JP2012084491A - 色収差も小さく抑えた球面収差補正電子顕微鏡 - Google Patents

色収差も小さく抑えた球面収差補正電子顕微鏡 Download PDF

Info

Publication number
JP2012084491A
JP2012084491A JP2010240130A JP2010240130A JP2012084491A JP 2012084491 A JP2012084491 A JP 2012084491A JP 2010240130 A JP2010240130 A JP 2010240130A JP 2010240130 A JP2010240130 A JP 2010240130A JP 2012084491 A JP2012084491 A JP 2012084491A
Authority
JP
Japan
Prior art keywords
electron
electron beam
prism
kev
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010240130A
Other languages
English (en)
Inventor
Sadao Nomura
節生 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010240130A priority Critical patent/JP2012084491A/ja
Publication of JP2012084491A publication Critical patent/JP2012084491A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 エネルギー幅の小さい電子ビームを造り、球面収差補正電子顕微鏡の分解能を更に向上させる。
【解決手段】 電子銃2と観察用試料11との間に電子線用プリズム3と分散角増幅用レンズ6とアパーチャ8とを設け、該プリズムによって電子線軌道のエネルギー分散を発生させ、分散角増幅用レンズによって分散角を増幅し、その後ろに設けたアパーチャを通り抜ける電子線のみを使って観察用試料の顕微鏡像を作成する。
【選択図】図1

Description

本発明は高分解能の電子顕微鏡を製作するための設計技術に関するものである。
電子顕微鏡像の分解能は電子線の回折によって発生する像のボケと電子線集束用レンズが発生する球面収差によるボケ、ならびに、利用する電子ビームのエネルギーのバラツキによって発生する色収差によるボケが合成されたボケの大きさで決まる。1990年代に電子顕微鏡用の球面収差補正装置が開発された結果、その装置を顕微鏡に搭載すると球面収差によるボケはゼロにすることができるようになった。その結果、電子顕微鏡像の分解能は同装置を搭載しない顕微鏡の約1.5倍に向上した。分解能を更に向上させるためには、回折によるボケを小さくする、あるいは、色収差によるボケを小さくする必要がある。回折によるボケを小さくするにはレンズの開口を大きくすることが有効である。 ところが、レンズの開口を大きくすると開口径に比例して色収差も大きくなるので電子顕微鏡においては分解能を向上させる効果は無い。そこで利用する電子線のエネルギーのバラツキを小さくして色収差によるボケを小さくし、よって開口径の大きいレンズを使えるようにすることが球面収差補正電子顕微鏡の分解能をさらに向上させるための唯一の手段となる。
電子線技術の分野で使われる用語、電子線の「色」、は電子線の有する「エネルギー」を意味している。電子源が発生する電子線は種々の大きさのエネルギーを含んでいる。 そのバラツキ方の範囲を「エネルギー幅」と呼んでいるが、エネルギー幅の大きさは利用する電子源を選べば決まってしまう電子源固有の量であり、LaB6電子源では1.3eV、ZrOをWに塗布したショットキー電子源では0.6eV、室温で電子放出が出来る冷陰極フィールドエミッション電子源では0.2eVの程度と推定されている。そこで、色収差の小さい電子顕微鏡を得たい場合には、従来は、それに使う電子源としては、なるべく小さいエネルギー幅の電子線を放出する電子源を使うようにしてきた。 現在のところ、電子顕微鏡に実用されている電子源のうちで最も小さいエネルギー幅の電子線を放出する電子源は上記の様に冷陰極フィールドエミッション電子源である。 0.2eV以下のエネルギー幅の電子線を得ようとすると、新しい電子放出原理に基づいて電子放出を行う電子源を開発する必要があり、それに対する研究もなされているが、現在のところはまだ実用可能な段階には至っていない。以上に述べた、電子ビームの作成方法に関する従来技術の背景の下で、本発明の目的は0.2eV以下のエネルギー幅を有する電子ビームを作成し、それを使うことによって球面収差補正電子顕微鏡像の分解能を更に向上させることである。
本発明は0.2eVより小さいエネルギー幅の電子線を電子顕微鏡像の形成に利用することが出来るようにすることを課題とする。
上記の課題を解決するために請求項1記載の色収差も小さく抑えた球面収差補正電子顕微鏡では電子銃と観察用試料との間に電子線用プリズムとそのプリズムが生み出した電子線軌道の分散の程度を増幅する分散角増幅用電子レンズと細孔を有する金属板(アパーチャ)とを設け、電子銃が発射した電子線のうち、そのアパーチャを通り抜ける電子線のみが試料を照射するようにした。
本発明は[表1]に示すような効果を奏する。[表1]は、球面収差補正装置を搭載していない通常の電子顕微鏡と球面収差補正装置を搭載した球面収差補正電子顕微鏡と本発明の、色収差も小さく抑えた球面収差補正電子顕微鏡とが与える分解能を比較している。比較は200keVに加速した電子線を試料に照射してその透過電子像を観察する透過型電子顕微鏡(以下、200kV−TEMと記す)と1keVのエネルギーで試料を照射して試料を観察する走査型電子顕微鏡(以下、1kV−SEMと記す)に対して行っている。本発明の電子顕微鏡の構成要素に関しては後ほど[発明を実施するための形態]の部分で詳しく述べるが、[表1]に記した電子顕微鏡においてはいずれの電子顕微鏡においても冷陰極フィールドエミッション電子銃により電子線を発射している。また、200kV−TEMの対物レンズには磁極間隔3mm、磁極孔径3mmの磁界レンズを使用し、観察用試料は磁極の中央に設置して観察する。1kV−SEMの対物レンズには、試料の作動距離が5mmで、5kVの減速用電界と電子線集束用磁界とを利用する電界磁界重畳型対物レンズを使用している。[表1]が示すように本発明により、これらの電子顕微鏡では従来の球面収差補正電子顕微鏡に比べて約3倍高い分解能で試料の観察が出来るようになった。
Figure 2012084491
本発明をSEMに応用した場合の構成要素の配置方法を光学素子(レンズ、プリズム、球面収差補正用凹レンズ)を表す記号を使って説明した図である。 本発明をTEMに応用した場合の構成要素の配置方法を光学素子を表す記号を使って説明した図である。 本発明に利用した電子線用プリズムの断面とプリズム内外での電子軌道を描いてプリズムによる電子軌道の分散の原理を説明した図である。 電子線プリズムと分散角増幅用電子レンズとの断面と電子軌道とを描き、分散角の増幅原理を説明した図である。 TEMに応用した場合の本発明の1実施例として、本発明の構成要素とその配置を示す図である。(実施例1) 図5に示した実施例の動作を説明するため、計算機シミュレーション法により種々のエネルギーを持った電子線の軌道を求め、描いた図である。(実施例1) SEMに応用した場合の本発明の1実施例として、本発明の構成要素とその配置を示す図である。(実施例2) 図7に示した実施例の動作を説明するため、計算機シミュレーション法により種々のエネルギーを持った電子線の軌道を求め、描いた図である。(実施例2)
まず、本発明の原理とするところをプリズムやレンズなどの光学素子を表す記号を使って説明する。 図1は本発明を球面収差補正SEMに応用する場合の構成要素とエネルギーの異なる2本の電子線の軌道を描いている。電子源1から発射された電子線は電子銃2により光軸に平行に進む電子線となって電子線用プリズム3に入る。プリズムは電子線のエネルギーの違いにより、違った屈折角で電子線を屈折させるので、丁度、光のプリズムでは白色光が赤色光から紫色光に分かれるように、電子線の間には分散が生じる。 図では3がエネルギーがEの電子線4とエネルギーがEの電子線5とに分散角αで分散している様子を描いている。 これらの電子線は分散角増幅用レンズ6にはいる。6は分散角をβに増幅する。電子線はコンデンサーレンズ7に入り光軸に平行に進行する電子ビームに整形される。7の後には、アパーチャ(絞り)8が設置されており、EとEの間の大きさのエネルギーを有する電子線のみが8に開けられた孔を通り抜けることが出来る。小さい直径の孔を有するアパーチャを使えば、EとEの差が小さい、すなわち、単色性の高い電子ビームが8の後に造られる。 8を通り抜けた電子ビームは球面収差補正装置9に入り対物レンズ10によって観察用試料11に焦点を結ぶ。
図2は本発明を球面収差補正TEMに応用する場合の構成要素とエネルギーの異なる2本の電子線、ならびに、観察用試料で散乱してTEM像の作成に使われる電子線12を描いている。図1との違いは9と10とが11の後方に設置されることである。 電子線が11を透過し、透過する際に散乱した電子線は10によって光軸にほぼ平行な電子線となるように屈折する。 その電子線は9によって球面収差が除去された後、投射レンズ13によって観察用スクリーン14の上に焦点を結ぶ。SEMにおいてもTEMにおいても本発明を実施するために必要な条件は3と6と8とを不可欠の構成要素とし、それらを電子源と観察用試料との間に設置することである。
次に、本発明の実施例に用いた磁界型の電子線用プリズムの電子線分散原理と分散によって産み出された分散角を増幅する方法について述べる。電子線用プリズムには磁界型プリズム、電界型プリズム、電磁界重畳形プリズムがある。図3は本発明に利用した磁界型電子線用プリズムを構成する磁極の形状、ならびにその寸法とプリズムの中を走行するエネルギーが240keVの電子線15,200keVの電子線16,160keVの電子線17、の軌道を描いた図である。プリズムは平行平板磁極で作られた2組の電磁石、(磁石−1、18、磁石−2、19)で構成されている。18の磁極間には励起電源により磁束密度0.05Wb/mの磁界が発生さされており、19には0.10Wb/mの磁界が発生している。 200keVの電子線は、18の内部では半径が30mmの円運動を行い、19の内部では半径が15mmの円運動を行う。 一方、15と17は、それぞれ、18の内部では回転半径32.9mm,26.8mmの円運動を行い、19の内部では16.5mm,13.4mmの円運動を行う。これら3つの電子線は光軸に沿って定義した距離の座標、z=−15mmに置かれた点電子源から1mradの角度で放出され、プリズムに入るまでは同一軌道を走行していた電子線ではあるが、プリズムに入ると、エネルギーの違いによってプリズム内部での回転半径が異なるため次第に軌道が分散し、プリズムを出るときには15と17とでは同図に記入したように進行方向が0.41rad違うようになる。すなわち、プリズムはこれらの電子線を分散角0.41radで分散させている。 同図の中に描いたように、z=30mmの位置に直径が7mmのアパーチャを設けると点電子源からは種々の大きさのエネルギーの電子線を発生していても、240keVと160keVの範囲にあるエネルギーの電子線のみがアパーチャを通り抜けることが出来、アパーチャの後方には、200keVのエネルギーをその中心として80keVのエネルギー幅を持った電子ビーム20が造られる。 この位置に直径0.01μmのアパーチャを置くと中心エネルギーが200keV,エネルギー幅が0.1eVの電子ビームを作成することが出来る計算になるが、金属板に直径0.01μmの孔をあけることは不可能である。分散角を増幅してもっと大きなアパーチャを使えるようにすることが必要である。
分散角の増幅はプリズムの後方に電子レンズを設けることによって可能となる。
図4は電子線用プリズムの後方に孔径3mm、磁極間隔3mmの磁極対で作られた分散角増幅用レンズ6を設けて分散角を増幅した分散角増幅の実施例を示している。
図4は6を17A/√Vに励起すると、電子線プリズムが産み出した0.41radの分散角が2.5radに増幅される様子を示している。z=60mmの位置に直径0.2μmのアパーチャを設けると中心エネルギーが200keV,ネルギー幅が0.1eVの電子ビームを作成することが出来る。しかしながら直径0.2μmの孔を金属板に設けることも現在では、まだ、難しい。分散角をさらに増幅する必要がある。
この磁界レンズの後方に、さらに他の磁界レンズを設け、2.5radの分散角を30倍に増幅すると直径6μmのアパーチャを使うことによって中心エネルギーが200keV,エネルギー幅が0.1eVの電子ビームを作成することが出来る。 さらに、そのレンズの後方に磁界レンズを設け、分散角をさらに10倍増幅するとエネルギー幅が0.01eVの電子ビームを作成することが出来るようになる。 以下に示す本発明の実施例では、分散角を増幅するために設けた複数のレンズ群のことを分散角増幅用レンズと呼んでいる。分散角増幅用レンズを設けるとその励起条件を選ぶことにより、増幅率を違え、任意の大きさのエネルギー幅を持った電子ビームを作成できる利点も発生する。従来の電子ビーム装置では、作成する電子ビームのエネルギー幅は使用する電子源に固有なものであってエネルギー幅を任意の値に設定することは出来なかった。たとえば、LaB6電子源を使って電子ビームを作るとそのエネルギー幅は約1.3eV、ZrOをWに塗布したショットキー電子源を使えば0.6eV、冷陰極フィールドエミッション電子源を使えば0.2eVのエネルギー幅の電子ビームしか造れなかったことはすでに[背景技術]の部分で述べたところである。。
図5は200kV球面収差補正TEMに応用した本発明の実施の1形態である。[図2]に示した原理図と同じ順序に構成要素が配置されている。6は高い分散角増幅率を与えるよう、3段の磁界レンズで構成されている。これらのレンズはz=100mm,z=200mm,z=300mmの位置に置かれ、それぞれ1.2A/√V、30A/√V、30A/√Vに励起されている。
電子銃は1と2枚の制御電極で構成され、1には−200kVの電圧が、2枚の制御電極にはそれぞれ、−195kV,−152kVの電圧が印加されている。 3は図3で示したプリズムである。
z=400mmの位置に7が設けられている。7は1.2A/√Vに励起されている。z=430mmの位置に直径60μmの細孔を有する8が設けられている。この細孔を通り抜ける電子線のみがz=500mmに置かれた11を照射する。11を透過し、透過する際に散乱した電子線は10により光軸に対してほぼ平行に走行するように集束され、9に入る。9で、10の発生する球面収差が取り除かれる。9を出た電子線は12に入る。12は散乱した電子線群を13の上に集束させ、球面収差によるボケの無いTEM像を形成する。
図6は図5に構造図を示した本発明の実施例1において1から光軸に対する角度が2.4mradで放出され、2によって(200keV−0.015eV),(200keV−0.01eV),200keV,(200keV+0.01eV),(200keV+0.015eV)に加速された電子線、21、22、23、24、25の8に至るまでの電子線軌道を計算機シミュレーション法により求め、描いた電子線軌道図である。プリズムに入るまでは、ほぼ、同一軌道をたどっていたこれらの電子線は、3でエネルギーの違いに応じて分散し、更に6によって分散角が5700倍に増幅されて7に入る。エネルギーが(200keV−0.01eV)と(200keV+0.01eV)の範囲にある電子線のみが8を通り抜けることが出来る。 それらの電子線は中心エネルギーが200keV,エネルギー幅が0.02eVの電子ビーム26を形成している。この、円筒状の電子ビームがTEMの観察用試料を照射する。従来の電子顕微鏡に使われてきた電子ビームの内で最も小さいエネルギー幅を有する電子ビームのエネルギー幅は0.2eVであるから、本発明により、従来に比べて10倍単色性に優れた電子ビームをTEM像の形成に利用することが出来るようになった。
図7は1kV球面収差補正SEMに応用した本発明の実施の1形態である。
TEMは観察用試料に電子線を照射し、透過した電子線の作る観察用試料の像を対物レンズ、ならびに投射レンズで拡大して観察用スクリーンの上に投影する装置であった。 一方SEMは電子源の像を対物レンズで縮小し、観察用試料に投影する装置である。そのため球面収差補正SEMに本発明を応用する場合には、電子源とプリズムと球面収差補正装置と対物レンズと観察用試料とをこの順序に並べる。 球面収差補正TEMにおいても球面収差補正SEMにおいても本発明を応用する場合にはプリズムを電子銃と観察用試料との間に設ける必要性は変わらない。また、分散角増幅用レンズも本発明に不可欠の構成要素である。
低加速SEMでは対物レンズで発生する色収差を小さくするために観察用試料に比べて対物レンズの電位を高くして使用することが多い。図7では、電子源から引き出した電子線を2により、6keVのエネルギーに加速し、3,6,7,8,9,10を通過させた後、1keVのエネルギーに減速して11を照射するようにしている。すなわち、電子源には−6kVの電圧を、観察用試料には−5kVの電圧を印加している。また、10にはスノーケル型の対物レンズを使用している。10の先端と11との距離、すなわち、観察用試料の作動距離は5mmである。 また、6を構成する磁界レンズ、ならびに7の磁界レンズには磁極間隔が3mm、磁極孔径が3mmの磁界レンズが使われている。対物レンズや電極を励起するに必要な励起条件は図7に記入されている。8には直径120μmの細孔が開けられており、この細孔が試料を照射する電子ビームのエネルギー幅を決めている。
図8は図7に示した1kV球面収差補正SEMにおいてエミッタから光軸に対する角度が0.2mradで放出され、2によって(6keV−0.005eV),6keV,(6keV+0.005eV),(6keV+0.010eV),(6keV+0.015eV)に加速された電子線、27,28,29,30,31の11に至るまでの電子線軌道を計算機シミュレーション法により求め、描いている。電子銃を出るまではほぼ同一軌道をたどっていたこれらの電子線は、3でそのエネルギーに応じて分散し、更に6によって分散角が860倍に増幅されて8を照射する。エネルギーが6keVと(6keV+0.01eV)の範囲にある電子線のみが直径120μmの細孔を有する8を通り抜ける。それらの電子線は9に入り、さらに、76A/√Vに励起された10と10と11の間に形成された5kVの減速電界により集束、かつ、減速され、11を照射する。 8の細孔によるエネルギー選択作用と5kVの減速電界作用とによって中心エネルギーが(1keV+0.005eV)でエネルギー幅が0.01eVの電子ビーム32が作られ、そのビームが11を照射している。 32は[図8]の中に、灰色に着色した部分として示した。 この実施例は、本発明により、冷陰極フィールドエミッション電子源を使って作成された電子ビームに比べてそのエネルギー幅が1/20に小さい電子ビームが低加速SEMに利用することができるようになったことを示している。
近年LSI素子の微細化の必要性に伴い、電子ビームやイオンビームを使って微細加工を行う装置においても加工精度を高めるためなるべく細いビームを使うことが求められている。電子ビーム加工機やイオンビーム加工機はSEMの原理で造られている。 SEMの分解能は加工機のビーム細さに対応する。したがって本発明をビーム加工機に応用すれば、より高い精度で加工する装置が得られる。 イオンビーム応用装置に本発明を利用する場合には静電レンズでプリズムと球面収差補正装置とを造る必要がある。
1・・・電子源 2・・・電子銃 3・・・電子線用プリズム 4・・・エネルギーがEの電子線 5・・・エネルギーがEの電子線 6・・・分散角増幅用レンズ 7・・・コンデンサーレンズ 8・・・アパーチャ 9・・・球面収差補正装置 10・・・対物レンズ 11・・・観察用試料 12・・・TEM像の作成に使われる電子線 13・・・投射レンズ 14・・・観察用スクリーン 15・・・エネルギーが240keVの電子線 16・・・200keVの電子線 17・・・160keVの電子線 18・・・磁石−1 19・・・磁石−2 20・・・80keVのエネルギー幅を持った電子ビーム 21・・・(200keV−0.015eV)に加速された電子線 22・・・(200keV−0.010eV)に加速された電子線 23・・・200keVに加速された電子線 24・・・(200keV+0.01eV)に加速された電子線 25・・・(200keV+0.015eV)に加速された電子線 26・・・エネルギーが200keV,エネルギー幅が0.02eVの電子ビーム 27・・・(6keV−0.005eV)に加速された電子線 28・・・6keVに加速された電子線 29・・・(6keV+0.005eV)に加速された電子線 30・・・(6keV+0.010eV)に加速された電子線 31・・・(6keV+0.015eV)に加速された電子線 32・・・中心エネルギーが(6keV+0.005eV)でエネルギー幅が0.01eVの電子ビーム

Claims (1)

  1. 電子銃と電子線制御用電子レンズと球面収差補正装置と観察用試料とを備えた電子顕微鏡において、該電子銃と該観察用試料との間に電子線用プリズムと該電子線用プリズムが産む電子軌道の分散の程度を増幅する分散角増幅用電子レンズと、細い間隙もしくは細孔を有する金属板とを設け、電子銃が発射した電子線のうち、該間隙もしくは該細孔を通り抜ける電子線のみで試料を照射することによって電子顕微鏡像の色収差を低減することを特徴とする、色収差も小さく抑えた球面収差補正電子顕微鏡。
JP2010240130A 2010-10-08 2010-10-08 色収差も小さく抑えた球面収差補正電子顕微鏡 Pending JP2012084491A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240130A JP2012084491A (ja) 2010-10-08 2010-10-08 色収差も小さく抑えた球面収差補正電子顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240130A JP2012084491A (ja) 2010-10-08 2010-10-08 色収差も小さく抑えた球面収差補正電子顕微鏡

Publications (1)

Publication Number Publication Date
JP2012084491A true JP2012084491A (ja) 2012-04-26

Family

ID=46243131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240130A Pending JP2012084491A (ja) 2010-10-08 2010-10-08 色収差も小さく抑えた球面収差補正電子顕微鏡

Country Status (1)

Country Link
JP (1) JP2012084491A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032943A (ja) * 2012-08-03 2014-02-20 Sadao Nomura エネルギー幅の小さい電子ビームを試料に照射する走査型電子顕微鏡。
EP3594988A1 (en) * 2018-07-12 2020-01-15 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH High performance inspection scanning electron microscope device and method of operating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032943A (ja) * 2012-08-03 2014-02-20 Sadao Nomura エネルギー幅の小さい電子ビームを試料に照射する走査型電子顕微鏡。
EP3594988A1 (en) * 2018-07-12 2020-01-15 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH High performance inspection scanning electron microscope device and method of operating the same
TWI712069B (zh) * 2018-07-12 2020-12-01 德商Ict積體電路測試股份有限公司 帶電粒子束佈置、掃描電子顯微鏡裝置及其操作方法

Similar Documents

Publication Publication Date Title
TWI650550B (zh) 用於高產量電子束檢測(ebi)的多射束裝置
US10056228B2 (en) Charged particle beam specimen inspection system and method for operation thereof
US8785879B1 (en) Electron beam wafer inspection system and method of operation thereof
TW201833968A (zh) 用於檢查試樣之方法以及帶電粒子多束裝置
US9799483B2 (en) Charged particle beam device and detection method using said device
CN106711003B (zh) 一种电子源产生装置及电子束控制方法
TWI712069B (zh) 帶電粒子束佈置、掃描電子顯微鏡裝置及其操作方法
US6380546B1 (en) Focusing assembly and method for a charged particle beam column
JP2017199606A (ja) 荷電粒子線装置
JP2023110072A (ja) 走査型電子顕微鏡および走査型電子顕微鏡の2次電子検出方法
JP2007095576A (ja) 荷電粒子線装置および荷電粒子線フォーカス制御方法
CN113471042B (zh) 扫描电子显微镜装置和电子束检测设备
US20160013012A1 (en) Charged Particle Beam System
JP2012084491A (ja) 色収差も小さく抑えた球面収差補正電子顕微鏡
JP2006221870A (ja) 電子線装置
US10665423B2 (en) Analyzing energy of charged particles
JP3968338B2 (ja) 荷電ビーム露光装置
JP6419849B2 (ja) 荷電粒子線装置
JP6432905B2 (ja) リターディングを用いたエネルギーアナライザ・モノクロメータ
JP6814301B2 (ja) 電子銃および電子ビーム応用装置
JP2014032943A (ja) エネルギー幅の小さい電子ビームを試料に照射する走査型電子顕微鏡。
JP2018190731A (ja) 粒子ビームを生成するための粒子源及び粒子光学装置
US20230065475A1 (en) Particle beam system with multi-source system and multi-beam particle microscope
JP2012173008A (ja) 光電子顕微鏡
TW202318469A (zh) 源轉換單元、多射束裝置及組態多射束裝置之方法