JP2008076749A - Fabry-perot element - Google Patents

Fabry-perot element Download PDF

Info

Publication number
JP2008076749A
JP2008076749A JP2006255895A JP2006255895A JP2008076749A JP 2008076749 A JP2008076749 A JP 2008076749A JP 2006255895 A JP2006255895 A JP 2006255895A JP 2006255895 A JP2006255895 A JP 2006255895A JP 2008076749 A JP2008076749 A JP 2008076749A
Authority
JP
Japan
Prior art keywords
film
substrate
thin film
gold thin
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255895A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kanbara
敦彦 蒲原
Shinichiro Tezuka
信一郎 手塚
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006255895A priority Critical patent/JP2008076749A/en
Publication of JP2008076749A publication Critical patent/JP2008076749A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a Fabry-Perot element which is easy to control the distance between the optical reflective films and can suppress their inclinations. <P>SOLUTION: The Fabry-Perot element includes a first substrate which has a first light reflective film formed on the surface at the center, silicon films formed at both ends, and a first thin gold film formed on those silicon films; and a second substrate which has a second light reflective film formed on the surface at the center, and a second thin gold films formed at both ends wherein the second thin gold films are joined to the first thin gold film so that the second light reflective film face the first light reflective film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ファブリペロー型フィルタ、若しくは、ファブリペロー型レーザ(以下、ファブリペロー型素子と呼ぶ。)に関し、特に光学反射膜間の距離の制御が容易であると共に光学反射膜の傾きを抑えることが可能なファブリペロー型素子に関する。   The present invention relates to a Fabry-Perot type filter or a Fabry-Perot type laser (hereinafter referred to as a Fabry-Perot type element), and in particular, it is easy to control the distance between optical reflecting films and suppress the inclination of the optical reflecting film. The present invention relates to a Fabry-Perot type element that can

従来のファブリペロー型素子に関連する先行技術文献としては次のようなものがある。   Prior art documents related to the conventional Fabry-Perot element include the following.

特開2003−177336号公報JP 2003-177336 A 特開2003−195201号公報JP 2003-195201 A 特開2003−249718号公報JP 2003-249718 A 特表2004−530146号公報JP-T-2004-530146

図3はこのような従来のファブリペロー型素子を示す構成断面図である。図3において1及び6は基板、2及び5は光学反射膜、3及び4は金(Au)バンプ、7及び8は金(Au)薄膜である。   FIG. 3 is a structural sectional view showing such a conventional Fabry-Perot element. In FIG. 3, 1 and 6 are substrates, 2 and 5 are optical reflecting films, 3 and 4 are gold (Au) bumps, and 7 and 8 are gold (Au) thin films.

基板1の表面中央部分に光学反射膜2が形成され、両端に金バンプ3及び金バンプ4が形成される。基板6の表面中央部分に光学反射膜5が形成され、両端に金薄膜7及び金薄膜8が形成される。   An optical reflection film 2 is formed at the center of the surface of the substrate 1, and gold bumps 3 and gold bumps 4 are formed at both ends. An optical reflection film 5 is formed at the center of the surface of the substrate 6, and a gold thin film 7 and a gold thin film 8 are formed at both ends.

光学反射膜2が光学反射膜5に対向するように金バンプ3及び金薄膜7並びに金バンプ4及び金薄膜8を合わせて接合する。この時、温度”350℃”程度の中で基板1と基板6を金バンプ3及び金バンプ4を挟み込むように圧力を加えて熱圧着接合する。   The gold bump 3 and the gold thin film 7, and the gold bump 4 and the gold thin film 8 are bonded together so that the optical reflective film 2 faces the optical reflective film 5. At this time, the substrate 1 and the substrate 6 are thermocompression-bonded by applying pressure so that the gold bump 3 and the gold bump 4 are sandwiched between temperatures of about 350 ° C.

ここで、図3に示す従来例の動作を説明する。図3に示すように、フィルタ構造として光学反射膜2と光学反射膜5の2つの反射膜の間の空気の層が中間層になり、光学的なバンドパスフィルタを形成している。また、レーザの場合には、その中間層の中にレーザ媒質を挟んだ構造となっている。   Here, the operation of the conventional example shown in FIG. 3 will be described. As shown in FIG. 3, an air layer between the two reflecting films of the optical reflecting film 2 and the optical reflecting film 5 serves as an intermediate layer as a filter structure, thereby forming an optical bandpass filter. In the case of a laser, the laser medium is sandwiched between the intermediate layers.

基板6の上面から入射光が入射され、中間層の高さと傾きで決まる波長の光が選択されて基板1の下面から出射される。   Incident light is incident from the upper surface of the substrate 6, and light having a wavelength determined by the height and inclination of the intermediate layer is selected and emitted from the lower surface of the substrate 1.

また、基板1と基板6の接合に関しては、金すず(AuSn)バンプによる接合も行われている。   In addition, the bonding between the substrate 1 and the substrate 6 is also performed by a gold tin (AuSn) bump.

この結果、光学反射膜2が光学反射膜5に対向するように基板1と基板6を金バンプ3及び金薄膜7並びに金バンプ4及び金薄膜8で接合し、光学反射膜2と光学反射膜5の2つの反射膜の間の空気の層が中間層になることにより、光学的なバンドパスフィルタが形成されるので、入射光より選択された波長の光を出射することが可能になる。   As a result, the substrate 1 and the substrate 6 are joined by the gold bump 3 and the gold thin film 7 and the gold bump 4 and the gold thin film 8 so that the optical reflection film 2 faces the optical reflection film 5. Since the air layer between the two reflective films 5 becomes an intermediate layer, an optical band-pass filter is formed, so that light having a wavelength selected from incident light can be emitted.

しかし、図3に示す従来例では、金バンプで基板間を接合しているため、接合時に金バンプが変形するので、光学反射膜間の距離、すなわち、中間層の高さの制御が難しいという問題があった。   However, in the conventional example shown in FIG. 3, since the substrates are joined by gold bumps, the gold bumps are deformed at the time of joining. Therefore, it is difficult to control the distance between the optical reflecting films, that is, the height of the intermediate layer. There was a problem.

また、基板接合時の金バンプの変形により、上下の光学反射膜の傾きにばらつきが発生し、これがフィルタ特性に影響するので、波長分解能の高いフィルタ、若しくは、発振波長の安定したレーザの作製には適していないという問題点があった。
従って本発明が解決しようとする課題は、光学反射膜間の距離の制御が容易であると共に光学反射膜の傾きを抑えることが可能なファブリペロー型素子を実現することにある。
Also, the deformation of the gold bumps at the time of bonding the substrates causes variations in the tilt of the upper and lower optical reflection films, which affects the filter characteristics. Therefore, it is possible to manufacture filters with high wavelength resolution or lasers with stable oscillation wavelengths. There was a problem that was not suitable.
Therefore, the problem to be solved by the present invention is to realize a Fabry-Perot element that can easily control the distance between the optical reflecting films and can suppress the inclination of the optical reflecting films.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
ファブリペロー型素子において、
表面の中央部に第1の光学反射膜が形成され両端にシリコン膜が形成されると共にこのシリコン膜上に第1の金薄膜が形成された第1の基板と、表面の中央部に第2の光学反射膜が形成されると共に両端に第2の金薄膜が形成され前記第2の光学反射膜が前記第1の光学反射膜に対向するように前記第2の金薄膜が前記第1の金薄膜に接合された第2の基板とを備えたことにより、光学反射膜間の距離の制御が容易であると共に第2の光学反射膜の傾きを抑えて波長分解能を高くすることが可能になる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In a Fabry-Perot type element,
A first substrate in which a first optical reflecting film is formed at the center of the surface, a silicon film is formed at both ends and a first gold thin film is formed on the silicon film, and a second substrate is formed at the center of the surface. And the second gold thin film is formed so that the second optical reflective film is opposed to the first optical reflective film. By providing the second substrate bonded to the gold thin film, the distance between the optical reflecting films can be easily controlled, and the wavelength resolution can be increased by suppressing the inclination of the second optical reflecting film. Become.

請求項2記載の発明は、
ファブリペロー型素子において、
表面に形成された酸化膜上にシリコン膜が形成されると共にこのシリコン膜上に第1の金薄膜が形成され前記酸化膜に支持されたダイアフラム上に光学反射膜が形成され前記前記ダイアフラムの下部にレーザ出射口を有する第1の基板と、表面にミラー層が形成されると共にこのミラー層上に活性層が形成されこの活性層の両端に第2の金薄膜が形成され前記活性層が前記光学反射膜に対向するように前記第2の金薄膜が前記第1の金薄膜に接合された第2の基板とを備えたことにより、光学反射膜と活性層の間の距離の制御が容易であると共に光学反射膜及びミラー層の傾きを抑えて安定的に発振することが可能になる。
The invention according to claim 2
In a Fabry-Perot type element,
A silicon film is formed on the oxide film formed on the surface, a first gold thin film is formed on the silicon film, an optical reflecting film is formed on the diaphragm supported by the oxide film, and a lower portion of the diaphragm A first substrate having a laser emission port, a mirror layer is formed on the surface, an active layer is formed on the mirror layer, a second gold thin film is formed on both ends of the active layer, and the active layer is The second gold thin film is provided with the second substrate bonded to the first gold thin film so as to face the optical reflective film, so that the distance between the optical reflective film and the active layer can be easily controlled. In addition, it is possible to stably oscillate while suppressing the inclination of the optical reflection film and the mirror layer.

請求項3記載の発明は、
請求項1若しくは請求項2記載のファブリペロー型素子において、
前記第1の金薄膜と前記第2の金薄膜が、
熱圧着接合で接合されたことにより、光学反射膜間、若しくは、光学反射膜と活性層の間の距離の制御が容易であると共に第2の光学反射膜、若しくは、光学反射膜及びミラー層の傾きを抑えて安定的に発振することが可能になる。
The invention described in claim 3
The Fabry-Perot element according to claim 1 or 2,
The first gold thin film and the second gold thin film are:
By bonding by thermocompression bonding, it is easy to control the distance between the optical reflection films or between the optical reflection film and the active layer, and the second optical reflection film, or the optical reflection film and the mirror layer. It becomes possible to oscillate stably while suppressing the inclination.

請求項4記載の発明は、
請求項2記載のファブリペロー型素子において、
前記ダイアフラムを動かすことでレーザ光の波長を変化させることにより、光学反射膜と活性層の間の距離の制御が容易であると共に光学反射膜及びミラー層の傾きを抑えて安定的に発振することが可能になる。
The invention according to claim 4
The Fabry-Perot element according to claim 2,
By changing the wavelength of the laser beam by moving the diaphragm, it is easy to control the distance between the optical reflection film and the active layer, and the oscillation of the optical reflection film and the mirror layer is suppressed stably. Is possible.

本発明によれば次のような効果がある。
請求項1及び請求項3の発明によれば、第1の光学反射膜が第2の光学反射膜に対向するように第1の基板と第2の基板をシリコン膜、第1の金薄膜及び第2の金薄膜で接合することにより、従来例で発生していた変形を抑えられるので、光学反射膜間の距離の制御が容易であると共に第2の光学反射膜の傾きを抑えて波長分解能を高くすることが可能になる。
The present invention has the following effects.
According to the first and third aspects of the present invention, the first substrate and the second substrate are made of a silicon film, a first gold thin film, and a first substrate so that the first optical reflecting film faces the second optical reflecting film. By joining with the second gold thin film, the deformation occurring in the conventional example can be suppressed, so that the distance between the optical reflecting films can be easily controlled and the inclination of the second optical reflecting film is suppressed to reduce the wavelength resolution. Can be increased.

請求項2、請求項3及び請求項4の発明によれば、光学反射膜が活性層に対向するように第1の基板と第2の基板をシリコン膜、第1の金薄膜及び第2の金薄膜で接合することにより、従来例で発生していた変形を抑えられるので、光学反射膜と活性層の間の距離の制御が容易であると共に光学反射膜及びミラー層の傾きを抑えて安定的に発振することが可能になる。   According to the invention of claim 2, claim 3 and claim 4, the first substrate and the second substrate are made of a silicon film, a first gold thin film and a second substrate so that the optical reflection film faces the active layer. By bonding with a gold thin film, the deformation that has occurred in the conventional example can be suppressed, so that the distance between the optical reflection film and the active layer can be easily controlled, and the inclination of the optical reflection film and the mirror layer is suppressed and stable. Can oscillate automatically.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係るファブリペロー型素子の一実施例を示す構成断面図である。図1において1,2,5,6,7及び8は図3と同一符号を付してあり、9及び11はシリコン(Si)膜、10及び12は金(Au)薄膜である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a structural sectional view showing an embodiment of a Fabry-Perot element according to the present invention. In FIG. 1, 1, 2, 5, 6, 7 and 8 are given the same reference numerals as in FIG. 3, 9 and 11 are silicon (Si) films, and 10 and 12 are gold (Au) thin films.

基板1の表面中央部分に光学反射膜2が形成され、基板1の両端部分にシリコン膜9及びシリコン膜11がそれぞれ形成される。シリコン膜9上に金属膜10が形成され、シリコン膜11上に金属膜12が形成される。基板6の表面中央部分に光学反射膜5が形成され、基板6の両端部分に金薄膜7及び金薄膜8がそれぞれ形成される。   An optical reflection film 2 is formed at the center of the surface of the substrate 1, and a silicon film 9 and a silicon film 11 are formed at both ends of the substrate 1. A metal film 10 is formed on the silicon film 9 and a metal film 12 is formed on the silicon film 11. The optical reflection film 5 is formed at the center of the surface of the substrate 6, and the gold thin film 7 and the gold thin film 8 are formed at both ends of the substrate 6.

光学反射膜2が光学反射膜5に対向するように金薄膜10及び金薄膜7並びに金薄膜12及び金薄膜8を合わせて接合する。この時、図3の従来例と同様に、温度”350℃”程度の中で基板1と基板6をシリコン膜9及びシリコン膜11を挟み込むように圧力を加えて熱圧着接合する。   The gold thin film 10 and the gold thin film 7, and the gold thin film 12 and the gold thin film 8 are bonded together so that the optical reflective film 2 faces the optical reflective film 5. At this time, similarly to the conventional example of FIG. 3, the substrate 1 and the substrate 6 are thermocompression-bonded by applying pressure so as to sandwich the silicon film 9 and the silicon film 11 at a temperature of about “350 ° C.”.

ここで、図1に示す実施例の動作を説明する。図1に示す実施例の動作は図3の従来例とほぼ同一であり、異なる点は基板1と基板6が金バンプではなく、シリコン膜と金薄膜で接合されていることである。   Here, the operation of the embodiment shown in FIG. 1 will be described. The operation of the embodiment shown in FIG. 1 is almost the same as that of the conventional example of FIG. 3, and the difference is that the substrate 1 and the substrate 6 are joined by a silicon film and a gold thin film, not by gold bumps.

この結果、光学反射膜2が光学反射膜5に対向するように基板1と基板6をシリコン膜9、金薄膜10及び金薄膜7並びにシリコン膜11、金薄膜12及び金薄膜8で接合することにより、従来例で発生していた変形を抑えられるので、光学反射膜間の距離の制御が容易であると共に光学反射膜5の傾きを抑えて波長分解能を高くすることが可能になる。   As a result, the substrate 1 and the substrate 6 are bonded by the silicon film 9, the gold thin film 10 and the gold thin film 7, and the silicon film 11, the gold thin film 12 and the gold thin film 8 so that the optical reflection film 2 faces the optical reflection film 5. As a result, the deformation occurring in the conventional example can be suppressed, so that the distance between the optical reflecting films can be easily controlled, and the wavelength resolution can be increased by suppressing the inclination of the optical reflecting film 5.

図2は本発明に係るファブリペロー型素子の他の実施例を示す構成断面図である。図2において13はすり鉢形状のレーザ出射口を有するSOI(Silicon on Insulator)基板等の基板、14は酸化膜、15はダイアフラム、16は光学反射膜、17及び19はシリコン膜、18,20,24及び25は金薄膜、21は基板、22はミラー層、23は活性層である。100は光学反射膜16及びダイアフラム15を透過して出射されるレーザ光である。   FIG. 2 is a structural sectional view showing another embodiment of a Fabry-Perot element according to the present invention. In FIG. 2, 13 is a substrate such as an SOI (Silicon on Insulator) substrate having a mortar-shaped laser exit, 14 is an oxide film, 15 is a diaphragm, 16 is an optical reflecting film, 17 and 19 are silicon films, 18, 20, 24 and 25 are gold thin films, 21 is a substrate, 22 is a mirror layer, and 23 is an active layer. A laser beam 100 is transmitted through the optical reflection film 16 and the diaphragm 15 and emitted.

基板13の表面に酸化膜14が形成され、酸化膜14にダイアフラム15が支持される。ダイアフラム15の上に光学反射膜16が形成され、酸化膜14上の両端にシリコン膜17及びシリコン膜19がそれぞれ形成される。シリコン膜17上に金薄膜18が形成され、シリコン膜19上に金薄膜20が形成される。   An oxide film 14 is formed on the surface of the substrate 13, and a diaphragm 15 is supported on the oxide film 14. An optical reflection film 16 is formed on the diaphragm 15, and a silicon film 17 and a silicon film 19 are formed on both ends of the oxide film 14. A gold thin film 18 is formed on the silicon film 17, and a gold thin film 20 is formed on the silicon film 19.

基板21の表面にミラー層22が形成され、ミラー層22上に活性層23が形成される。活性層23の両端に金薄膜24及び金薄膜25がそれぞれ形成される。そして、光学反射膜16が活性層23に対向するように金薄膜18及び金薄膜24並びに金薄膜20及び金薄膜25を合わせて基板13と基板21を接合する。   A mirror layer 22 is formed on the surface of the substrate 21, and an active layer 23 is formed on the mirror layer 22. A gold thin film 24 and a gold thin film 25 are formed on both ends of the active layer 23, respectively. Then, the substrate 13 and the substrate 21 are bonded together by combining the gold thin film 18 and the gold thin film 24, the gold thin film 20 and the gold thin film 25 so that the optical reflection film 16 faces the active layer 23.

ここで、図2に示す実施例の動作を説明する。基板21の表面及び活性層23の表面にはそれぞれ電極が形成されており(図示せず)、この電極間に電圧が印加されると、活性層23において正孔と電子の結合が生じて光が発生する。この光は光学反射膜16とミラー層22との間に形成される光共振器で光増幅され、光学反射膜16及びダイアフラム15を透過し、レーザ光100として出射される。   Here, the operation of the embodiment shown in FIG. 2 will be described. Electrodes are formed on the surface of the substrate 21 and the surface of the active layer 23 (not shown), and when a voltage is applied between the electrodes, a combination of holes and electrons occurs in the active layer 23 to generate light. Will occur. This light is amplified by an optical resonator formed between the optical reflection film 16 and the mirror layer 22, passes through the optical reflection film 16 and the diaphragm 15, and is emitted as laser light 100.

また、基板13の表面とダイアフラム15には電極があり(図示せず)、この電極間に電圧を印加することで静電力が発生し、この静電力により光学反射膜16を下に動かし、光学反射膜16及びミラー層22の間の距離、すなわち、光共振器の長さを変化させ、レーザ光100の波長を変化することができる。   Further, there are electrodes on the surface of the substrate 13 and the diaphragm 15 (not shown), and an electrostatic force is generated by applying a voltage between the electrodes. The optical reflection film 16 is moved downward by this electrostatic force, and the optical force is applied. The wavelength of the laser beam 100 can be changed by changing the distance between the reflective film 16 and the mirror layer 22, that is, the length of the optical resonator.

この結果、光学反射膜16が活性層23に対向するように基板13と基板21をシリコン膜17、金薄膜18及び金薄膜24並びにシリコン膜19、金薄膜20及び金薄膜25で接合することにより、従来例で発生していた変形を抑えられるので、光学反射膜16と活性層23の間の距離の制御が容易であると共に光学反射膜16及びミラー層22の傾きを抑えて安定的に発振することが可能になる。   As a result, the substrate 13 and the substrate 21 are bonded by the silicon film 17, the gold thin film 18 and the gold thin film 24, and the silicon film 19, the gold thin film 20 and the gold thin film 25 so that the optical reflection film 16 faces the active layer 23. Since the deformation that has occurred in the conventional example can be suppressed, the distance between the optical reflection film 16 and the active layer 23 can be easily controlled, and the inclination of the optical reflection film 16 and the mirror layer 22 can be suppressed to stably oscillate. It becomes possible to do.

本発明に係るファブリペロー型素子の一実施例を示す構成断面図である。1 is a structural cross-sectional view showing an example of a Fabry-Perot element according to the present invention. 本発明に係るファブリペロー型素子の他の実施例を示す構成断面図である。FIG. 6 is a structural cross-sectional view showing another embodiment of a Fabry-Perot element according to the present invention. 従来のファブリペロー型素子を示す構成断面図である。It is a structure sectional view showing a conventional Fabry-Perot element.

符号の説明Explanation of symbols

1,6,13,21 基板
2,5,16 光学反射膜
3,4 金バンプ
7,8,10,12,18,20,24,25 金薄膜
9,11,17,19 シリコン膜
14 酸化膜
15 ダイアフラム
22 ミラー層
23 活性層
100 レーザ光
1, 6, 13, 21 Substrate 2, 5, 16 Optical reflection film 3, 4 Gold bump 7, 8, 10, 12, 18, 20, 24, 25 Gold thin film 9, 11, 17, 19 Silicon film 14 Oxide film 15 Diaphragm 22 Mirror layer 23 Active layer 100 Laser light

Claims (4)

ファブリペロー型素子において、
表面の中央部に第1の光学反射膜が形成され両端にシリコン膜が形成されると共にこのシリコン膜上に第1の金薄膜が形成された第1の基板と、
表面の中央部に第2の光学反射膜が形成されると共に両端に第2の金薄膜が形成され前記第2の光学反射膜が前記第1の光学反射膜に対向するように前記第2の金薄膜が前記第1の金薄膜に接合された第2の基板と
を備えたことを特徴とするファブリペロー型素子。
In a Fabry-Perot type element,
A first substrate in which a first optical reflecting film is formed at the center of the surface, a silicon film is formed at both ends, and a first gold thin film is formed on the silicon film;
A second optical reflecting film is formed at the center of the surface, a second gold thin film is formed at both ends, and the second optical reflecting film is opposed to the first optical reflecting film. A Fabry-Perot type element comprising a second substrate bonded to the first gold thin film.
ファブリペロー型素子において、
表面に形成された酸化膜上にシリコン膜が形成されると共にこのシリコン膜上に第1の金薄膜が形成され前記酸化膜に支持されたダイアフラム上に光学反射膜が形成され前記前記ダイアフラムの下部にレーザ出射口を有する第1の基板と、
表面にミラー層が形成されると共にこのミラー層上に活性層が形成されこの活性層の両端に第2の金薄膜が形成され前記活性層が前記光学反射膜に対向するように前記第2の金薄膜が前記第1の金薄膜に接合された第2の基板と
を備えたことを特徴とするファブリペロー型素子。
In a Fabry-Perot type element,
A silicon film is formed on the oxide film formed on the surface, a first gold thin film is formed on the silicon film, an optical reflecting film is formed on the diaphragm supported by the oxide film, and a lower portion of the diaphragm A first substrate having a laser emission port on the substrate;
A mirror layer is formed on the surface, an active layer is formed on the mirror layer, a second gold thin film is formed on both ends of the active layer, and the active layer is opposed to the optical reflection film. A Fabry-Perot type element comprising a second substrate bonded to the first gold thin film.
前記第1の金薄膜と前記第2の金薄膜が、
熱圧着接合で接合されたことを特徴とする
請求項1若しくは請求項2記載のファブリペロー型素子。
The first gold thin film and the second gold thin film are:
The Fabry-Perot element according to claim 1 or 2, wherein the Fabry-Perot element is bonded by thermocompression bonding.
前記ダイアフラムを動かすことによりレーザ光の波長を変化させることを特徴とする
請求項2記載のファブリペロー型素子。
3. The Fabry-Perot element according to claim 2, wherein the wavelength of the laser beam is changed by moving the diaphragm.
JP2006255895A 2006-09-21 2006-09-21 Fabry-perot element Pending JP2008076749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255895A JP2008076749A (en) 2006-09-21 2006-09-21 Fabry-perot element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255895A JP2008076749A (en) 2006-09-21 2006-09-21 Fabry-perot element

Publications (1)

Publication Number Publication Date
JP2008076749A true JP2008076749A (en) 2008-04-03

Family

ID=39348868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255895A Pending JP2008076749A (en) 2006-09-21 2006-09-21 Fabry-perot element

Country Status (1)

Country Link
JP (1) JP2008076749A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116669A (en) * 2006-11-02 2008-05-22 Seiko Epson Corp Optical device, manufacturing method of optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
JP2012042739A (en) * 2010-08-19 2012-03-01 Seiko Epson Corp Optical filter, optical filter manufacturing method and optical apparatus
JP2012078476A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Composite etalon filter
JP2012078474A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Etalon filter
CN102621613A (en) * 2011-01-27 2012-08-01 精工爱普生株式会社 Optical module and spectroscopic analyzer
JP2013072981A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Optical filter device, optical module and electronic apparatus
JP2013097150A (en) * 2011-10-31 2013-05-20 Kyocera Crystal Device Corp Etalon filter
US8830586B2 (en) 2011-02-16 2014-09-09 Seiko Epson Corporation Variable wavelength interference filter, optical module, and optical analysis device
US8970957B2 (en) 2011-02-17 2015-03-03 Seiko Epson Corporation Tunable interference filter, optical module, and electronic device
JP2015072483A (en) * 2014-10-30 2015-04-16 セイコーエプソン株式会社 Optical filter, manufacturing method of optical filter, and optical apparatus
US9279925B2 (en) 2012-02-16 2016-03-08 Seiko Epson Corporation Interference filter, optical module, and electronic apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561728B2 (en) * 2006-11-02 2010-10-13 セイコーエプソン株式会社 Optical device, optical device manufacturing method, tunable filter, tunable filter module, and optical spectrum analyzer
JP2008116669A (en) * 2006-11-02 2008-05-22 Seiko Epson Corp Optical device, manufacturing method of optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
CN102375229B (en) * 2010-08-19 2015-10-21 精工爱普生株式会社 The manufacture method of light filter, light filter and light device
JP2012042739A (en) * 2010-08-19 2012-03-01 Seiko Epson Corp Optical filter, optical filter manufacturing method and optical apparatus
CN102375229A (en) * 2010-08-19 2012-03-14 精工爱普生株式会社 Optical filter, method of manufacturing optical filter, and optical instrument
US9921402B2 (en) 2010-08-19 2018-03-20 Seiko Epson Corporation Optical filter, method of manufacturing optical filter, and optical instrument
CN105182527A (en) * 2010-08-19 2015-12-23 精工爱普生株式会社 Optical filter and optical instrument
JP2012078476A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Composite etalon filter
JP2012078474A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Etalon filter
CN102621613A (en) * 2011-01-27 2012-08-01 精工爱普生株式会社 Optical module and spectroscopic analyzer
US8830586B2 (en) 2011-02-16 2014-09-09 Seiko Epson Corporation Variable wavelength interference filter, optical module, and optical analysis device
US9229220B2 (en) 2011-02-16 2016-01-05 Seiko Epson Corporation Variable wavelength interference filter, optical module, and optical analysis device
US9739999B2 (en) 2011-02-16 2017-08-22 Seiko Epson Corporation Variable wavelength interference filter, optical module, and optical analysis device
US8970957B2 (en) 2011-02-17 2015-03-03 Seiko Epson Corporation Tunable interference filter, optical module, and electronic device
JP2013072981A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Optical filter device, optical module and electronic apparatus
US9534954B2 (en) 2011-09-27 2017-01-03 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus
JP2013097150A (en) * 2011-10-31 2013-05-20 Kyocera Crystal Device Corp Etalon filter
US9279925B2 (en) 2012-02-16 2016-03-08 Seiko Epson Corporation Interference filter, optical module, and electronic apparatus
JP2015072483A (en) * 2014-10-30 2015-04-16 セイコーエプソン株式会社 Optical filter, manufacturing method of optical filter, and optical apparatus

Similar Documents

Publication Publication Date Title
JP2008076749A (en) Fabry-perot element
JP4886686B2 (en) Semiconductor laser module, optical device for semiconductor laser module, and manufacturing method of optical device
JP2008508698A5 (en)
JP7007560B2 (en) Light source device
JP2008060445A (en) Light emitting element
JP2012163912A (en) Wavelength variable interference filter, optical module, optical analysis device, and manufacturing method for wavelength variable interference filter
JP2022172302A (en) Light source device
JP2013239614A (en) Method of manufacturing light-emitting device
US20180248338A1 (en) Wavelength variable light source
JP2005223111A (en) Variable wavelength laser
JP2022539450A (en) Method for manufacturing a component arrangement for a package, method for manufacturing a package having a component arrangement, component arrangement, and package
JP2007305856A (en) Sealing structure and manufacturing method therefor
JP2021163922A (en) Quantum cascade laser element, quantum cascade laser device, and method for manufacturing quantum cascade laser device
WO2020137136A1 (en) Laser device
JP2018170310A (en) Light-source device
JP5247795B2 (en) Optical module
JP2010192882A (en) Method of manufacturing semiconductor laser device, semiconductor laser device and light apparatus
JP5640659B2 (en) Optical filter, optical filter manufacturing method, and optical device
WO2016140154A1 (en) Solid-state laser medium and solid-state laser beam amplifier
JP4084360B2 (en) Optical frequency stabilization device and optical frequency stabilization method
JP2004172340A (en) Surface emitting laser
JP2005183871A (en) Surface emitting laser
JP6435820B2 (en) Optical semiconductor device and optical semiconductor element mounting method
JP2004296706A (en) Optical resonator and laser oscillator
JP2010161253A (en) External resonator type surface-emitting laser