス中で400℃20分程度の加熱処理を行うと、膜中に残っていた≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、実施例5に比べ、耐摩耗性が1.5倍と高く、且つ撥水性と耐候性に優れたフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜よりなる、2層構造の被膜が形成された高耐久性撥水撥油防汚ガラス板を製造できた。なお、この場合も250℃で焼成した場合に比べ、5倍以上の高耐久性で且つ撥水撥油防汚性のガラス板を製造できた。 Hereinafter, in the same manner as in Example 5, each glass plate on which a two-layered film is formed is 400 ° C. 20 in nitrogen gas that is an atmosphere that does not substantially contain oxygen or nitrogen gas that contains hydrogen below the explosion limit. When heat treatment for about 5 minutes is performed, most of the ≡SiOH groups remaining in the film undergo a dehydration reaction to form a polysiloxane bond and change to a network-like silica film. Lower layer composite film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, which has a high wear resistance of 1.5 times and excellent water repellency and weather resistance In addition, a highly durable water- and oil-repellent and antifouling glass plate having a two-layer coating film comprising an upper layer film containing a substance mainly composed of fluorocarbon group, hydrocarbon group and silyl group could be produced. In this case as well, a glass plate having a durability of 5 times or more and water / oil / oil repellent / antifouling property was able to be produced compared with the case of baking at 250 ° C.

なお、このときも、2層構造の被膜の光透過率は、洗浄の有無基関わらず、波長400〜700nmの光に対して98%以上であった。また、撥水撥油防汚ガラス板の水に対する接触角は、洗浄の有無に関わらず、略105±3度以内であった。 At this time, the light transmittance of the two-layered film was 98% or more with respect to light having a wavelength of 400 to 700 nm, regardless of whether or not cleaning was performed. Further, the contact angle of the water / oil repellent / antifouling glass plate with respect to water was within about 105 ± 3 degrees regardless of whether or not cleaning was performed.

また、0.02mlの水滴の転落角は略45度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復9000回のこすりに対して95度以上を維持できた。さらにまた、あらかじめガラス板表面にアルカリバリア膜を形成したガラス板を用いれば、さらに耐水性を向上できた。 Further, the falling angle of 0.02 ml water droplets was about 45 degrees. Furthermore, in the abrasion test, the contact angle with water was able to maintain 95 degrees or more with respect to 9000 times of rubbing under conditions of a load of 500 g / 4 cm 2 . Furthermore, if a glass plate in which an alkali barrier film was previously formed on the glass plate surface was used, the water resistance could be further improved.

なお、製造コストは高くなるが、下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行えば、さらに耐空性に優れたガラス板が得られたことは言うまでもない。 Although the manufacturing cost is increased, it goes without saying that a glass plate having further excellent air resistance can be obtained by performing the upper layer film forming step after repeating the step of forming the lower layer composite film a plurality of times.

さらに、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を行わなくとも、撥水撥油特性にかなり優れたいガラス板を製造出来たことは言うまでもない。 Furthermore, it goes without saying that it was possible to produce a glass plate that is quite excellent in water and oil repellency without repeating the step of forming the lower layer composite film a plurality of times and without performing the step of forming the upper layer film.

なお、400℃30分の焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉内へ多少酸素混入があっても被膜が酸化することなく焼成できた。 When nitrogen gas containing 3% hydrogen (explosion limit is 4%) is used as the atmospheric gas during firing at 400 ° C. for 30 minutes, firing is performed without oxidizing the coating even if there is some oxygen in the furnace. did it.

さらに、実施例5及び7において、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物が利用できた。
例えば、実施例5及び7において、上述のシラノール縮合触媒の代わりに、ケチミン化合物(ジャパンエポキシレジン社のH3、およびチッソ社のサイラエースS340を用いてみたが、性能はほぼ同じであった。)を同じ濃度で用いた場合、反応時間を30分まで短縮できた。
Furthermore, in Examples 5 and 7, a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound could be used instead of the above-mentioned silanol condensation catalyst.
For example, in Examples 5 and 7, a ketimine compound (H3 from Japan Epoxy Resin and Silaace S340 from Chisso was used in place of the silanol condensation catalyst described above, but the performance was almost the same). When used at the same concentration, the reaction time could be shortened to 30 minutes.

さらに、実施例5及び7において、上述のシラノール縮合触媒とケチミン化合物、又はアルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を1:9〜9:1で混合して用いると、さらにさらに反応時間を20〜3分まで短縮できた。
例えば、実施例5及び7において、上述のシラノール縮合触媒濃度を半分にして、上述のケチミン化合物(例えば、S340)を等モル混合した場合(1:1)、反応時間を10分まで短縮できた。
Furthermore, in Examples 5 and 7, when the above-mentioned silanol condensation catalyst and ketimine compound, or aldimine compound, enamine compound, oxazolidine compound, and aminoalkylalkoxysilane compound are used in a mixture of 1: 9 to 9: 1, further, The reaction time could be shortened to 20-3 minutes.
For example, in Examples 5 and 7, when the above-mentioned silanol condensation catalyst concentration was halved and the above-mentioned ketimine compound (eg, S340) was equimolarly mixed (1: 1), the reaction time could be shortened to 10 minutes. .

なお、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 The ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3,10- Tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadecadiene, 2, , 4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza-4,19 -There is trieicosadiene.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

実施例5で作成したガラス板と同条件で作成した撥水撥油防汚ガラス板を乗用車のフロント窓ガラス(ウインドシールドともいう、傾斜角略45度)、サイド窓ガラス(傾斜角略70度)、リア窓ガラス(傾斜角略30度)として装着し、雨天走行実験を試みた。 The water and oil repellent and antifouling glass plate prepared under the same conditions as those of the glass plate prepared in Example 5 were used for the front window glass of a passenger car (also referred to as a windshield, an inclination angle of about 45 degrees), and the side window glass (an inclination angle of about 70 degrees). ), Was installed as a rear window glass (tilt angle of about 30 degrees), and a rainy run experiment was attempted.

まず、停車中の雨水滴の付着状況を確認したが、直径5mm程度以上の水滴の付着は、リアガラスで多少認められたが、それ以外ではほとんど無かった。 First, the state of attachment of rain water droplets while stopping was confirmed, but the adhesion of water droplets having a diameter of about 5 mm or more was somewhat recognized in the rear glass, but there was almost no other than that.

次に、走行実験を試みたが、まずスピードが、45Km/時の場合、雨水滴の付着状況を確認した。直径5mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かった。また、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着したが、直径5mm程度以上の水滴は上後方方向にゆっくり移動し、その後飛散して視界を妨げるほどには残らなかった。さらに速度を上げて60Km/時になると、直径5mm程度以上の水滴は上後方方向に瞬時に移動してほぼ完全に除去された。 Next, a running experiment was attempted. First, when the speed was 45 km / hour, the adhesion of raindrops was confirmed. There was almost no adhesion of water droplets having a diameter of about 5 mm or more on the side window glass and the rear window glass. Also, on the windshield, a large amount of raindrops adhered continuously during running, but water droplets with a diameter of about 5 mm or more moved slowly upward and backward, and did not remain so as to scatter and obstruct visibility. . When the speed was further increased to 60 km / hour, water droplets having a diameter of about 5 mm or more moved instantaneously in the upward and backward directions and were almost completely removed.

なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられなかった。 In the running experiment, the rear view was confirmed through a side window glass plate using a door mirror, but there was almost no visual distortion or visibility deterioration due to raindrops.

また、晴天時、被膜の有無による視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して98%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられなかった。 In addition, the visibility due to the presence / absence of a coating film was compared in clear weather, and the transparency of the coating film was 98% or more with respect to light having a wavelength of 400 to 700 nm. I couldn't feel it at all.

以上の実験より、本発明の自動車が、雨天時の安全運転に格別の効果を発揮することが確認できた。 From the above experiments, it was confirmed that the automobile of the present invention exerts a special effect on safe driving in rainy weather.

なお、前記実施例1で作製した被膜を複数層形成したガラス板を装着して実験した場合にも、耐摩耗性が向上した他は、ほぼ同じ評価結果が得られた In addition, when the experiment was carried out with a glass plate on which a plurality of coating layers produced in Example 1 were formed, the same evaluation results were obtained except that the wear resistance was improved.

実施例6で試作した撥水撥油防汚ガラス板を、実施例10で使用した自動車に装着し直し、同様の走行実験を行った。 The water / oil repellent antifouling glass plate produced in Example 6 was remounted on the automobile used in Example 10, and the same running experiment was conducted.

まず、停車中の雨水滴の付着状況を確認比較したが、直径5mm程度以上の水滴の付着は、サイド窓ガラスでは、ほとんど無かったが、フロント窓ガラス、及びリア窓ガラスでは、多数残っていた。すなわち、実施例10に比べ離水性能がやや劣っていた。 First, we confirmed and compared the situation of rainwater droplets while stopped, but there was almost no adhesion of waterdrops with a diameter of about 5 mm or more on the side window glass, but many remained on the front window glass and rear window glass. . That is, the water separation performance was slightly inferior to Example 10.

次に、走行実験を試みたが、まずスピードが、45Km/時の場合の雨水滴の付着状況を確認した。直径5mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かったが、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着し、ワイパーを駆けないと運転が出来ないほどの視界不良であった。すなわち、実施例4に比べ離水性能がかなり劣っていた。 Next, a running experiment was attempted. First, the adhesion of raindrops was confirmed when the speed was 45 km / hour. Water droplets with a diameter of about 5 mm or more did not adhere to both the side window glass and the rear window glass, but with the front window glass, a lot of raindrops adhered continuously during driving, and driving was not possible without running the wiper. Visibility was poor. That is, the water separation performance was considerably inferior compared with Example 4.

さらに速度を上げて60Km/時になると、直径5mm程度以上の水滴は上後方方向にゆっくり移動して飛散し、ほぼワイパーを駆けなくても運転が出来るレベルであったが、実施例4に比べ離水性能はかなり劣っていた。 When the speed was further increased to 60 km / hour, water droplets with a diameter of about 5 mm or more moved slowly and scattered in the up-and-back direction, and it was possible to drive without running the wiper. The performance was quite inferior.

なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられず、実施例10とほぼ同等の結果であった。 In addition, while using the door mirror during the running experiment, the rear visibility was confirmed through the side window glass plate, but there was almost no distortion of the visibility due to raindrops or degradation of visibility, which was almost the same as in Example 10. It was a result.

また、晴天時、被膜の有無による視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して98%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられず、実施例10とほぼ同等であった。 In addition, the visibility due to the presence / absence of a coating film was compared in clear weather, and the transparency of the coating film was 98% or more with respect to light having a wavelength of 400 to 700 nm. It was not felt at all and was almost equivalent to Example 10.

以上の実験より、実施例6で作製した撥水撥油防汚ガラス板を装着した自動車の窓ガラスでは、実施例5で作製した撥水撥油防汚ガラス板を装着した自動車の窓ガラスに比べ、水に対する接触角は112度と高いが故に離水性能が劣るという欠点があることが確かめられた。また、耐摩耗性も劣ることが確認できた。 From the above experiment, in the window glass of an automobile equipped with the water / oil repellent / antifouling glass plate produced in Example 6, the window glass of the automobile equipped with the water / oil repellent / antifouling glass plate produced in Example 5 was used. In comparison, it was confirmed that the water contact angle is as high as 112 degrees, so that the water separation performance is inferior. It was also confirmed that the wear resistance was inferior.

したがって、実施例6で作製した撥水撥油防汚ガラス板は、実用にならないわけではないが、総合性能は実施例5で作製した撥水撥油防汚ガラス板に比べ多少劣ることが判明した。 Therefore, the water / oil repellent antifouling glass plate produced in Example 6 is not practical, but the overall performance is found to be somewhat inferior to that of the water / oil repellent antifouling glass plate produced in Example 5. did.

実施例7で試作した撥水撥油防汚ガラス板を、実施例10で使用した自動車に装着し直し、同様の走行実験を行った。 The water / oil repellent / antifouling glass plate produced in Example 7 was remounted on the automobile used in Example 10, and the same running experiment was conducted.

まず、停車中の雨水滴の付着状況を確認したが、直径5mm程度以上の水滴の付着は、リアガラスで多少認められたが、それ以外ではほとんど無かった。 First, the state of attachment of rain water droplets while stopping was confirmed, but the adhesion of water droplets having a diameter of about 5 mm or more was somewhat recognized in the rear glass, but there was almost no other than that.

次に、走行実験を試みたが、まずスピードが、45Km/時の場合、雨水滴の付着状況を確認した。直径5mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かった。また、フロント窓ガラスでは、走行時、雨水滴が連続して少量付着したが、直径5mm程度以上の水滴は上後方方向にかなり速く移動し、その後飛散して視界を妨げるほどには残らなかった。さらに速度を上げて60Km/時になると、直径5mm程度以上の水滴は上後方方向に瞬時に移動してほぼ完全に除去された。 Next, a running experiment was attempted. First, when the speed was 45 km / hour, the adhesion of raindrops was confirmed. There was almost no adhesion of water droplets having a diameter of about 5 mm or more on the side window glass and the rear window glass. Also, on the windshield, a small amount of raindrops adhered continuously during traveling, but water droplets with a diameter of about 5 mm or more moved fairly fast in the up-and-rear direction, and did not remain so as to scatter and obstruct the field of view. . When the speed was further increased to 60 km / hour, water droplets having a diameter of about 5 mm or more moved instantaneously in the upward and backward directions and were almost completely removed.

なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられなかった。 In the running experiment, the rear view was confirmed through a side window glass plate using a door mirror, but there was almost no visual distortion or visibility deterioration due to raindrops.

また、晴天時、被膜の有無による視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して97%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられなかった。 In addition, the visibility due to the presence / absence of the coating film was compared in clear weather, but the transparency of the coating film was 97% or more with respect to light having a wavelength of 400 to 700 nm, and thus the degradation of visibility compared with the automobile without the coating film. I couldn't feel it at all.

さらにまた、実施例5および6、7の試験サンプルを用い、500g/4cmの条件で水滴接触角が95度まで劣化するまで摩耗耐久試験を行った。その結果(図5)、実施例6の試験サンプルでは、初期水滴接触角は112度であったが、2900回の往復摩耗で95度まで劣化した。これに対して、実施例5の試験サンプル時間では、6000回でほぼ95度になった。また、実施例7の試験サンプル時間では、9000回でも余裕を持って95度を維持できた。 Furthermore, the wear durability test was conducted using the test samples of Examples 5, 6, and 7 until the water droplet contact angle deteriorated to 95 degrees under the condition of 500 g / 4 cm 2 . As a result (FIG. 5), in the test sample of Example 6, the initial water droplet contact angle was 112 degrees, but it deteriorated to 95 degrees after 2900 reciprocating wears. On the other hand, in the test sample time of Example 5, it became almost 95 degrees at 6000 times. Moreover, in the test sample time of Example 7, 95 degree | times could be maintained with a margin even 9000 times.

以上の実験より、本実施例12(第12番目の発明)の自動車の窓ガラス(実施例7で製作)では、実施例10(第11番目の発明)の自動車の窓ガラス(実施例5で製作)に比べ、離水性能はほぼ同等であるが、耐摩耗性は1.5倍以上に優れていることが確認できた。さらにまた、下地基板としてあらかじめガラス板表面にアルカリバリア膜を形成したガラス板を用いれば、さらに屋外耐久性を向上できた。また、下地基板としてフロートガラスを用いスズ面に被膜を形成した場合には、耐摩耗性を向上できた。 From the above experiment, in the automobile window glass of the present Example 12 (twelfth invention) (manufactured in Example 7), the window glass of the automobile of Example 10 (11th invention) (in Example 5). Compared to (manufacturing), the water separation performance was almost the same, but it was confirmed that the wear resistance was more than 1.5 times. Furthermore, if a glass plate having an alkali barrier film previously formed on the surface of the glass plate is used as the base substrate, the outdoor durability can be further improved. In addition, when float glass was used as the base substrate and a film was formed on the tin surface, the wear resistance could be improved.

このことは、雨天時の運転で、走行中に風を直接受け、雨滴はほとんど飛散されてしまうが(すなわち、雨滴は、走行中の風で飛ばされるので、離水性はそれほど高くなくても良い。)、ワイパーブレードでこすられるウインドシールド用(耐摩耗性が必要)ガラス板として適していることを示している。 This means that in driving in rainy weather, the wind is directly received while traveling, and the raindrops are almost scattered (that is, the raindrops are blown by the running wind, so the water separation may not be so high. )), It shows that it is suitable as a glass plate for windshield (requires wear resistance) to be rubbed with a wiper blade.

なお、本発明の方法を電磁調理器のトッププレート用ガラス板の製造に用いた場合には、下地ガラス基板を耐熱ガラスに代え、最表面の複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の分子組成比を、6:1〜10:1にしておくと、実施例5または7と同様の方法を用いて耐摩耗性で且つ防汚性に優れた実用性の高い水滴接触角で100〜105度程度の防汚膜を備えたトッププレートを製造できた。さらにまた、撥水撥油防汚性被膜が形成されたトッププレートの耐熱性を向上させる目的で、あらかじめ耐熱ガラス板の表面に微細な突起(好ましくは0.3〜1mm)を設けておくと、直接鍋底が被膜に接触することを防止でき、鍋底からの熱輻射を和らげて、トッププレートの耐摩耗性を向上出来るのみならず、耐熱性も向上できた。 When the method of the present invention is used for the production of a glass plate for a top plate of an electromagnetic cooker, the base glass substrate is replaced with heat-resistant glass, and a fluorocarbon group and a hydrocarbon group contained in the outermost composite film. When the molecular composition ratio of the substance containing silyl group as the main component and the substance containing siloxane group as the main component is set to 6: 1 to 10: 1, the wear resistance is obtained using the same method as in Example 5 or 7. A top plate having an antifouling film of about 100 to 105 degrees at a water droplet contact angle with high practicality and excellent antifouling property could be produced. Furthermore, for the purpose of improving the heat resistance of the top plate on which the water / oil repellent / antifouling film is formed, a fine protrusion (preferably 0.3 to 1 mm) is provided on the surface of the heat resistant glass plate in advance. In addition, it was possible to prevent the pan bottom from coming into direct contact with the coating and to reduce the heat radiation from the pan bottom, thereby improving not only the wear resistance of the top plate but also the heat resistance.

1、1’ フッ化炭素基と炭化水素基とシリル基を主成分とする物質
2 シロキサン基を主成分とする物質2
3 ガラス板
4、4’ 水酸基
5 水酸基4を多数含む複合膜
6 網目状のシリカ膜
6’ 網目状のシリカ膜
7 撥水撥油防汚性の複合膜
7’下層複合膜
8 上層膜
9 2層構造撥水撥油防汚性膜
11、11’ フッ化炭素基と炭化水素基とシリル基を主成分とする物質
12 シロキサン基を主成分とする物質2
13 ガラス板
14、14’ 水酸基
15 水酸基4を多数含む複合膜
16 網目状のシリカ膜
16’ 網目状のシリカ膜
17 撥水撥油防汚性の複合膜
17’下層複合膜
18 上層膜
19 2層構造撥水撥油防汚性膜
1, 1 'Substance 2 mainly composed of fluorocarbon group, hydrocarbon group and silyl group 2 Substance 2 mainly composed of siloxane group
3 Glass plate 4, 4 'hydroxyl group 5 composite film 6 containing many hydroxyl groups 4 network-like silica film 6' network-like silica film 7 water-repellent / oil-repellent / anti-fouling composite film 7 'lower layer composite film 8 upper layer film 9 2 Layer structure Water / oil repellent / antifouling film 11, 11 ′ Substance 12 mainly composed of fluorocarbon group, hydrocarbon group and silyl group 12 Substance 2 mainly composed of siloxane group
13 Glass plate 14, 14 ′ Hydroxyl group 15 Composite film 16 containing many hydroxyl groups 4 Reticulated silica film 16 ′ Reticulated silica film 17 Water repellent / oil repellent antifouling composite film 17 ′ Lower layer composite film 18 Upper layer film 19 2 Layer structure Water / oil repellent / antifouling film

Claims (9)

少なくともフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質と非水系有機溶媒を含むことを特徴とする撥水撥油性複合膜形成溶液。 A water / oil repellent composite film-forming solution comprising at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, a substance mainly composed of an alkoxysilyl group and a non-aqueous organic solvent. フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、アルコキシシシリル基を主成分とする物質としてSi(OCH、Si(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用いることを特徴とする請求項1に記載の撥水撥油性複合膜形成溶液。 CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) as a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, and a substance mainly composed of an alkoxysilyl group Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), The water / oil repellent composite film forming solution according to claim 1. 少なくともフッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とクロロシリル基を主成分とする物質と非水系有機溶媒を含むことを特徴とする撥水撥油性複合膜形成溶液。 A water / oil repellent composite film forming solution comprising at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, a substance mainly composed of a chlorosilyl group, and a non-aqueous organic solvent. フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、クロロシリル基を主成分とする物質としてSiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いることを特徴とする請求項3に記載の撥水撥油性複合膜形成溶液。 CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n (CH 2 ) 2 as substances mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and SiCl 4 as a substance having a chlorosilyl group as a main component, 4. The water / oil repellent composite film forming solution according to claim 3 , wherein SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) is used. 少なくともフッ化炭素基と炭化水素基とアルコキシシシリル基を主成分とする物質とアルコキシシシリル基を主成分とする物質とシラノール縮合触媒または酸触媒を含むことを特徴とする撥水撥油性複合膜形成溶液。 A water / oil repellent composite comprising at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, a substance mainly composed of an alkoxysilyl group, and a silanol condensation catalyst or an acid catalyst. Film forming solution. 少なくとも酸触媒が有機酸であることを特徴とする請求項5記載の撥水撥油性複合膜形成溶液。 6. The water / oil repellent composite film forming solution according to claim 5, wherein at least the acid catalyst is an organic acid. フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシシリル基を主成分とする物質としてSi(OCH、Si(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用いることを特徴とする請求項5または6に記載の撥水撥油性複合膜形成溶液。 CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n (CH 2 ) 2 as substances mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group) (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer) is used. Item 7. The water / oil repellent composite film forming solution according to Item 5 or 6. 請求項1乃至7のいずれか一項に記載の撥水撥油性複合膜形成溶液に基材を接触反応させて表面に撥水撥油性複合膜を形成することを特徴とする撥水撥油防汚性複合膜の製造方法。 A water / oil / oil repellent composite film is formed on the surface by contacting a substrate with the water / oil / oil repellent composite film forming solution according to claim 1. A method for producing a dirty composite membrane. 請求項8記載の方法を用いて作成されたことを特徴とする撥水撥油防汚性複合膜。
A water / oil repellent antifouling composite film produced using the method according to claim 8.
JP2011272988A 2003-09-17 2011-12-14 Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method Pending JP2012097267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272988A JP2012097267A (en) 2003-09-17 2011-12-14 Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003323945 2003-09-17
JP2003323945 2003-09-17
JP2003424058 2003-12-22
JP2003424058 2003-12-22
JP2011272988A JP2012097267A (en) 2003-09-17 2011-12-14 Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004265246A Division JP5343271B2 (en) 2003-09-17 2004-09-13 Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013264874A Division JP6031653B2 (en) 2003-09-17 2013-12-24 Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method

Publications (1)

Publication Number Publication Date
JP2012097267A true JP2012097267A (en) 2012-05-24

Family

ID=46389531

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011272988A Pending JP2012097267A (en) 2003-09-17 2011-12-14 Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method
JP2013264874A Expired - Fee Related JP6031653B2 (en) 2003-09-17 2013-12-24 Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013264874A Expired - Fee Related JP6031653B2 (en) 2003-09-17 2013-12-24 Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method

Country Status (1)

Country Link
JP (2) JP2012097267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062213B2 (en) 2013-03-12 2015-06-23 Dow Corning Corporation Non-aqueous emulsions and methods of preparing surface-treated articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333545A (en) * 1995-06-05 1996-12-17 Ppg Ind Inc Water-repellent surface treatment integrated with priming

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040254A (en) * 1983-08-16 1985-03-02 旭硝子株式会社 Water-repellent oil-repellent film
JP2500824B2 (en) * 1990-10-25 1996-05-29 松下電器産業株式会社 Fluorocarbon coating film and method for producing the same
JP2874391B2 (en) * 1991-06-05 1999-03-24 日産自動車株式会社 Manufacturing method of water-repellent glass
JPH05140509A (en) * 1991-09-26 1993-06-08 Nippon Soda Co Ltd Surface treating agent for coated surface
JP3454110B2 (en) * 1996-11-18 2003-10-06 日本板硝子株式会社 Water repellent glass
JP3334611B2 (en) * 1997-06-24 2002-10-15 日本板硝子株式会社 Method for producing water-repellent article, water-repellent article and solution for forming water-repellent coating
DE19730245B4 (en) * 1997-07-15 2007-08-30 W.L. Gore & Associates Gmbh Coating material, coated material and method of making the same
JP4171113B2 (en) * 1998-09-18 2008-10-22 横浜ゴム株式会社 One-part stone backside treatment material
JP2000345055A (en) * 1999-06-04 2000-12-12 Yokohama Rubber Co Ltd:The Curable resin composition
JP2001205747A (en) * 1999-11-16 2001-07-31 Asahi Glass Co Ltd Base material having surface treatment layer and method of manufacturing the same
JP4706097B2 (en) * 1999-11-16 2011-06-22 旭硝子株式会社 Substrate having surface treatment layer and method for producing the same
JP3457620B2 (en) * 2000-03-31 2003-10-20 日本写真印刷株式会社 Anti-reflection member and method of manufacturing the same
JP4126521B2 (en) * 2000-08-04 2008-07-30 信越化学工業株式会社 Method for producing fluoroorganopolysiloxane resin for film forming composition
JP5124892B2 (en) * 2000-08-28 2013-01-23 凸版印刷株式会社 Low refractive index composition for coating and optical multilayer film comprising the composition
DE60221819T2 (en) * 2001-04-02 2008-04-30 Matsushita Electric Industrial Co., Ltd., Kadoma WATER-REPELLED FILM AND METHOD FOR THE PRODUCTION THEREOF, AND EQUALIZED INK HEAD HEAD AND CORRESPONDING INK JET PRINTING METHOD
JP2003165747A (en) * 2001-11-28 2003-06-10 Center Sanniimaru:Kk Glass water repellent agent and water repellent method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333545A (en) * 1995-06-05 1996-12-17 Ppg Ind Inc Water-repellent surface treatment integrated with priming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062213B2 (en) 2013-03-12 2015-06-23 Dow Corning Corporation Non-aqueous emulsions and methods of preparing surface-treated articles

Also Published As

Publication number Publication date
JP6031653B2 (en) 2016-11-24
JP2014114455A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
US8092913B2 (en) Hydrophobic coating comprising a priming including a bis-silane and a hydrophobic layer including a fluorinated alkysilane
JP3588364B2 (en) Surface treated substrate and surface treatment method for substrate
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP2007126332A (en) Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate
JP4654443B2 (en) Manufacturing method of solar energy utilization device
JP5092130B2 (en) Water and oil repellent antifouling glass plate, method for producing the same and automobile using the same
JP2008015167A (en) Water-shedding, oil-shedding and antifouling light reflecting plate, method for manufacturing the same, and tunnel, road sign, display plate, vehicle and building using the same
JP5526393B2 (en) Water repellent / oil repellent / antifouling composite film forming solution, method for producing water / oil repellent / antifouling composite film using the same, and water / oil repellent / antifouling composite film using the same
JP5343271B2 (en) Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same
JPH10194784A (en) Water-repellent glass
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
JP5347123B2 (en) Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
JP6031653B2 (en) Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method
JP2006206765A (en) Water-repellent composition, substrate having water-repellent layer, method for producing the same, and article for transportation equipment
JPH11322368A (en) Solution for forming water repellent film
JP2004122106A (en) High droplet slidable coat and method for forming the same
WO2009104236A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same and automobile utilizing the glass plate
JP3961349B2 (en) High durability sliding coating and method for producing the same
JP2008246959A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate
JP5589215B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JPH08319137A (en) Water-repellent glass article and its production
JP2001348430A (en) Stainproof coating film and method for producing the same
WO2009107191A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate
JP4759711B2 (en) Antifouling ceramic products and their manufacturing methods

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401