JP2012078476A - Composite etalon filter - Google Patents

Composite etalon filter Download PDF

Info

Publication number
JP2012078476A
JP2012078476A JP2010222310A JP2010222310A JP2012078476A JP 2012078476 A JP2012078476 A JP 2012078476A JP 2010222310 A JP2010222310 A JP 2010222310A JP 2010222310 A JP2010222310 A JP 2010222310A JP 2012078476 A JP2012078476 A JP 2012078476A
Authority
JP
Japan
Prior art keywords
film
beam splitter
bonding film
bonding
etalon filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010222310A
Other languages
Japanese (ja)
Inventor
Kotaro Wakabayashi
小太郎 若林
Yukiko Furukata
由紀子 古堅
Akinori Ito
明則 伊東
Shingo Ishiuchi
真吾 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2010222310A priority Critical patent/JP2012078476A/en
Publication of JP2012078476A publication Critical patent/JP2012078476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To contribute to miniaturization of a laser device.SOLUTION: The laser device includes a beam splitter that splits laser light into two lines, a second transparent member, and a hollow member arranged between the beam splitter and the second transparent member. The beam splitter has a reflection film on a surface facing the hollow member, while having a first junction film on the reflection film. The second transparent member has a reflection film on a surface facing the hollow member, while having a second junction film on the reflection film. The hollow member has a third junction film on a surface around an opening of the hollow part and facing the beam splitter and on a surface facing the second transparent member. The first junction film of the beam splitter and the third junction film of the hollow member are joined by atomic diffusion joining. The second junction film of the second transparent member and the third junction film of the hollow member are joined by atomic diffusion joining.

Description

本発明は、レーザ装置に用いられる複合型エタロンフィルタに関する。   The present invention relates to a composite etalon filter used in a laser apparatus.

従来、レーザ装置は、半導体レーザと、この半導体レーザから照射されるレーザ光を平行にする光学系と、レーザ光を2系統に分割するビームスプリッタと、分割された一方のレーザ光に所定の波長の共振をさせるファブリペロー共振器と、このレーザ光が入射される光検出器とから主に構成される。   Conventionally, a laser apparatus includes a semiconductor laser, an optical system that collimates laser light emitted from the semiconductor laser, a beam splitter that divides the laser light into two systems, and a predetermined wavelength for one of the divided laser lights. This is mainly composed of a Fabry-Perot resonator that resonates and a photodetector to which the laser light is incident.

このように構成されるレーザ装置において、ファブリペロー共振器を2枚の反射板を用いた構造が知られている。この構造のファブリペロー共振器は、2枚の反射板の高い設置精度が求められる。例えば、2枚の反射板は、秒単位の平行度で設置しなければ、レーザ光の光透過特性が変わってしまうという問題があった(例えば、特許文献1参照)。   In the laser device configured as described above, a structure using two reflectors for a Fabry-Perot resonator is known. The Fabry-Perot resonator having this structure is required to have high installation accuracy of the two reflecting plates. For example, there is a problem in that the light transmission characteristics of the laser light change unless the two reflectors are installed with a parallelism in seconds (for example, see Patent Document 1).

そこで、ファブリペロー共振器に代えてエタロンフィルタを用いたレーザ装置が提案されている。従来のエタロンフィルタには、例えば、ソリッド構造とエアギャップ構造の2種類のものが用いられている。   Therefore, a laser apparatus using an etalon filter instead of the Fabry-Perot resonator has been proposed. As a conventional etalon filter, for example, two types of filters, a solid structure and an air gap structure, are used.

ソリッド構造のエタロンフィルタは、例えば、四角柱形状の部材の平行となる2平面に反射膜を設けた構造となっている。反射膜を設けた2平面のうち、一方の平面側から他方の平面に向けて光が透過するようになっている(例えば、特許文献1参照)。
ここで、エタロンフィルタを透過する光の特性について説明する。例えば、図1(b)に示すように、エタロンフィルタを透過する光は、縦軸を透過強度T(λ)、横軸を波長λとしたとき、所定の間隔で透過強度T(λ)の強度が高くなるピークを複数生じさせる特性を有している。
The solid structure etalon filter has a structure in which, for example, a reflective film is provided on two parallel planes of a quadrangular prism-shaped member. Of the two planes provided with the reflective film, light is transmitted from one plane side toward the other plane (see, for example, Patent Document 1).
Here, the characteristics of light transmitted through the etalon filter will be described. For example, as shown in FIG. 1B, the light transmitted through the etalon filter has a transmission intensity T (λ) at predetermined intervals, where the vertical axis indicates the transmission intensity T (λ) and the horizontal axis indicates the wavelength λ. It has the characteristic of producing a plurality of peaks with high intensity.

この複数のピークのうちの隣り合う2つのピークの間隔をFSR(フリー・スペクトラム・レンジ)という。
このFSRは、2平面に設けた反射膜の間をエタロンフィルタの光路の物理長数Lとしソリッドの屈折率をnとしたとき、光路の物理長数Lとソリッドの屈折率をnの積及び波長λによって決まる値でもある。
例えば、FSRは、以下の式で近似される。
FSR=λ/(2nL)
The interval between two adjacent peaks among the plurality of peaks is called FSR (free spectrum range).
This FSR is a product of the physical length L of the optical path and the refractive index of the solid, where n is the physical length L of the optical path of the optical path of the etalon filter and n is the refractive index between the reflecting films provided on the two planes. It is also a value determined by the wavelength λ.
For example, FSR is approximated by the following equation.
FSR = λ 2 / ( 2 nL)

エアギャップ構造のエタロンフィルタは、2つの平板状の透明部材の間に2つの板部材を挟み、これら2つの板部材を所定の間隔をあけて2つの透明部材の間に空間を形成した構造となっている(例えば、特許文献2参照)。ここで2つの平板状の透明部材には、互いに向かい合う平面に反射膜が設けられている。このようなエアギャップ構造のエタロンフィルタは、2つの板部材によって、2つの平板状の透明部材の距離を所定の間隔に保つことができるようになっている。
ここで、エアギャップ構造のエタロンフィルタは、2つの透明部材に設けられた反射膜の間を光路の物理長数Lとしている。この場合のFSRは、ソリッド構造のエタロンフィルタと同様に光路の物理長数Lとエアギャップ部の媒質の屈折率nの積によって決まる。
また、エアギャップ構造のエタロンフィルタは、2つの平板状の透明部材の間に設けられる板部材を接合するために、接着剤を用いている。エアギャップ構造のエタロンフィルタは、接合に接着剤を用いることで容易な製造を可能としている。
また、接着剤を用いない接合としては、従来周知のオプティカルコンタクト法による接合が提案されている。
また、従来のレーザ装置は、前記半導体レーザ、光学系、ビームスプリッタ、エタロンフィルタ、光検出器を所定の間隔をあけて配置してモジュール化した半導体レーザモジュールが組み込まれている。
An etalon filter having an air gap structure has a structure in which two plate members are sandwiched between two flat transparent members, and a space is formed between the two transparent members with a predetermined interval between the two plate members. (For example, refer to Patent Document 2). Here, the two flat transparent members are provided with reflective films on the planes facing each other. Such an etalon filter having an air gap structure can keep the distance between two flat transparent members at a predetermined interval by two plate members.
Here, in the etalon filter having an air gap structure, the physical length L of the optical path is set between the reflective films provided on the two transparent members. The FSR in this case is determined by the product of the physical length L of the optical path and the refractive index n of the medium in the air gap portion, as in the case of the solid structure etalon filter.
The etalon filter having an air gap structure uses an adhesive to join a plate member provided between two flat transparent members. An etalon filter having an air gap structure can be easily manufactured by using an adhesive for bonding.
In addition, as a joining without using an adhesive, joining by a conventionally known optical contact method has been proposed.
Further, the conventional laser apparatus incorporates a semiconductor laser module in which the semiconductor laser, the optical system, the beam splitter, the etalon filter, and the photodetector are arranged at predetermined intervals to form a module.

特許2835068号公報Japanese Patent No. 283068 特開2003−195031号公報JP 2003-195031 A

しかしながら、従来のエアギャップ構造のエタロンフィルタにおいて、所定の波長温度特性を得るために、2つの平板状の透明部材の間隔を維持する必要がある。この間隔は、ソリッド構造のエタロンフィルタよりも長く設定される。また、エタロンフィルタから所定の間隔をあけてビームスプリッタが設けられるため、レーザ装置を小型にすることが困難となっていた。   However, in an etalon filter having a conventional air gap structure, it is necessary to maintain a distance between two flat transparent members in order to obtain a predetermined wavelength temperature characteristic. This interval is set longer than the solid structure etalon filter. Further, since the beam splitter is provided at a predetermined interval from the etalon filter, it has been difficult to reduce the size of the laser device.

また、エアギャップ構造のエタロンフィルタにおいて、接着剤を用いた接合状態では、製造の状況により接着剤の厚みにバラツキが生じる場合がある。このとき、接着剤の厚みのバラツキがエタロンフィルタの光路の物理長数Lを狂わせる原因となる。
したがって、光路の物理長数Lと定めたエタロンフィルタが接着剤により異なる光路の物理長数L´となってしまう。
これにより、エタロンフィルタを透過する光の特性が、縦軸を透過強度T(λ)、横軸を波長λとしたとき、エタロンフィルタの光路の物理長数Lで定めたFSRとは異なる位置にずれて新たなFSR´となる(図1(b)参照)。
そのため、所定の透過強度T(λ)に対して波長λが異なった値を示すこととなり、光学装置で使用されている発振波長を正しく知ること、つまり、発振波長のモニターが正しくできなくなる恐れがある。
Further, in an etalon filter having an air gap structure, when the adhesive is used, the thickness of the adhesive may vary depending on manufacturing conditions. At this time, the variation in the thickness of the adhesive causes the physical length L of the optical path of the etalon filter to be distorted.
Therefore, the etalon filter defined as the physical length L of the optical path has a different physical length L ′ of the optical path depending on the adhesive.
As a result, the characteristic of the light transmitted through the etalon filter is different from the FSR defined by the physical length number L of the optical path of the etalon filter, where the vertical axis represents the transmission intensity T (λ) and the horizontal axis represents the wavelength λ. It shifts to become a new FSR ′ (see FIG. 1B).
For this reason, the wavelength λ shows a different value with respect to the predetermined transmission intensity T (λ), and there is a possibility that the oscillation wavelength used in the optical device can be known correctly, that is, the oscillation wavelength cannot be monitored correctly. is there.

そこで、本発明では、前記した問題を解決し、レーザ装置の小型化に貢献できる複合型エタロンフィルタを提供することを課題とする。   Accordingly, an object of the present invention is to provide a composite etalon filter that can solve the above-described problems and contribute to downsizing of a laser device.

前記課題を解決するため、本発明は、複合型エタロンフィルタであって、レーザ光を2系統に分割するビームスプリッタと、第二の透明部材と、前記ビームスプリッタと前記第二の透明部材との間に設けられる中空部材と、を備え、前記ビームスプリッタが、前記中空部材と対向する面に反射膜を備えつつ前記反射膜上に第一接合膜を備え、前記第二の透明部材が、前記中空部材と対向する面に反射膜を備えつつ前記反射膜上に第二接合膜を備え、前記中空部材が、中空部分の開口周囲であって前記ビームスプリッタと対向する面及び前記第二の透明部材と対向する面に第三接合膜を備え、前記ビームスプリッタの第一接合膜と前記中空部材の第三接合膜とが原子拡散接合法により接合され、前記第二の透明部材の第二接合膜と前記中空部材の第三接合膜とが原子拡散接合法により接合されることを特徴とする。   In order to solve the above problems, the present invention provides a composite etalon filter comprising: a beam splitter that divides laser light into two systems; a second transparent member; and the beam splitter and the second transparent member. A hollow member provided therebetween, and the beam splitter includes a first bonding film on the reflective film while including a reflective film on a surface facing the hollow member, and the second transparent member includes the second transparent member, A second bonding film is provided on the reflection film while a reflection film is provided on a surface facing the hollow member, and the hollow member is formed around the opening of the hollow portion and faces the beam splitter and the second transparent film. A third bonding film is provided on a surface facing the member, the first bonding film of the beam splitter and the third bonding film of the hollow member are bonded by an atomic diffusion bonding method, and the second bonding of the second transparent member Membrane and hollow member A third bonding film is characterized in that it is joined by atomic diffusion bonding.

また、本発明は、前記第一接合膜、前記第二接合膜、前記第三接合膜の膜厚が1nm以下となっていても良い。   In the present invention, the first bonding film, the second bonding film, and the third bonding film may have a film thickness of 1 nm or less.

このような複合型エタロンフィルタによれば、エタロンフィルタとビームスプリッタとが接合されているため、レーザ光が通る経路が短くなり、レーザ装置の小型化に貢献できる。
また、このような複合型エタロンフィルタによれば、接着剤を用いずにビームスプリッタと中空部材と第二の透明部材とを接合でき、かつ、厚みのバラツキを軽減することができるので、複合型エタロンフィルタの光路の物理長数Lの変化を起こしにくくすることができる。
また、前記第一接合膜、前記第二接合膜、前記第三接合膜の膜厚が1nm以下となっているので、入射される光の屈折を考慮する必要がなく、また、前記第一接合膜と前記第三接合膜との接合、及び前記第二接合膜と前記第三接合膜との接合が原子拡散接合により接合されているので、熱環境による剥がれを防ぐことができる。
According to such a composite type etalon filter, since the etalon filter and the beam splitter are joined, the path through which the laser light passes is shortened, which can contribute to the miniaturization of the laser device.
Further, according to such a composite type etalon filter, the beam splitter, the hollow member, and the second transparent member can be joined without using an adhesive, and variation in thickness can be reduced. The change in the physical length L of the optical path of the etalon filter can be made difficult to occur.
Further, since the film thickness of the first bonding film, the second bonding film, and the third bonding film is 1 nm or less, it is not necessary to consider the refraction of incident light, and the first bonding Since the bonding between the film and the third bonding film and the bonding between the second bonding film and the third bonding film are bonded by atomic diffusion bonding, peeling due to the thermal environment can be prevented.

(a)は本発明の実施形態に係るエタロンフィルタの一例を示す断面図であり、(b)は透過強度と波長の関係を示すグラフである。(A) is sectional drawing which shows an example of the etalon filter which concerns on embodiment of this invention, (b) is a graph which shows the relationship between transmission intensity and a wavelength. (a)は複数のウェハを接合してブロックにした状態の一例を示す概念図であり、(b)は第一ウェハの一例を示す概念図である。(A) is a conceptual diagram which shows an example of the state which joined the some wafer and made it the block, (b) is a conceptual diagram which shows an example of a 1st wafer. 第一ウェハと第二ウェハと第三ウェハの一例を示す模式図である。It is a schematic diagram which shows an example of a 1st wafer, a 2nd wafer, and a 3rd wafer. 第一ウェハと第三ウェハと第二ウェハとを接合した状態を示す模式図である。It is a schematic diagram which shows the state which joined the 1st wafer, the 3rd wafer, and the 2nd wafer.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各構成要素について、状態をわかりやすくするために、誇張して図示している。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. Note that each component is exaggerated for easy understanding of the state.

図1(a)に示すように、本発明の実施形態に係る複合型エタロンフィルタ100は、ビームスプリッタ10と第二の透明部材20と中空部材30とから主に構成されている。   As shown in FIG. 1A, the composite etalon filter 100 according to the embodiment of the present invention mainly includes a beam splitter 10, a second transparent member 20, and a hollow member 30.

ビームスプリッタ10は、レーザ光を2系統に分割する役割を果たす。
このビームスプリッタ10は、透明部材であって例えばガラス又は結晶材料が用いられる。また、ビームスプリッタ10は、三角柱部材10a、10bが接合されて四角柱形状となっており、三角柱部材10a、10bのいずれか一方の斜面10cに光を分割するための光学膜が備わっている。例えば、一方の三角柱部材10aは、直角三角形に厚みを持たせた形状となっている。同様に、他方の三角柱部材10bも直角三角形に厚みを持たせた形状となっている。これら三角柱部材10aの斜辺と三角柱部材10bの斜辺とを重ねて四角柱形状のビームスプリッタ10が構成される。このビームスプリッタ10において、斜辺を含まないように三角柱部材10a、10bのどちらか一方の1つの面に反射膜が設けられている。なお、本実施形態では、三角柱部材10bに反射膜11が設けられるとする。このとき、ビームスプリッタ10は、反射膜11上に膜厚が1nm以下の金属からなる第一接合膜12を備えている。
また、ビームスプリッタ10は、反射膜11が設けられる面と直交する2つの面に反射防止膜13、14が設けられている。
なお、このビームスプリッタ10では、三角柱部材10aと三角柱部材10bとが接合している面でレーザ光を2系統に分割にしている。
The beam splitter 10 plays a role of dividing the laser light into two systems.
The beam splitter 10 is a transparent member, and for example, glass or crystal material is used. The beam splitter 10 has a quadrangular prism shape formed by joining triangular prism members 10a and 10b, and is provided with an optical film for dividing light on one of the inclined surfaces 10c of the triangular prism members 10a and 10b. For example, one triangular prism member 10a has a shape obtained by giving a right triangle a thickness. Similarly, the other triangular prism member 10b has a right triangle having a thickness. A quadrangular prism-shaped beam splitter 10 is configured by overlapping the oblique sides of the triangular prism member 10a and the oblique sides of the triangular prism member 10b. In this beam splitter 10, a reflective film is provided on one surface of either one of the triangular prism members 10a and 10b so as not to include the hypotenuse. In the present embodiment, it is assumed that the reflective film 11 is provided on the triangular prism member 10b. At this time, the beam splitter 10 includes a first bonding film 12 made of a metal having a thickness of 1 nm or less on the reflective film 11.
The beam splitter 10 is provided with antireflection films 13 and 14 on two surfaces orthogonal to the surface on which the reflection film 11 is provided.
In this beam splitter 10, the laser beam is divided into two systems on the surface where the triangular prism member 10a and the triangular prism member 10b are joined.

第二の透明部材20は、透明部材であって、例えばガラス又は結晶材料からなり、四角柱形状に形成されている。この第二の透明部材20は、例えばビームスプリッタ10と向かい合い、それぞれの向かい合う面の面積が同一となっている。
この四角柱形状の第二の透明部材20は、所定の平行する2面間を光が透過するようになっている。この所定の平行する2面のうちの一方の面は、後述する中空部材30と対向している。また、この第二の透明部材20は、後述する中空部材30と対向する面に反射膜21を備えつつこの反射膜21上に膜厚が1nm以下の金属からなる第二接合膜22を備えている。
なお、第二の透明部材20は、中空部材30と対向する面と平行となる面に反射防止膜23を設けても良い。
The 2nd transparent member 20 is a transparent member, Comprising: For example, it consists of glass or a crystal material, and is formed in the square column shape. The second transparent member 20 faces, for example, the beam splitter 10, and the area of each facing surface is the same.
The quadrangular prism-shaped second transparent member 20 is configured to transmit light between two predetermined parallel surfaces. One of the two predetermined parallel surfaces faces a hollow member 30 described later. The second transparent member 20 includes a second bonding film 22 made of a metal having a film thickness of 1 nm or less on the reflection film 21 while including a reflection film 21 on a surface facing a hollow member 30 described later. Yes.
The second transparent member 20 may be provided with an antireflection film 23 on a surface parallel to the surface facing the hollow member 30.

中空部材30は、ビームスプリッタ10と第二の透明部材20との間に設けられるガラス又は結晶材料からなる。
この中空部材30は、壁部31を環状に形成して中空部分30aを形成した筒状となっており、壁部31に沿いつつ中空部分30aの中心を通る中心線Cに対して直交する方向の断面形状が四角形となっている。言い換えれば、中空部材30を輪切りにした場合の断面形状は、外形の輪郭形状がビームスプリッタ10及び第二の透明部材20と同じ形状の四角形となり、中空部分30aの輪郭が外形形状よりも大きさが小さい四角形となっている。
この中空部材30は、中空部分30aの開口周囲であってビームスプリッタ10と対向する面及び第二の透明部材20と対向する面に膜厚が1nm以下の第三接合膜32を備えている。
The hollow member 30 is made of glass or a crystal material provided between the beam splitter 10 and the second transparent member 20.
The hollow member 30 has a cylindrical shape in which a wall portion 31 is formed in an annular shape to form a hollow portion 30a, and a direction perpendicular to a center line C passing through the center of the hollow portion 30a along the wall portion 31. The cross-sectional shape of this is a quadrangle. In other words, the cross-sectional shape when the hollow member 30 is cut is a quadrangle whose outer contour shape is the same shape as the beam splitter 10 and the second transparent member 20, and the contour of the hollow portion 30a is larger than the outer shape. Is a small square.
The hollow member 30 includes a third bonding film 32 having a film thickness of 1 nm or less on the surface around the opening of the hollow portion 30 a and facing the beam splitter 10 and the surface facing the second transparent member 20.

ビームスプリッタ10と中空部材30とは、ビームスプリッタ10に設けられた第一接合膜12と中空部材30に設けられた第三接合膜32とが原子拡散接合法により接合されている。
同様に、第二の透明部材20と中空部材30とは、第二の透明部材20に設けられた第二接合膜22と中空部材30に設けられた第三接合膜32とが原子拡散接合法により接合されている。
なお、ビームスプリッタ10と中空部材30との接合及び第二の透明部材20と中空部材30との接合の際は、例えば、真空雰囲気中で行われる。
また例えば、中空部材30の中空部分30aは、真空の他に、大気圧を維持した気密状態としても良いし、不活性ガス雰囲気中であって所定の圧力が維持された気密状態としても良い。
In the beam splitter 10 and the hollow member 30, the first bonding film 12 provided on the beam splitter 10 and the third bonding film 32 provided on the hollow member 30 are bonded by an atomic diffusion bonding method.
Similarly, the second transparent member 20 and the hollow member 30 are formed by combining the second bonding film 22 provided on the second transparent member 20 and the third bonding film 32 provided on the hollow member 30 by an atomic diffusion bonding method. It is joined by.
In addition, the joining of the beam splitter 10 and the hollow member 30 and the joining of the second transparent member 20 and the hollow member 30 are performed in a vacuum atmosphere, for example.
In addition, for example, the hollow portion 30a of the hollow member 30 may be in an airtight state in which atmospheric pressure is maintained in addition to a vacuum, or may be in an airtight state in which a predetermined pressure is maintained in an inert gas atmosphere.

このような複合型エタロンフィルタ100によれば、エタロンフィルタとビームスプリッタとが接合されているため、レーザ光が通る経路が短くなり、レーザ装置の小型化に貢献できる。
また、このような複合型エタロンフィルタ100によれば、接着剤を用いずにビームスプリッタ10と中空部材30と第二の透明部材20とを接合でき、かつ、厚みのバラツキが軽減してFSRのずれを防ぐことができ、エタロンフィルタ100の光路の物理長数Lと中空部の媒質の屈折率nの積の変化を起こしにくくすることができる。これにより、光学装置で使用されている発振波長のモニターを精度良く行うことができる。
また、第一接合膜12、第二接合膜22、第三接合膜32の膜厚が1nm以下となっているので、入射される光の屈折を考慮する必要がなく、また、第一接合膜12と第三接合膜32との接合、及び第二接合膜22と第三接合膜32との接合が原子拡散接合により接合されているので、熱環境による剥がれを防ぐことができる。
According to such a composite type etalon filter 100, since the etalon filter and the beam splitter are joined, the path through which the laser light passes is shortened, which can contribute to downsizing of the laser apparatus.
Moreover, according to such a composite type etalon filter 100, the beam splitter 10, the hollow member 30, and the second transparent member 20 can be joined without using an adhesive, and variation in thickness can be reduced to reduce the FSR. The shift can be prevented, and the change in the product of the physical length number L of the optical path of the etalon filter 100 and the refractive index n of the medium in the hollow portion can be made difficult to occur. Thereby, it is possible to monitor the oscillation wavelength used in the optical apparatus with high accuracy.
Further, since the film thickness of the first bonding film 12, the second bonding film 22, and the third bonding film 32 is 1 nm or less, it is not necessary to consider the refraction of incident light, and the first bonding film 12 and the third bonding film 32 and the bonding between the second bonding film 22 and the third bonding film 32 are bonded by atomic diffusion bonding, so that peeling due to the thermal environment can be prevented.

また、本発明の実施形態に係る複合型エタロンフィルタ100は、以下のように製造することができる。
本発明の実施形態に係る複合型エタロンフィルタを製造する際は、図3及び図4に示すように、ビームスプリッタとなる第一ウェハ10Wと、第二の透明部材となる第二ウェハ20Wと、中空部材となる第三ウェハ30Wとを用意する。
The composite etalon filter 100 according to the embodiment of the present invention can be manufactured as follows.
When manufacturing a composite type etalon filter according to an embodiment of the present invention, as shown in FIGS. 3 and 4, a first wafer 10 </ b> W serving as a beam splitter, a second wafer 20 </ b> W serving as a second transparent member, A third wafer 30W to be a hollow member is prepared.

ここで、ビームスプリッタとなる第一ウェハ10Wは、例えば、図2(a)に示すように、所定の厚さの透明部材W,W・・・を複数枚重ねて接合してブロックBを形成し、重ねあわされて形成されるブロックBの積層部B1側から見た場合に、積層部B1に対して所定の角度で、かつ、所定の厚さとなるように切断線S1に沿って切断することで形成される(図2(b)参照)。
なお、図3及び図4は、反射防止膜を省略して図示している。
Here, for example, as shown in FIG. 2A, the first wafer 10W serving as a beam splitter forms a block B by overlapping and joining a plurality of transparent members W, W... Having a predetermined thickness. Then, when viewed from the laminated part B1 side of the block B formed to be overlapped, the block B is cut along the cutting line S1 at a predetermined angle and a predetermined thickness with respect to the laminated part B1. (See FIG. 2B).
In FIGS. 3 and 4, the antireflection film is omitted.

次に図3に示すように、第一ウェハ10Wの一方の主面に例えばスパッタ等を用いて反射膜11を設ける。
同様に、第二ウェハ20Wの一方の主面に例えばスパッタ等を用いて反射膜21を設ける。なお、第二ウェハの他方の主面には、反射防止膜23(図1(a)参照)を設けておいても良い。
また、第三ウェハ30Wに厚み方向に貫通する貫通方向と直角になる方向で切断したときの断面が四角形状となる貫通孔30aを複数形成する。
なお、断面は四角形状以外でも構わない。例えば、円形状でもよい。
Next, as shown in FIG. 3, a reflective film 11 is provided on one main surface of the first wafer 10W by using, for example, sputtering.
Similarly, the reflective film 21 is provided on one main surface of the second wafer 20W by using, for example, sputtering. Note that an antireflection film 23 (see FIG. 1A) may be provided on the other main surface of the second wafer.
Further, a plurality of through holes 30a having a quadrangular cross section when cut in a direction perpendicular to the through direction penetrating in the thickness direction are formed in the third wafer 30W.
The cross section may be other than a square shape. For example, it may be circular.

この状態において、第一ウェハ10Wの反射膜11上に第一接合膜12を設け、かつ、第三ウェハ30Wの一方の主面に第三接合膜32を設ける。
第一ウェハ10Wの反射膜11上に設けられた第一接合膜12と第三ウェハ30Wの一方の主面に設けられた第三接合膜32とを重ね合わせて原子拡散接合により接合する。
ここで、前記原子拡散接合法とは、互いに重なり合う接合面において、互いを構成する材料の原子が拡散し合うことによって接合する方法である。
In this state, the first bonding film 12 is provided on the reflective film 11 of the first wafer 10W, and the third bonding film 32 is provided on one main surface of the third wafer 30W.
The first bonding film 12 provided on the reflective film 11 of the first wafer 10W and the third bonding film 32 provided on one main surface of the third wafer 30W are overlapped and bonded by atomic diffusion bonding.
Here, the atomic diffusion bonding method is a method of bonding by diffusing atoms of materials constituting each other on bonding surfaces that overlap each other.

第一ウェハ10Wと第三ウェハ30Wとが接合された状態において、第三ウェハ30Wの他方の主面に第三接合膜32を設け、かつ、第二ウェハ20Wの反射膜21上に第二接合膜22を設ける。
第二ウェハ20Wの反射膜21上に設けられた第二接合膜22と第三ウェハ30Wの他方の主面に設けられた第三接合膜32とを重ね合わせて原子拡散接合により、例えば、真空雰囲気中で接合する。
In a state where the first wafer 10W and the third wafer 30W are bonded, the third bonding film 32 is provided on the other main surface of the third wafer 30W, and the second bonding is performed on the reflective film 21 of the second wafer 20W. A film 22 is provided.
The second bonding film 22 provided on the reflective film 21 of the second wafer 20W and the third bonding film 32 provided on the other main surface of the third wafer 30W are overlapped to perform atomic diffusion bonding, for example, a vacuum. Join in atmosphere.

これにより、第一ウェハ10Wと第三ウェハ30Wと第二ウェハ20Wとが接合されて本発明の実施形態に係る複数の複合型エタロンフィルタ100が連なった状態となる(図4参照)。
この状態で、例えば、第三ウェハ30Wに設けた複数の貫通孔30aの間を目印にして、隣り合う貫通孔30aの間S2を切断することで、個々の複合型エタロンフィルタ100を得ることができる。なお、このときの貫通孔30aは、図1における中空部材30の中空部分30aを指す。
Thereby, the first wafer 10W, the third wafer 30W, and the second wafer 20W are bonded to each other, and a plurality of composite etalon filters 100 according to the embodiment of the present invention are connected (see FIG. 4).
In this state, for example, individual composite etalon filters 100 can be obtained by cutting S2 between adjacent through-holes 30a while marking between the plurality of through-holes 30a provided in the third wafer 30W. it can. In addition, the through-hole 30a at this time points out the hollow part 30a of the hollow member 30 in FIG.

このように製造することにより、例えば、貫通孔30a内部、つまり中空部材30の中空部分30aを真空以外に大気圧の状態で気密することができる。なお、中空部分30a内は、不活性ガスを所定の圧力で気密しても良いし、大気であっても良い。   By manufacturing in this way, for example, the inside of the through hole 30a, that is, the hollow portion 30a of the hollow member 30 can be hermetically sealed in an atmospheric pressure state other than vacuum. Note that the inside of the hollow portion 30a may be airtight with an inert gas at a predetermined pressure, or may be the atmosphere.

このようにすれば、本発明の実施形態に係る複合型エタロンフィルタを容易に製造することができる。   In this way, the composite etalon filter according to the embodiment of the present invention can be easily manufactured.

以上、本発明に係る実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。透明部材としては、接合膜あるいは反射膜を設けることができる耐熱性に優れた部材が好ましく、例えば、結晶材料である水晶や、ガラスや、ポリカーボネート等の樹脂を用いることができる。また、接合膜は拡散係数の大きいCuやTiなどの金属を用いることが好ましい。   As mentioned above, although embodiment which concerns on this invention was described, it cannot be overemphasized that this invention is not limited to the example which concerns. As the transparent member, a member excellent in heat resistance that can be provided with a bonding film or a reflection film is preferable. For example, a crystal material such as quartz, glass, or a resin such as polycarbonate can be used. The bonding film is preferably made of a metal such as Cu or Ti having a large diffusion coefficient.

100 複合型エタロンフィルタ
10 ビームスプリッタ
11 反射膜
12 第一接合膜
20 第二の透明部材
21 反射膜
22 第二接合膜
30 中空部材
30a 中空部分(貫通孔)
32 第三接合膜
DESCRIPTION OF SYMBOLS 100 Composite type etalon filter 10 Beam splitter 11 Reflective film 12 First joining film 20 Second transparent member 21 Reflecting film 22 Second joining film 30 Hollow member 30a Hollow part (through hole)
32 Third bonding film

Claims (2)

レーザ光を2系統に分割するビームスプリッタと、
第二の透明部材と、
前記ビームスプリッタと前記第二の透明部材との間に設けられる中空部材と、を備え、
前記ビームスプリッタが、前記中空部材と対向する面に反射膜を備えつつ前記反射膜上に第一接合膜を備え、
前記第二の透明部材が、前記中空部材と対向する面に反射膜を備えつつ前記反射膜上に第二接合膜を備え、
前記中空部材が、中空部分の開口周囲であって前記ビームスプリッタと対向する面及び前記第二の透明部材と対向する面に第三接合膜を備え、
前記ビームスプリッタの第一接合膜と前記中空部材の第三接合膜とが原子拡散接合法により接合され、
前記第二の透明部材の第二接合膜と前記中空部材の第三接合膜とが原子拡散接合法により接合されることを特徴とする複合型エタロンフィルタ。
A beam splitter that splits the laser light into two systems;
A second transparent member;
A hollow member provided between the beam splitter and the second transparent member,
The beam splitter includes a first bonding film on the reflective film while including a reflective film on a surface facing the hollow member;
The second transparent member includes a second bonding film on the reflective film while including a reflective film on a surface facing the hollow member,
The hollow member includes a third bonding film on a surface facing the beam splitter and a surface facing the second transparent member around the opening of the hollow portion,
The first bonding film of the beam splitter and the third bonding film of the hollow member are bonded by an atomic diffusion bonding method,
A composite etalon filter, wherein the second bonding film of the second transparent member and the third bonding film of the hollow member are bonded by an atomic diffusion bonding method.
前記第一接合膜、前記第二接合膜、前記第三接合膜の膜厚が1nm以下となっていることを特徴とする請求項1に記載の複合型エタロンフィルタ。   2. The composite etalon filter according to claim 1, wherein the first bonding film, the second bonding film, and the third bonding film have a thickness of 1 nm or less.
JP2010222310A 2010-09-30 2010-09-30 Composite etalon filter Pending JP2012078476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222310A JP2012078476A (en) 2010-09-30 2010-09-30 Composite etalon filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222310A JP2012078476A (en) 2010-09-30 2010-09-30 Composite etalon filter

Publications (1)

Publication Number Publication Date
JP2012078476A true JP2012078476A (en) 2012-04-19

Family

ID=46238820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222310A Pending JP2012078476A (en) 2010-09-30 2010-09-30 Composite etalon filter

Country Status (1)

Country Link
JP (1) JP2012078476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050863A (en) * 2014-09-01 2016-04-11 京セラクリスタルデバイス株式会社 Optical cell and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169626B1 (en) * 1999-06-29 2001-01-02 E-Tek Dynamics Optical signal interleaver
JP2001281443A (en) * 2000-03-28 2001-10-10 Toyo Commun Equip Co Ltd Air gap type fabry-perot etalon
US6587204B2 (en) * 2000-12-27 2003-07-01 Optoplex Corporation Application of a step-phase interferometer in optical communication
JP2003294937A (en) * 2002-03-29 2003-10-15 Sumitomo Osaka Cement Co Ltd Optical resonator and wavelength management module
JP2004337927A (en) * 2003-05-15 2004-12-02 Tadatomo Suga Substrates joining method and substrates joining device
JP2007315844A (en) * 2006-05-24 2007-12-06 Matsushita Electric Works Ltd Beam splitter and laser marker using same
JP2008062267A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Method and apparatus for room temperature joining
JP2008076749A (en) * 2006-09-21 2008-04-03 Yokogawa Electric Corp Fabry-perot element
JP2008116669A (en) * 2006-11-02 2008-05-22 Seiko Epson Corp Optical device, manufacturing method of optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
JP2008207221A (en) * 2007-02-27 2008-09-11 Takehito Shimazu Room temperature joining method
JP2010046696A (en) * 2008-08-22 2010-03-04 Musashino Eng:Kk Nuclear diffusion joining method and structure joined thereby

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169626B1 (en) * 1999-06-29 2001-01-02 E-Tek Dynamics Optical signal interleaver
JP2001281443A (en) * 2000-03-28 2001-10-10 Toyo Commun Equip Co Ltd Air gap type fabry-perot etalon
US6587204B2 (en) * 2000-12-27 2003-07-01 Optoplex Corporation Application of a step-phase interferometer in optical communication
JP2003294937A (en) * 2002-03-29 2003-10-15 Sumitomo Osaka Cement Co Ltd Optical resonator and wavelength management module
JP2004337927A (en) * 2003-05-15 2004-12-02 Tadatomo Suga Substrates joining method and substrates joining device
JP2007315844A (en) * 2006-05-24 2007-12-06 Matsushita Electric Works Ltd Beam splitter and laser marker using same
JP2008062267A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Method and apparatus for room temperature joining
JP2008076749A (en) * 2006-09-21 2008-04-03 Yokogawa Electric Corp Fabry-perot element
JP2008116669A (en) * 2006-11-02 2008-05-22 Seiko Epson Corp Optical device, manufacturing method of optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
JP2008207221A (en) * 2007-02-27 2008-09-11 Takehito Shimazu Room temperature joining method
JP2010046696A (en) * 2008-08-22 2010-03-04 Musashino Eng:Kk Nuclear diffusion joining method and structure joined thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050863A (en) * 2014-09-01 2016-04-11 京セラクリスタルデバイス株式会社 Optical cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2015101048A1 (en) Tunable laser with double output light beams
WO2018008154A1 (en) Optical component and optical module
JP2018185403A (en) Transmissive grating and laser device including the transmissive grating, and method for manufacturing transmissive grating
US10908454B2 (en) Backlight module and display device
JP2012078475A (en) Etalon filter
WO2019159827A1 (en) Optical module
JP5919622B2 (en) Polarization conversion element, polarization conversion unit, and projection type image apparatus
WO2015101049A1 (en) Tunable laser system
JP2012078474A (en) Etalon filter
JP2007206225A (en) Polarization conversion element
JP2013097150A (en) Etalon filter
US6992825B2 (en) Volume phase grating, a method for producing such a volume phase grating, an optical module and a semiconductor laser module using such a volume phase grating
JP2012078476A (en) Composite etalon filter
JP4968210B2 (en) Polarization-independent optical isolator
JP2005057043A (en) Manufacturing method of solid-state laser apparatus and wavelength conversion optical member
JP2012078477A (en) Composite etalon filter
JP5969193B2 (en) Etalon filter
JP2003294937A (en) Optical resonator and wavelength management module
WO2018167819A1 (en) Wavelength-multiplexed optical transmission module and method for manufacturing same
JP2012248558A (en) Laser light source device
JP2017207659A (en) Optical filter and manufacturing method thereof
JP6071643B2 (en) Etalon
JP6337478B2 (en) Demultiplexing element
JP2020020871A (en) Wavelength variable filter and optical communication apparatus
JP2002323618A (en) Optical resonator, method for manufacturing the same and wavelength controlling module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616