JP2012083523A - Drive unit for display device - Google Patents

Drive unit for display device Download PDF

Info

Publication number
JP2012083523A
JP2012083523A JP2010229374A JP2010229374A JP2012083523A JP 2012083523 A JP2012083523 A JP 2012083523A JP 2010229374 A JP2010229374 A JP 2010229374A JP 2010229374 A JP2010229374 A JP 2010229374A JP 2012083523 A JP2012083523 A JP 2012083523A
Authority
JP
Japan
Prior art keywords
potential
switching means
signal line
target
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010229374A
Other languages
Japanese (ja)
Other versions
JP5775284B2 (en
Inventor
Hideaki Hasegawa
秀明 長谷川
Hiroyoshi Ichikura
宏嘉 一倉
Kazuhide Aoyama
一秀 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2010229374A priority Critical patent/JP5775284B2/en
Priority to US13/249,626 priority patent/US9070340B2/en
Priority to CN201110307813.1A priority patent/CN102446485B/en
Publication of JP2012083523A publication Critical patent/JP2012083523A/en
Application granted granted Critical
Publication of JP5775284B2 publication Critical patent/JP5775284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly increase the operating speed of a drive unit for a display device while restraining wasteful consumption of power.SOLUTION: The drive unit for the display device comprises: a plurality of PMOS transistors 52 and NMOS transistors 54 between a decoder circuit 36 for switching the potential of a output signal line 60 to a target potential corresponding to display data and the display device to which the potential of the output signal line 60 is supplied as a data voltage, the PMOS transistors 52 being configured to connect the output signal line 60 to a power source until the potential of the output signal line 60 reaches a gate potential, the NMOS transistors 54 being configured to connect the output signal line 60 to a ground line until the potential of the output signal line 60 reaches the gate potential. Different gate potentials are supplied to the corresponding transistors. In a case where the potential of the output signal line 60 is lower than a target potential, the PMOS transistor 52 whose gate potential is equal to or below the target potential and closest to the target potential among the n types of potentials is actuated. In a case where the potential of the output signal line 60 is higher than the target potential, the NMOS transistor 54 whose gate potential is equal to or higher than the target potential and closest to the target potential among the n types of potentials is actuated.

Description

本発明は表示装置の駆動装置に係り、特に、表示データに応じた電圧を表示装置へ供給して表示装置を駆動する表示装置の駆動装置に関する。   The present invention relates to a display device drive device, and more particularly, to a display device drive device that drives a display device by supplying a voltage corresponding to display data to the display device.

X方向に沿って複数本のデータ線が、Y方向に沿って複数本のゲート線が各々設けられると共に、個々のデータ線と個々のゲート線との交差位置に表示セル(画素)が各々設けられたアクティブマトリクス型の表示装置(例えばTFT(Thin Film Transistor:薄膜トランジスタ)−LCD(Liquid Crystal Display:液晶ディスプレイ)等)には、データ線を駆動するソースドライバとゲート線を駆動するゲートドライバを備えた駆動装置が接続される。この種の駆動装置には、水平同期信号の各周期に、同一のゲート線に対応する画素から成る1ライン分の表示データがグラフィックプロセッサ等のデータ源から順に入力される。   A plurality of data lines are provided along the X direction, a plurality of gate lines are provided along the Y direction, and display cells (pixels) are provided at intersections between the individual data lines and the individual gate lines. An active matrix display device (for example, TFT (Thin Film Transistor) -LCD (Liquid Crystal Display)) has a source driver for driving data lines and a gate driver for driving gate lines. Connected drive unit. In this type of driving device, display data for one line including pixels corresponding to the same gate line is sequentially input from a data source such as a graphic processor in each cycle of the horizontal synchronizing signal.

駆動装置のソースドライバは、水平同期信号の各周期に、データ源から順に入力された1ライン分の表示データをシフトレジスタによって転送してラッチに保持させると共に、前の周期に入力された1ライン分の表示データに応じたデータ電圧をレベルシフタ、デコーダ回路及び増幅回路によって生成し、生成したデータ電圧を個々のデータ線へ供給して1ライン分の各画素に書き込む。また、駆動装置のゲートドライバは、単一のゲート線にゲート信号を供給すると共に、ゲート信号を供給するゲート線を水平同期信号の各周期で切り替える。これにより表示装置が駆動され、表示データが表す画像が表示装置に表示される。   The source driver of the driving device transfers the display data for one line sequentially input from the data source in each cycle of the horizontal synchronization signal by the shift register and holds it in the latch, and one line input in the previous cycle. A data voltage corresponding to the display data is generated by a level shifter, a decoder circuit, and an amplifier circuit, and the generated data voltage is supplied to each data line and written to each pixel for one line. The gate driver of the driving device supplies a gate signal to a single gate line and switches the gate line supplying the gate signal at each cycle of the horizontal synchronization signal. As a result, the display device is driven, and an image represented by the display data is displayed on the display device.

上記に関連して特許文献1には、ドレインドライバのデコーダ回路と出力アンプ回路との間に、表示データに対応した階調電圧のレベルをシフトした電圧を生成し、生成した電圧をプリチャージ期間内にドレイン信号線に供給するプリチャージ回路を設けた構成が開示されている。   In relation to the above, Patent Document 1 discloses that a voltage in which the level of a gradation voltage corresponding to display data is shifted is generated between a decoder circuit of a drain driver and an output amplifier circuit, and the generated voltage is stored in a precharge period. A configuration in which a precharge circuit for supplying a drain signal line is provided is disclosed.

また特許文献2には、複数のプリチャージ電圧から画像データに応じたプリチャージ電圧を選択して出力する第2のデコーダを設け、第2のデコーダから出力されるプリチャージ電圧をデータ線に供給する技術が開示されている。   Patent Document 2 further includes a second decoder that selects and outputs a precharge voltage corresponding to image data from a plurality of precharge voltages, and supplies the precharge voltage output from the second decoder to the data line. Techniques to do this are disclosed.

特開2001−166741号公報Japanese Patent Laid-Open No. 2001-166741 特開2009−139538号公報JP 2009-139538 A

ところで、表示装置の動作速度の高速化に伴い、表示装置を駆動する駆動装置に対しても動作速度の高速化が要求されている。上記駆動装置のソースドライバでは、従来、例として図6(A)に示すように、ソースドライバの各構成要素のうちオペアンプ等から成る増幅回路の動作速度が最も低く、増幅回路の出力の遅延がソースドライバの動作速度向上の主な阻害要因となっていた。これに対し、近年の増幅回路周辺の技術改良により、例として図6(B)に「高速化後の増幅回路単体の出力」と表記して示すように、増幅回路の出力の遅延は大幅に小さくなった。しかし、これに伴い、増幅回路の出力の遅延に代わって増幅回路の前段に位置するデコーダ回路の出力の遅延がソースドライバの動作速度向上の主な阻害要因となってきており、増幅回路の出力がデコーダ回路の出力に依存するために、増幅回路の出力の遅延が大幅に小さくなった割にはソースドライバの動作速度が十分には向上していないのが実情であった。   By the way, with the increase in the operation speed of the display device, the drive device that drives the display device is also required to increase the operation speed. As shown in FIG. 6A as an example, the source driver of the above driving device has conventionally had the lowest operating speed of an amplifier circuit composed of an operational amplifier among the constituent elements of the source driver, and the output delay of the amplifier circuit is low. This was a major impediment to improving the operating speed of the source driver. On the other hand, as a result of recent technological improvements around the amplifier circuit, the output delay of the amplifier circuit is greatly increased, as shown in FIG. It has become smaller. However, along with this, the delay of the output of the decoder circuit located in the previous stage of the amplifier circuit instead of the delay of the output of the amplifier circuit has become a major impediment to the improvement of the operating speed of the source driver, However, the operating speed of the source driver is not sufficiently improved even though the output delay of the amplifier circuit is significantly reduced.

これに対して特許文献1に記載の技術は、デコーダ回路の出力側のドレイン信号線(データ線)の電位をプリチャージ回路によって変化させているので、ソースドライバの動作速度の向上に有効と考えられる。しかしながら、特許文献1に記載の技術では、データ線(ドレイン信号線)の電位がプリチャージ電位(PC電位)に達したか否かに拘わらず、プリチャージ期間が終了する迄の間、データ線への電圧の供給が継続されるので、特許文献1の図11からも明らかなように、特にソースドライバから近い近端の画素に対しては、データ線の電位がPC電位に達した後も比較的長い期間、データ線へ電圧が供給されることになり、無駄な電力消費が生ずるという問題がある。また、特許文献1に記載の技術は、特許文献1の図11にも示されているように、データ線の電位を最終電位よりも高いPC電位へ一旦上昇させた後に最終電位迄低下させており、データ線の電位をPC電位へ一旦上昇させることも無駄な消費電力の増大に繋がる。   On the other hand, the technique described in Patent Document 1 is effective in improving the operation speed of the source driver because the potential of the drain signal line (data line) on the output side of the decoder circuit is changed by the precharge circuit. It is done. However, in the technique described in Patent Document 1, the data line is not changed until the precharge period ends regardless of whether the potential of the data line (drain signal line) has reached the precharge potential (PC potential) or not. As shown in FIG. 11 of Patent Document 1, especially for the near-end pixel close to the source driver, even after the potential of the data line reaches the PC potential. A voltage is supplied to the data line for a relatively long period, and there is a problem that wasteful power consumption occurs. Further, as shown in FIG. 11 of Patent Document 1, the technique described in Patent Document 1 raises the potential of the data line once to a PC potential higher than the final potential, and then decreases it to the final potential. Thus, temporarily raising the potential of the data line to the PC potential also leads to an increase in useless power consumption.

また特許文献2に記載の技術についても、特許文献2の図3や図6からも明らかなように、データ線の電位がプリチャージ電位に達したか否かに拘わらず、プリチャージ期間が終了する迄の間、データ線へのプリチャージ電圧の供給が継続されるので、特許文献1に記載の技術と同様に、無駄な電力消費が生ずるという問題がある。   As is clear from the technique described in Patent Document 2, the precharge period ends regardless of whether or not the potential of the data line has reached the precharge potential, as is clear from FIGS. 3 and 6 of Patent Document 2. In the meantime, since the supply of the precharge voltage to the data line is continued, there is a problem that wasteful power consumption occurs as in the technique described in Patent Document 1.

本発明は上記事実を考慮して成されたもので、動作速度の高速化を、無駄な電力消費を抑制しつつ実現できる表示装置の駆動装置を得ることが目的である。   The present invention has been made in consideration of the above-described facts, and an object of the present invention is to obtain a display device driving device capable of realizing an increase in operating speed while suppressing wasteful power consumption.

上記目的を達成するために請求項1記載の発明に係る表示装置の駆動装置は、駆動信号線の電位を表示データに応じた目標電位へ切り替える電位切替部と、前記駆動信号線の電位が電圧として供給される表示装置と、の間に設けられ、前記駆動信号線の電位が当該電位よりも高い第1基準電位に達する迄の間、前記駆動信号線を電源に接続する第1のスイッチング手段と、前記電位切替部と前記表示装置との間に設けられ、前記駆動信号線の電位が当該電位よりも低い第2基準電位に達する迄の間、前記駆動信号線を接地線に接続する第2のスイッチング手段と、前記駆動信号線の電位が前記目標電位よりも低い場合に、予め定められたn種類(n≧1)の電位のうち前記目標電位以下かつ前記目標電位に最も近い電位を前記第1基準電位として前記第1のスイッチング手段を作動させ、前記駆動信号線の電位が前記目標電位よりも高い場合に、前記n種類の電位のうち前記目標電位以上かつ前記目標電位に最も近い電位を前記第2基準電位として前記第2のスイッチング手段を作動させる制御手段と、を含んで構成されている。   In order to achieve the above object, a drive device for a display device according to claim 1 comprises a potential switching section for switching the potential of the drive signal line to a target potential corresponding to display data, and the potential of the drive signal line is a voltage. First switching means for connecting the drive signal line to a power source until the potential of the drive signal line reaches a first reference potential higher than the potential. And between the potential switching unit and the display device, the drive signal line is connected to a ground line until the potential of the drive signal line reaches a second reference potential lower than the potential. When the potential of the switching means 2 and the drive signal line is lower than the target potential, a potential equal to or lower than the target potential and closest to the target potential among predetermined n types (n ≧ 1) of potentials. The first reference potential When the first switching means is operated and the potential of the drive signal line is higher than the target potential, the potential that is equal to or higher than the target potential and is closest to the target potential is selected from the n types of potentials as the second reference. Control means for operating the second switching means as a potential.

請求項1記載の発明では、駆動信号線の電位を表示データに応じた目標電位へ切り替える電位切替部と、駆動信号線の電位が電圧として供給される表示装置と、の間に、駆動信号線の電位が当該電位よりも高い第1基準電位に達する迄の間、駆動信号線を電源に接続する第1のスイッチング手段と、駆動信号線の電位が当該電位よりも低い第2基準電位に達する迄の間、駆動信号線を接地線に接続する第2のスイッチング手段と、が各々設けられている。そして制御手段は、駆動信号線の電位が目標電位よりも低い場合に、予め定められたn種類(n≧1)の電位のうち目標電位以下かつ目標電位に最も近い電位を第1基準電位として第1のスイッチング手段を作動させ、駆動信号線の電位が目標電位よりも高い場合に、n種類の電位のうち目標電位以上かつ目標電位に最も近い電位を第2基準電位として第2のスイッチング手段を作動させる。   According to the first aspect of the present invention, the drive signal line is provided between the potential switching unit that switches the potential of the drive signal line to the target potential corresponding to the display data and the display device to which the potential of the drive signal line is supplied as a voltage. The first switching means for connecting the drive signal line to the power supply and the potential of the drive signal line reach the second reference potential lower than the potential until the potential reaches the first reference potential higher than the potential. And a second switching means for connecting the drive signal line to the ground line. Then, when the potential of the drive signal line is lower than the target potential, the control means uses, as a first reference potential, a potential that is equal to or lower than the target potential and is closest to the target potential among predetermined n types (n ≧ 1) of potentials. When the first switching means is operated and the potential of the drive signal line is higher than the target potential, the second switching means is set to a second reference potential that is equal to or higher than the target potential among the n types of potentials. Is activated.

このように、請求項1記載の発明では、駆動信号線の電位が目標電位よりも低い場合には、駆動信号線の電位が、n種類の電位のうち目標電位以下かつ目標電位に最も近い電位である第1基準電位に達する迄の間、第1のスイッチング手段によって駆動信号線が電源に接続されることで、駆動信号線の電位が目標電位に達するまでの時間が短縮される。また、駆動信号線の電位が目標電位よりも高い場合には、駆動信号線の電位が、n種類の電位のうち目標電位以上かつ目標電位に最も近い電位である第2基準電位へ低下する迄の間、第2のスイッチング手段によって駆動信号線が接地線に接続されることで、駆動信号線の電位が目標電位に達するまでの時間が短縮される。これにより、本発明に係る表示装置の駆動装置の動作速度の高速化を実現できる。   Thus, according to the first aspect of the present invention, when the potential of the drive signal line is lower than the target potential, the potential of the drive signal line is equal to or lower than the target potential and is closest to the target potential among n types of potentials. Until the first reference potential is reached, the drive signal line is connected to the power source by the first switching means, so that the time until the potential of the drive signal line reaches the target potential is shortened. Further, when the potential of the drive signal line is higher than the target potential, the potential of the drive signal line is lowered to the second reference potential that is equal to or higher than the target potential and closest to the target potential among n types of potentials. In the meantime, the drive signal line is connected to the ground line by the second switching means, whereby the time until the potential of the drive signal line reaches the target potential is shortened. As a result, it is possible to increase the operating speed of the display device driving device according to the present invention.

また、第1のスイッチング手段は、駆動信号線の電位が第1基準電位に達する迄の間、駆動信号線を電源に接続する構成であり、駆動信号線の電位が第1基準電位に達すると駆動信号線と電源との接続が遮断される。また第2のスイッチング手段についても、駆動信号線の電位が第2基準電位に達する迄の間、駆動信号線を接地線に接続する構成であり、駆動信号線の電位が第2基準電位に達すると駆動信号線と接地線との接続が遮断される。従って、駆動信号線の電位が或る電位に達したか否かに拘わらず駆動信号線に一定期間電圧を供給する構成と比較して、無駄な電力消費を抑制することができる。   The first switching means is configured to connect the drive signal line to the power source until the potential of the drive signal line reaches the first reference potential, and when the potential of the drive signal line reaches the first reference potential. The connection between the drive signal line and the power source is interrupted. Also, the second switching means is configured to connect the drive signal line to the ground line until the potential of the drive signal line reaches the second reference potential, and the potential of the drive signal line reaches the second reference potential. Then, the connection between the drive signal line and the ground line is cut off. Therefore, wasteful power consumption can be suppressed as compared with a configuration in which a voltage is supplied to the drive signal line for a certain period regardless of whether the potential of the drive signal line has reached a certain potential.

なお、請求項1記載の発明において、例えば請求項2に記載したように、第1のスイッチング手段は複数設けられ、個々の第1のスイッチング手段にはn種類の電位のうち互いに異なる電位が第1基準電位として供給されるように構成してもよい。この構成において、駆動信号線の電位が目標電位よりも低い場合に、n種類の電位のうち目標電位以下かつ目標電位に最も近い電位を第1基準電位として第1のスイッチング手段を作動させることは、より詳しくは、例えば制御手段を、駆動信号線の電位が目標電位よりも低い場合に、複数の第1スイッチング手段のうち、目標電位以下かつ目標電位に最も近い電位が第1基準電位として供給される第1のスイッチング手段を作動させるように構成することで実現できる。   In the invention described in claim 1, for example, as described in claim 2, a plurality of first switching means are provided, and each of the first switching means has different potentials among n types of potentials. It may be configured to be supplied as one reference potential. In this configuration, when the potential of the drive signal line is lower than the target potential, the first switching means is operated with a potential that is equal to or lower than the target potential and is closest to the target potential among the n types of potentials as the first reference potential. More specifically, for example, when the potential of the drive signal line is lower than the target potential, the control unit supplies, as the first reference potential, a potential that is equal to or lower than the target potential and is closest to the target potential among the plurality of first switching means. This can be realized by configuring the first switching means to be operated.

また、請求項2記載の発明において、例えば請求項3に記載したように、個々の第1のスイッチング手段と電源との間に第3のスイッチング手段が各々設けられている場合、複数の第1スイッチング手段のうち、目標電位以下かつ目標電位に最も近い電位が第1基準電位として供給される第1のスイッチング手段を作動させることは、より詳しくは、例えば制御手段を、複数の第3スイッチング手段のうち、作動させる特定の第1のスイッチング手段と電源との間に設けられた第3スイッチング手段をオンさせることで、特定の第1のスイッチング手段を作動させるように構成することで実現できる。   In the invention according to claim 2, for example, as described in claim 3, when the third switching means is provided between each of the first switching means and the power source, a plurality of first switching means are provided. Among the switching means, operating the first switching means that is supplied with a potential equal to or lower than the target potential and closest to the target potential as a first reference potential is more specifically described. For example, the control means includes a plurality of third switching means. Among these, it can be realized by turning on the third switching means provided between the specific first switching means to be operated and the power supply to operate the specific first switching means.

また、請求項1〜請求項3の何れかに記載の発明において、例えば請求項4に記載したように、第2のスイッチング手段は複数設けられ、個々の第2のスイッチング手段にはn種類の電位のうち互いに異なる電位が第2基準電位として供給されるように構成してもよい。この構成において、駆動信号線の電位が目標電位よりも高い場合に、n種類の電位のうち目標電位以上かつ目標電位に最も近い電位を第2基準電位として第2のスイッチング手段を作動させることは、より詳しくは、例えば制御手段を、駆動信号線の電位が目標電位よりも高い場合に、複数の第2スイッチング手段のうち、目標電位以上かつ目標電位に最も近い電位が第2基準電位として供給される第2のスイッチング手段を作動させるように構成することで実現できる。   In the invention according to any one of claims 1 to 3, for example, as described in claim 4, a plurality of second switching means are provided, and each of the second switching means has n types. Different potentials among the potentials may be supplied as the second reference potential. In this configuration, when the potential of the drive signal line is higher than the target potential, the second switching means is operated with the potential that is equal to or higher than the target potential and is closest to the target potential among the n types of potentials as the second reference potential. More specifically, for example, when the potential of the drive signal line is higher than the target potential, the control unit supplies, as the second reference potential, a potential that is equal to or higher than the target potential and is closest to the target potential among the plurality of second switching units. This can be realized by configuring the second switching means to be operated.

また、請求項4記載の発明において、例えば請求項5に記載したように、個々の第2のスイッチング手段と接地線との間に第4のスイッチング手段が各々設けられている場合、複数の第2スイッチング手段のうち、目標電位以上かつ目標電位に最も近い電位が第2基準電位として供給される第2のスイッチング手段を作動させることは、より詳しくは、例えば制御手段を、複数の第4スイッチング手段のうち、作動させる特定の第2のスイッチング手段と接地線との間に設けられた第4スイッチング手段をオンさせることで、特定の第2のスイッチング手段を作動させるように構成することで実現できる。   In the invention according to claim 4, for example, as described in claim 5, when the fourth switching means is provided between each of the second switching means and the ground line, a plurality of second switching means is provided. Among the two switching means, operating the second switching means to which the potential equal to or higher than the target potential and closest to the target potential is operated is more specifically described. Realized by configuring the specific second switching means to operate by turning on the fourth switching means provided between the specific second switching means to be activated and the ground line. it can.

また、請求項1、請求項4及び請求項5の何れかに記載の発明において、例えば請求項6に記載したように、第1のスイッチング手段にはn種類の電位のうちの何れか1つの電位が第1基準電位として選択的に供給される構成であってもよい。この構成において、駆動信号線の電位が目標電位よりも低い場合に、n種類の電位のうち目標電位以下かつ目標電位に最も近い電位を第1基準電位として第1のスイッチング手段を作動させることは、より詳しくは、例えば制御手段を、駆動信号線の電位が目標電位よりも低い場合に、n種類の電位のうち目標電位以下かつ目標電位に最も近い電位を第1スイッチング手段に第1基準電位として供給させるように構成することで実現できる。   Further, in the invention according to any one of claims 1, 4, and 5, as described in claim 6, for example, the first switching means has any one of n kinds of potentials. The potential may be selectively supplied as the first reference potential. In this configuration, when the potential of the drive signal line is lower than the target potential, the first switching means is operated with a potential that is equal to or lower than the target potential and is closest to the target potential among n types of potentials as the first reference potential. More specifically, for example, when the potential of the drive signal line is lower than the target potential, the control means uses a potential that is equal to or lower than the target potential and is closest to the target potential among the n types of potentials to the first switching potential. It is realizable by comprising so that it may be supplied as.

また、請求項1、請求項4及び請求項5の何れかに記載の発明において、例えば請求項7に記載したように、第2のスイッチング手段にはn種類の電位のうちの何れか1つの電位が第2基準電位として選択的に供給される構成であってもよい。この構成において、駆動信号線の電位が目標電位よりも高い場合に、n種類の電位のうち目標電位以上かつ目標電位に最も近い電位を第2基準電位として第2のスイッチング手段を作動させることは、より詳しくは、例えば制御手段を、駆動信号線の電位が目標電位よりも高い場合に、n種類の電位のうち目標電位以上かつ目標電位に最も近い電位を第2スイッチング手段に第2基準電位として供給させるように構成することで実現できる。   In the invention according to any one of claims 1, 4 and 5, for example, as described in claim 7, the second switching means has any one of n kinds of potentials. The potential may be selectively supplied as the second reference potential. In this configuration, when the potential of the drive signal line is higher than the target potential, the second switching means is operated with the potential that is equal to or higher than the target potential and is closest to the target potential among the n types of potentials as the second reference potential. More specifically, for example, when the potential of the drive signal line is higher than the target potential, the control means uses a potential that is equal to or higher than the target potential and is closest to the target potential among the n types of potentials to the second switching potential. It is realizable by comprising so that it may be supplied as.

また、請求項1〜請求項7の何れかに記載の発明において、例えば請求項8に記載したように、第1のスイッチング手段はバックゲートが接地線に接続されたPMOSトランジスタを含み、第2のスイッチング手段はバックゲートが電源に接続されたNMOSトランジスタを含んで構成することができる。   Further, in the invention according to any one of claims 1 to 7, for example, as described in claim 8, the first switching means includes a PMOS transistor having a back gate connected to the ground line. The switching means can include an NMOS transistor having a back gate connected to a power source.

また、請求項1〜請求項7の何れかに記載の発明において、例えば請求項9に記載したように、第1のスイッチング手段はバックゲートが駆動信号線に接続されたPMOSトランジスタを含み、第2のスイッチング手段はバックゲートが駆動信号線に接続されたNMOSトランジスタを含んで構成することも可能である。先の請求項8に記載したように、PMOSトランジスタのバックゲートは通常は接地線に接続され、NMOSトランジスタのバックゲートは通常は電源に接続される。このため、上記のように、第1のスイッチング手段のPMOSトランジスタ及び第2のスイッチング手段のNMOSトランジスタのバックゲートを駆動信号線に接続する場合、これらのトランジスタを他のトランジスタと分離する必要があり、回路面積は増大する。   In the invention according to any one of claims 1 to 7, for example, as described in claim 9, the first switching means includes a PMOS transistor having a back gate connected to the drive signal line. The second switching means may include an NMOS transistor whose back gate is connected to the drive signal line. As described in claim 8, the back gate of the PMOS transistor is normally connected to the ground line, and the back gate of the NMOS transistor is usually connected to the power source. Therefore, as described above, when the back gates of the PMOS transistor of the first switching means and the NMOS transistor of the second switching means are connected to the drive signal line, it is necessary to separate these transistors from the other transistors. The circuit area increases.

但し、PMOSトランジスタのバックゲートを接地線に接続し、NMOSトランジスタのバックゲートを電源に接続した場合、バックゲートと駆動信号線とに電位差が生じ(バックバイアスが掛かり)、駆動信号線の電位が基準電位に達するよりも若干早いタイミングでオフする可能性がある。これに対して上記のようにバックゲートを駆動信号線に接続した場合、バックバイアスが掛からなくなるので、駆動信号線の電位が第1基準電位又は第2基準電位に達するタイミングまで上記の各トランジスタをオンさせることができ、駆動信号線の電位が第1基準電位又は第2基準電位に達するタイミングまで駆動信号線が電源又は接地線に接続されている状態を継続させることができる。   However, if the back gate of the PMOS transistor is connected to the ground line and the back gate of the NMOS transistor is connected to the power supply, a potential difference occurs between the back gate and the drive signal line (back bias is applied), and the potential of the drive signal line is There is a possibility of turning off at a timing slightly earlier than reaching the reference potential. On the other hand, when the back gate is connected to the drive signal line as described above, the back bias is not applied. Therefore, each of the above transistors is turned on until the drive signal line potential reaches the first reference potential or the second reference potential. The drive signal line can be turned on, and the state in which the drive signal line is connected to the power supply or the ground line can be continued until the potential of the drive signal line reaches the first reference potential or the second reference potential.

また、請求項8又は請求項9記載の発明において、例えば請求項10に記載したように、第1のスイッチング手段のPMOSトランジスタには第1基準電位よりも所定値だけ高い電位がゲートに供給され、第2のスイッチング手段のNMOSトランジスタには第2基準電位よりも所定値だけ高い電位がゲートに供給されるように構成してもよい。この場合も、請求項9記載の発明と同様に、駆動信号線の電位が第1基準電位又は第2基準電位に達するタイミングまで上記の各トランジスタをオンさせることができ、駆動信号線の電位が第1基準電位又は第2基準電位に達するタイミングまで駆動信号線が電源又は接地線に接続されている状態を継続させることができる。   In the invention according to claim 8 or 9, for example, as described in claim 10, a potential higher than the first reference potential by a predetermined value is supplied to the gate of the PMOS transistor of the first switching means. The NMOS transistor of the second switching means may be configured such that a potential higher than the second reference potential by a predetermined value is supplied to the gate. In this case as well, as in the ninth aspect of the invention, each of the transistors can be turned on until the potential of the drive signal line reaches the first reference potential or the second reference potential. The state in which the drive signal line is connected to the power supply or the ground line can be continued until the timing when the first reference potential or the second reference potential is reached.

また、請求項1〜請求項10の何れかに記載の発明において、電位切替部と表示装置との間に増幅回路が更に設けられている場合、例えば請求項11に記載したように、第1のスイッチング手段及び第2のスイッチング手段は、駆動信号線のうち電位切替部と増幅回路との間の部位を電源又は接地線に接続するように構成することができる。   In the invention according to any one of claims 1 to 10, when an amplifier circuit is further provided between the potential switching unit and the display device, for example, as described in claim 11, the first The switching means and the second switching means can be configured to connect a portion of the drive signal line between the potential switching unit and the amplifier circuit to a power supply or a ground line.

以上説明したように本発明は、駆動信号線の電位を表示データに応じた目標電位へ切り替える電位切替部と、駆動信号線の電位が電圧として供給される表示装置と、の間に、駆動信号線の電位がより高い第1基準電位に達する迄の間、駆動信号線を電源に接続する第1のスイッチング手段と、駆動信号線の電位がより低い第2基準電位に達する迄の間、駆動信号線を接地線に接続する第2のスイッチング手段と、を設け、駆動信号線の電位が目標電位よりも低い場合に、n種類の電位のうち目標電位以下かつ目標電位に最も近い電位を第1基準電位として第1のスイッチング手段を作動させ、駆動信号線の電位が目標電位よりも高い場合に、n種類の電位のうち目標電位以上かつ目標電位に最も近い電位を第2基準電位として第2のスイッチング手段を作動させるようにしたので、動作速度の高速化を、無駄な電力消費を抑制しつつ実現できる、という優れた効果を有する。   As described above, the present invention provides a drive signal between the potential switching unit that switches the potential of the drive signal line to the target potential corresponding to the display data and the display device to which the potential of the drive signal line is supplied as a voltage. The first switching means for connecting the drive signal line to the power supply until the potential of the line reaches a higher first reference potential and the drive until the potential of the drive signal line reaches a lower second reference potential. Second switching means for connecting the signal line to the ground line, and when the potential of the drive signal line is lower than the target potential, the potential that is equal to or lower than the target potential and is closest to the target potential among the n types of potentials. When the first switching means is operated as one reference potential and the potential of the drive signal line is higher than the target potential, the potential that is equal to or higher than the target potential and is closest to the target potential among the n types of potentials is set as the second reference potential. 2 switch Since the actuate the grayed means, the operation speed can be realized while suppressing wasteful power consumption and has an excellent effect that.

実施形態で説明した表示装置の駆動装置の概略構成を表示装置と共に示すブロック図である。It is a block diagram which shows schematic structure of the drive device of the display apparatus demonstrated by embodiment with a display apparatus. 第1実施形態に係る電位変更補助回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a potential change auxiliary circuit according to a first embodiment. FIG. (A)はn個の電位変更補助回路に各々供給される基準電位の一例、(B),(C)は駆動信号線の電位変化の一例を各々示す線図である。(A) is a diagram showing an example of a reference potential supplied to each of n potential change auxiliary circuits, and (B) and (C) are diagrams showing examples of potential changes of drive signal lines. 第2実施形態に係る電位変更補助回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric potential change auxiliary circuit which concerns on 2nd Embodiment. 第3実施形態に係る電位変更補助回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric potential change auxiliary circuit which concerns on 3rd Embodiment. 表示装置の駆動装置(のソースドライバ)における動作速度向上の阻害要因を説明するための線図である。FIG. 10 is a diagram for explaining a factor that hinders an improvement in operation speed in a display device drive device (source driver).

以下、図面を参照して本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
図1には、表示デバイスである表示装置10と、当該表示装置10に接続されたゲートドライバ14及びソースドライバ16を備えた駆動装置12が示されている。なお、駆動装置12は本発明に係る表示装置の駆動装置の一例である。
[First Embodiment]
FIG. 1 shows a display device 10 that is a display device, and a drive device 12 that includes a gate driver 14 and a source driver 16 connected to the display device 10. The driving device 12 is an example of a driving device for a display device according to the present invention.

表示装置10は、アクティブマトリクス型の表示デバイスであれば、公知の各種表示デバイスの何れでもよいが、例えば表示装置10がTFT−LCDである場合、表示装置10は、図示は省略するが、所定の間隔を隔てて対向配置された一対の透明基板の間に液晶が封入され、一方の透明基板の対向面上の全面に電極が形成され、他方の透明基板の対向面上に、図1のX方向に沿って一定間隔で配置され各々図1のY方向に沿って延びる多数本のデータ線と、図2のY方向に沿って一定間隔で配置され各々図1のX方向に沿って延びる多数本のゲート線と、が各々設けられ、個々のデータ線と個々のゲート線の交差位置(画素位置)に薄膜トランジスタ(TFT)及び電極が各々配置された構成とされ、個々のTFTはソースが電極に、ゲートがゲート線に、ドレインがデータ線に各々接続される。以下では表示装置10がTFT−LCDである場合を例に説明する。
ゲートドライバ14とソースドライバ16を備えている。ゲートドライバ14には表示装置10の個々のゲート線が各々接続されており、ソースドライバ16には表示装置10の個々のデータ線が各々接続されている。ゲートドライバ14はタイミングコントローラ(図示省略)に接続されており、タイミングコントローラから入力されるゲートドライバ制御信号に従い、表示装置10の多数本のゲート線のうち何れか1本のゲート線にゲート信号を所定時間供給し、当該ゲート線に接続されている1ライン分の画素のTFTを所定時間オンさせることを、ゲート信号を供給するゲート線を水平同期信号に同期したタイミングで順に切り替えながら繰り返す。
The display device 10 may be any of various known display devices as long as it is an active matrix type display device. For example, when the display device 10 is a TFT-LCD, the display device 10 is not illustrated but is predetermined. A liquid crystal is sealed between a pair of transparent substrates opposed to each other with an interval of, an electrode is formed on the entire surface of the opposite surface of one transparent substrate, and on the opposite surface of the other transparent substrate, FIG. A plurality of data lines arranged at regular intervals along the X direction and extending along the Y direction in FIG. 1 respectively, and arranged at regular intervals along the Y direction in FIG. 2 and extending along the X direction in FIG. A plurality of gate lines are provided, and a thin film transistor (TFT) and an electrode are arranged at the intersection (pixel position) of each data line and each gate line, and each TFT has a source. The gate is on the electrode The gate line and the drain are connected to the data line, respectively. Hereinafter, a case where the display device 10 is a TFT-LCD will be described as an example.
A gate driver 14 and a source driver 16 are provided. Each gate line of the display device 10 is connected to the gate driver 14, and each data line of the display device 10 is connected to the source driver 16. The gate driver 14 is connected to a timing controller (not shown), and in accordance with a gate driver control signal input from the timing controller, a gate signal is applied to any one of the multiple gate lines of the display device 10. Supplying for a predetermined time and turning on the TFTs of pixels for one line connected to the gate line for a predetermined time are repeated while sequentially switching the gate line for supplying the gate signal at the timing synchronized with the horizontal synchronizing signal.

一方、ソースドライバ16は、シフトレジスタ20、1ライン分の画素数と同数個のラッチ回路24を備えた第1のラッチ回路群22、1ライン分の画素数と同数個のラッチ回路28を備えた第2のラッチ回路群26、1ライン分の画素数と同数個のレベルシフタ32を備えたレベルシフタ群30、1ライン分の画素数と同数個のデコーダ回路36を備えたデコーダ回路群34、1ライン分の画素数と同数個の電位変更補助回路42を備えた電位変更補助回路群40、及び、1ライン分の画素数と同数個の増幅回路48を備えた増幅回路群46が順に接続されて構成されている。   On the other hand, the source driver 16 includes a first latch circuit group 22 having the same number of latch circuits 24 as the number of pixels for one line of the shift register 20 and the same number of latch circuits 28 as the number of pixels for one line. In addition, the second latch circuit group 26, a level shifter group 30 having the same number of level shifters 32 as the number of pixels for one line, and a decoder circuit group 34, 1 having the same number of decoder circuits 36 as the number of pixels for one line. A potential change auxiliary circuit group 40 having the same number of potential change auxiliary circuits 42 as the number of pixels for one line and an amplifier circuit group 46 having the same number of amplifier circuits 48 as the number of pixels for one line are sequentially connected. Configured.

ソースドライバ16には、この種の駆動装置には、水平同期信号の各周期に、表示装置10の同一のゲート線に対応する画素から成る1ライン分の表示データが、グラフィックプロセッサ等のデータ源から1画素単位で順に入力される。シフトレジスタ20は、1画素単位で順に入力される1ライン分の表示データを順に転送した後に、第1のラッチ回路群22へ出力する。これにより、第1のラッチ回路群22の個々のラッチ回路24には、1ライン分の表示データのうち互いに異なる1画素分の表示データが各々保持される。   The source driver 16 includes a drive device of this type in which display data for one line composed of pixels corresponding to the same gate line of the display device 10 is supplied to a data source such as a graphic processor in each cycle of the horizontal synchronization signal. Are sequentially input in units of pixels. The shift register 20 sequentially transfers display data for one line that is sequentially input in units of pixels, and then outputs the display data to the first latch circuit group 22. As a result, each latch circuit 24 of the first latch circuit group 22 holds display data for one pixel different from the display data for one line.

第2のラッチ回路群26は、シフトレジスタ20による表示データの転送及び第1のラッチ回路群22への表示データの保持と並列に、第2のラッチ回路群26に保持された表示データに対するレベルシフタ群30以降の回路による信号処理を行うためのものであり、第1のラッチ回路群22の個々のラッチ回路24に保持された1画素分の表示データは、第2のラッチ回路群26の個々のラッチ回路28に一旦転送・保持された後に、レベルシフタ群30の個々のレベルシフタ32へ出力される。   The second latch circuit group 26 is a level shifter for the display data held in the second latch circuit group 26 in parallel with the transfer of the display data by the shift register 20 and the holding of the display data to the first latch circuit group 22. The display data for one pixel held in each latch circuit 24 of the first latch circuit group 22 is used to perform signal processing by the circuits after the group 30. After being transferred and held in the latch circuit 28, it is output to the individual level shifters 32 of the level shifter group 30.

レベルシフタ群30の個々のレベルシフタ32は、第2のラッチ回路群26のラッチ回路28から入力された表示データの電圧レベルを、後段のデコーダ回路36等の動作に適したより高い電圧レベルへ変換し、レベル変換後の表示データをデコーダ回路群34の個々のデコーダ回路36へ出力する。   Each level shifter 32 of the level shifter group 30 converts the voltage level of the display data input from the latch circuit 28 of the second latch circuit group 26 into a higher voltage level suitable for the operation of the subsequent decoder circuit 36, etc. The display data after the level conversion is output to each decoder circuit 36 of the decoder circuit group 34.

デコーダ回路群34には、互いに電圧レベルの異なる複数種の階調電圧を発生する階調電圧発生部38が設けられており、階調電圧発生部38によって発生された複数種の階調電圧は個々のデコーダ回路36に各々供給される。個々のデコーダ回路36は、階調電圧発生部38より供給された複数種の階調電圧の中から、前段のレベルシフタ32から入力された1画素分の表示データに応じた階調電圧を選択し、出力信号線の電圧レベル(電位)を選択した階調電圧へ変化させることで、選択した階調電圧を後段の回路へ出力する。なお、電位変更補助回路群40の個々の電位変更補助回路42については後述する。   The decoder circuit group 34 is provided with a gradation voltage generation unit 38 that generates a plurality of types of gradation voltages having different voltage levels. The plurality of types of gradation voltages generated by the gradation voltage generation unit 38 are Each is supplied to an individual decoder circuit 36. Each decoder circuit 36 selects a gradation voltage corresponding to display data for one pixel input from the previous level shifter 32 from a plurality of kinds of gradation voltages supplied from the gradation voltage generator 38. By changing the voltage level (potential) of the output signal line to the selected gradation voltage, the selected gradation voltage is output to the subsequent circuit. The individual potential change auxiliary circuits 42 of the potential change auxiliary circuit group 40 will be described later.

増幅回路群46の個々の増幅回路48は、図示を省略するが、入力端にデコーダ回路36の出力信号線が接続されたオペアンプを備えている。このオペアンプは、ボルテージフォロワとして機能するように周辺回路が接続されており、出力端がデータ線に接続されている。これにより、出力信号線の電圧(データ電圧)は、増幅回路48(のオペアンプ)により、電圧レベルが変更されることなく、電流が増幅されてデータ線へ供給される。   Each amplifier circuit 48 of the amplifier circuit group 46 includes an operational amplifier (not shown) having an input terminal connected to the output signal line of the decoder circuit 36. The operational amplifier has a peripheral circuit connected to function as a voltage follower, and an output terminal connected to the data line. As a result, the voltage (data voltage) of the output signal line is amplified and supplied to the data line by the amplifier circuit 48 (the operational amplifier) without changing the voltage level.

これにより、増幅回路群46の個々の増幅回路48からデータ線へ供給されたデータ電圧は、表示装置10の各ラインのうちゲートドライバ14によってゲート信号が供給されているゲート線に対応する1ライン分の画素に各々印加され、データ電圧が印加された各画素の位置における液晶の光透過率が印加されたデータ電圧の大きさに応じて変化することで、表示装置10に1ライン分の画像が表示される。そして、ゲートドライバ14によってゲート信号が供給されるゲート線が順に切り替わると共に、ソースドライバ16の表示データが入力されるラインが順に切り替わることで、表示装置10に画像が表示されることになる。   As a result, the data voltage supplied from each amplifier circuit 48 of the amplifier circuit group 46 to the data line is one line corresponding to the gate line to which the gate signal is supplied by the gate driver 14 among the lines of the display device 10. The light transmittance of the liquid crystal at the position of each pixel to which the data voltage is applied is changed according to the magnitude of the applied data voltage, so that an image for one line is displayed on the display device 10. Is displayed. Then, the gate line to which the gate signal is supplied by the gate driver 14 is sequentially switched, and the line to which the display data of the source driver 16 is input is sequentially switched, so that an image is displayed on the display device 10.

次に図2を参照し、電位変更補助回路群40に1ライン分の画素数と同数個設けられている電位変更補助回路42を説明する。図2には単一の画素(データ線)に対応する単一の電位変更補助回路42が示されており、この電位変更補助回路42にはn個(例えばn>1)の電位検出・変更回路50が設けられている。また、電位変更補助回路群40には、基準電位供給部62と選択信号供給部64を備えた切替制御部44も設けられている。   Next, the potential change auxiliary circuit 42 provided in the potential change auxiliary circuit group 40 in the same number as the number of pixels for one line will be described with reference to FIG. FIG. 2 shows a single potential change auxiliary circuit 42 corresponding to a single pixel (data line). The potential change auxiliary circuit 42 includes n potential detection / changes (for example, n> 1). A circuit 50 is provided. The potential change auxiliary circuit group 40 is also provided with a switching control unit 44 including a reference potential supply unit 62 and a selection signal supply unit 64.

個々の電位検出・変更回路50は、検出用のPMOSトランジスタ52及びNMOSトランジスタ54と、選択用のNMOSトランジスタ56及びPMOSトランジスタ58と、を備えている。検出用のPMOSトランジスタ52はドレインが出力信号線60に接続され、ソースが選択用のNMOSトランジスタ56のソースに接続され、ゲートが基準電位供給部62に接続され、バックゲート(サブストレートゲートともいう)が接地線に接続されて電位Vssに維持されている。また、検出用のNMOSトランジスタ54はドレインが出力信号線60に接続され、ソースが選択用のPMOSトランジスタ58のソースに接続され、ゲートが基準電位供給部62に接続され、バックゲートが電源に接続されて電位VDDに維持されている。   Each potential detection / change circuit 50 includes a detection PMOS transistor 52 and an NMOS transistor 54, and a selection NMOS transistor 56 and a PMOS transistor 58. The detection PMOS transistor 52 has a drain connected to the output signal line 60, a source connected to the source of the selection NMOS transistor 56, a gate connected to the reference potential supply unit 62, and a back gate (also referred to as a substrate gate). ) Is connected to the ground line and maintained at the potential Vss. The detection NMOS transistor 54 has a drain connected to the output signal line 60, a source connected to the source of the selection PMOS transistor 58, a gate connected to the reference potential supply unit 62, and a back gate connected to the power supply. Thus, the potential VDD is maintained.

選択用のNMOSトランジスタ56は、ドレイン及びバックゲートが電源に接続されて電位VDDに維持されており、ゲートが選択信号供給部64に接続されている。また、選択用のPMOSトランジスタ58は、ドレイン及びバックゲートが接地線に接続されて電位Vssに維持されており、ゲートが選択信号供給部64に接続されている。なお、単一の電位変更補助回路42に設けられている電位検出・変更回路50の数nは、例えば駆動装置12に対して許容される回路規模や、駆動装置12に対する動作速度の高速化の程度等の条件に応じて定めることができる。   The selection NMOS transistor 56 has a drain and a back gate connected to a power supply and maintained at the potential VDD, and a gate connected to the selection signal supply unit 64. The selection PMOS transistor 58 has a drain and a back gate connected to the ground line and maintained at the potential Vss, and a gate connected to the selection signal supply unit 64. Note that the number n of the potential detection / change circuits 50 provided in the single potential change auxiliary circuit 42 is, for example, an allowable circuit scale for the drive device 12 or an increase in operation speed for the drive device 12. It can be determined according to conditions such as degree.

また、切替制御部44の基準電位供給部62は、個々の電位検出・変更回路50の検出用のPMOSトランジスタ52及びNMOSトランジスタ54に対し、デコーダ回路36から出力されるデータ電圧の最小値から最大値の範囲内で、かつn種類の電圧レベルのうち電位検出・変更回路50毎に互いに異なる電圧レベルの電圧(電位)を基準電位Vrefとしてゲートに各々供給する。   In addition, the reference potential supply unit 62 of the switching control unit 44 applies the minimum to the maximum value of the data voltage output from the decoder circuit 36 with respect to the detection PMOS transistor 52 and NMOS transistor 54 of the individual potential detection / change circuit 50. A voltage (potential) having a different voltage level within the value range and different for each potential detection / change circuit 50 among the n types of voltage levels is supplied to the gate as a reference potential Vref.

例として図3(A)には、電位検出・変更回路50の数n=3の場合に、個々の電位検出・変更回路50の検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給する基準電位Vref1〜Vref3の一例を示す。図3(A)におおいて、電位Vminは表示データの最小値Dminが入力されたときにデコーダ回路36から出力されるデータ電圧、電位Vmaxは表示データの最大値Dmaxが入力されたときにデコーダ回路36から出力されるデータ電圧である。基準電位供給部62は、例えば図3(A)に示すように、デコーダ回路36から出力されるデータ電圧の範囲(Vmin〜Vmax)を、電位検出・変更回路50の数nに応じた数(=n+1=4)の複数の範囲に均等に分割したときの個々の範囲に境界に相当する電位を、個々の電位検出・変更回路50の検出用のPMOSトランジスタ52及びNMOSトランジスタ54に基準電位Vrefとして供給するように構成することができる。   As an example, FIG. 3A shows a reference supplied to the gates of the detection PMOS transistor 52 and the NMOS transistor 54 of each potential detection / change circuit 50 when the number n of potential detection / change circuits 50 is 3. An example of the potentials Vref1 to Vref3 is shown. In FIG. 3A, the potential Vmin is the data voltage output from the decoder circuit 36 when the minimum display data value Dmin is input, and the potential Vmax is the decoder when the maximum display data value Dmax is input. This is a data voltage output from the circuit 36. For example, as shown in FIG. 3A, the reference potential supply unit 62 sets the range (Vmin to Vmax) of the data voltage output from the decoder circuit 36 according to the number n of the potential detection / change circuits 50 ( = N + 1 = 4), the potential corresponding to the boundary of each range when equally divided into a plurality of ranges is applied to the detection PMOS transistor 52 and NMOS transistor 54 of each potential detection / change circuit 50 as a reference potential Vref. It can be configured to be supplied as

また、電位検出・変更回路50の選択信号供給部64は、デコーダ回路36に入力されるレベル変換後の表示データが入力され(これに代えてレベル変換前の表示データが入力される構成でもよい)、入力された表示データに基づいて、デコーダ回路36による出力信号線60の電位の変更における目標電位を、デコーダ回路36によって出力信号線60の電位が変更される前に認識する。また選択信号供給部64は、水平同期信号の1つ前の周期で認識した出力信号線60の目標電位を保持しており、認識した目標電位を前周期の目標電位と比較することで、現周期でのデコーダ回路36による出力信号線60の電位の変更方向が電位の上昇か下降かを判断する。   The selection signal supply unit 64 of the potential detection / change circuit 50 receives display data after level conversion input to the decoder circuit 36 (instead of this, display data before level conversion may be input). ), Based on the input display data, the target potential in the change of the potential of the output signal line 60 by the decoder circuit 36 is recognized before the potential of the output signal line 60 is changed by the decoder circuit 36. The selection signal supply unit 64 holds the target potential of the output signal line 60 recognized in the previous cycle of the horizontal synchronization signal, and compares the recognized target potential with the target potential of the previous cycle, thereby It is determined whether the potential change direction of the output signal line 60 by the decoder circuit 36 in the cycle is an increase or decrease in potential.

そして選択信号供給部64は、出力信号線60の電位の変更方向が電位の上昇と判断した場合には、n個の電位検出・変更回路50に基準電位Vrefとして供給しているn種類の電位の中から、認識した目標電位以下でかつ前記目標電位に最も近い電位を選択し、選択した電位を基準電位Vrefとして検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給している電位検出・変更回路50に対し、選択用のNMOSトランジスタ56をオンさせる選択信号を選択用のNMOSトランジスタ56のゲートに供給する。   When the selection signal supply unit 64 determines that the change direction of the potential of the output signal line 60 is an increase in potential, the n types of potentials supplied to the n potential detection / change circuits 50 as the reference potential Vref. A potential that is lower than the recognized target potential and closest to the target potential is selected, and the selected potential is supplied to the gates of the detection PMOS transistor 52 and NMOS transistor 54 as the reference potential Vref. A selection signal for turning on the selection NMOS transistor 56 is supplied to the change circuit 50 to the gate of the selection NMOS transistor 56.

また選択信号供給部64は、出力信号線60の電位の変更方向が電位の下降と判断した場合には、n個の電位検出・変更回路50に基準電位Vrefとして供給しているn種類の電位の中から認識した目標電位以上でかつ前記目標電位に最も近い電位を選択し、選択した電位を基準電位Vrefとして検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給している電位検出・変更回路50に対し、選択用のPMOSトランジスタ58をオンさせる選択信号を選択用のPMOSトランジスタ58のゲートに供給する。   When the selection signal supply unit 64 determines that the change direction of the potential of the output signal line 60 is a decrease in potential, the n types of potentials supplied to the n potential detection / change circuits 50 as the reference potential Vref. A potential that is equal to or higher than the recognized target potential and that is closest to the target potential is selected, and the selected potential is supplied to the gates of the detection PMOS transistor 52 and NMOS transistor 54 as the reference potential Vref. A selection signal for turning on the PMOS transistor 58 for selection is supplied to the gate of the PMOS transistor 58 for selection.

なお、本第1実施形態において、検出用のPMOSトランジスタ52は、本発明に係る第1のスイッチング手段(より詳しくは請求項2,11に記載の第1のスイッチング手段)及び請求項8に記載のPMOSトランジスタの一例、検出用のNMOSトランジスタ54は、本発明に係る第2のスイッチング手段(より詳しくは請求項4,11に記載の第2のスイッチング手段) 及び請求項8に記載のNMOSトランジスタの一例、選択用のNMOSトランジスタ56は請求項3に記載の第3のスイッチング手段の一例、選択用のPMOSトランジスタ58は請求項5に記載の第4のスイッチング手段の一例、切替制御部44は本発明に係る制御手段(より詳しくは請求項2〜5に記載の制御手段)の一例、デコーダ回路36は請求項1に記載の電位切替部の一例、増幅回路48は請求項11に記載の増幅回路の一例である。また、検出用のPMOSトランジスタ52のゲートに供給される電位は第1基準電位の一例、検出用のNMOSトランジスタ54のゲートに供給される電位は第2基準電位の一例である。   In the first embodiment, the detection PMOS transistor 52 includes the first switching means according to the present invention (more specifically, the first switching means according to claims 2 and 11) and the eighth aspect. An NMOS transistor 54 for detection, which is an example of the PMOS transistor of the present invention, includes the second switching means according to the present invention (more specifically, the second switching means according to claims 4 and 11) and the NMOS transistor according to claim 8. The selection NMOS transistor 56 is an example of the third switching means according to claim 3, the selection PMOS transistor 58 is an example of the fourth switching means according to claim 5, and the switching control unit 44 is An example of the control means according to the present invention (more specifically, the control means according to claims 2 to 5), the decoder circuit 36 is the potential switching according to claim 1. An example of the amplification circuit 48 is an example of an amplifier circuit according to claim 11. The potential supplied to the gate of the detection PMOS transistor 52 is an example of a first reference potential, and the potential supplied to the gate of the detection NMOS transistor 54 is an example of a second reference potential.

次に本実施形態の作用を説明する。駆動装置12のソースドライバ16のデコーダ回路36は、前述のように、階調電圧発生部38より供給された複数種の階調電圧の中から、前段のレベルシフタ32から入力された1画素分の表示データに応じた階調電圧を選択し、出力信号線60の電圧レベル(電位)を選択した階調電圧へ変化させるが、デコーダ回路36が出力信号線60の電位を変化させる速度(デコーダ回路36の出力速度)はソースドライバ16の他の回路の出力速度よりも低く、ソースドライバ16の動作速度向上の主な阻害要因となっている。このため、本実施形態に係る駆動装置12のソースドライバ16には、電位変更補助回路群40が設けられている。   Next, the operation of this embodiment will be described. As described above, the decoder circuit 36 of the source driver 16 of the driving device 12 corresponds to one pixel input from the level shifter 32 in the previous stage from among the plurality of types of gradation voltages supplied from the gradation voltage generator 38. The gradation voltage corresponding to the display data is selected and the voltage level (potential) of the output signal line 60 is changed to the selected gradation voltage, but the speed at which the decoder circuit 36 changes the potential of the output signal line 60 (decoder circuit). The output speed of 36 is lower than the output speed of the other circuits of the source driver 16, which is a main impediment to improving the operating speed of the source driver 16. Therefore, the potential change auxiliary circuit group 40 is provided in the source driver 16 of the drive device 12 according to the present embodiment.

電位変更補助回路群40に設けられた電位検出・変更回路50の選択信号供給部64は、出力信号線60の電位の変更方向が電位の上昇と判断した場合、n個の電位検出・変更回路50に基準電位Vrefとして供給しているn種類の電位の中から、認識した目標電位以下でかつ前記目標電位に最も近い電位を選択し、選択した電位を基準電位Vrefとして検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給している電位検出・変更回路50に対し、選択用のNMOSトランジスタ56をオンさせる選択信号を選択用のNMOSトランジスタ56のゲートに供給する。   When the selection signal supply unit 64 of the potential detection / change circuit 50 provided in the potential change auxiliary circuit group 40 determines that the potential change direction of the output signal line 60 is an increase in potential, n potential detection / change circuits are provided. 50 is selected from the n types of potentials supplied as the reference potential Vref to the reference potential Vref, and a potential that is equal to or lower than the recognized target potential and closest to the target potential is selected. A selection signal for turning on the selection NMOS transistor 56 is supplied to the gate of the selection NMOS transistor 56 to the potential detection / change circuit 50 supplied to the gate of the NMOS transistor 54.

選択信号がゲートに供給された選択用のNMOSトランジスタ56がオンすると、この選択用のNMOSトランジスタ56に接続された検出用のPMOSトランジスタ52は、出力信号線60の電位がゲートに供給されている基準電位Vrefに達する迄の間オンするので、出力信号線60の電位が基準電位Vrefに達する迄の間、出力信号線60は検出用のPMOSトランジスタ52及び選択用のNMOSトランジスタ56を介して電源に接続される。   When the selection NMOS transistor 56 to which the selection signal is supplied to the gate is turned on, the detection PMOS transistor 52 connected to the selection NMOS transistor 56 is supplied with the potential of the output signal line 60 to the gate. Since the output signal line 60 is turned on until the reference potential Vref is reached, the output signal line 60 is supplied via the detection PMOS transistor 52 and the selection NMOS transistor 56 until the potential of the output signal line 60 reaches the reference potential Vref. Connected to.

例として図3(B)には、選択信号供給部64によって認識された出力信号線60の目標電位VDが、水平同期信号の前周期の目標電位VD-1よりも高く、かつ、基準電位Vref3よりも高い場合の出力信号線60の電位の変化を示す。図3(B)からも明らかなように、出力信号線60の電位が基準電位Vref3に達する迄の期間は出力信号線60が電源に接続されているので、当該期間における出力信号線60の電位変化の傾きを、電位変更補助回路群40に設けられていない場合の電位変化の傾き(図3(B)に示す一点鎖線の傾き)と比較しても明らかなように、上記期間には出力信号線60の電位が高速に変化する。   As an example, in FIG. 3B, the target potential VD of the output signal line 60 recognized by the selection signal supply unit 64 is higher than the target potential VD-1 of the previous period of the horizontal synchronizing signal, and the reference potential Vref3. The change in the potential of the output signal line 60 when the output voltage is higher than that is shown. As is clear from FIG. 3B, the output signal line 60 is connected to the power source during the period until the potential of the output signal line 60 reaches the reference potential Vref3. As is clear from the comparison of the slope of the change with the slope of the potential change when not provided in the potential change auxiliary circuit group 40 (the slope of the one-dot chain line shown in FIG. 3B), the output is output during the period. The potential of the signal line 60 changes at high speed.

また、出力信号線60の電位が基準電位Vref3に達すると、検出用のPMOSトランジスタ52がオフすることで出力信号線60と電源との接続が解除され、出力信号線60の電位変化の傾きも電位変更補助回路群40に設けられていない場合と同様に小さくなるが、図3(B)に「時間短縮」と表記して示すように、出力信号線60を電位VD-1から電位VDへ変化させる所要時間全体としては短縮されているので、ソースドライバ16の動作速度の向上を実現することができる。また、検出用のPMOSトランジスタ52は出力信号線60の電位が基準電位Vref3に達するとオフするので、検出用のPMOSトランジスタ52を予め設定した一定時間オンさせる等の場合と比較して、無駄な電力消費を抑制することができる。   Further, when the potential of the output signal line 60 reaches the reference potential Vref3, the PMOS transistor 52 for detection is turned off, so that the connection between the output signal line 60 and the power source is released, and the slope of the potential change of the output signal line 60 is also increased. Although it becomes smaller as in the case where it is not provided in the potential change auxiliary circuit group 40, the output signal line 60 is changed from the potential VD-1 to the potential VD as indicated by "time reduction" in FIG. Since the total time required for the change is shortened, the operation speed of the source driver 16 can be improved. Since the detection PMOS transistor 52 is turned off when the potential of the output signal line 60 reaches the reference potential Vref3, the detection PMOS transistor 52 is useless compared to the case where the detection PMOS transistor 52 is turned on for a predetermined time. Power consumption can be suppressed.

また、電位検出・変更回路50の選択信号供給部64は、出力信号線60の電位の変更方向が電位の下降と判断した場合、n個の電位検出・変更回路50に基準電位Vrefとして供給しているn種類の電位の中から、認識した目標電位以上でかつ前記目標電位に最も近い電位を選択し、選択した電位を基準電位Vrefとして検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給している電位検出・変更回路50に対し、選択用のPMOSトランジスタ58をオンさせる選択信号を選択用のPMOSトランジスタ58のゲートに供給する。   The selection signal supply unit 64 of the potential detection / change circuit 50 supplies the n potential detection / change circuits 50 as the reference potential Vref when determining that the change direction of the potential of the output signal line 60 is a decrease in potential. A potential that is equal to or higher than the recognized target potential and closest to the target potential is selected from the n types of potentials, and the selected potential is supplied as a reference potential Vref to the gates of the PMOS transistor 52 and the NMOS transistor 54 for detection. A selection signal for turning on the selection PMOS transistor 58 is supplied to the gate of the selection PMOS transistor 58 with respect to the potential detection / change circuit 50.

選択信号がゲートに供給された選択用のPMOSトランジスタ58がオンすると、この選択用のPMOSトランジスタ58に接続された検出用のNMOSトランジスタ54は、出力信号線60の電位がゲートに供給されている基準電位Vrefに達する迄の間オンするので、出力信号線60の電位が基準電位Vrefに達する迄の間、出力信号線60は検出用のNMOSトランジスタ54及び選択用のPMOSトランジスタ58を介して接地線に接続される。   When the selection PMOS transistor 58 to which the selection signal is supplied to the gate is turned on, the detection NMOS transistor 54 connected to the selection PMOS transistor 58 is supplied with the potential of the output signal line 60 to the gate. Since it is turned on until the reference potential Vref is reached, the output signal line 60 is grounded via the detection NMOS transistor 54 and the selection PMOS transistor 58 until the potential of the output signal line 60 reaches the reference potential Vref. Connected to the line.

例として図3(C)には、選択信号供給部64によって認識された出力信号線60の目標電位VDが、水平同期信号の前周期の目標電位VD-1よりも低く、かつ、基準電位Vref1よりも低い場合の出力信号線60の電位の変化を示す。図3(C)からも明らかなように、出力信号線60の電位が基準電位Vref1に達する迄の期間は出力信号線60が接地線に接続されているので、当該期間における出力信号線60の電位変化の傾きを、電位変更補助回路群40に設けられていない場合の電位変化の傾き(図3(C)に示す一点鎖線の傾き)と比較しても明らかなように、上記期間には出力信号線60の電位が高速に変化する。   As an example, in FIG. 3C, the target potential VD of the output signal line 60 recognized by the selection signal supply unit 64 is lower than the target potential VD-1 of the previous period of the horizontal synchronizing signal, and the reference potential Vref1. The change in the potential of the output signal line 60 when the output signal line is lower than that is shown. As apparent from FIG. 3C, since the output signal line 60 is connected to the ground line during the period until the potential of the output signal line 60 reaches the reference potential Vref1, the output signal line 60 in this period is connected. As is apparent from the comparison of the slope of the potential change with the slope of the potential change when the potential change auxiliary circuit group 40 is not provided (the slope of the one-dot chain line shown in FIG. 3C), The potential of the output signal line 60 changes at high speed.

また、出力信号線60の電位が基準電位Vref1に達すると、検出用のNMOSトランジスタ54がオフすることで出力信号線60と接地線との接続が解除され、出力信号線60の電位変化の傾きも電位変更補助回路群40に設けられていない場合と同様に小さくなるが、図3(C)に「時間短縮」と表記して示すように、出力信号線60を電位VD-1から電位VDへ変化させる所要時間全体としては短縮されているので、ソースドライバ16の動作速度の向上を実現することができる。また、検出用のNMOSトランジスタ54は出力信号線60の電位が基準電位Vref1に達するとオフするので、検出用のNMOSトランジスタ54を予め設定した一定時間オンさせる等の場合と比較して、無駄な電力消費を抑制することができる。   When the potential of the output signal line 60 reaches the reference potential Vref1, the detection NMOS transistor 54 is turned off, so that the connection between the output signal line 60 and the ground line is released, and the slope of the potential change of the output signal line 60 As shown in FIG. 3C, “time reduction” is indicated, and the output signal line 60 is changed from the potential VD-1 to the potential VD. Since the total time required for the change to is shortened, the operation speed of the source driver 16 can be improved. Further, since the detection NMOS transistor 54 is turned off when the potential of the output signal line 60 reaches the reference potential Vref1, it is useless compared with the case where the detection NMOS transistor 54 is turned on for a predetermined time. Power consumption can be suppressed.

〔第2実施形態〕
次に本発明の第2実施形態について説明する。なお、第1実施形態と同一の部分には同一の符号を付し、説明を省略する。図4には本第2実施形態に係る電位変更補助回路群40の電位変更補助回路42及び切替制御部44が示されている。図4に示すように、本第2実施形態では、電位変更補助回路42に単一の電位検出・変更回路68が設けられている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, and description is abbreviate | omitted. FIG. 4 shows the potential change auxiliary circuit 42 and the switching control unit 44 of the potential change auxiliary circuit group 40 according to the second embodiment. As shown in FIG. 4, in the second embodiment, a single potential detection / change circuit 68 is provided in the potential change auxiliary circuit 42.

電位検出・変更回路68は、第1実施形態で説明した電位検出・変更回路50と比較して選択用のNMOSトランジスタ56及びPMOSトランジスタ58が省略されており、検出用のPMOSトランジスタ52はソースが電源に、ゲートが電位選択回路70に各々接続されており、検出用のNMOSトランジスタ54はソースが接地線に、ゲートが電位選択回路72に各々接続されている。   In the potential detection / change circuit 68, the selection NMOS transistor 56 and the PMOS transistor 58 are omitted as compared with the potential detection / change circuit 50 described in the first embodiment, and the detection PMOS transistor 52 has a source. The power supply, the gate is connected to the potential selection circuit 70, and the detection NMOS transistor 54 has the source connected to the ground line and the gate connected to the potential selection circuit 72.

電位選択回路70,72には、切替制御部44の基準電位供給部62からn種類の電位(基準電位Vref1〜Vrefn)が各々供給される。電位選択回路70,72は、切替制御部44の選択信号供給部64から入力された選択信号に応じてオンオフされるn個のスイッチング素子を備えており、選択信号供給部64から入力された選択信号に応じて、基準電位供給部62から供給されたn種類の電位のうちの何れか1つの電位を検出用のPMOSトランジスタ52のゲート又は検出用のNMOSトランジスタ54のゲートに基準電位Vrefとして供給する。   The potential selection circuits 70 and 72 are supplied with n types of potentials (reference potentials Vref1 to Vrefn) from the reference potential supply unit 62 of the switching control unit 44, respectively. The potential selection circuits 70 and 72 include n switching elements that are turned on / off in response to a selection signal input from the selection signal supply unit 64 of the switching control unit 44, and are selected from the selection signal supply unit 64. In response to the signal, any one of n potentials supplied from the reference potential supply unit 62 is supplied as a reference potential Vref to the gate of the detection PMOS transistor 52 or the gate of the detection NMOS transistor 54. To do.

なお、本第2実施形態において、検出用のPMOSトランジスタ52は、本発明に係る第1のスイッチング手段(より詳しくは請求項6に記載の第1のスイッチング手段)及び請求項8に記載のPMOSトランジスタの一例、検出用のNMOSトランジスタ54は、本発明に係る第2のスイッチング手段(より詳しくは請求項7に記載の第2のスイッチング手段) 及び請求項8に記載のNMOSトランジスタの一例、切替制御部44は本発明に係る制御手段(より詳しくは請求項6,7に記載の制御手段)の一例、デコーダ回路36は請求項1に記載の電位切替部の一例、増幅回路48は請求項11に記載の増幅回路の一例である。また、検出用のPMOSトランジスタ52のゲートに供給される電位は第1基準電位、より詳しくは請求項6に記載の「n種類の電位のうちの何れか1つの電位」の一例、検出用のNMOSトランジスタ54のゲートに供給される電位は第2基準電位、より詳しくは請求項7に記載の「n種類の電位のうちの何れか1つの電位」の一例である。   In the second embodiment, the detection PMOS transistor 52 includes the first switching means according to the present invention (more specifically, the first switching means according to claim 6) and the PMOS according to claim 8. An example of the transistor, the NMOS transistor 54 for detection, includes the second switching means according to the present invention (more specifically, the second switching means according to claim 7) and the example of the NMOS transistor according to claim 8. The control unit 44 is an example of a control unit according to the present invention (more specifically, the control unit according to claims 6 and 7), the decoder circuit 36 is an example of the potential switching unit according to claim 1, and the amplifier circuit 48 is a claim. 11 is an example of an amplifier circuit described in FIG. The potential supplied to the gate of the detection PMOS transistor 52 is a first reference potential, more specifically, an example of “any one of n types of potentials” according to claim 6, The potential supplied to the gate of the NMOS transistor 54 is an example of a second reference potential, more specifically, “any one potential among n types of potentials” according to claim 7.

次に本第2実施形態の作用を説明する。電位検出・変更回路50の選択信号供給部64は、出力信号線60の電位の変更方向が電位の上昇と判断した場合、基準電位供給部62が電位選択回路70,72に供給しているn種類の電位の中から、認識した目標電位以下でかつ前記目標電位に最も近い電位を選択し、選択した電位を電位選択回路70から出力させるための選択信号を電位選択回路70に供給する。これにより、上記で選択した電位が検出用のPMOSトランジスタ52のゲートに基準電位Vrefとして供給され、出力信号線60の電位がゲートに供給されている基準電位Vrefに達する迄の間、検出用のPMOSトランジスタ52がオンすることで、出力信号線60の電位が基準電位Vrefに達する迄の間、出力信号線60は検出用のPMOSトランジスタ52を介して電源に接続される。   Next, the operation of the second embodiment will be described. When the selection signal supply unit 64 of the potential detection / change circuit 50 determines that the potential change direction of the output signal line 60 is an increase in potential, the reference potential supply unit 62 supplies the potential selection circuits 70 and 72 with the potential n. A potential that is equal to or lower than the recognized target potential and closest to the target potential is selected from the types of potentials, and a selection signal for outputting the selected potential from the potential selection circuit 70 is supplied to the potential selection circuit 70. As a result, the potential selected above is supplied as the reference potential Vref to the gate of the detection PMOS transistor 52, and until the potential of the output signal line 60 reaches the reference potential Vref supplied to the gate. When the PMOS transistor 52 is turned on, the output signal line 60 is connected to the power supply via the detection PMOS transistor 52 until the potential of the output signal line 60 reaches the reference potential Vref.

従って、第1実施形態と同様に、出力信号線60が電位VD-1からより高い電位VDへ変化する迄の所要時間が短縮され(図3(B)も参照)、ソースドライバ16の動作速度の向上を実現することができる。また検出用のPMOSトランジスタ52は、出力信号線60の電位がゲートに供給された基準電位Vrefに達するとオフするので、検出用のPMOSトランジスタ52を予め設定した一定時間オンさせる等の場合と比較して、無駄な電力消費を抑制することができる。   Accordingly, as in the first embodiment, the time required for the output signal line 60 to change from the potential VD-1 to the higher potential VD is shortened (see also FIG. 3B), and the operating speed of the source driver 16 is reduced. Improvement can be realized. The detection PMOS transistor 52 is turned off when the potential of the output signal line 60 reaches the reference potential Vref supplied to the gate, so that the detection PMOS transistor 52 is turned on for a predetermined time. Thus, wasteful power consumption can be suppressed.

また電位検出・変更回路50の選択信号供給部64は、出力信号線60の電位の変更方向が電位の下降と判断した場合、基準電位供給部62が電位選択回路70,72に供給しているn種類の電位の中から、認識した目標電位以上でかつ前記目標電位に最も近い電位を選択し、選択した電位を電位選択回路72から出力させるための選択信号を電位選択回路72に供給する。これにより、上記で選択した電位が検出用のNMOSトランジスタ54のゲートに基準電位Vrefとして供給され、出力信号線60の電位がゲートに供給されている基準電位Vrefに達する迄の間、検出用のNMOSトランジスタ54がオンすることで、出力信号線60の電位が基準電位Vrefに達する迄の間、出力信号線60は検出用のNMOSトランジスタ54を介して電源に接続される。   Further, when the selection signal supply unit 64 of the potential detection / change circuit 50 determines that the potential change direction of the output signal line 60 is a decrease in potential, the reference potential supply unit 62 supplies the potential selection circuits 70 and 72 with the potential decrease. A potential that is equal to or higher than the recognized target potential and closest to the target potential is selected from the n types of potentials, and a selection signal for outputting the selected potential from the potential selection circuit 72 is supplied to the potential selection circuit 72. As a result, the potential selected above is supplied as the reference potential Vref to the gate of the NMOS transistor 54 for detection, and until the potential of the output signal line 60 reaches the reference potential Vref supplied to the gate. When the NMOS transistor 54 is turned on, the output signal line 60 is connected to the power supply via the detection NMOS transistor 54 until the potential of the output signal line 60 reaches the reference potential Vref.

従って、第1実施形態と同様に、出力信号線60が電位VD-1からより低い電位VDへ変化する迄の所要時間も短縮され(図3(C)も参照)、ソースドライバ16の動作速度の向上を実現することができる。また検出用のNMOSトランジスタ54は、出力信号線60の電位がゲートに供給された基準電位Vrefに達するとオフするので、検出用のNMOSトランジスタ54を予め設定した一定時間オンさせる等の場合と比較して、無駄な電力消費を抑制することができる。   Accordingly, as in the first embodiment, the time required for the output signal line 60 to change from the potential VD-1 to the lower potential VD is shortened (see also FIG. 3C), and the operating speed of the source driver 16 is reduced. Improvement can be realized. Since the detection NMOS transistor 54 is turned off when the potential of the output signal line 60 reaches the reference potential Vref supplied to the gate, the detection NMOS transistor 54 is turned on for a predetermined time. Thus, wasteful power consumption can be suppressed.

〔第3実施形態〕
次に本発明の第3実施形態について説明する。なお、第1実施形態と同一の部分には同一の符号を付し、説明を省略する。図5には本第3実施形態に係る電位変更補助回路群40の電位変更補助回路42及び切替制御部44が示されている。図5に示すように、本第3実施形態に係る電位検出・変更回路76は、第1実施形態で説明した電位検出・変更回路50と比較して、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のバックゲートが出力信号線60に接続されている点でのみ相違している。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, and description is abbreviate | omitted. FIG. 5 shows the potential change auxiliary circuit 42 and the switching control unit 44 of the potential change auxiliary circuit group 40 according to the third embodiment. As shown in FIG. 5, the potential detection / change circuit 76 according to the third embodiment is different from the potential detection / change circuit 50 described in the first embodiment in the detection PMOS transistor 52 and NMOS transistor 54. The only difference is that the back gate is connected to the output signal line 60.

なお、本第1実施形態において、検出用のPMOSトランジスタ52は請求項9に記載のPMOSトランジスタの一例、検出用のNMOSトランジスタ54は請求項9に記載のNMOSトランジスタの一例である。   In the first embodiment, the detection PMOS transistor 52 is an example of a PMOS transistor according to claim 9, and the detection NMOS transistor 54 is an example of an NMOS transistor according to claim 9.

第1実施形態で説明した電位検出・変更回路50のように、検出用のPMOSトランジスタ52のバックゲートを接地線に接続すると共に、検出用のNMOSトランジスタ54のバックゲートを電源に接続した場合、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のバックゲートと出力信号線60とに電位差が生じ(バックバイアスが掛かり)るので、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のうちオンしたトランジスタは、出力信号線60の電位が、ゲートに供給された基準電位Vrefに達するよりも若干早いタイミング(出力信号線60の電位と基準電位Vrefとの差がトランジスタの閾値電圧Vtまで小さくなったタイミング)でオフする。   When the back gate of the detection PMOS transistor 52 is connected to the ground line and the back gate of the detection NMOS transistor 54 is connected to the power source as in the potential detection / change circuit 50 described in the first embodiment, Since a potential difference occurs between the back gates of the detection PMOS transistor 52 and NMOS transistor 54 and the output signal line 60 (back bias is applied), the transistor that is turned on among the detection PMOS transistor 52 and NMOS transistor 54 outputs Off at a timing slightly earlier than the potential of the signal line 60 reaches the reference potential Vref supplied to the gate (the timing at which the difference between the potential of the output signal line 60 and the reference potential Vref is reduced to the threshold voltage Vt of the transistor) To do.

これに対し、本第3実施形態に係る電位検出・変更回路76のように、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のバックゲートが出力信号線60に接続した場合、検出用のPMOSトランジスタ52及びNMOSトランジスタ54にはバックバイアスが掛からなくなるので、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のうちオンしたトランジスタは、出力信号線60の電位が、ゲートに供給された基準電位Vrefに達するタイミングまでオンすることになる。これにより、検出用のPMOSトランジスタ52及びNMOSトランジスタ54がオンしている期間が長くなるので、出力信号線60が電位VD-1から電位VDへ変化する迄の所要時間が更に短縮され、ソースドライバ16の動作速度を更に向上させることができる。   On the other hand, when the back gates of the detection PMOS transistor 52 and the NMOS transistor 54 are connected to the output signal line 60 as in the potential detection / change circuit 76 according to the third embodiment, the detection PMOS transistor 52 Since the back bias is not applied to the NMOS transistor 54, the ON transistor of the detection PMOS transistor 52 and the NMOS transistor 54 is turned on until the potential of the output signal line 60 reaches the reference potential Vref supplied to the gate. Will turn on. As a result, the period during which the detection PMOS transistor 52 and NMOS transistor 54 are ON is lengthened, so that the time required for the output signal line 60 to change from the potential VD-1 to the potential VD is further shortened. The operation speed of 16 can be further improved.

なお、第3実施形態では、第1実施形態で説明した構成において、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のバックゲートを出力信号線60に接続した構成を説明したが、本発明はこれに限定されるものではなく、第2実施形態で説明した構成において、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のバックゲートを出力信号線60に接続するようにしてもよい。   In the third embodiment, the configuration in which the back gates of the detection PMOS transistor 52 and the NMOS transistor 54 are connected to the output signal line 60 in the configuration described in the first embodiment has been described. The configuration is not limited, and the back gates of the detection PMOS transistor 52 and the NMOS transistor 54 may be connected to the output signal line 60 in the configuration described in the second embodiment.

また、上記では検出用のPMOSトランジスタ52及びNMOSトランジスタ54をオンさせて出力信号線60の電位を変化させる際の目標電位である基準電位Vrefを検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給する態様を説明したが、本発明はこれに限定されるものではなく、基準電位よりも所定値(例えばトランジスタの閾値電圧Vt)だけ高い電位を検出用のPMOSトランジスタ52及びNMOSトランジスタ54のゲートに供給するようにしてもよい。この場合も、検出用のPMOSトランジスタ52及びNMOSトランジスタ54のバックゲートを出力信号線60に接続する場合と同様に、検出用のPMOSトランジスタ52及びNMOSトランジスタ54がオンしている期間をより長くすることができる。なお、上記態様は請求項10記載の発明の一例である。   In the above description, the reference potential Vref, which is the target potential when changing the potential of the output signal line 60 by turning on the detection PMOS transistor 52 and NMOS transistor 54, is applied to the gates of the detection PMOS transistor 52 and NMOS transistor 54. Although the supply mode has been described, the present invention is not limited to this, and the gates of the detection PMOS transistor 52 and the NMOS transistor 54 have a potential higher than the reference potential by a predetermined value (for example, the threshold voltage Vt of the transistor). You may make it supply to. Also in this case, as in the case where the back gates of the detection PMOS transistor 52 and the NMOS transistor 54 are connected to the output signal line 60, the period during which the detection PMOS transistor 52 and the NMOS transistor 54 are on is made longer. be able to. In addition, the said aspect is an example of invention of Claim 10.

また、電位変更補助回路42は図2,4,5に示した構成に限定されるものではなく、出力信号線60を電源に接続する側と出力信号線60を接地線に接続する側とで構成を相違させてもよい。すなわち、例えば出力信号線60を電源に接続する側は、図2,5に示したように、互いに異なる電位がゲートに供給される複数の検出用のPMOSトランジスタ52を設けた構成とする一方、出力信号線60を接地線に接続する側は、図4に示したように、ゲートに供給される電位が電位選択回路によって複数の電位の中から切り替えされる単一の検出用のNMOSトランジスタ54を設けた構成としてもよいし、出力信号線60を電源に接続する側の構成と出力信号線60を接地線に接続する側の構成を上記と入れ替えた構成としてもよい。   Further, the potential change auxiliary circuit 42 is not limited to the configuration shown in FIGS. 2, 4, and 5; The configuration may be different. That is, for example, on the side where the output signal line 60 is connected to the power supply, as shown in FIGS. 2 and 5, a plurality of detection PMOS transistors 52 to which different potentials are supplied to the gates are provided. On the side where the output signal line 60 is connected to the ground line, as shown in FIG. 4, a single NMOS transistor 54 for detection in which the potential supplied to the gate is switched from a plurality of potentials by the potential selection circuit. Alternatively, the configuration on the side where the output signal line 60 is connected to the power supply and the configuration on the side where the output signal line 60 is connected to the ground line may be replaced with the above.

更に、上記では第1のスイッチング手段を検出用のPMOSトランジスタ52で構成すると共に、第2のスイッチング手段を検出用のNMOSトランジスタ54で構成した態様を説明したが、本発明はこれに限定されるものではなく、MOSトランジスタ以外のスイッチング素子を用いた構成とすることも可能である。   Further, in the above description, the first switching means is constituted by the detection PMOS transistor 52 and the second switching means is constituted by the detection NMOS transistor 54. However, the present invention is limited to this. It is also possible to adopt a configuration using switching elements other than MOS transistors.

10 表示装置
12 駆動装置
16 ソースドライバ
36 デコーダ回路
38 階調電圧発生部
42 電位変更補助回路
44 切替制御部
48 増幅回路
50,68,76 電位検出・変更回路
52 検出用のPMOSトランジスタ
54 検出用のNMOSトランジスタ
56 選択用のNMOSトランジスタ
58 選択用のPMOSトランジスタ
60 出力信号線
62 基準電位供給部
64 選択信号供給部
70,72 電位選択回路
DESCRIPTION OF SYMBOLS 10 Display apparatus 12 Drive apparatus 16 Source driver 36 Decoder circuit 38 Gradation voltage generation part 42 Potential change auxiliary circuit 44 Switching control part 48 Amplifier circuit 50,68,76 Potential detection / change circuit 52 Detection PMOS transistor 54 For detection NMOS transistor 58 NMOS transistor 58 for selection PMOS transistor 60 for selection Output signal line 62 Reference potential supply unit 64 Selection signal supply unit 70, 72 Potential selection circuit

Claims (11)

駆動信号線の電位を表示データに応じた目標電位へ切り替える電位切替部と、前記駆動信号線の電位が電圧として供給される表示装置と、の間に設けられ、前記駆動信号線の電位が当該電位よりも高い第1基準電位に達する迄の間、前記駆動信号線を電源に接続する第1のスイッチング手段と、
前記電位切替部と前記表示装置との間に設けられ、前記駆動信号線の電位が当該電位よりも低い第2基準電位に達する迄の間、前記駆動信号線を接地線に接続する第2のスイッチング手段と、
前記駆動信号線の電位が前記目標電位よりも低い場合に、予め定められたn種類(n≧1)の電位のうち前記目標電位以下かつ前記目標電位に最も近い電位を前記第1基準電位として前記第1のスイッチング手段を作動させ、前記駆動信号線の電位が前記目標電位よりも高い場合に、前記n種類の電位のうち前記目標電位以上かつ前記目標電位に最も近い電位を前記第2基準電位として前記第2のスイッチング手段を作動させる制御手段と、
を含む表示装置の駆動装置。
Provided between a potential switching unit that switches the potential of the drive signal line to a target potential according to display data and a display device to which the potential of the drive signal line is supplied as a voltage. First switching means for connecting the drive signal line to a power source until a first reference potential higher than the potential is reached;
A second switch provided between the potential switching unit and the display device and connecting the drive signal line to a ground line until the potential of the drive signal line reaches a second reference potential lower than the potential; Switching means;
When the potential of the drive signal line is lower than the target potential, a potential that is equal to or lower than the target potential and is closest to the target potential among the n types (n ≧ 1) of predetermined potentials is set as the first reference potential. When the first switching means is operated and the potential of the drive signal line is higher than the target potential, the potential that is equal to or higher than the target potential and is closest to the target potential is selected from the n types of potentials as the second reference. Control means for actuating the second switching means as a potential;
A drive device for a display device, comprising:
前記第1のスイッチング手段は複数設けられ、個々の前記第1のスイッチング手段には前記n種類の電位のうち互いに異なる電位が前記第1基準電位として供給され、
前記制御手段は、前記駆動信号線の電位が前記目標電位よりも低い場合に、複数の前記第1スイッチング手段のうち、前記目標電位以下かつ前記目標電位に最も近い電位が前記第1基準電位として供給される前記第1のスイッチング手段を作動させる請求項1記載の表示装置の駆動装置。
A plurality of the first switching means are provided, and each of the first switching means is supplied with a different potential among the n types of potentials as the first reference potential,
When the potential of the drive signal line is lower than the target potential, the control means has a potential that is equal to or lower than the target potential and closest to the target potential as the first reference potential among the plurality of first switching means. The display device driving apparatus according to claim 1, wherein the first switching means to be supplied is operated.
個々の前記第1のスイッチング手段と前記電源との間には第3のスイッチング手段が各々設けられており、
前記制御手段は、複数の前記第3スイッチング手段のうち、作動させる特定の前記第1のスイッチング手段と前記電源との間に設けられた前記第3スイッチング手段をオンさせることで、特定の前記第1のスイッチング手段を作動させる請求項2記載の表示装置の駆動装置。
Third switching means is provided between each of the first switching means and the power source,
The control means turns on the third switching means provided between the specific first switching means to be operated and the power source among the plurality of third switching means, thereby causing the specific first switching means to turn on. 3. A drive device for a display device according to claim 2, wherein the switching means is operated.
前記第2のスイッチング手段は複数設けられ、個々の前記第2のスイッチング手段には前記n種類の電位のうち互いに異なる電位が前記第2基準電位として供給され、
前記制御手段は、前記駆動信号線の電位が前記目標電位よりも高い場合に、複数の前記第2スイッチング手段のうち、前記目標電位以上かつ前記目標電位に最も近い電位が前記第2基準電位として供給される前記第2のスイッチング手段を作動させる請求項1〜請求項3の何れか1項記載の表示装置の駆動装置。
A plurality of the second switching means are provided, and different potentials among the n kinds of potentials are supplied to the individual second switching means as the second reference potential,
When the potential of the drive signal line is higher than the target potential, the control means has a potential equal to or higher than the target potential and closest to the target potential among the plurality of second switching means as the second reference potential. 4. The display device driving device according to claim 1, wherein the second switching means to be supplied is operated.
個々の前記第2のスイッチング手段と前記接地線との間には第4のスイッチング手段が各々設けられており、
前記制御手段は、複数の前記第4スイッチング手段のうち、作動させる特定の前記第2のスイッチング手段と前記接地線との間に設けられた前記第4スイッチング手段をオンさせることで、特定の前記第2のスイッチング手段を作動させる請求項4記載の表示装置の駆動装置。
Fourth switching means is provided between each of the second switching means and the ground line,
The control means turns on the fourth switching means provided between the specific second switching means to be operated and the ground line among a plurality of the fourth switching means, and thereby the specific switching means. 5. The display device driving apparatus according to claim 4, wherein the second switching means is operated.
前記第1のスイッチング手段には前記n種類の電位のうちの何れか1つの電位が前記第1基準電位として選択的に供給され、
前記制御手段は、前記駆動信号線の電位が前記目標電位よりも低い場合に、前記n種類の電位のうち前記目標電位以下かつ前記目標電位に最も近い電位を前記第1スイッチング手段に前記第1基準電位として供給させることで、前記目標電位以下かつ前記目標電位に最も近い電位を前記第1基準電位として前記第1のスイッチング手段を作動させる請求項1、請求項4及び請求項5の何れか1項記載の表示装置の駆動装置。
The first switching means is selectively supplied with any one of the n kinds of potentials as the first reference potential,
When the potential of the drive signal line is lower than the target potential, the control means supplies the first switching means with a potential that is equal to or lower than the target potential and is closest to the target potential among the n types of potentials. 6. The method according to claim 1, wherein the first switching means is operated by supplying a reference potential that is equal to or lower than the target potential and that is closest to the target potential as the first reference potential. A drive device for a display device according to claim 1.
前記第2のスイッチング手段には前記n種類の電位のうちの何れか1つの電位が前記第2基準電位として選択的に供給され、
前記制御手段は、前記駆動信号線の電位が前記目標電位よりも高い場合に、前記n種類の電位のうち前記目標電位以上かつ前記目標電位に最も近い電位を前記第2スイッチング手段に前記第2基準電位として供給させることで、前記目標電位以上かつ前記目標電位に最も近い電位を前記第2基準電位として前記第2のスイッチング手段を作動させる請求項1、請求項4及び請求項5の何れか1項記載の表示装置の駆動装置。
The second switching means is selectively supplied with any one of the n kinds of potentials as the second reference potential,
When the potential of the drive signal line is higher than the target potential, the control means supplies the second switching means with a potential that is equal to or higher than the target potential and is closest to the target potential among the n types of potentials. 6. The method according to claim 1, wherein the second switching means is operated by supplying a potential that is equal to or higher than the target potential and closest to the target potential as the second reference potential. A drive device for a display device according to claim 1.
前記第1のスイッチング手段はバックゲートが前記接地線に接続されたPMOSトランジスタを含み、
前記第2のスイッチング手段はバックゲートが前記電源に接続されたNMOSトランジスタを含む請求項1〜請求項7の何れか1項記載の表示装置の駆動装置。
The first switching means includes a PMOS transistor having a back gate connected to the ground line,
The display device driving device according to claim 1, wherein the second switching unit includes an NMOS transistor having a back gate connected to the power source.
前記第1のスイッチング手段はバックゲートが前記駆動信号線に接続されたPMOSトランジスタを含み、
前記第2のスイッチング手段はバックゲートが前記駆動信号線に接続されたNMOSトランジスタを含む請求項1〜請求項7の何れか1項記載の表示装置の駆動装置。
The first switching means includes a PMOS transistor having a back gate connected to the drive signal line,
8. The display device driving device according to claim 1, wherein the second switching unit includes an NMOS transistor having a back gate connected to the driving signal line.
前記第1のスイッチング手段のPMOSトランジスタには前記第1基準電位よりも所定値だけ高い電位がゲートに供給され、
前記第2のスイッチング手段のNMOSトランジスタには前記第2基準電位よりも所定値だけ高い電位がゲートに供給される請求項8又は請求項9記載の表示装置の駆動装置。
A potential higher than the first reference potential by a predetermined value is supplied to the gate of the PMOS transistor of the first switching means,
10. The display device driving device according to claim 8, wherein a potential higher than the second reference potential by a predetermined value is supplied to a gate of the NMOS transistor of the second switching means.
前記電位切替部と前記表示装置との間に設けられた増幅回路を更に備え、
前記第1のスイッチング手段及び前記第2のスイッチング手段は、前記駆動信号線のうち前記電位切替部と前記増幅回路との間の部位を前記電源又は前記接地線に接続する請求項1〜請求項10の何れか1項記載の表示装置の駆動装置。
An amplifying circuit provided between the potential switching unit and the display device;
The said 1st switching means and the said 2nd switching means connect the site | part between the said electric potential switch part and the said amplifier circuit among the said drive signal lines to the said power supply or the said ground line. The drive device for a display device according to any one of 10.
JP2010229374A 2010-10-12 2010-10-12 Display device drive device Active JP5775284B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010229374A JP5775284B2 (en) 2010-10-12 2010-10-12 Display device drive device
US13/249,626 US9070340B2 (en) 2010-10-12 2011-09-30 Driving device of display device
CN201110307813.1A CN102446485B (en) 2010-10-12 2011-10-12 The drive unit of display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229374A JP5775284B2 (en) 2010-10-12 2010-10-12 Display device drive device

Publications (2)

Publication Number Publication Date
JP2012083523A true JP2012083523A (en) 2012-04-26
JP5775284B2 JP5775284B2 (en) 2015-09-09

Family

ID=45924766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229374A Active JP5775284B2 (en) 2010-10-12 2010-10-12 Display device drive device

Country Status (3)

Country Link
US (1) US9070340B2 (en)
JP (1) JP5775284B2 (en)
CN (1) CN102446485B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085152B1 (en) * 2013-07-24 2020-03-06 삼성디스플레이 주식회사 Gate driving circuit and a display apparatus having the gate driving circuit
US9806197B1 (en) 2016-07-13 2017-10-31 Innolux Corporation Display device having back gate electrodes
CN114270428A (en) * 2019-06-27 2022-04-01 拉碧斯半导体株式会社 Display driver, semiconductor device, and amplifier circuit
JP7271348B2 (en) * 2019-07-09 2023-05-11 ラピスセミコンダクタ株式会社 Display driver and semiconductor device
JP6795714B1 (en) * 2020-01-27 2020-12-02 ラピスセミコンダクタ株式会社 Output circuit, display driver and display device
TWI709954B (en) * 2020-04-21 2020-11-11 張煥鄉 Prayer lamp device with dual-purpose panel display function
CN114490477B (en) * 2022-01-28 2024-05-14 重庆惠科金扬科技有限公司 Interface switching circuit, method, liquid crystal display screen and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135789A1 (en) * 2006-05-24 2007-11-29 Sharp Kabushiki Kaisha Analog output circuit, data signal line driving circuit, display, and potential writing method
JP2008046358A (en) * 2006-08-16 2008-02-28 Oki Electric Ind Co Ltd Driving circuit and driving device for liquid crystal display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166741A (en) 1999-12-06 2001-06-22 Hitachi Ltd Semiconductor integrated circuit device and liquid crystal display device
JP4397401B2 (en) * 2007-03-28 2010-01-13 Okiセミコンダクタ株式会社 Operational amplifier and driving circuit for liquid crystal display device using the same
US7579881B2 (en) * 2007-11-14 2009-08-25 Infineon Technologies Ag Write driver circuit
JP2009139538A (en) 2007-12-05 2009-06-25 Oki Semiconductor Co Ltd Display driving apparatus and display driving method
JP5139242B2 (en) * 2008-11-20 2013-02-06 ラピスセミコンダクタ株式会社 Display panel drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135789A1 (en) * 2006-05-24 2007-11-29 Sharp Kabushiki Kaisha Analog output circuit, data signal line driving circuit, display, and potential writing method
JP2008046358A (en) * 2006-08-16 2008-02-28 Oki Electric Ind Co Ltd Driving circuit and driving device for liquid crystal display device

Also Published As

Publication number Publication date
JP5775284B2 (en) 2015-09-09
CN102446485B (en) 2016-03-02
US20120086697A1 (en) 2012-04-12
US9070340B2 (en) 2015-06-30
CN102446485A (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US10373575B2 (en) Display apparatus
KR102344730B1 (en) Data Driver, Display Device and Driving Method thereof
KR100381064B1 (en) Shift register and image display device
US6801181B2 (en) Level shifter for use in active matrix display apparatus
JP4854929B2 (en) Shift register and display device having the same
US9666140B2 (en) Display device and method for driving same
JP5775284B2 (en) Display device drive device
TWI529682B (en) A scanning signal line driving circuit, a display device including the same, and a driving method of a scanning signal line
JP4321266B2 (en) Inverter circuit and display device
JP5332150B2 (en) Source driver, electro-optical device and electronic apparatus
JP2007047785A (en) Level shifter and display device having the same
JP5780650B2 (en) Level shifter circuit, scanning circuit, display device, and electronic device
JP6486495B2 (en) Display panel and driving circuit thereof
KR20180072041A (en) Gate driving circuit and display device using the same
JP2005266738A (en) Source driver and liquid crystal display
US8558852B2 (en) Source driver, electro-optical device, and electronic instrument
CN101162568B (en) Analogue buffer, compensating operation method thereof, and display therewith
KR100941843B1 (en) Inverter and display device having the same
US20090267871A1 (en) Switching circuit, pixel drive circuit, and sample-and-hold circuit
JP2000322019A (en) Signal line drive circuit and image display device
KR100885161B1 (en) Driving apparatus for display
JP2006195430A (en) Method of driving source driver of liquid crystal display
CN104392705B (en) Shift register, gate driver circuit, array base palte, display device
JP2014153532A (en) Display device and drive circuit
KR20070002530A (en) Driving circuit of shift register

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5775284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150