JPH08319137A - Water-repellent glass article and its production - Google Patents

Water-repellent glass article and its production

Info

Publication number
JPH08319137A
JPH08319137A JP7124098A JP12409895A JPH08319137A JP H08319137 A JPH08319137 A JP H08319137A JP 7124098 A JP7124098 A JP 7124098A JP 12409895 A JP12409895 A JP 12409895A JP H08319137 A JPH08319137 A JP H08319137A
Authority
JP
Japan
Prior art keywords
water
repellent
film
fluororesin
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7124098A
Other languages
Japanese (ja)
Inventor
Kazuishi Mitani
一石 三谷
Takashi Nozu
敬 野津
Hiroaki Yamamoto
博章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP7124098A priority Critical patent/JPH08319137A/en
Publication of JPH08319137A publication Critical patent/JPH08319137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PURPOSE: To obtain the subject article excellent in water-repelling performance, wear resistance, oil repellency and stainproofness by providing the surface of a glass substrate with a specific water-repelling film. CONSTITUTION: This article is obtained by providing the surface of a glass substrate with a water-repelling film pref. 4-1,000μm thick composed of a fluoroalkylsilane condensate (e.g. a condensed hydrolyzate obtained by mixing heptadecafluorodecyl trimethoxysilane with isopropyl alcohol and hydrochloric acid) (pref. plus 0.01-30wt.%, based on the condensate, of a fluororesin such as tetrafluoroethylene polymer). It is preferable that a film predominant in a silicon oxide be held between the glass substrate and the water-repelling film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撥水性ガラス物品、特
に自動車、車両、航空機、船舶等の風防ガラス、建築用
ウィンドー、水槽、船底窓及び防音壁等の道路用パネ
ル、ガラス食器、ガラス装飾品等に用いる低摩擦−高耐
久性撥水ガラス物品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-repellent glass article, particularly a windshield for automobiles, vehicles, aircraft, ships, etc., a building window, an aquarium, a road panel such as a ship bottom window and a soundproof wall, glass tableware, glass. The present invention relates to a low-friction and high-durability water-repellent glass article used for ornaments and the like.

【0002】[0002]

【従来の技術】ガラス物品表面に撥水性を付与すること
により、汚染物質を含む水滴がガラス表面に付着、残存
しにくくなるために、ガラスの汚染防止や焼け防止効果
が得られる。またこの撥水性ガラスを自動車のフロント
ガラスやサイドガラス等に使用することにより、雨天走
行時に表面に付着した雨水が風圧により吹き飛ばされる
為に、ドライバーの視野が確保され安全性が向上する。
2. Description of the Related Art By imparting water repellency to the surface of a glass article, water droplets containing contaminants are less likely to adhere to and remain on the glass surface, so that the glass can be prevented from being contaminated or burnt. Further, by using this water-repellent glass for a windshield, a side glass or the like of an automobile, rainwater adhering to the surface is blown away by wind pressure when traveling in the rain, so that the driver's view is secured and safety is improved.

【0003】従来、この様な撥水膜の作製には、ガラス
基材表面のシラノール基と反応性を有するシリコーンま
たはフルオロシリコーン撥水剤を原料として、液相吸着
法や気相吸着法が用いられてきた。液相吸着法の例とし
ては、例えば市販品で知られているラビング法、例えば
特開平4−221630に開示されているディッピング
法、例えば特開平3−23493に開示されているゾル
ゲル法があげられる。ラビング法は撥水剤を基材上に滴
下した後に、布で直接塗り伸ばし、拭き上げるものであ
る。ディッピング法は撥水剤を水または有機溶媒中に添
加した溶液中に、基材を浸漬し、一定速度で引き上げる
ことにより、基材表面上に撥水層を形成するものであ
る。また、ゾルゲル法はテトラエトキシシラン(TEO
S)の様なSiO2 形成成分とフルオロシランの様な撥
水成分の混合水溶液を基材上にコーティングするもので
ある。気相吸着法は、一定温度に保った減圧チャンバー
内にフルオロアルキルシラン(トリクロロ末端)雰囲気
を作り、その中に基材を保持し基材表面上に撥水層を形
成するものである。
Conventionally, in the production of such a water-repellent film, a liquid-phase adsorption method or a vapor-phase adsorption method has been used with a silicone or fluorosilicone water-repellent agent having reactivity with a silanol group on the surface of a glass substrate as a raw material. Has been. Examples of the liquid phase adsorption method include a rubbing method known as a commercially available product, for example, a dipping method disclosed in JP-A-4-221630, and a sol-gel method disclosed in JP-A-3-23493. . The rubbing method is a method in which a water repellent agent is dropped on a substrate and then directly spread with a cloth and wiped up. The dipping method is to form a water-repellent layer on the surface of a substrate by immersing the substrate in a solution prepared by adding a water-repellent agent to water or an organic solvent and pulling it up at a constant speed. In addition, the sol-gel method uses tetraethoxysilane (TEO
The substrate is coated with a mixed aqueous solution of a SiO 2 forming component such as S) and a water repellent component such as fluorosilane. In the vapor phase adsorption method, a fluoroalkylsilane (trichloro terminal) atmosphere is created in a decompression chamber maintained at a constant temperature, a substrate is held therein, and a water repellent layer is formed on the substrate surface.

【0004】[0004]

【発明が解決しようとする課題】シリコーン系撥水剤、
アルキルシラン系撥水剤で処理した基材の場合、初期の
摩擦係数が小さく水滴の転落性にすぐれているが、耐久
性が良くない。例えば、アルキルシラン系撥水剤でフロ
ートガラス基板を処理した場合、屋外暴露1カ月程度
で、暴露前には約10°であった水滴の臨界傾斜角が3
0°以上になり水滴の転落性は悪くなる。また摩耗試験
においてもネル布摩耗3000回で、磨耗試験前には約
100°であった水の接触角が80°以下になり、撥水
性能の低下が顕著となる。
A water repellent of silicone type,
In the case of a base material treated with an alkylsilane-based water repellent, the initial coefficient of friction is small and the water droplets have excellent falling properties, but the durability is not good. For example, when a float glass substrate is treated with an alkylsilane-based water repellent, the critical inclination angle of water droplets is about 10 ° before being exposed outdoors for about 1 month and is 3 °.
It becomes 0 ° or more and the falling property of water drops becomes worse. Also, in the abrasion test, the flannel cloth was abraded 3000 times, and the contact angle of water, which was about 100 ° before the abrasion test, became 80 ° or less, and the water repellency was significantly reduced.

【0005】フルオロシリコーン系撥水剤、フルオロア
ルキルシラン系撥水剤で処理した場合、耐候性、耐摩耗
性に優れるが初期摩擦係数が大きくなる。例えば、フル
オロアルキルシラン系撥水剤でフロートガラス基板を処
理した場合、屋外暴露1年でも接触角が80°以上を示
し、耐摩耗試験でもネル布摩耗3000回で接触角が8
0°以上を示し撥水性能を保っている。但し初期の段階
で、水滴の臨界傾斜角が30°以上であり水滴の転落性
は良くない。
When treated with a fluorosilicone water repellent or a fluoroalkylsilane water repellent, the weather resistance and abrasion resistance are excellent, but the initial friction coefficient is large. For example, when a float glass substrate is treated with a fluoroalkylsilane water repellent, the contact angle is 80 ° or more even after 1 year of outdoor exposure, and the abrasion resistance test shows that the contact angle is 8 after a wear of 3000 times.
Shows 0 ° or more and maintains water repellent performance. However, in the initial stage, the critical inclination angle of the water droplet is 30 ° or more, and the falling property of the water droplet is not good.

【0006】フルオロアルキルシラン−アルキルシラン
混合系撥水剤で処理した場合、フルオロアルキルシラン
系で処理した場合に比べ摩擦係数は小さくなり、初期の
臨界転落角は20°〜25°程度に改善される。しかし
ながら屋外暴露試験1年での接触角、および耐摩耗性試
験3000回での接触角が、フルオロアルキルシラン系
で処理した場合のそれに比べ低くなる。
When treated with a fluoroalkylsilane-alkylsilane mixed water repellent, the friction coefficient becomes smaller than when treated with a fluoroalkylsilane system, and the initial critical sliding angle is improved to about 20 ° to 25 °. It However, the contact angle after 1 year of the outdoor exposure test and the contact angle after 3000 abrasion resistance tests are lower than those when treated with the fluoroalkylsilane system.

【0007】基板とシート間の接着力を高める為に、ア
ルカリ金属の溶液、アマルガム、またはスパッタエッチ
ングにより表面処理したフッ素樹脂シートをガラス基材
に張り付ける方法ではフッ素樹脂シートを光学厚み以下
にするのが困難であり、その結果使用中の摩耗により、
摩耗傷が非常に目立ち光学特性で難がある。フッ素エナ
メルコートにおいても、基材−撥水層間の接着強度を高
めようとすれば膜厚が光学厚み以上になり、フッ素シー
ト同様、摩耗傷が非常に目立ち光学特性で難がある。
In order to increase the adhesive force between the substrate and the sheet, a method of sticking a fluororesin sheet surface-treated with an alkali metal solution, amalgam, or sputter etching to a glass base material makes the fluororesin sheet have an optical thickness of not more than the optical thickness. Difficult to wear, and as a result of wear during use,
Wear scratches are very noticeable and have difficulty in optical characteristics. Even in the case of a fluorine enamel coat, if it is attempted to increase the adhesive strength between the base material and the water repellent layer, the film thickness becomes more than the optical thickness, and like the fluorine sheet, abrasion scratches are very conspicuous and there is a problem with the optical characteristics.

【0008】本発明は撥水性能および耐摩耗性にすぐれ
た透明な撥水性ガラス物品を提供することを目的とす
る。
An object of the present invention is to provide a transparent water repellent glass article having excellent water repellency and abrasion resistance.

【0009】[0009]

【課題を解決する為の手段】本発明は、ガラス基材の表
面にフルオロアルキルシラン化合物の縮合体およびフッ
素樹脂を含有する撥水膜を有する撥水性ガラス物品であ
る。
The present invention is a water-repellent glass article having a water-repellent film containing a fluoroalkylsilane compound condensate and a fluororesin on the surface of a glass substrate.

【0010】本発明における撥水膜に用いるフルオロア
ルキルシラン化合物の縮合体とはフルオロアルキル基を
有するシラン化合物が加水分解・縮合した物質である。
フルオロアルキルシラン化合物は、シリコン原子を中心
とし、フルオロアルキル基、0〜2個のアルキル基、及
び少なくとも1個の官能基を有するものであり、具体的
には下記化学式(1)および化学式(2)で示されるフ
ルオロアルキルシラン化合物が好ましい。
The condensate of the fluoroalkylsilane compound used in the water-repellent film in the present invention is a substance obtained by hydrolyzing and condensing a silane compound having a fluoroalkyl group.
The fluoroalkylsilane compound has a silicon atom as a center and has a fluoroalkyl group, 0 to 2 alkyl groups, and at least one functional group, and specifically, the following chemical formulas (1) and (2) ) Fluoroalkylsilane compounds represented by

【0011】 Rf 1QSi(CH3p(Z)3-p (1) ただし、Rf 1:炭素数が1〜20のパーフルオロアルキ
ル基 Q:−(CH2y− (yは2〜5の整数) Z:−OCH3,−OC25,−OCOCH3,−OCO
25,−NCO,−Cl,または−OH p:0,1または2
R f 1 QSi (CH 3 ) p (Z) 3-p (1) where R f 1 is a perfluoroalkyl group having 1 to 20 carbon atoms Q :-( CH 2 ) y- (y is integer from 2 to 5) Z: -OCH 3, -OC 2 H 5, -OCOCH 3, -OCO
C 2 H 5, -NCO, -Cl or -OH p,: 0,1 or 2

【0012】 [(Rf 2Q)aSi(R1)b(NR3)(4-a-b)/2]m・[(Rf 2Q)cSi(R2)d(R3)eO(4-c-d-e)/2]n (2) ただし、R1、R2:同一でも異なっていてもよく、水素
原子または炭素原子数1〜20よりなる非置換もしくは
置換の1価炭化水素基 R3:水素原子またはアルキル基 Rf 2:炭素原子数1〜20のパーフルオロアルキル基ま
たは炭素原子数2〜35のパーフルオロアルキルエーテ
ル基 Q:−(CH2y− (yは2〜5の整数) a:1〜3の整数 b:0〜2の整数であり、かつa+bは1〜3である c:0〜2の整数 d:1〜3の整数であり、かつc+dは1〜3である m,n:1以上の整数
[(R f 2 Q) a Si (R 1 ) b (NR 3 ) (4-ab) / 2 ] m・ [(R f 2 Q) c Si (R 2 ) d (R 3 ) e O (4-cde) / 2 ] n (2) where R 1 and R 2 may be the same or different and each is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms. R 3: a hydrogen atom or an alkyl group R f 2: perfluoroalkyl ether group of a perfluoroalkyl group or a -C 2-35 carbon atoms 1~20 Q :-( CH 2) y - (y is 2 An integer of 5) a: an integer of 1 to 3 b: an integer of 0 to 2, and a + b is 1 to 3 c: an integer of 0 to 2 d: an integer of 1 to 3, and c + d is 1 Is an integer of m, n: 1 or more

【0013】上記化学式(1)で示されるフルオロアル
キルシラン化合物としては、例えばCF3(CF2
7(CH22SiCl3、 CF3(CF27(CH22
i(OCH33、CF3(CF27(CH22SiCH3
Cl2、 CF3(CF27(CH22SiCH3(OCH
32などが挙げられ、その中でフルオロアルキルトリア
ルコキシシラン、特にCF3(CF27(CH22Si
Cl3、 CF3(CF27(CH22Si(OCH33
は撥水性能が特に優れているので好ましい。
Examples of the fluoroalkylsilane compound represented by the above chemical formula (1) include CF 3 (CF 2 )
7 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 S
i (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCH 3
Cl 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCH 3 (OCH
3 ) 2 and the like, among which fluoroalkyltrialkoxysilanes, especially CF 3 (CF 2 ) 7 (CH 2 ) 2 Si
Cl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3
Is particularly preferable because it has excellent water repellency.

【0014】フルオロアルキルシラン化合物は、これ
に、加水分解を生じさせるための水、加水分解のための
酸性または塩基性触媒、およびアルコール類に代表され
る溶媒を加えて攪拌し、所定時間経過させることによ
り、加水分解・縮合反応を起こして、縮合体が形成され
る。
The fluoroalkylsilane compound is added with water for causing hydrolysis, an acidic or basic catalyst for hydrolysis, and a solvent represented by alcohols, and the mixture is stirred for a predetermined time. As a result, a hydrolysis / condensation reaction is caused to form a condensate.

【0015】次に本発明の撥水膜に含有させるフッ素樹
脂について説明する。フッ素樹脂としては、テトラフル
オロエチレン、ヘキサフルオロプロピレン、トリクロロ
フルオロエチレン、ビニリデンフルオライド、ビニルフ
ルオライド等のフルオロオレフィン類の単独もしくは共
重合体、またはこれらと重合可能なエチレン系不飽和化
合物との共重合体であり、例えばテトラフルオロエチレ
ン重合体(PTFE)、テトラフルオロエチレンとヘキ
サフルオロプロピレンの共重合体(FEP)、テトラフ
ルオロエチレンとパーフルオロアルキルビニルエーテル
の共重合体(PFA)が挙げられる。フッ素系樹脂とし
て500〜1000,000の分子量を有するものを用
いることができるが、フッ素系樹脂の分子量があまり低
すぎると撥水膜の耐熱性が劣化しやすく、逆に高すぎる
とフッ素樹脂の溶融温度が高くなって撥水膜中に均一に
フッ素系樹脂を存在させることが困難となるので、50
00〜100,000の分子量を有するフッ素樹脂が特
に好ましい。通常フッ素樹脂の末端基にはCF3 基以外
のものも含まれているが、フッ素ガス処理によりフッ素
樹脂の末端基にすべてCF3 基を導入することが撥水性
能を更に高める上で好ましい。この傾向は低分子量にな
るほど著しい。
Next, the fluororesin contained in the water repellent film of the present invention will be described. Examples of the fluororesin include homo- or copolymers of fluoroolefins such as tetrafluoroethylene, hexafluoropropylene, trichlorofluoroethylene, vinylidene fluoride and vinyl fluoride, or copolymers of these with a polymerizable ethylenically unsaturated compound. Examples of the polymer include a tetrafluoroethylene polymer (PTFE), a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP), and a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA). As the fluororesin, one having a molecular weight of 500 to 1,000,000 can be used, but if the molecular weight of the fluororesin is too low, the heat resistance of the water-repellent film is likely to deteriorate, and conversely if it is too high, the Since the melting temperature becomes high and it becomes difficult to allow the fluororesin to uniformly exist in the water repellent film, 50
Fluororesin having a molecular weight of 00 to 100,000 is particularly preferable. Although usually fluororesin end groups are also included other than CF 3 group, preferred for the introduction of all CF 3 group in the terminal group of the fluorine resin by fluorine gas treatment is further enhanced water repellency. This tendency becomes remarkable as the molecular weight becomes lower.

【0016】本発明の撥水膜中のフルオロアルキルシラ
ン化合物の縮合体とフッ素樹脂の割合はフルオロアルキ
ルシラン化合物の縮合体が多すぎる(フッ素樹脂が少な
すぎる)と、撥水性能、特に水滴の転落性能が低下しや
すくなり、逆にフルオロアルキルシラン化合物の縮合体
が少なすぎる(フッ素樹脂が多すぎる)と、撥水層と基
材の間の接着力が低下しやすくなる。従って、フルオロ
アルキルシラン化合物の縮合体に対してフッ素樹脂が
0.01〜30重量%含まれていることが好ましく、さ
らに好ましい範囲は0.1〜10重量%である。
The proportion of the fluoroalkylsilane compound condensate and the fluororesin in the water-repellent film of the present invention is such that if the fluoroalkylsilane compound condensate is too much (the fluororesin is too little), the water-repellent performance, especially water droplet If the amount of the fluoroalkylsilane compound condensate is too small (the amount of the fluororesin is too large), the adhesive force between the water-repellent layer and the base material is likely to be lowered. Therefore, the content of the fluororesin in the condensate of the fluoroalkylsilane compound is preferably 0.01 to 30% by weight, and more preferably 0.1 to 10% by weight.

【0017】本発明の撥水膜はフルオロアルキルシラン
化合物の縮合体とフッ素樹脂の2相で構成され、膜中に
おいて、フルオロアルキルシラン縮合物マトリックス中
でフッ素樹脂が種々の微小な、2nm〜1000nmの
寸法の相形態(ドメイン構造)を有し、その形態はフル
オロアルキルシラン縮合物マトリックスおよびフッ素樹
脂の種類と量などによって異なるが、球状、楕円球状、
シリンダー状、ラメラ状、もしくは相互間入型(IP
N)の相形態をとる。
The water-repellent film of the present invention comprises two phases of a condensate of a fluoroalkylsilane compound and a fluororesin, and in the film, the fluororesin in the fluoroalkylsilane condensate matrix has various fine particles of 2 nm to 1000 nm. The size has a phase morphology (domain structure). The morphology varies depending on the type and amount of the fluoroalkylsilane condensate matrix and the fluororesin.
Cylindrical, lamellar, or interpenetrating (IP
N) takes a phase form.

【0018】本発明の撥水膜にはフルオロアルキルシラ
ン化合物の縮合体およびフッ素樹脂以外に、ポリジメチ
ルシロキサン、アルコキシシラン縮合体等を含有してい
ても差し支えない。しかしこれらの成分が多すぎると撥
水膜の耐候性、撥水膜の付着性が劣化する傾向があるの
で、フルオロアルキルシラン化合物の縮合体およびフッ
素樹脂の合計が撥水膜中に少なくとも30重量%、好ま
しくは60重量%、さらに好ましくは90重量%以上含
まれていることが好ましい。
The water-repellent film of the present invention may contain a polydimethylsiloxane, an alkoxysilane condensate, etc., in addition to the fluoroalkylsilane compound condensate and the fluororesin. However, if the amount of these components is too large, the weather resistance of the water-repellent film and the adhesion of the water-repellent film tend to deteriorate, so the total amount of the fluoroalkylsilane compound condensate and the fluororesin is at least 30% by weight in the water-repellent film. %, Preferably 60% by weight, more preferably 90% by weight or more.

【0019】本発明の撥水膜の厚みはあまり小さすぎる
と撥水性能が低くなり、また厚みが大きすぎると膜の透
明性が損なわれる。従って撥水膜は4nm〜2000n
mの厚みを有することが好ましく、より好ましくは10
〜200nmの厚みを有する。
If the thickness of the water-repellent film of the present invention is too small, the water-repellent performance will be poor, and if it is too large, the transparency of the film will be impaired. Therefore, the water-repellent film should be 4nm-2000n
It preferably has a thickness of m, more preferably 10
It has a thickness of ~ 200 nm.

【0020】本発明において、ガラス基材と前記撥水膜
との間に、下地膜を設けてもよい。撥水膜の付着性を高
めたり、撥水膜の耐摩耗性を高めるためには、珪素酸化
物を主成分とする膜を設けることが好ましい。この膜
は、撥水膜を被覆する前に、珪素などの金属アルコキシ
ドまたは金属アセチルアセトネートの加水分解・縮合な
どによる公知のゾルゲル法により形成させることができ
る。好ましくは金属アルコキシドまたは金属アセチルア
セトネートに、コロイダルシリカなどの微粒子金属酸化
物を分散させておくことにより表面が微小な凹凸を有す
る下地膜を設けることができ、撥水膜の耐摩耗性をさら
に高めることができる。
In the present invention, a base film may be provided between the glass substrate and the water repellent film. In order to improve the adhesion of the water repellent film and the abrasion resistance of the water repellent film, it is preferable to provide a film containing silicon oxide as a main component. This film can be formed by a known sol-gel method such as hydrolysis / condensation of a metal alkoxide such as silicon or a metal acetylacetonate before coating the water repellent film. Preferably, a fine metal oxide such as colloidal silica is dispersed in a metal alkoxide or a metal acetylacetonate to form a base film having fine irregularities on the surface, which further improves the abrasion resistance of the water-repellent film. Can be increased.

【0021】本発明の撥水性ガラス物品は、次に述べる
ように、高温に加熱したガラス基材の表面に、フルオロ
アルキルシラン化合物およびフッ素樹脂を含有する撥水
剤を噴霧することによって製造することができる。また
高温に加熱したガラス基材を高温度に保った上記撥水剤
の浴に浸漬・引き上げすることによっても製造すること
ができる。
The water-repellent glass article of the present invention is produced by spraying a water-repellent agent containing a fluoroalkylsilane compound and a fluororesin on the surface of a glass substrate heated to a high temperature as described below. You can It can also be produced by immersing and pulling up a glass base material heated to a high temperature in a bath of the water repellent agent kept at a high temperature.

【0022】上記撥水剤は上記フルオロアルキルシラン
化合物の加水分解物;フッ素樹脂;フルオロアルキルシ
ラン化合物が可溶な溶媒、例えばアルコール、ケトン;
およびフッ素樹脂の溶媒または懸濁用液、例えばフロ
ン、アルコール、からなる。実際には撥水剤はフルオロ
アルキルシラン化合物の溶液、フッ素樹脂の懸濁液(ま
たは溶液)および必要に応じて希釈剤、ポリジメチルシ
ロキサン、アルコキシシラン縮合体を混合したものであ
る。フッ素樹脂の懸濁液は、液中のフッ素樹脂の直径が
1000nm以下好ましくは100nm以下になるよう
に攪拌する。フルオロアルキルシラン化合物およびフッ
素樹脂の固形分合計が撥水剤に対して通常0.1〜90
重量%になるように希釈される。そしてフルオロアルキ
ルシラン化合物とフッ素樹脂の割合は、上記撥水膜中の
割合と同じく、フルオロアルキルシラン化合物の縮合体
に対してフッ素樹脂が0.01〜30重量%含まれてい
ることが好ましく、さらに好ましい範囲は0.1〜10
重量%である。
The water repellent is a hydrolyzate of the fluoroalkylsilane compound; a fluororesin; a solvent in which the fluoroalkylsilane compound is soluble, such as an alcohol or a ketone;
And a solution or suspension liquid of a fluororesin, for example, Freon, alcohol. Actually, the water repellent is a mixture of a fluoroalkylsilane compound solution, a fluororesin suspension (or solution) and, if necessary, a diluent, polydimethylsiloxane, and an alkoxysilane condensate. The fluororesin suspension is stirred so that the diameter of the fluororesin in the liquid is 1000 nm or less, preferably 100 nm or less. The total solid content of the fluoroalkylsilane compound and the fluororesin is usually 0.1 to 90 relative to the water repellent.
It is diluted to give a weight percentage. And the ratio of the fluoroalkylsilane compound to the fluororesin is preferably 0.01 to 30% by weight of the fluororesin with respect to the condensate of the fluoroalkylsilane compound, like the ratio in the water-repellent film. A more preferred range is 0.1-10
% By weight.

【0023】噴霧法の場合、300℃〜700℃に保た
れたガラス基材に上記撥水剤を例えば塗料用スプレーガ
ンのような噴霧器により噴霧する。ガラス基材の温度は
撥水剤中のオロアルキルシラン化合物の分解温度である
450℃以上の温度に保つことがより好ましい。撥水剤
を噴霧吹き付ける際のミストの直径は0.1〜30μm
の範囲になるように調節する。ここで、ミストとは撥水
分子が数個〜数十個凝集してエネルギー的に安定なクラ
スター状態になっているものも含むものとして定義す
る。ミスト直径が0.1〜1μmの範囲でしかもできる
だけ均一な直径になるように調節して吹き付けると、平
滑な撥水膜が得られるので好ましい。自動車用窓ガラス
用として、熱強化または/および曲げガラスを製造する
ときは、ガラス板を加熱炉で加熱する必要があるが、こ
の加熱の直後に上記撥水剤を噴霧すれば撥水膜形成を熱
強化または/および曲げの工程に組み込むことができる
ので工程が簡略になる。
In the case of the spraying method, the water repellent agent is sprayed onto a glass substrate kept at 300 ° C. to 700 ° C. by a sprayer such as a spray gun for paint. The temperature of the glass substrate is more preferably maintained at a temperature of 450 ° C. or higher, which is the decomposition temperature of the oroalkylsilane compound in the water repellent. The diameter of mist when spraying a water repellent is 0.1 to 30 μm
Adjust to be within the range. Here, the mist is defined as including mist in which several to several tens of water-repellent molecules are aggregated into an energy-stable cluster state. It is preferable to adjust the mist diameter in the range of 0.1 to 1 μm and spray so that the diameter is as uniform as possible, since a smooth water-repellent film can be obtained. When producing heat-strengthened and / or bent glass for automobile window glass, it is necessary to heat the glass plate in a heating furnace, but if the water repellent is sprayed immediately after this heating, a water repellent film is formed. Can be incorporated into the process of heat strengthening and / or bending, which simplifies the process.

【0024】このように、基材を一旦撥水剤の分解温度
以上に加熱した後、ただちに噴霧による撥水処理を行う
と、(1)基材に付着していた炭化水素系汚染物は基材
の加熱により分解除去されるので汚染物の再付着を考え
なくてよく、従って基材が極めて良好な状態で撥水処理
を行うことができ、(2)撥水剤(フルオロアルキルシ
ラン化合物)が基材と強固なシロキサン結合を作るのに
必要な温度領域(約200〜約400℃)の通過が上記
加熱により達成されるので、これにより強固な化学結合
密度が飛躍的に増大し、その結果、撥水層と基材の接着
強度が非常に大きくなり、(3)フッ素樹脂の融点(2
70〜330℃)よりも高い温度でフルオロアルキルシ
ランマトリックスとフッ素樹脂が液−液系で混ざり合う
結果、フッ素樹脂は様々な相構造をとりながらフルオロ
アルキルシラン縮合物マトリックス中で強固に保持さ
れ、さらに(4)フッ素樹脂の直径を1μm以下に、従
って撥水膜の厚みを1μm以下(光学厚み以下)にする
ことができるので、その結果、可視光において透明膜が
得られる。
As described above, when the base material is once heated to the decomposition temperature of the water repellent agent or more and then immediately subjected to the water repellent treatment by spraying, (1) the hydrocarbon-based contaminants adhered to the base material are Since it is decomposed and removed by heating the material, it is not necessary to consider reattachment of contaminants, and therefore the water repellent treatment can be performed in a very good condition of the base material. (2) Water repellent agent (fluoroalkylsilane compound) The above-mentioned heating achieves passage through the temperature range (about 200 to about 400 ° C.) necessary for forming a strong siloxane bond with the base material, whereby the strong chemical bond density is dramatically increased. As a result, the adhesive strength between the water-repellent layer and the base material is significantly increased, and (3) the melting point of the fluororesin (2
(70 to 330 ° C.), the fluoroalkylsilane matrix and the fluororesin are mixed in a liquid-liquid system at a temperature higher than 70 to 330 ° C., and as a result, the fluororesin is firmly retained in the fluoroalkylsilane condensate matrix while having various phase structures, Further, (4) the diameter of the fluororesin can be set to 1 μm or less, and thus the thickness of the water-repellent film can be set to 1 μm or less (optical thickness or less).

【0025】もし、上記撥水剤を基材に塗布または噴霧
後に加熱した場合には、塗布または噴霧が低い温度で行
われるので、フッ素樹脂は固体のまま塗布または噴霧さ
れることになって、フルオロアルキルシラン化合物の中
に取り込まれなくなり、従って、フッ素樹脂が膜からす
ぐに離脱してしまい所定の撥水膜が得られない。
If the water repellent agent is applied or sprayed to the substrate and then heated, the application or spraying is performed at a low temperature, so that the fluororesin is applied or sprayed as a solid. The fluororesin silane compound is no longer incorporated into the fluoroalkylsilane compound, so that the fluororesin is immediately separated from the film, and a predetermined water-repellent film cannot be obtained.

【0026】[0026]

【実施例】【Example】

実施例1 以下、図1に示した本発明の実施例に係わる撥水性ガラ
スについて詳細に説明する。図1は撥水膜を表面に形成
したSiO2 コート/ソーダライムガラスのガラス基材
の断面を示している。1はガラス基板、2はSiO2
らなるコーティング層、3は撥水剤からなる撥水層であ
る。
Example 1 Hereinafter, the water-repellent glass according to the example of the present invention shown in FIG. 1 will be described in detail. FIG. 1 shows a cross section of a glass substrate of SiO 2 coat / soda lime glass having a water repellent film formed on the surface thereof. Reference numeral 1 is a glass substrate, 2 is a coating layer made of SiO 2 , and 3 is a water repellent layer made of a water repellent.

【0027】SiO2下地膜の成膜 テトラエトキシシランの加水分解物(分子量約300
0、固形分濃度約30重量%)約30gをイソプロピル
アルコール約100gで希釈した溶液に50mm×50
mm×2mmのソーダライムシリケートガラス基板を浸
漬し、100cm/分の速度で基板を引き出し、約27
0℃で約10分間加熱して、厚みが約50nmのSiO
2 下地膜を基板の表面に成膜した。
Formation of SiO 2 Underlayer Film Hydrolysis product of tetraethoxysilane (molecular weight of about 300
0, solid content concentration about 30% by weight) About 30 g diluted with about 100 g isopropyl alcohol to a solution of 50 mm x 50
Dip a soda lime silicate glass substrate of mm × 2 mm and pull out the substrate at a speed of 100 cm / min to about 27
Heated at 0 ° C for about 10 minutes and made SiO about 50nm thick
2 A base film was formed on the surface of the substrate.

【0028】フルオロアルキルシラン・フッ素樹脂含有
吹き付け液の調製 ヘプタデカフルオロデシルトリメトキシシラン 10
g、1規定塩酸10g、イソプロピルアルコール20g
を混合後、室温で4日間保持して加水分解縮合物を得
た。この加水分解縮合物12gを88gのイソプロピル
アルコールで希釈して第1液とする。一次粒径0.1μ
mのPTFE(平均分子量;10000)をアセトンに
懸濁させてPTFEを6重量%含むアセトン懸濁液を
得、これを第2液とする。第1液と第2液とを混合攪拌
して吹き付け懸濁液を得た。
Preparation of Fluoroalkylsilane / Fluorine Resin-Containing Spray Liquid Heptadecafluorodecyltrimethoxysilane 10
g, 1N hydrochloric acid 10 g, isopropyl alcohol 20 g
After mixing, the mixture was kept at room temperature for 4 days to obtain a hydrolyzed condensate. 12 g of this hydrolysis-condensation product is diluted with 88 g of isopropyl alcohol to obtain a first liquid. Primary particle size 0.1μ
m of PTFE (average molecular weight; 10,000) was suspended in acetone to obtain an acetone suspension containing 6 wt% of PTFE, which was designated as the second liquid. The first liquid and the second liquid were mixed and stirred to obtain a spray suspension.

【0029】撥水膜の成膜 上記SiO2 下地膜を成膜したガラス基板を未洗浄のま
ま焼成炉に入れ、基板を約650℃に加熱した。そして
焼成炉から基板を取りだした直後に、塗料用スプレーガ
ン(イワタスプレーガン#88)を用いて上記吹き付け
懸濁液を基板表面に懸濁液の液滴の直径が約1000〜
10000nmの状態で噴霧して基板温度が約300℃
になるまで噴霧を続けた。その結果厚みが約10nmの
撥水膜が得られた。撥水膜はヘプタデカフルオロデシル
トリメトキシシランの縮合体99重量%とPTFE1重
量%から構成されていた。
Formation of Water-Repellent Film The glass substrate on which the above-mentioned SiO 2 base film was formed was placed in a baking furnace without being washed, and the substrate was heated to about 650 ° C. Immediately after taking out the substrate from the baking furnace, the sprayed spray gun (Iwata spray gun # 88) was used to spray the above sprayed suspension onto the surface of the substrate so that the diameter of the suspension droplets was about 1000-.
Substrate temperature is about 300 ° C after spraying at 10000 nm
Continued spraying until. As a result, a water repellent film having a thickness of about 10 nm was obtained. The water-repellent film was composed of 99% by weight of a heptadecafluorodecyltrimethoxysilane condensate and 1% by weight of PTFE.

【0030】この撥水膜の撥水性能の評価は接触角測
定、臨界傾斜角測定、摩擦係数測定により行った。なお
臨界傾斜角は、直径が約5mmの水滴を水平な基板上に
滴下した後、基板をゆっくり傾けていき、水滴が転がり
始める直前の基板の傾斜角で定義する。また膜の耐久性
を調べる為にネル布による3000回〜20000回の
往復摩耗試験を行った。結果を表1に示す。
The water-repellent performance of this water-repellent film was evaluated by measuring the contact angle, the critical inclination angle and the friction coefficient. The critical tilt angle is defined as the tilt angle of the substrate just before the water drops start rolling after slowly dropping the water drop having a diameter of about 5 mm on a horizontal substrate. Further, in order to examine the durability of the film, a reciprocating abrasion test with a flannel cloth was performed 3000 to 20000 times. The results are shown in Table 1.

【0031】[0031]

【表1】 =================================== 実施例1 比較例1 実施例2 比較例2 実施例3 比較例3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 接触角(度) 108 104 109 105 125 121 臨界傾斜角(度) 10 28 10 28 15 32 摩擦係数 0.1 0.3 0.1 0.3 0.3 0.5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 摩耗試験後の 接触角(度) 摩耗3000回後 103 91 101 90 120 110 摩耗5000回後 100 80 98 75 115 100 摩耗10000回後 95 50 92 40 108 90 摩耗20000回後 95 − 90 − 102 80 ===================================[Table 1] =================================== Example 1 Comparative Example 1 Example 2 Comparative Example 2 Example 3 Comparative example 3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Contact angle (degree) 108 104 109 105 125 121 Critical inclination angle (degree) 10 28 10 28 15 32 Friction coefficient 0.1 0.3 0.1 0.3 0.3 0.5 −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− Contact angle (degree) after abrasion test After abrasion 3000 times 103 91 101 90 120 110 After abrasion 5000 times 100 80 98 75 115 100 After abrasion 10000 times 95 50 92 40 108 90 After abrasion 20000 times After 95-90-102 80 =====================================

【0032】実施例2 以下、図2に示した本発明の実施例に係わる撥水性ガラ
スについて詳細に説明する。図2は撥水膜を表面に形成
したソーダライムガラスのガラス基板の断面を示してい
る。1はガラス基板、3は撥水剤からなる撥水層であ
る。
Example 2 Hereinafter, the water-repellent glass according to the example of the present invention shown in FIG. 2 will be described in detail. FIG. 2 shows a cross section of a glass substrate of soda lime glass having a water repellent film formed on its surface. Reference numeral 1 is a glass substrate, and 3 is a water-repellent layer made of a water-repellent agent.

【0033】ソーダライムガラス基板を未洗浄のまま焼
成炉に入れ、基板を約650℃に加熱した。そして焼成
炉から基板を取りだし、その直後に実施例1と同じ吹き
付け懸濁液を実施例1と同じ条件で吹き付けた。得られ
た撥水膜の撥水性能の評価は接触角測定、臨界傾斜角測
定、摩擦係数測定により行った。また膜の耐久性を調べ
る為にネル布による往復摩耗試験を行った。結果を表1
に示す。
The soda lime glass substrate was put into a firing furnace without being washed, and the substrate was heated to about 650.degree. Then, the substrate was taken out from the firing furnace, and immediately after that, the same spraying suspension as in Example 1 was sprayed under the same conditions as in Example 1. The water-repellent performance of the obtained water-repellent film was evaluated by measuring a contact angle, a critical inclination angle, and a friction coefficient. In addition, a reciprocating wear test using a flannel cloth was conducted to examine the durability of the film. The results are shown in Table 1.
Shown in

【0034】実施例3 以下、図3に示した本発明の実施例に係わる撥水性ガラ
スについて詳細に説明する。図3は撥水膜を表面に形成
した撥水性ガラス板の断面を示している。1はガラス基
板、2はSiO2 からなる凹凸層、3は撥水剤からなる
撥水層である。
Example 3 Hereinafter, the water-repellent glass according to the example of the present invention shown in FIG. 3 will be described in detail. FIG. 3 shows a cross section of a water-repellent glass plate having a water-repellent film formed on its surface. Reference numeral 1 is a glass substrate, 2 is an uneven layer made of SiO 2 , and 3 is a water repellent layer made of a water repellent.

【0035】下地膜の成膜 まず下地膜用組成物の調製方法を示す。以下の(a)〜
(b)を混合し、20分間攪拌する。 (a)TEOS 52.10g (b)イソプロパノール 383.00g 上記の(a)〜(b)混合液に対し、以下の(c),
(d)を加え、2時間攪拌する。 (c)水 10.58g (d)1N塩酸水溶液 2.70g
Formation of Undercoat Film First, a method for preparing the undercoat film composition will be described. The following (a) ~
Mix (b) and stir for 20 minutes. (A) TEOS 52.10g (b) Isopropanol 383.00g For the above (a)-(b) mixture, the following (c),
Add (d) and stir for 2 hours. (C) Water 10.58g (d) 1N hydrochloric acid aqueous solution 2.70g

【0036】上記の溶液を密封容器に入れ、50℃で3
時間攪拌したのち、さらに20℃で15時間攪拌する。
その後、これに以下の(e),(f)を加え、さらに2
0℃で5時間攪拌することにより下地膜用組成物を得
た。 (e)コロイダルシリカ(日産化学製「スノーテックスOL」、粒子直径50n m、固形分20重量%) 73.70g (g)イソプロパノール 449.80g
The above solution was placed in a sealed container and kept at 50 ° C. for 3 hours.
After stirring for an hour, the mixture is further stirred at 20 ° C. for 15 hours.
Then, the following (e) and (f) are added to this, and further 2
A composition for a base film was obtained by stirring at 0 ° C. for 5 hours. (E) Colloidal silica (“Snowtex OL” manufactured by Nissan Chemical Industry, particle diameter 50 nm, solid content 20% by weight) 73.70 g (g) Isopropanol 449.80 g

【0037】(塗布工程)70×150×3.4mmの
フロートガラス基板を、脱脂洗浄し乾燥させ、洗浄済み
ガラスを得た。上記で得られた下地膜用組成物中に洗浄
したガラス基板を浸漬し、引き上げ速度100mm/分
で引き上げてウェット塗膜を作製した。
(Coating Process) A 70 × 150 × 3.4 mm float glass substrate was degreased, washed and dried to obtain washed glass. The washed glass substrate was immersed in the composition for a base film obtained above and pulled up at a pulling rate of 100 mm / min to prepare a wet coating film.

【0038】(焼成工程)上記のウェット塗膜を形成し
たガラス基板を空気雰囲気中で120℃、20分間保持
してウェット塗膜中の水、及びエタノールを蒸発させ、
更に250℃に昇温し、1時間保持することにより厚み
が約50nmのシリカ質の下地膜を形成した。この下地
膜において、直径が約50nmのコロイダルシリカ微粒
子が2次元的に密に凝集しており、各微粒子はTEOS
から由来するシリカによって基板に強固に付着してい
る。そして下地膜の表面にはコロイダルシリカ微粒子の
配列による約25nmの高さの凹凸が形成されていた。
この下地膜の付着した基板を未洗浄のまま焼成炉に入
れ、基板を約650℃に加熱した。そして焼成炉から基
板を取りだし、実施例1と同じ吹き付け懸濁液を実施例
1と同じ条件で吹き付けた。得られた撥水膜の撥水性能
の評価は接触角測定、臨界傾斜角測定、摩擦係数測定に
より行った。また膜の耐久性を調べる為にネル布による
往復摩耗試験を行った。結果を表1に示す。
(Firing Step) The glass substrate on which the above wet coating film is formed is kept in an air atmosphere at 120 ° C. for 20 minutes to evaporate water and ethanol in the wet coating film,
The temperature was further raised to 250 ° C., and the temperature was maintained for 1 hour to form a siliceous base film having a thickness of about 50 nm. In this base film, colloidal silica fine particles having a diameter of about 50 nm are densely aggregated two-dimensionally, and each fine particle is TEOS.
It is firmly attached to the substrate by silica derived from. Then, irregularities having a height of about 25 nm were formed on the surface of the base film due to the arrangement of colloidal silica fine particles.
The substrate to which the base film was attached was placed in a baking furnace without being washed, and the substrate was heated to about 650 ° C. Then, the substrate was taken out from the firing furnace, and the same spraying suspension as in Example 1 was sprayed under the same conditions as in Example 1. The water-repellent performance of the obtained water-repellent film was evaluated by measuring a contact angle, a critical inclination angle, and a friction coefficient. In addition, a reciprocating wear test using a flannel cloth was conducted to examine the durability of the film. The results are shown in Table 1.

【0039】比較例1 実施例1と同様に液相成膜法でSiO2 を成膜したソー
ダライムガラス基板を超音波洗浄10分間、UV−オゾ
ン洗浄3分間行った後、次のように液相吸着法で撥水処
理した。
Comparative Example 1 A soda lime glass substrate on which SiO 2 was formed by the liquid phase film forming method was subjected to ultrasonic cleaning for 10 minutes and UV-ozone cleaning for 3 minutes in the same manner as in Example 1, and then the following liquid was used. Water repellent treatment was performed by the phase adsorption method.

【0040】ヘプタデカフルオロデシルトリクロロシラ
ン CF3(CF27CH2CH2SiCl3 を溶媒ヘキサ
フルオロメタキシレンに2%の濃度で溶解した吸着液に
上記洗浄基板を約2時間浸漬した後、300℃で30分
間加熱処理を行いサンプルとした。得られた撥水膜の撥
水性能評価は実施例1と同様に接触角測定、臨界傾斜角
測定、摩擦係数測定により行った。また膜の耐久性を調
べる為にネル布による往復摩耗試験を行った。結果を合
わせて表1に示す。
After the heptadecafluorodecyltrichlorosilane CF 3 (CF 2 ) 7 CH 2 CH 2 SiCl 3 was dissolved in the solvent hexafluorometaxylene at a concentration of 2%, the washed substrate was immersed in the adsorbent for about 2 hours. A heat treatment was performed at 300 ° C. for 30 minutes to obtain a sample. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement as in Example 1. In addition, a reciprocating wear test using a flannel cloth was conducted to examine the durability of the film. The results are shown together in Table 1.

【0041】比較例2 ソーダライムガラス基板を超音波洗浄10分間、UV−
オゾン洗浄3分間行った後、比較例1と同じヘプタデカ
フルオロデシルトリクロロシランのヘキサフルオロメタ
キシレン溶液を用いて液相吸着法で撥水処理した。撥水
処理後300℃で30分間加熱処理を行いサンプルとし
た。
Comparative Example 2 A soda lime glass substrate was ultrasonically cleaned for 10 minutes under UV-
After performing ozone cleaning for 3 minutes, water repellent treatment was performed by a liquid phase adsorption method using the same hexafluorometaxylene solution of heptadecafluorodecyltrichlorosilane as in Comparative Example 1. After water repellent treatment, heat treatment was performed at 300 ° C. for 30 minutes to obtain a sample.

【0042】得られた撥水膜の撥水性能評価は実施例2
と同様に接触角測定、臨界傾斜角測定、摩擦係数測定に
より行った。又膜の耐久性を調べる為に往復摩耗試験を
行った。結果を合わせて表1に示す。
The water-repellent performance of the obtained water-repellent film was evaluated in Example 2.
The contact angle measurement, the critical tilt angle measurement, and the friction coefficient measurement were performed in the same manner as in. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results are shown together in Table 1.

【0043】比較例3 実施例3と同じように、50nmのコロイダルシリカを
分散させたゾルゲルSiO2 液を、基板にフローコート
で塗布して50nmのコロイダルシリカを2次元的に密
に凝集させた凹凸膜をソーダライムガラス上に成膜後、
500℃にて30分焼成した。室温まで冷却後、UV−
オゾン洗浄3分間行ったものを、比較例1と同じヘプタ
デカフルオロデシルトリクロロシランのヘキサフルオロ
メタキシレン溶液を用いて液相吸着法で撥水処理した。
撥水処理後300℃で30分間加熱処理を行った。
Comparative Example 3 In the same manner as in Example 3, a sol-gel SiO 2 liquid in which 50 nm colloidal silica was dispersed was applied to the substrate by flow coating, and 50 nm colloidal silica was two-dimensionally densely aggregated. After forming the uneven film on the soda lime glass,
It was baked at 500 ° C. for 30 minutes. After cooling to room temperature, UV-
What was performed for 3 minutes by ozone cleaning was subjected to water repellent treatment by a liquid phase adsorption method using the same hexafluorometaxylene solution of heptadecafluorodecyltrichlorosilane as in Comparative Example 1.
After the water repellent treatment, heat treatment was performed at 300 ° C. for 30 minutes.

【0044】得られた撥水膜の撥水性能評価は実施例3
と同様に接触角測定、臨界傾斜角測定、摩擦係数測定に
より行った。又膜の耐久性を調べる為に往復摩耗試験を
行った。結果を合わせて表1に示す。
The water-repellent performance of the obtained water-repellent film was evaluated in Example 3
The contact angle measurement, the critical tilt angle measurement, and the friction coefficient measurement were performed in the same manner as in. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results are shown together in Table 1.

【0045】実施例1と比較例1、実施例2と比較例
2、実施例3と比較例3を比較した場合、いずれのケー
スも初期における摩擦係数、臨界傾斜角について実施例
の方が比較例よりもすぐれている。しかも摩耗試験後の
接触角でも、実施例の方が比較例に比べ大きく、摩耗耐
久性でもすぐれていることがわかる。
When comparing Example 1 with Comparative Example 1, Example 2 with Comparative Example 2, and Example 3 with Comparative Example 3, the Examples were compared in terms of initial friction coefficient and critical inclination angle. Better than the example. Moreover, it can be seen that the contact angle after the abrasion test is larger in the example than in the comparative example, and the abrasion durability is also excellent.

【0046】この理由としては、実施例では、1)理想
的な撥水層−基板間化学結合密度が得られた。2)フッ
素樹脂ドメインが強固に導入されている。が考えられ
る。このため表面の親水基が著しく減少し、比較例に比
べ初期摩擦係数、臨界傾斜角が小さくなったと考えられ
る。そして摩擦係数が小さくなったことで耐摩耗性能も
合わせて向上したと考えられる。
The reasons are as follows: 1) The ideal chemical bond density between the water-repellent layer and the substrate was obtained. 2) The fluororesin domain is firmly introduced. Can be considered. Therefore, it is considered that the hydrophilic groups on the surface were remarkably reduced, and the initial friction coefficient and the critical inclination angle were smaller than those in Comparative Examples. It is considered that the wear resistance performance was also improved due to the smaller friction coefficient.

【0047】比較例4 実施例1の吹き付け液の調製においてフルオロアルキル
シラン・フッ素樹脂含有吹き付け液のかわりに一次粒径
0.1μm の低分子量PTFEを6重量%含むアセトン
懸濁液を単独で用いた以外は実施例1と同様の操作を行
った。吹き付け液量を多くした場合、得られた撥水膜は
光学的に不透明になった。しかもネル布で摩耗するとす
ぐに剥がれた。一方透明になる様に吹き付け液量を徐々
に減らしていくと接触角は50〜70°であり撥水性能
が不十分であった。フッ素樹脂自体は基板表面のシラノ
ールと殆ど反応せず結合が生じないことによるものと思
われる。
Comparative Example 4 In the preparation of the spray liquid of Example 1, instead of the spray liquid containing fluoroalkylsilane / fluorine resin, an acetone suspension containing 6% by weight of low-molecular-weight PTFE having a primary particle size of 0.1 μm was used alone. The same operation as in Example 1 was performed except that the above was performed. When the amount of sprayed liquid was increased, the resulting water repellent film became optically opaque. Moreover, it flaked off when worn with flannel cloth. On the other hand, when the amount of the sprayed liquid was gradually reduced so as to become transparent, the contact angle was 50 to 70 ° and the water repellency was insufficient. It is considered that the fluororesin itself hardly reacts with the silanol on the substrate surface and no bond is generated.

【0048】実施例4 ソーダライムガラス基板を未洗浄のまま吊り強化炉中に
入れ、約650℃になるまで加熱した後、取り出して直
ちに曲げ加工を行い、すぐさまエアーブローによる風冷
強化を行った。そして板温が370℃になったところで
実施例1と同じ吹き付け懸濁液を実施例1と同じ方法で
噴霧し、厚みが約10nmの撥水膜を有する曲げ強化ガ
ラスが得られた。撥水膜はヘプタデカフルオロデシルト
リメトキシシランの縮合体99重量%、とPTFE1重
量%から構成されていた。
Example 4 A soda lime glass substrate was put into a suspension strengthening furnace without being washed, heated to about 650 ° C., taken out, immediately bent, and immediately air-blow strengthened by air blow. . Then, when the plate temperature reached 370 ° C., the same blowing suspension as in Example 1 was sprayed in the same manner as in Example 1 to obtain a bent tempered glass having a water repellent film with a thickness of about 10 nm. The water-repellent film was composed of 99% by weight of a heptadecafluorodecyltrimethoxysilane condensate and 1% by weight of PTFE.

【0049】得られた撥水膜の撥水性能評価は接触角測
定、臨界傾斜角測定、摩擦係数測定により行った。又膜
の耐久性を調べる為に往復摩耗試験を行った。結果は実
施例2と同じであった。
The water-repellent performance of the obtained water-repellent film was evaluated by measuring the contact angle, the critical inclination angle and the friction coefficient. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results were the same as in Example 2.

【0050】実施例5 実施例1と同様に液相成膜法でSiO2 を成膜したソー
ダライムガラス基板を未洗浄のまま吊り強化炉中に入
れ、650℃になるまで加熱した後、取り出して直ちに
曲げ加工行い、すぐさまエアーブローによる風冷強化を
行った。そして板温が370℃になったところで実施例
1と同じ吹き付け懸濁液を実施例1と同じ方法で噴霧
し、厚みが約10nmの撥水膜が得られた。撥水膜はヘ
プタデカフルオロデシルトリメトキシシランの縮合体9
0重量%、とPTFE10重量%から構成されていた。
Example 5 In the same manner as in Example 1, the soda lime glass substrate on which SiO 2 was formed by the liquid phase film forming method was put into a hanging and strengthening furnace without being washed, heated to 650 ° C., and then taken out. And immediately bent, and immediately air-blow strengthened by air blow. Then, when the plate temperature reached 370 ° C., the same sprayed suspension as in Example 1 was sprayed by the same method as in Example 1 to obtain a water-repellent film having a thickness of about 10 nm. The water-repellent film is a condensate of heptadecafluorodecyltrimethoxysilane 9
It was composed of 0% by weight and 10% by weight of PTFE.

【0051】得られた撥水膜の撥水性能評価は接触角測
定、臨界傾斜角測定、摩擦係数測定により行った。又膜
の耐久性を調べる為に往復摩耗試験を行った。結果は実
施例1と同じであった。
The water-repellent performance of the obtained water-repellent film was evaluated by measuring a contact angle, a critical inclination angle and a friction coefficient. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results were the same as in Example 1.

【0052】実施例6 ソーダライムガラス基板を未洗浄のまま水平強化炉中に
入れ、650℃になるまで加熱した後、自重曲げ加工行
った。曲げ加工後、直ちにエアーブローによる風冷強化
と同時に実施例1と同じ吹き付け懸濁液を実施例1と同
じ方法で噴霧し、風冷強化と撥水処理を同時に行った。
このようにして厚みが約10nmの撥水膜を有する曲げ
強化ガラスが得られた。撥水膜はヘプタデカフルオロデ
シルトリメトキシシランの縮合体99重量%、とPTF
E1重量%から構成されていた。得られた撥水膜の撥水
性能評価は接触角測定、臨界傾斜角測定、摩擦係数測定
により行った。又膜の耐久性を調べる為に往復摩耗試験
を行った。結果は実施例2と同じであった。
Example 6 A soda lime glass substrate was placed in a horizontal strengthening furnace without being washed, heated to 650 ° C., and then subjected to gravity bending. Immediately after the bending work, the same blowing suspension as in Example 1 was sprayed by the same method as in Example 1 simultaneously with the air cooling strengthening by the air blow to simultaneously perform the air cooling strengthening and the water repellent treatment.
In this way, a bent tempered glass having a water repellent film with a thickness of about 10 nm was obtained. The water-repellent film is composed of 99% by weight of heptadecafluorodecyltrimethoxysilane condensate, and PTF.
It was composed of 1% by weight of E. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results were the same as in Example 2.

【0053】実施例7 実施例1と同様に液相成膜法でSiO2 を成膜したソー
ダライムガラス基板を未洗浄のまま水平強化炉中に入
れ、650℃になるまで加熱した後、自重曲げ加工行っ
た。曲げ加工後、直ちにエアーブローによる風冷強化と
同時に実施例1と同じ吹き付け懸濁液を実施例1と同じ
方法で噴霧し、風冷強化と撥水処理を同時に行った。こ
のようにして厚みが約10nmの撥水膜が得られた。撥
水膜はヘプタデカフルオロデシルトリメトキシシランの
縮合体99重量%、とPTFE1重量%から構成されて
いた。得られた撥水膜の撥水性能評価は接触角測定、臨
界傾斜角測定、摩擦係数測定により行った。又膜の耐久
性を調べる為に往復摩耗試験を行った。結果は実施例1
と同じであった。
Example 7 As in Example 1, a soda lime glass substrate on which SiO 2 was formed by the liquid phase film forming method was placed in a horizontal strengthening furnace without being washed, heated to 650 ° C., and then weighed by itself. Bending was performed. Immediately after the bending work, the same blowing suspension as in Example 1 was sprayed by the same method as in Example 1 simultaneously with the air cooling strengthening by the air blow to simultaneously perform the air cooling strengthening and the water repellent treatment. Thus, a water repellent film having a thickness of about 10 nm was obtained. The water-repellent film was composed of 99% by weight of a heptadecafluorodecyltrimethoxysilane condensate and 1% by weight of PTFE. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement. In addition, a reciprocating wear test was conducted to examine the durability of the film. Results are in Example 1.
Was the same as

【0054】実施例8 鉛含有クリスタルガラス製タンブラーを成形加工した
後、残留歪みを除去するために徐冷炉(電気炉)に入れ
一旦450℃に昇温させる。そして徐冷中ガラス温度が
約350℃になったところで実施例1と同じ吹き付け懸
濁液を実施例1と同じ方法で噴霧し、厚みが約10nm
の撥水膜が得られた。撥水膜はヘプタデカフルオロデシ
ルトリメトキシシランの縮合体90重量%、とPTFE
10重量%から構成されていた。この撥水膜は水の接触
角105°、オクタンの接触角82°を示し、撥水性能
のみならず撥油性能も合わせ持っていた。実際、グラス
を直接手で持った時の指紋の残りかたは、処理されてい
ないグラスに比べはるかに少なく、又口紅などが付着し
た場合でも処理されていないグラスに比べはるかに除去
しやすかった。撥水性能と撥油性能を合わせた防汚性能
として見た場合、処理したものの方が未処理のものに比
べて明らかに優れているといえる。
Example 8 After forming a lead-containing crystal glass tumbler, the tumbler is placed in a slow cooling furnace (electric furnace) to remove residual strain and is once heated to 450.degree. Then, during the slow cooling, when the glass temperature reached about 350 ° C., the same spraying suspension as in Example 1 was sprayed in the same manner as in Example 1, and the thickness was about 10 nm.
The water repellent film of was obtained. The water-repellent film is 90% by weight of heptadecafluorodecyltrimethoxysilane condensate, and PTFE.
It was composed of 10% by weight. This water-repellent film had a water contact angle of 105 ° and an octane contact angle of 82 °, and had not only water-repellent performance but also oil-repellent performance. In fact, when the glass was directly held by the hand, fingerprints remained much less than the untreated glass, and even when lipstick or the like adhered, it was much easier to remove than the untreated glass. From the viewpoint of antifouling performance combining water and oil repellency, it can be said that the treated one is obviously superior to the untreated one.

【0055】実施例9 点支持工法に用いるソーダライムガラス基板の4隅に穴
開け加工行った後、未洗浄のまま強化炉中に入れ、60
0〜700℃になるまで加熱した後、取り出して直ちに
エアーブローによる風冷強化を行った。そして板温が3
00〜450℃になったところで実施例1と同じ吹き付
け懸濁液を実施例1と同じ方法で噴霧し、厚みが約10
nmの撥水膜が得られた。撥水膜はヘプタデカフルオロ
デシルトリメトキシシランの縮合体99重量%、とPT
FE1重量%から構成されていた。得られた撥水膜の撥
水性能評価は接触角測定、臨界傾斜角測定、摩擦係数測
定により行った。又膜の耐久性を調べる為に往復摩耗試
験を行った。結果は実施例2と同じであった。
Example 9 After four holes were drilled in a soda-lime glass substrate used in the point support method, the soda-lime glass substrate was put into a tempering furnace without being washed, and 60
After heating to 0 to 700 ° C., it was taken out and immediately subjected to air cooling for strengthening by air blow. And the plate temperature is 3
When the temperature reached 00 to 450 ° C, the same spraying suspension as in Example 1 was sprayed in the same manner as in Example 1 to give a thickness of about 10
A water repellent film having a thickness of nm was obtained. The water-repellent film is 99% by weight of a heptadecafluorodecyltrimethoxysilane condensate, and PT
It was composed of 1% by weight of FE. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results were the same as in Example 2.

【0056】この撥水膜はオクタンの接触角80°を示
し、撥水性能のみならず撥油性能も合わせ持っていた。
従って撥水性能と撥油性能を合わせた防汚性能のとして
見た場合、処理したものの方が未処理のものに比べて優
れていると考えられる。
This water-repellent film showed an octane contact angle of 80 ° and had not only water-repellent performance but also oil-repellent performance.
Therefore, in terms of antifouling performance that combines water repellent performance and oil repellent performance, it is considered that the treated one is superior to the untreated one.

【0057】実施例10 フロート窯から出てきた連続帯状のソーダライムガラス
板の徐冷工程中、ガラス温度が300〜400℃になっ
たところで実施例1と同じ吹き付け懸濁液を実施例1と
同じ方法で噴霧し、厚みが約10nmの撥水膜が得られ
た。撥水膜はヘプタデカフルオロデシルトリメトキシシ
ランの縮合体99重量%とPTFE1重量%から構成さ
れていた。得られた撥水膜の撥水性能評価は接触角測
定、臨界傾斜角測定、摩擦係数測定により行った。又膜
の耐久性を調べる為に往復摩耗試験を行った。結果は実
施例2と同じであった。
Example 10 During the gradual cooling process of the continuous band-shaped soda lime glass plate coming out of the float kiln, the same spray suspension as in Example 1 was used as in Example 1 when the glass temperature reached 300 to 400 ° C. By spraying in the same manner, a water-repellent film having a thickness of about 10 nm was obtained. The water-repellent film was composed of 99% by weight of a heptadecafluorodecyltrimethoxysilane condensate and 1% by weight of PTFE. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results were the same as in Example 2.

【0058】この撥水膜はオクタンの接触角80°を示
し、撥水性能のみならず撥油性能も合わせ持っていた。
従って撥水性能と撥油性能を合わせた防汚性能として見
た場合、処理したものの方が未処理のものに比べて優れ
ていると考えられる。
This water-repellent film showed an octane contact angle of 80 ° and had not only water-repellent performance but also oil-repellent performance.
Therefore, when viewed as antifouling performance that combines water repellent performance and oil repellent performance, it is considered that the treated one is superior to the untreated one.

【0059】実施例11 SiO2 下地膜の形成 50mm×50mm×2mmのソーダライムシリケート
ガラス基板を実施例1と同じ方法で処理してSiO2
地膜を基板の表面に成膜した。
Example 11 Formation of SiO 2 Underlayer Film A 50 mm × 50 mm × 2 mm soda lime silicate glass substrate was treated in the same manner as in Example 1 to form an SiO 2 underlayer film on the surface of the substrate.

【0060】フルオロアルキルシラン・フッ素樹脂含有
ディップコート液の調製 ヘプタデカフルオロデシルトリメトキシシラン500
g、1規定塩酸500gを混合後、50℃で4日間保持
し加水分解物を得た。これと一次粒径 0.1μmの低分
子量PTFE50gを混合し350℃に加熱したものを
ディップコート液とした。
Preparation of Dip Coating Solution Containing Fluoroalkylsilane / Fluorine Resin Heptadecafluorodecyltrimethoxysilane 500
g and 1 N hydrochloric acid (500 g) were mixed, and the mixture was kept at 50 ° C. for 4 days to obtain a hydrolyzate. This was mixed with 50 g of low molecular weight PTFE having a primary particle size of 0.1 μm and heated to 350 ° C. to obtain a dip coating solution.

【0061】撥水膜の成膜 上記SiO2 下地膜を成膜したガラス基板を超音波洗浄
10分間、UV−オゾン洗浄3分間行った後、300〜
350℃に加熱した。上記ディップコート液を350℃
に加熱した浴の中に上記加熱ガラス基板を浸漬し、速度
100mm/分で引き上げた。室温まで冷却した後、基
板表面の余剰液を溶剤で除去して厚みが約10nmの撥
水膜が得られた。撥水膜はヘプタデカフルオロデシルト
リメトキシシランの縮合体99重量%、とPTFE1重
量%から構成されていた。得られた撥水膜の撥水性能評
価は接触角測定、臨界傾斜角測定、摩擦係数測定により
行った。又膜の耐久性を調べる為に往復摩耗試験を行っ
た。結果は実施例1と同じであった。
Formation of Water-Repellent Film The glass substrate on which the SiO 2 base film was formed was subjected to ultrasonic cleaning for 10 minutes and UV-ozone cleaning for 3 minutes, and then 300 to
Heated to 350 ° C. The dip coating solution is 350 ℃
The above-mentioned heated glass substrate was immersed in a bath heated to 1, and pulled up at a speed of 100 mm / min. After cooling to room temperature, the excess liquid on the substrate surface was removed with a solvent to obtain a water-repellent film having a thickness of about 10 nm. The water-repellent film was composed of 99% by weight of a heptadecafluorodecyltrimethoxysilane condensate and 1% by weight of PTFE. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results were the same as in Example 1.

【0062】実施例12 実施例1のフルオロアルキルシラン・フッ素樹脂含有吹
き付け液の調製においてPTFEのかわりに同量のFE
P(平均分子量;10000)を用いた以外は実施例1
と同様の操作を行った。得られた撥水膜の撥水性能評価
は実施例3と同様に接触角測定、臨界傾斜角測定、摩擦
係数測定により行った。又膜の耐久性を調べる為に往復
摩耗試験を行った。結果を合わせて表2に示す。
Example 12 The same amount of FE was used instead of PTFE in the preparation of the fluoroalkylsilane / fluorine resin-containing spray solution of Example 1.
Example 1 except that P (average molecular weight; 10,000) was used
The same operation was performed. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement as in Example 3. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results are shown together in Table 2.

【0063】[0063]

【表2】 [Table 2]

【0064】実施例13 実施例1のフルオロアルキルシラン・フッ素樹脂含有吹
き付け液の調製においてPTFEのかわりに同量のPF
A(平均分子量:10000)を用いた以外は実施例1
と同様の操作を行った。得られた撥水膜の撥水性能評価
は実施例3と同様に接触角測定、臨界傾斜角測定、摩擦
係数測定により行った。又膜の耐久性を調べる為に往復
摩耗試験を行った。結果を合わせて表2に示す。
Example 13 In the preparation of the fluoroalkylsilane / fluorine resin-containing spray liquid of Example 1, the same amount of PF was used instead of PTFE.
Example 1 except that A (average molecular weight: 10,000) was used
The same operation was performed. The water-repellent performance of the obtained water-repellent film was evaluated by contact angle measurement, critical tilt angle measurement, and friction coefficient measurement as in Example 3. In addition, a reciprocating wear test was conducted to examine the durability of the film. The results are shown together in Table 2.

【0065】[0065]

【発明の効果】以上説明したように、本発明の撥水性ガ
ラス物品はフルオロアルキルシラン化合物からなる従来
の撥水性ガラスに比べて、初期の臨界傾斜角、摩耗耐久
性に優れ、かつ撥油性、防汚性をも有することは明らか
である。
As described above, the water-repellent glass article of the present invention is superior to the conventional water-repellent glass made of a fluoroalkylsilane compound in the initial critical inclination angle, abrasion resistance, and oil repellency. It is clear that it also has antifouling properties.

【0066】従って本発明による撥水性ガラスは自動車
等の風防ガラス、建築用ウィンドー、水槽、船底窓及び
防音壁等の道路用パネル、ガラス食器、ガラス装飾品等
に好適に使用することができる。
Therefore, the water-repellent glass according to the present invention can be suitably used for windshields for automobiles, architectural windows, water tanks, road panels such as bottom windows and soundproof walls, glass tableware, and glass ornaments.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の撥水性ガラスの1実施例の構成を概念
的に示す断面図である。
FIG. 1 is a sectional view conceptually showing the structure of one embodiment of the water-repellent glass of the present invention.

【図2】本発明の撥水性ガラス構成を概念的に示す断面
図である。
FIG. 2 is a sectional view conceptually showing the water-repellent glass structure of the present invention.

【図3】本発明の撥水性ガラス構成を概念的に示す断面
図である。
FIG. 3 is a sectional view conceptually showing the water-repellent glass structure of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 酸化珪素膜 3 撥水層 1 glass substrate 2 silicon oxide film 3 water repellent layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月29日[Submission date] May 29, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 [(Rf 2Q)aSi(R1)b(NR3)(4-a-b)/2]m・[(Rf 2Q)cSi(R2)d(R3)eO(4-c-d-e)/2]n (2) ただし、R1、R2:同一でも異なっていてもよく、水素
原子または炭素原子数1〜20よりなる非置換もしくは
置換の1価炭化水素基 R3:水素原子またはアルキル基 Rf 2:炭素原子数1〜20のパーフルオロアルキル基ま
たは炭素原子数2〜35のパーフルオロアルキルエーテ
ル基 Q:−(CH2y− (yは2〜5の整数) a:1〜3の整数 b:0〜2の整数であり、かつa+bは1〜3である。 c:0〜2の整数 d:1〜3の整数であり、かつc+dは1〜3である e:0〜3の数で、好ましくは0.01〜0.5の小数 m,n:1以上の整数
[(R f 2 Q) a Si (R 1 ) b (NR 3 ) (4-ab) / 2 ] m・ [(R f 2 Q) c Si (R 2 ) d (R 3 ) e O (4-cde) / 2 ] n (2) where R 1 and R 2 may be the same or different and each is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms. R 3: a hydrogen atom or an alkyl group R f 2: perfluoroalkyl ether group of a perfluoroalkyl group or a -C 2-35 carbon atoms 1~20 Q :-( CH 2) y - (y is 2 An integer of 5) a: an integer of 1 to 3 b: an integer of 0 to 2, and a + b is 1 to 3. c: an integer of 0 to 2 d: an integer of 1 to 3, and c + d is 1 to 3 e: a number of 0 to 3, preferably a decimal number of 0.01 to 0.5 m, n: 1 Greater than or equal to integer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基材の表面にフルオロアルキルシ
ラン化合物の縮合体およびフッ素樹脂を含有する撥水膜
を有する撥水性ガラス物品。
1. A water-repellent glass article having a water-repellent film containing a condensate of a fluoroalkylsilane compound and a fluororesin on the surface of a glass substrate.
【請求項2】 前記撥水膜中で、フルオロアルキルシラ
ン化合物の縮合体に対してフッ素樹脂が0.01〜30
重量%含まれている請求項1記載の撥水性ガラス物品。
2. The fluororesin is contained in the water-repellent film in an amount of 0.01 to 30 relative to the condensate of the fluoroalkylsilane compound.
The water-repellent glass article according to claim 1, wherein the water-repellent glass article is contained by weight.
【請求項3】 前記撥水膜は4nm〜1000nmの厚
みを有する請求項1記載の撥水性ガラス物品。
3. The water repellent glass article according to claim 1, wherein the water repellent film has a thickness of 4 nm to 1000 nm.
【請求項4】 前記ガラス基材と前記撥水膜との間に、
珪素酸化物を主成分とする膜を有する請求項1記載の撥
水性ガラス物品。
4. Between the glass substrate and the water repellent film,
The water-repellent glass article according to claim 1, which has a film containing silicon oxide as a main component.
【請求項5】 前記珪素酸化物を主成分とする層はシリ
カ微粒子を含有する請求項1記載の撥水性ガラス物品。
5. The water-repellent glass article according to claim 1, wherein the layer containing silicon oxide as a main component contains silica fine particles.
【請求項6】 高温に加熱したガラス基材の表面に、フ
ルオロアルキルシラン化合物の加水分解物およびフッ素
樹脂を含有する液を噴霧することを特徴とする撥水膜を
有する撥水性ガラス物品の製造方法。
6. A process for producing a water-repellent glass article having a water-repellent film, which comprises spraying a liquid containing a hydrolyzate of a fluoroalkylsilane compound and a fluororesin on the surface of a glass substrate heated to a high temperature. Method.
JP7124098A 1995-05-23 1995-05-23 Water-repellent glass article and its production Pending JPH08319137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124098A JPH08319137A (en) 1995-05-23 1995-05-23 Water-repellent glass article and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124098A JPH08319137A (en) 1995-05-23 1995-05-23 Water-repellent glass article and its production

Publications (1)

Publication Number Publication Date
JPH08319137A true JPH08319137A (en) 1996-12-03

Family

ID=14876880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124098A Pending JPH08319137A (en) 1995-05-23 1995-05-23 Water-repellent glass article and its production

Country Status (1)

Country Link
JP (1) JPH08319137A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182189A (en) * 1996-12-25 1998-07-07 Toto Ltd Window glass for building
JPH10265242A (en) * 1997-03-24 1998-10-06 Showa Alum Corp Transparent and water-repellent coating film and its production
JPH11258405A (en) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd Antireflection film
JP2008007365A (en) * 2006-06-28 2008-01-17 Kagawa Univ Solar energy utilization equipment and method for manufacturing the same
JP2008007363A (en) * 2006-06-28 2008-01-17 Kagawa Univ Water-repellent, oil-repellent and antifouling glass plate, method for manufacturing the same, and transport equipment, building and optical instrument using the same
JP2008156157A (en) * 2006-12-22 2008-07-10 Kagawa Univ Water repellent oil repellent antifouling glass plate, method of manufacturing the same and vehicle and building using the same
JP2008156155A (en) * 2006-12-22 2008-07-10 Kagawa Univ Water repellent oil repellent antifouling glass plate, method of manufacturing the same and vehicles and buildings using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182189A (en) * 1996-12-25 1998-07-07 Toto Ltd Window glass for building
JPH10265242A (en) * 1997-03-24 1998-10-06 Showa Alum Corp Transparent and water-repellent coating film and its production
JPH11258405A (en) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd Antireflection film
JP2008007365A (en) * 2006-06-28 2008-01-17 Kagawa Univ Solar energy utilization equipment and method for manufacturing the same
JP2008007363A (en) * 2006-06-28 2008-01-17 Kagawa Univ Water-repellent, oil-repellent and antifouling glass plate, method for manufacturing the same, and transport equipment, building and optical instrument using the same
JP4654443B2 (en) * 2006-06-28 2011-03-23 国立大学法人 香川大学 Manufacturing method of solar energy utilization device
JP4670057B2 (en) * 2006-06-28 2011-04-13 国立大学法人 香川大学 Method for producing water and oil repellent antifouling glass plate
JP2008156157A (en) * 2006-12-22 2008-07-10 Kagawa Univ Water repellent oil repellent antifouling glass plate, method of manufacturing the same and vehicle and building using the same
JP2008156155A (en) * 2006-12-22 2008-07-10 Kagawa Univ Water repellent oil repellent antifouling glass plate, method of manufacturing the same and vehicles and buildings using the same

Similar Documents

Publication Publication Date Title
TW315359B (en)
US8092913B2 (en) Hydrophobic coating comprising a priming including a bis-silane and a hydrophobic layer including a fluorinated alkysilane
JPH05170486A (en) Water repellent for glass surface and water-repellent glass
JPH11100234A (en) Defogging article and its production
US6884512B2 (en) Article superior in making waterdrops slip down surface thereof and process for producing such article
WO2006011605A1 (en) Anti-fogging article and process for producing the same
US7452605B2 (en) Article superior in slipping waterdrops down surface thereof
JP3454110B2 (en) Water repellent glass
JPH08319137A (en) Water-repellent glass article and its production
JP4826226B2 (en) Treatment agent for obtaining water slidable film and method for producing water slidable film
JP4876424B2 (en) Manufacturing method for water slidable articles
JPH11322368A (en) Solution for forming water repellent film
JP4014532B2 (en) High water-sliding film and method for forming the same
JP2758330B2 (en) Water-repellent agent, water-repellent substrate and method for producing the same
JPH0913018A (en) Composition for water-repellent coating film and water-repellent glass
JPH1059745A (en) Water repellent glass and its production
JPH08319136A (en) Production of water-repellent glass article
JP3961349B2 (en) High durability sliding coating and method for producing the same
JPH05319868A (en) Water repellent for glass substrate and treatment for water repellency
JPH05319867A (en) Water repellent for glass substrate and treatment for water repellency
KR100216869B1 (en) Water-repellent glass and its method
JP3444524B2 (en) Article and glass article having water- and oil-repellent coating
JP4152769B2 (en) Method for producing highly durable water slidable coating
JP2001059070A (en) Production of article covered with water-repellent film, article covered with water-repellent film and liquid composition for covering of water-repellent film
JP3929328B2 (en) High water-sliding coating and coating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070319