WO2016140154A1 - Solid-state laser medium and solid-state laser beam amplifier - Google Patents

Solid-state laser medium and solid-state laser beam amplifier Download PDF

Info

Publication number
WO2016140154A1
WO2016140154A1 PCT/JP2016/055747 JP2016055747W WO2016140154A1 WO 2016140154 A1 WO2016140154 A1 WO 2016140154A1 JP 2016055747 W JP2016055747 W JP 2016055747W WO 2016140154 A1 WO2016140154 A1 WO 2016140154A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
active region
state laser
laser medium
region
Prior art date
Application number
PCT/JP2016/055747
Other languages
French (fr)
Japanese (ja)
Inventor
太田 猛史
Original Assignee
カナレ電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カナレ電気株式会社 filed Critical カナレ電気株式会社
Priority to JP2016520106A priority Critical patent/JPWO2016140154A1/en
Publication of WO2016140154A1 publication Critical patent/WO2016140154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode

Definitions

  • the present invention relates to a solid-state laser medium.
  • the present invention also relates to a solid-state laser optical amplifier, and more particularly to a solid-state laser optical amplifier provided with a disk-shaped solid laser medium.
  • Patent Document 1 discloses a solid-state laser medium in which an active region is formed by doping a laser-active species into a part of a disk-shaped (thin-film) transparent mother crystal by ion implantation.
  • Patent Document 2 discloses a solid-state laser using a solid-state laser medium in which a transparent window region is provided around a thin-film active region.
  • Patent Document 3 discloses a solid-state laser in which a solid-state laser medium and a semiconductor laser are provided on a common heat sink.
  • Patent Document 4 discloses a structure in which excitation light from a semiconductor laser is directly introduced into a solid-state laser medium in which an active region and a transparent region are stacked.
  • Patent Document 5 discloses a structure in which excitation light is introduced through a slab optical waveguide into a solid-state laser medium in which an active region and a transparent region are laminated.
  • Patent Document 6 discloses a method of forming a solid laser medium having an active region and a transparent region by diffusion bonding or adhesion.
  • Patent Document 7 discloses a method of forming a solid laser medium having an active region and a transparent region by a sintering method.
  • Patent Document 8 discloses a method of forming a solid laser medium having a transparent region at the periphery of an active region by a sintering method.
  • Patent Document 9 discloses a solid-state laser medium in which a side surface of a transparent region provided at a peripheral portion of an active region is inclined and an antireflection coating is applied.
  • Patent Document 10 discloses a solid-state laser in which an active region and a transparent region are stacked and the active region is directly cooled by a liquid.
  • Non-Patent Document 1 discloses a solid-state laser in which excitation light from a semiconductor laser is directly introduced into a solid-state laser medium in which a transparent region is provided at the periphery of an active region.
  • the thickness of the transparent region of the excitation light introducing portion is larger than the thickness of the active region. For this reason, introduction of excitation light is easy.
  • the solid laser medium is formed by the ion implantation method, the productivity is low, and it is difficult to dope the laser active species at a high concentration.
  • An object of the present invention is to provide a solid-state laser medium that is easy to manufacture, can be highly doped with laser active species, and can be easily introduced with excitation light.
  • the solid-state laser medium of the present invention comprises a flat active region and a flat transparent region, and the outer shape of the transparent region is larger than the outer shape of the active region, and one surface of the active region is high.
  • the reflective layer is provided, the surface of the active region on which the high reflectance layer is provided is cooled by contacting the heat sink, and the active region is arranged so that the outer shape does not protrude from the transparent region, and the excitation light is transparent. It is introduced from the side surface of the region, and excitation light reaches the active region through the transparent region and excites the active region.
  • the thickness of the transparent region can be made larger than that of the active region, the introduction of excitation light can be facilitated. Since the active region and the transparent region are formed by bonding, manufacturing is easy, and the active region can be highly doped with laser active species.
  • FIG. 1 shows the configuration of a solid-state laser medium 10 according to the first embodiment of the present invention.
  • FIG. 1 shows a configuration of a solid-state laser laser oscillator 20 configured using the solid-state laser medium 10 .
  • FIG. 1A is a view of the solid-state laser light medium 10 as viewed from the upper surface side.
  • FIG. 1B is a cross-sectional view of the solid-state laser medium 10 taken along the line XX ′.
  • FIG. 1C is a side view showing another configuration of the active region of the solid-state laser laser emitting medium 10 .
  • FIG. 1D is a side view showing the configuration of a solid-state laser laser oscillator 20 configured using the solid-state laser medium 10 .
  • the solid laser medium 10 is a solid laser medium composed of an active region 1 and a transparent region 2.
  • the active region 1 is, for example, a YAG single crystal, a base material such as ceramics doped with a laser active species such as Nd or Yb.
  • the transparent region 2 is, for example, a YAG single crystal not doped with a laser active species, ceramics, or the like.
  • a high reflectivity layer 8 is provided on one surface 4 of the active region 1.
  • An antireflective coating layer 9 is provided on one surface 3 of the transparent region 2. Another surface 11 of the active region 1 and another surface 5 of the transparent region 2 are joined.
  • the active region 1 is flat and circular.
  • the transparent region 2 is flat and circular.
  • the outer shape of the active region 1 is smaller than the outer shape of the transparent region 2, and the active region 1 is joined so as not to protrude the outer shape of the transparent region 2.
  • the shapes of the active region 1 and the transparent region 2 of the solid-state laser medium 10 are circular, but other shapes may be used.
  • the solid-state laser medium 10 can be manufactured using the methods described in Patent Documents 6, 7, and 8. That is, the solid-state laser medium 1 can be manufactured by a technique such as diffusion bonding, bonding with an adhesive, or bonding using sintering.
  • the active region 1 and the transparent region 2 are formed by joining, manufacturing is easy. Further, the active region can be doped with laser active species at a high concentration.
  • Excitation light 12 is introduced into the side surface 6 of the transparent region 2, reaches the active region 1 through the excitation light 12 transparent region 2, and excites the active region 1. For this reason, the active region 1 expresses the function of light amplification. Since the high reflectivity layer 8 is provided on the surface 4 of the active region 1, the solid-state laser medium 10 functions as an optical amplifier having a reflecting mirror function. Such an optical amplifier is called an active mirror.
  • FIG. 1D shows a configuration of a solid-state laser laser oscillator 20 configured using the solid-state laser medium 10 and the output reflecting mirror 22.
  • the high reflectivity layer 8 and the output reflecting mirror 22 form a Fabry-Perot resonator, and laser oscillation 21 occurs.
  • the surface 4 of the active region 1 is bonded to a heat sink (not shown).
  • the side surface 7 of the active region 1 is a rough surface. This is to prevent the parasitic oscillation 13 shown in FIG. This parasitic oscillation 13 occurs because an unintended Fabry-Perot resonator (parasitic Fabry-Perot resonator) is formed by the side surface 7 of the active region 1.
  • the reflectance may be reduced by applying a non-reflective coating to the side surface 7 of the active region 1. If the reflectance of the side surface 7 is reduced, the parasitic oscillation 13 can be prevented.
  • the configuration in which the side surface 7 of the active region 1 is rough also has an effect of suppressing parasitic oscillation caused by the whispering gallery mode that occurs when the active region 1 is circular.
  • the whispering gallery mode is a mode that propagates along the circumference of a circular waveguide. This is a mode as indicated by reference numeral 38 in FIG.
  • an inclined side surface 15 may be provided instead of the side surface 7.
  • the inclined side surface 15 may be further roughened.
  • a non-reflective coating may be further applied to the inclined side surface 15.
  • the side surface 7 of the active region 1 is not involved in the introduction of excitation light and can be roughened. Further, the side surface 7 can be provided with an independent inclination. For this reason, occurrence of parasitic oscillation can be prevented.
  • the active region 1 and the transparent region 2 are individually formed in the solid laser medium 10 , the active region 1 is sufficiently thinned to increase the cooling efficiency of the active region 1, and at the same time, the transparent region 2 is thickened to be excited. Introduction of the light 2 can be facilitated. Further, even when the active region 1 has a large diameter, the active region 1 can be uniformly excited by controlling the thickness of the transparent region 2.
  • FIG. 2 shows a solid-state laser medium 30 according to the second embodiment of the present invention.
  • FIG. 2A is a top view showing the solid-state laser medium 30 .
  • FIG. 2B is a side view showing a method for exciting the solid-state laser medium 30 .
  • FIG. 2C shows the evanescent coupling.
  • FIG. 2D shows the shape of the active region 1 for suppressing parasitic oscillation.
  • the solid-state laser medium 30 has a structure in which the transparent region 2 and the active region 1 are individually formed and physically contacted.
  • the transparent region 2 and the active region 1 are evanescently coupled through a thin gas layer (vacuum layer) 33.
  • the surface 4 of the active region 1 is bonded to the heat sink 31.
  • the surface 5 of the transparent region 2 is in physical contact with the surface 11 of the active region 1 by pressure 32.
  • the excitation light 12 is introduced into the side surface 6 of the transparent region 2.
  • FIG. 2 (c) In the configuration of FIG. 2 (b), evanescent coupling as shown in FIG. 2 (c) occurs.
  • a thin gas layer (vacuum layer) 33 is formed between the active region 1 and the transparent region 2.
  • the excitation light 12 generates evanescent light 34 at the interface between the transparent region 2 and the gas layer (vacuum layer) 33, and this evanescent light 34 is transmitted light at the interface between the gas layer (vacuum layer) 33 and the active region 1. 35.
  • Reflected light 36 is also generated and propagates through the transparent region 42. The transmitted light 35 is absorbed by the active region 1 and excites the active region 1.
  • FIG. 2D shows the shape of the active region 1 for suppressing parasitic oscillation.
  • the side surface 37 of the active region 1 is intentionally formed to have irregularities, thereby causing parasitic oscillation due to the parasitic Fabry-Perot resonator and parasitic oscillation caused by the whispering gallery mode 38. Can be suppressed.
  • the transparent region 2 and the active region 1 are individually formed and physically contacted. In this configuration, since it is not necessary to join the transparent region 2 and the active region 1, the solid-state laser medium 30 can be easily manufactured.
  • the material selection is limited because the thermal expansion coefficients of the transparent region 2 and the active region 1 must be close to each other. On the other hand, there is no such restriction in the configuration of the present embodiment.
  • FIG. 3 shows the configuration of the solid-state laser medium 40 according to the third embodiment of the present invention.
  • the solid-state laser medium 40 includes a pentagonal transparent region 42.
  • a circular active region 41 is also provided.
  • FIG. 3B shows a cross-sectional structure similar to that of the solid-state laser medium 10 shown in FIG.
  • FIG. 3C shows a cross-sectional structure similar to that of the solid-state laser medium disclosed in Patent Document 1.
  • FIG. 3D shows a cross-sectional structure similar to that of the solid-state laser medium disclosed in Patent Document 2.
  • the generation of parasitic oscillation can be suppressed by adopting a shape in which there is no combination of sides parallel to the sides of the transparent region 42.
  • Parasitic oscillation due to the parasitic Fabry-Perot resonator is more likely to occur as the optical coupling between the transparent region and the active region is stronger, and this parasitic oscillation is particularly likely to occur in the configuration of FIG. Next, this parasitic oscillation is likely to occur in FIG. 3C, and then to the configuration of FIG. 3B.
  • the parasitic oscillation caused by the whispering gallery mode is unlikely to occur in the configurations of FIGS. 3 (c) and 3 (d). This is because if the refractive index difference between the active region 41 and the transparent region 42 is small, a whispering gallery mode is hardly formed at the interface between the active region 41 and the transparent region 42.
  • the parasitic oscillation by the parasitic Fabry-Perot resonator is also the parasitic oscillation by the whispering gallery mode. It is difficult to occur.
  • parasitic oscillation due to the whispering gallery mode in the active region 41 may occur.
  • the side surface of the active region 41 is roughened, or the side surface shape shown in FIG. Oscillation can be suppressed.
  • the transparent region 42 having an outer shape of a regular polygon having an odd number of vertices is used as in the present embodiment, there is no combination of sides parallel to the sides of the transparent region 42, so that the parasitic Fabry-Perot resonator is used. The resulting parasitic oscillation can be reduced.
  • the outer shape of the active layer 41 may be a polygonal system having an odd number of vertices. As a result, generation of a parasitic Fabry-Perot resonator in the active layer 41 can be prevented.
  • FIG. 4 shows the configuration of a solid-state laser optical amplifier 50 according to the fourth embodiment of the present invention.
  • FIG. 4 shows a configuration of a solid-state laser laser oscillator 60 configured using the solid-state laser optical amplifier 50 .
  • FIG. 4A is a view of the solid-state laser optical amplifier 50 as viewed from the upper surface side.
  • FIG. 4B is a YY ′ cross-sectional view of the solid-state laser optical amplifier 50 .
  • FIG. 4C is a side view of the solid state laser oscillator 60 .
  • the solid laser medium 51 is a flat thin film, and the outer shape is circular.
  • the transparent region 52 is provided above the active region 53 and is provided so as to surround the peripheral portion of the active region 53. For this reason, the thickness of the solid-state laser medium 1 is larger than the thickness of the active region 53. Further, the outer shape of the solid-state laser medium 51 is larger than the outer shape of the active region 53.
  • a high reflectivity layer 58 is provided on one surface of the solid-state laser medium 51.
  • the high reflectivity layer 58 has a high reflectivity with respect to the wavelength of light amplified by the solid-state laser optical amplifier 50 .
  • the surface of the solid laser medium 51 on which the high reflectance layer 58 is provided is bonded to the heat sink 56.
  • the outer shape of the heat sink 56 is larger than the outer shape of the solid-state laser medium 51.
  • a non-reflective coating layer 59 is provided on the surface of the solid laser medium 51 opposite to the surface on which the high reflectivity layer 58 is provided.
  • the active region 53 of the solid-state laser medium 51 is provided on the surface side where the high reflectivity layer 58 is provided.
  • a semiconductor laser 54 for excitation is provided on a heat sink 56 via a submount 55.
  • the semiconductor laser 54 is mounted on the submount 55 in a junction-down manner.
  • the submount 55 is bonded on the heat sink 56.
  • the submount 55 Since the semiconductor laser 54 is mounted on the submount 55 in a junction-down manner, the laser beam emission point of the semiconductor laser 54 is almost at the height of the submount 55 from the heat sink 56. Therefore, the submount 55 also functions as an optical alignment member.
  • the pumping semiconductor laser 54 is provided close to the solid-state laser medium 51, and the pumping light 57 from the semiconductor laser 54 is directly introduced into the solid-state laser medium 51 without passing through an optical system.
  • FIG. 4C shows a solid-state laser laser oscillator 60 configured using a solid-state laser optical amplifier 50 .
  • the solid-state laser laser oscillator 60 includes a solid-state laser optical amplifier 50 and an output reflecting mirror 61.
  • the high reflectivity layer 58 and the output reflecting mirror 61 form a Fabry-Perot resonator, whereby the laser oscillation light 62 is generated. A part of the laser oscillation light 62 is taken out as output light 63.
  • the solid-state laser optical amplifier 50 can be reduced in size and the structure can be simplified.
  • the thickness of the solid-state laser medium 51 is larger than the thickness of the active region 53, it is easy to introduce the excitation light 57 from the semiconductor laser 54 into the solid-state laser medium 51.
  • the transparent region 52 is also provided at the peripheral portion of the active region 53, the outer shape of the solid laser medium 51 is larger than the outer shape of the active region 53. For this reason, the active region 53 can be excited by a larger number of semiconductor lasers 54.
  • the transparent region 52 is also provided at the peripheral portion of the active region 53, parasitic oscillation due to the whispering gallery mode can be prevented.
  • the excitation light 57 passes through the transparent region 52 above the active region 53, the active region 53 can be uniformly excited even when the active region 53 has a large diameter.
  • the solid medium 10 shown in FIG. 1 can be used instead of the solid laser medium 51.
  • the solid-state laser medium 30 shown in FIG. 2 can be used instead of the solid-state laser medium 51.
  • the solid laser medium 40 shown in FIG. 3 can be used instead of the solid laser medium 51.
  • FIG. 5 shows the configuration of the fifth embodiment of the present invention.
  • the solid-state laser optical amplifier 70 has a configuration in which the heat sink 56 of the solid-state laser optical amplifier 50 is replaced with a heat sink 71 and the excitation light source is replaced with the semiconductor laser stack 72 from the semiconductor laser 54.
  • the semiconductor laser stack 72 has a structure in which a plurality of semiconductor laser chips are stacked.
  • a cylindrical lens 73 is provided corresponding to each semiconductor laser chip of the semiconductor laser stack 72.
  • the heat sink 71 is larger than the active region 53 but smaller than the transparent region 52.
  • the active region 53 of the solid-state laser medium 51 is bonded to the heat sink 71 via a submount 77.
  • the heat sink 71 is made of inexpensive copper.
  • the submount 77 is formed of a copper-tungsten alloy or the like having an appropriate composition ratio, and the thermal expansion coefficient is substantially the same as the material (YAG) forming the active region 53. With this configuration, thermal strain applied to the active region 53 is suppressed.
  • the transparent region 52 of the solid laser medium 51 protrudes from the heat sink 71. For this reason, the excitation light 75 from the semiconductor laser stack 72 is introduced into the side surface 76 of the solid-state laser medium 51 without being scattered by the heat sink 71.
  • the excitation light 75 from the semiconductor laser stack 72 is converted into parallel light by the cylindrical lens 73 and then introduced into the side surface 76 of the solid-state laser medium 51 by the common cylindrical lens 74.
  • the entire thickness of the solid-state laser medium 75 can be adjusted by increasing the thickness of the transparent region 52. Therefore, even if the semiconductor laser stack 72 having a large number of stacks is used, the excitation light 75 can be efficiently introduced into the solid-state laser medium 51 by making the thickness of the solid-state laser medium 51 appropriate. If the number of stacks is increased, the output of the pumping light can be increased, so that the output of the solid-state laser optical amplifier 70 can be increased.
  • the transparent region 52 is also provided in the peripheral portion of the active region 53, the active region 53 can be excited by a larger number of semiconductor laser stacks 72. Further, parasitic oscillation due to the whispering gallery mode can be suppressed.
  • the solid laser medium 10 shown in FIG. 1 can be used instead of the solid laser medium 51.
  • the solid-state laser medium 30 shown in FIG. 2 can be used instead of the solid-state laser medium 51.
  • the solid-state laser medium 40 shown in FIG. 3 can be used instead of the solid-state laser medium 51.
  • FIG. 6A shows the configuration of a solid-state laser optical amplifier 80 according to the sixth embodiment of the present invention.
  • the solid-state laser optical amplifier 80 has a configuration in which the heat sink 71 of the solid-state laser optical amplifier 70 is replaced with a heat sink 81.
  • the heat sink 81 includes a cooling tank 84 filled with a liquid 82.
  • the solid laser medium 51 is directly cooled by the liquid 82.
  • the solid-state laser medium 51 is attached to the heat sink 81 via an O-ring 83 and an attachment mechanism (not shown).
  • the O-ring 83 prevents the liquid 82 from leaking.
  • the solid-state laser medium 51 includes the transparent region 52, it is possible to give a physically high intensity by making the transparent region 52 sufficiently thick. For this reason, the solid laser medium 51 can be prevented from being damaged by the pressure of the liquid 82.
  • Patent Document 10 discloses a structure that directly cools the active region side of a solid-state laser medium in which an active region and a transparent region are stacked, but does not disclose a structure that excites the solid-state laser medium from the side surface. Moreover, the structure which provides a transparent area
  • the active region and the transparent region are stacked, and the solid laser medium provided with the transparent region at the periphery of the active region is excited from the side.
  • the solid-state laser laser medium 51 can be excited by introducing the excitation light 75 from the side surface of the solid-state laser laser medium 51.
  • 6A can be modified into a configuration according to FIG.
  • FIG. 6B shows a modification of the solid-state laser optical amplifier 80 .
  • the solid-state laser laser medium 51 is characterized in that a heat radiation fin 85 is bonded.
  • the radiating fin 85 is made of a copper tungsten alloy or a copper molybdenum alloy having an appropriate composition ratio and has a value close to the thermal expansion coefficient of YAG, which is the laser crystal material of the solid-state laser laser medium 51.
  • the radiating fins 85 are provided with irregularities (not shown) so that the contact area with the liquid 82 is increased. Thereby, cooling efficiency improves.
  • the heat sink 81 can be constructed of an inexpensive material such as copper. For this reason, when making the active region 53 large-diameter, high cost efficiency can be obtained.
  • the solid medium 10 shown in FIG. 1 can be used instead of the solid laser medium 51. Further, the shape of the side surface 37 shown in FIG. 2D can be adopted as the active region 1 of the solid-state laser medium 10 .
  • SYMBOLS 1 Active region, 2 ... Transparent region, 3 ... One surface of transparent region 2, 4 ... One surface of active region 1, 5 ... Another surface of transparent region 2, 6 ... Side surface of transparent region 2, 7 ... Side surface of active region 1, 8 ... high reflectance layer, 9 ... non-reflective coating layer, 10 ... solid laser medium, 11 ... another surface of active region 1, 12 ... excitation light, 13 ... parasitic oscillation, 15 ... active region 1 inclined side surface, 16 ... input light, 17 ... output light, 20 ... solid laser oscillator, 21 ... laser oscillation, 22 ... output reflector, 30 solid laser medium, 31 ... heat sink, 32 ... pressure, 33 ...
  • Heat sink 72 ... Semiconductor laser Stack 73 ... Cylindrical lens, 74 ... Common cylindrical lens, 75 ... Excitation light, 76 ... Side surface of solid laser medium 51, 77 ... Submount, 80 ... Solid laser optical amplifier, 81 ... Heat sink, 82 ... Liquid, 83 ... O Ring, 84 ... cooling tank, 85 ... radiating fin.

Abstract

[Problem] To provide a solid-state laser medium, which can be manufactured easily and doped with laser activate species at a high concentration, and into which excitation light can be easily introduced. [Solution] A solid-state laser medium 10 is a solid-state laser medium configured from an active region 1 and a transparent region 2. A high reflectance layer 8 is provided on one surface 4 of the active region 1. A no-reflectance coat layer 9 is provided on one surface 3 of the transparent region 2. Another surface 11 of the active region 1 and another surface 5 of the transparent region 2 are bonded to each other. The solid-state laser medium 10 amplifies input light 16, and outputs output light 17. A solid-state laser oscillator 20 is configured using the solid-state laser medium 10 and an output reflecting mirror 22, the high-reflectance layer 8 and the output reflecting mirror 22 form a Fabry-Perot resonator, and laser oscillation 21 is generated.

Description

固体レーザ媒質及び固体レーザ光増幅器Solid state laser medium and solid state laser optical amplifier
 本発明は固体レーザ媒質に関する。また、固体レーザ光増幅器に関し、特にディスク状の固体レーザ媒質を備えた固体レーザ光増幅器に関する。 The present invention relates to a solid-state laser medium. The present invention also relates to a solid-state laser optical amplifier, and more particularly to a solid-state laser optical amplifier provided with a disk-shaped solid laser medium.
 特許文献1には、ディスク状(薄膜状)の透明な母結晶の一部にレーザ活性種をイオン注入によってドープして活性領域を形成した固体レーザ媒質が開示されている。 Patent Document 1 discloses a solid-state laser medium in which an active region is formed by doping a laser-active species into a part of a disk-shaped (thin-film) transparent mother crystal by ion implantation.
 特許文献2には、薄膜状の活性領域の周辺に透明なウインドー領域を設けた固体レーザ媒質を用いた固体レーザが開示されている。 Patent Document 2 discloses a solid-state laser using a solid-state laser medium in which a transparent window region is provided around a thin-film active region.
 特許文献3には、固体レーザ媒質と半導体レーザを共通のヒートシンク上に設けた固体レーザが開示されている。 Patent Document 3 discloses a solid-state laser in which a solid-state laser medium and a semiconductor laser are provided on a common heat sink.
 特許文献4には、活性領域と透明領域を積層した固体レーザ媒質に、半導体レーザからの励起光を直接導入する構造が開示されている。 Patent Document 4 discloses a structure in which excitation light from a semiconductor laser is directly introduced into a solid-state laser medium in which an active region and a transparent region are stacked.
 特許文献5には、また、活性領域と透明領域を積層した固体レーザ媒質に、スラブ光導波路を介して励起光を導入する構造が開示されている。 Patent Document 5 discloses a structure in which excitation light is introduced through a slab optical waveguide into a solid-state laser medium in which an active region and a transparent region are laminated.
 特許文献6には、活性領域と透明領域を有する固体レーザ媒質を拡散接合もしくは接着によって形成する手法が開示されている。 Patent Document 6 discloses a method of forming a solid laser medium having an active region and a transparent region by diffusion bonding or adhesion.
 特許文献7には、活性領域と透明領域を有する固体レーザ媒質を焼結法によって形成する手法が開示されている。 Patent Document 7 discloses a method of forming a solid laser medium having an active region and a transparent region by a sintering method.
 特許文献8には、活性領域の周縁部に透明領域を有する固体レーザ媒質を焼結法によって形成する手法が開示されている。 Patent Document 8 discloses a method of forming a solid laser medium having a transparent region at the periphery of an active region by a sintering method.
 特許文献9には、活性領域の周縁部に設けられた透明領域の側面が傾斜し、反射防止コーティングが施されている固体レーザ媒質が開示されている。 Patent Document 9 discloses a solid-state laser medium in which a side surface of a transparent region provided at a peripheral portion of an active region is inclined and an antireflection coating is applied.
 特許文献10には、活性領域と透明領域を積層し、活性領域を液体によって直接冷却する固体レーザが開示されている。 Patent Document 10 discloses a solid-state laser in which an active region and a transparent region are stacked and the active region is directly cooled by a liquid.
 非特許文献1には活性領域の周縁部に透明領域を設けた固体レーザ媒質に半導体レーザからの励起光を直接導入した固体レーザが開示されている。 Non-Patent Document 1 discloses a solid-state laser in which excitation light from a semiconductor laser is directly introduced into a solid-state laser medium in which a transparent region is provided at the periphery of an active region.
特許第3503588号公報Japanese Patent No. 3503588 特許第5070519号公報Japanese Patent No. 5070519 特開2003-188442公報JP 2003-188442 A WO2004/114476パンフレットWO2004 / 114476 brochure 特開2007-110039公報JP 2007-110039 A 特開平11-261137号公報JP-A-11-261137 特開2003-020288公報JP 2003-020288 A 特開2003-258350公報JP 2003-258350 A 特開2007-311504公報JP 2007-31504 A 特許第3839717号公報Japanese Patent No. 3839717
 特許文献1に開示されている固体レーザ媒質は活性領域の厚さに比べて、励起光導入部の透明領域の厚さが大きい。このため、励起光の導入が容易である。しかし、イオン注入法によって固体レーザ媒質を形成しているので生産性が低く、また、レーザ活性種の高濃度ドープが難しい。 In the solid-state laser medium disclosed in Patent Document 1, the thickness of the transparent region of the excitation light introducing portion is larger than the thickness of the active region. For this reason, introduction of excitation light is easy. However, since the solid laser medium is formed by the ion implantation method, the productivity is low, and it is difficult to dope the laser active species at a high concentration.
 本発明は、製造が容易で、レーザ活性種の高濃度ドープが可能で、励起光導入が容易な固体レーザ媒質を提供することを目的とする。 An object of the present invention is to provide a solid-state laser medium that is easy to manufacture, can be highly doped with laser active species, and can be easily introduced with excitation light.
 上記課題を解決するために本発明の固体レーザ媒質は、平板状の活性領域と平板状の透明領域を備え、透明領域の外形は活性領域の外形より大きく、活性領域の一つの面には高反射率層が設けられ、活性領域の高反射率層が設けられた面はヒートシンクに接触して冷却され、活性領域の外形が透明領域の外形をはみ出さないように配置され、励起光が透明領域の側面から導入され、励起光が透明領域を経て活性領域に至り、活性領域を励起することを特徴とする。 In order to solve the above problems, the solid-state laser medium of the present invention comprises a flat active region and a flat transparent region, and the outer shape of the transparent region is larger than the outer shape of the active region, and one surface of the active region is high. The reflective layer is provided, the surface of the active region on which the high reflectance layer is provided is cooled by contacting the heat sink, and the active region is arranged so that the outer shape does not protrude from the transparent region, and the excitation light is transparent. It is introduced from the side surface of the region, and excitation light reaches the active region through the transparent region and excites the active region.
 本発明によれば、透明領域の厚さを活性領域よりも厚くできるため、励起光の導入を容易にすることができる。活性領域と透明領域を接合して形成するので、製造が容易であり、活性領域にレーザ活性種を高濃度ドープできる。 According to the present invention, since the thickness of the transparent region can be made larger than that of the active region, the introduction of excitation light can be facilitated. Since the active region and the transparent region are formed by bonding, manufacturing is easy, and the active region can be highly doped with laser active species.
本発明の第一実施例の固体レーザ媒質10の構成を示す概略図である。It is the schematic which shows the structure of the solid-state laser medium 10 of the 1st Example of this invention. 本発明の第二実施例の固体レーザ媒質30の構成を示す概略図である。It is the schematic which shows the structure of the solid-state laser medium 30 of the 2nd Example of this invention. 本発明の第三実施例の固体レーザ媒質40の構成を示す概略図である。It is the schematic which shows the structure of the solid-state laser medium 40 of the 3rd Example of this invention. 本発明の第四実施例の固体レーザ光増幅器50の構成を示す概略図である。It is the schematic which shows the structure of the solid-state laser optical amplifier 50 of 4th Example of this invention. 本発明の第五実施例の固体レーザ光増幅器70の構成を示す概略図である。It is the schematic which shows the structure of the solid-state laser optical amplifier 70 of 5th Example of this invention. 本発明の第六実施例の固体レーザ光増幅器80の構成を示す概略図である。It is the schematic which shows the structure of the solid state laser optical amplifier 80 of the 6th Example of this invention.
 以下に、図面を参照して本発明に係わる固体レーザ発振器の実施の形態を詳細に説明する。この実施の形態により本発明が限定されるものではない。なお、各図面において、同一の構成要素には同一の符号を付与している。 Embodiments of a solid-state laser oscillator according to the present invention will be described in detail below with reference to the drawings. The present invention is not limited to the embodiments. In the drawings, the same reference numerals are assigned to the same components.
[第一実施例]
 図1に本発明の第一実施例の固体レーザ媒質10の構成を示す。また、図1にこの固体レーザ媒質10を用いて構成した固体レーザレーザ発振器20の構成を示す。
[First embodiment]
FIG. 1 shows the configuration of a solid-state laser medium 10 according to the first embodiment of the present invention. FIG. 1 shows a configuration of a solid-state laser laser oscillator 20 configured using the solid-state laser medium 10 .
 図1(a)は固体レーザ光媒質10を上面側から見た図である。図1(b)は固体レーザ媒質10のX-X'断面図である。図1(c)は固体レーザレーザ発媒質10の活性領域の別の構成を示す側面図である。図1(d)は固体レーザ媒質10を用いて構成した固体レーザレーザ発振器20の構成を示す側面図である。 FIG. 1A is a view of the solid-state laser light medium 10 as viewed from the upper surface side. FIG. 1B is a cross-sectional view of the solid-state laser medium 10 taken along the line XX ′. FIG. 1C is a side view showing another configuration of the active region of the solid-state laser laser emitting medium 10 . FIG. 1D is a side view showing the configuration of a solid-state laser laser oscillator 20 configured using the solid-state laser medium 10 .
 固体レーザ媒質10は活性領域1と透明領域2からなる固体レーザ媒質である。活性領域1は、例えば、YAGの単結晶、セラミクスなどの母材にNdやYbなどのレーザ活性種をドープしたものである。透明領域2は、例えば、レーザ活性種がドープされていないYAGの単結晶、セラミクスなどである。 The solid laser medium 10 is a solid laser medium composed of an active region 1 and a transparent region 2. The active region 1 is, for example, a YAG single crystal, a base material such as ceramics doped with a laser active species such as Nd or Yb. The transparent region 2 is, for example, a YAG single crystal not doped with a laser active species, ceramics, or the like.
 活性領域1の一つの面4には高反射率層8が設けられている。透明領域2の一つの面3には無反射率コート層9が設けられている。活性領域1の別の面11と透明領域2の別の面5が接合されている。 A high reflectivity layer 8 is provided on one surface 4 of the active region 1. An antireflective coating layer 9 is provided on one surface 3 of the transparent region 2. Another surface 11 of the active region 1 and another surface 5 of the transparent region 2 are joined.
 活性領域1は平板状で円形状である。透明領域2は平板状で円形状である。活性領域1の外形は透明領域2の外形より小さく、活性領域1は透明領域2の外形をはみ出さないように接合されている。 The active region 1 is flat and circular. The transparent region 2 is flat and circular. The outer shape of the active region 1 is smaller than the outer shape of the transparent region 2, and the active region 1 is joined so as not to protrude the outer shape of the transparent region 2.
 図1においては、固体レーザ媒質10の活性領域1と透明領域2の形状を円形としたが、他の形状を用いてもよい。 In FIG. 1, the shapes of the active region 1 and the transparent region 2 of the solid-state laser medium 10 are circular, but other shapes may be used.
 固体レーザ媒質10は、特許文献6、7、及び、8に記載されている手法を用いて製造することができる。すなわち、固体レーザ媒質1は拡散接合、接着剤による接着、あるいは、焼結を用いた接合などの手法で製造することができる。 The solid-state laser medium 10 can be manufactured using the methods described in Patent Documents 6, 7, and 8. That is, the solid-state laser medium 1 can be manufactured by a technique such as diffusion bonding, bonding with an adhesive, or bonding using sintering.
 本実施例では、活性領域1と透明領域2を接合して形成するので製造が容易である。また、活性領域にレーザ活性種を高い濃度でドープすることができる。 In this embodiment, since the active region 1 and the transparent region 2 are formed by joining, manufacturing is easy. Further, the active region can be doped with laser active species at a high concentration.
 透明領域2の側面6に励起光12が導入され、励起光12透明領域2を経て活性領域1に至り、活性領域1を励起する。このため、活性領域1は光増幅の機能を発現する。活性領域1の面4には高反射率層8が設けられているので、固体レーザ媒質10は、反射鏡機能を備えた光増幅器として機能する。このような光増幅器はアクティブミラーの別名で呼ばれる。 Excitation light 12 is introduced into the side surface 6 of the transparent region 2, reaches the active region 1 through the excitation light 12 transparent region 2, and excites the active region 1. For this reason, the active region 1 expresses the function of light amplification. Since the high reflectivity layer 8 is provided on the surface 4 of the active region 1, the solid-state laser medium 10 functions as an optical amplifier having a reflecting mirror function. Such an optical amplifier is called an active mirror.
 固体レーザ媒質10は、入力光16を増幅して出力光17を出射する。図1(d)に固体レーザ媒質10と出力反射鏡22を用いて構成した固体レーザレーザ発振器20の構成を示す。高反射率層8と出力反射鏡22がファブリーペロー共振器を形成し、レーザ発振21が生じる。なお、活性領域1の面4は図示しないヒートシンクに接合されている。 The solid-state laser medium 10 amplifies the input light 16 and emits output light 17. FIG. 1D shows a configuration of a solid-state laser laser oscillator 20 configured using the solid-state laser medium 10 and the output reflecting mirror 22. The high reflectivity layer 8 and the output reflecting mirror 22 form a Fabry-Perot resonator, and laser oscillation 21 occurs. The surface 4 of the active region 1 is bonded to a heat sink (not shown).
 活性領域1の側面7は粗面となっている。これは、図1(b)に示す寄生発振13が生じるのを防ぐためである。この寄生発振13は活性領域1の側面7によって、意図しないファブリーペロー共振器(寄生ファブリーペロー共振器)が形成されるために生じる。 The side surface 7 of the active region 1 is a rough surface. This is to prevent the parasitic oscillation 13 shown in FIG. This parasitic oscillation 13 occurs because an unintended Fabry-Perot resonator (parasitic Fabry-Perot resonator) is formed by the side surface 7 of the active region 1.
 寄生発振13を抑制する別の方法としては、活性領域1の側面7に無反射コートを施して反射率を低減してもよい。側面7の反射率を低減させれば寄生発振13を防ぐことができる。 As another method of suppressing the parasitic oscillation 13, the reflectance may be reduced by applying a non-reflective coating to the side surface 7 of the active region 1. If the reflectance of the side surface 7 is reduced, the parasitic oscillation 13 can be prevented.
 また、活性領域1の側面7は粗面とした構成は、活性領域1を円形とした場合に生じるささやき回廊モードによって生じる寄生発振を抑制する効果もある。なお、ささやき回廊モードとは、円形の導波路の周に沿って伝播するモードのことである。後述の図2(d)に参照番号38として示すようなモードのことである。 Further, the configuration in which the side surface 7 of the active region 1 is rough also has an effect of suppressing parasitic oscillation caused by the whispering gallery mode that occurs when the active region 1 is circular. The whispering gallery mode is a mode that propagates along the circumference of a circular waveguide. This is a mode as indicated by reference numeral 38 in FIG.
 また、図1(c)に示すように側面7に代えて、傾斜した側面15を設けてもよい。活性領域1の面4に対して側面15を直角以外の角度とすることによって、活性領域1の側面によって寄生ファブリーペロー共振器が形成されることを防ぐことができる。傾斜した側面15をさらに粗面化してもよい。傾斜した側面15にさらに無反射コートを施してもよい。 Further, as shown in FIG. 1C, an inclined side surface 15 may be provided instead of the side surface 7. By making the side surface 15 have an angle other than a right angle with respect to the surface 4 of the active region 1, it is possible to prevent a parasitic Fabry-Perot resonator from being formed by the side surface of the active region 1. The inclined side surface 15 may be further roughened. A non-reflective coating may be further applied to the inclined side surface 15.
 固体レーザ媒質10では活性領域1の側面7は励起光の導入に関与していないため、粗面化することができる。また、側面7に独立した傾斜を設けることができる。このため、寄生発振の発生を防止することができる。 In the solid-state laser medium 10 , the side surface 7 of the active region 1 is not involved in the introduction of excitation light and can be roughened. Further, the side surface 7 can be provided with an independent inclination. For this reason, occurrence of parasitic oscillation can be prevented.
 固体レーザ媒質10は活性領域1と透明領域2が個別に形成されているので、活性領域1を十分に薄くして活性領域1の冷却効率を上げ、同時に、透明領域2を厚くして、励起光2の導入を容易にすることができる。また、活性領域1を大口径化した場合も透明領域2の厚さを制御することによって、活性領域1を均一に励起することができる。 Since the active region 1 and the transparent region 2 are individually formed in the solid laser medium 10 , the active region 1 is sufficiently thinned to increase the cooling efficiency of the active region 1, and at the same time, the transparent region 2 is thickened to be excited. Introduction of the light 2 can be facilitated. Further, even when the active region 1 has a large diameter, the active region 1 can be uniformly excited by controlling the thickness of the transparent region 2.
[第二実施例]
 図2に本発明の第二実施例の固体レーザ媒質30を示す。図2(a)は固体レーザ媒質30を示す上面図である。図2(b)は固体レーザ媒質30の励起方法を示す側面図である。図2(c)はエバネッセント結合について示す図である。図2(d)は寄生発振を抑制するための活性領域1の形状である。
[Second Example]
FIG. 2 shows a solid-state laser medium 30 according to the second embodiment of the present invention. FIG. 2A is a top view showing the solid-state laser medium 30 . FIG. 2B is a side view showing a method for exciting the solid-state laser medium 30 . FIG. 2C shows the evanescent coupling. FIG. 2D shows the shape of the active region 1 for suppressing parasitic oscillation.
 固体レーザ媒質30は透明領域2と活性領域1を個別に形成して、物理的に接触させた構造を有している。透明領域2と活性領域1は薄い気体層(真空層)33を介してエバネッセント結合している。 The solid-state laser medium 30 has a structure in which the transparent region 2 and the active region 1 are individually formed and physically contacted. The transparent region 2 and the active region 1 are evanescently coupled through a thin gas layer (vacuum layer) 33.
 図2(a)に示すように、活性領域1の面4はヒートシンク31に接着されている。透明領域2の面5が活性領域1の面11に圧力32によって物理的に接触している。図2(b)に示すように励起光12は透明領域2の側面6に導入される。 As shown in FIG. 2A, the surface 4 of the active region 1 is bonded to the heat sink 31. The surface 5 of the transparent region 2 is in physical contact with the surface 11 of the active region 1 by pressure 32. As shown in FIG. 2B, the excitation light 12 is introduced into the side surface 6 of the transparent region 2.
 図2(b)の構成では図2(c)に示すようなエバネッセント結合が生じる。活性領域1と透明領域2の間には薄い気体層(真空層)33が形成される。このような構造では励起光12は透明領域2と気体層(真空層)33の界面でエバネッセント光34が生じ、このエバネッセント光34は気体層(真空層)33と活性領域1の界面で透過光35に変換される。また、反射光36も生じて透明領域42中を伝播する。透過光35は活性領域1に吸収されて活性領域1を励起する。 In the configuration of FIG. 2 (b), evanescent coupling as shown in FIG. 2 (c) occurs. A thin gas layer (vacuum layer) 33 is formed between the active region 1 and the transparent region 2. In such a structure, the excitation light 12 generates evanescent light 34 at the interface between the transparent region 2 and the gas layer (vacuum layer) 33, and this evanescent light 34 is transmitted light at the interface between the gas layer (vacuum layer) 33 and the active region 1. 35. Reflected light 36 is also generated and propagates through the transparent region 42. The transmitted light 35 is absorbed by the active region 1 and excites the active region 1.
 図2(d)に寄生発振を抑制するための活性領域1の形状を示す。図2(d)に示すように、活性領域1の側面37を、意図的に凹凸を含む形状とすることにより、寄生ファブリーペロー共振器による寄生発振、及び、ささやき回廊モード38に起因する寄生発振を抑制することができる。 FIG. 2D shows the shape of the active region 1 for suppressing parasitic oscillation. As shown in FIG. 2 (d), the side surface 37 of the active region 1 is intentionally formed to have irregularities, thereby causing parasitic oscillation due to the parasitic Fabry-Perot resonator and parasitic oscillation caused by the whispering gallery mode 38. Can be suppressed.
 本実施例では、透明領域2と活性領域1を個別に形成して物理的に接触させている。この構成では、透明領域2と活性領域1を接合させる必要が無いので、固体レーザ媒質30の製造が容易である。 In this embodiment, the transparent region 2 and the active region 1 are individually formed and physically contacted. In this configuration, since it is not necessary to join the transparent region 2 and the active region 1, the solid-state laser medium 30 can be easily manufactured.
 透明領域2と活性領域1を接合させる場合は、透明領域2と活性領域1の熱膨張係数が近い値である必要があるので、材料選択に制限があった。これに対して、本実施例の構成ではこのような制限がない。 When joining the transparent region 2 and the active region 1, the material selection is limited because the thermal expansion coefficients of the transparent region 2 and the active region 1 must be close to each other. On the other hand, there is no such restriction in the configuration of the present embodiment.
[第三実施例]
 図3に本発明の第三実施例の固体レーザ媒質40の構成を示す。図3(a)に示すように、固体レーザ媒質40は五角形状の透明領域42を備えている。また、円形の活性領域41を備えている。
[Third embodiment]
FIG. 3 shows the configuration of the solid-state laser medium 40 according to the third embodiment of the present invention. As shown in FIG. 3A, the solid-state laser medium 40 includes a pentagonal transparent region 42. A circular active region 41 is also provided.
 特許文献2に開示されているように、活性領域を透明領域が取り囲む固体レーザ媒質では、透明領域の端面同士が共振器(寄生ファブリーペロー共振器)を形成してしまうことがある。これに対して、本実施例の固体レーザ媒質40では、透明領域42の複数の辺44において互いに平行な辺の組み合わせが無いために、寄生ファブリーペロー共振器が形成されず、寄生発振43の生成が抑制される。 As disclosed in Patent Document 2, in a solid laser medium in which an active region is surrounded by a transparent region, end surfaces of the transparent region may form a resonator (parasitic Fabry-Perot resonator). On the other hand, in the solid-state laser medium 40 of the present embodiment, there is no combination of sides parallel to each other in the plurality of sides 44 of the transparent region 42, so a parasitic Fabry-Perot resonator is not formed, and generation of the parasitic oscillation 43 Is suppressed.
 図3(b)は図1に示した固体レーザ媒質10と同様の断面構造を示す。図3(c)は特許文献1に開示されている固体レーザ媒質と同様の断面構造を示す。図3(d)は特許文献2に開示されている固体レーザ媒質と同様の断面構造を示す。 FIG. 3B shows a cross-sectional structure similar to that of the solid-state laser medium 10 shown in FIG. FIG. 3C shows a cross-sectional structure similar to that of the solid-state laser medium disclosed in Patent Document 1. FIG. 3D shows a cross-sectional structure similar to that of the solid-state laser medium disclosed in Patent Document 2.
 これらのいずれの構造においても、透明領域42の辺に互いに平行な辺の組み合わせが無い形状を採用することによって、寄生発振の生成を抑制することができる。 In any of these structures, the generation of parasitic oscillation can be suppressed by adopting a shape in which there is no combination of sides parallel to the sides of the transparent region 42.
 寄生ファブリーペロー共振器に起因する寄生発振は、透明領域と活性領域の光学的結合が強いほど起こりやすいので、この寄生発振は特に図3(d)の構成で起こり易い。次いでこの寄生発振は図3(c)で起こり易く、その次に図3(b)の構成で起こり易い。 Parasitic oscillation due to the parasitic Fabry-Perot resonator is more likely to occur as the optical coupling between the transparent region and the active region is stronger, and this parasitic oscillation is particularly likely to occur in the configuration of FIG. Next, this parasitic oscillation is likely to occur in FIG. 3C, and then to the configuration of FIG. 3B.
 一方、ささやき回廊モードに起因する寄生発振は、図3(c)と図3(d)の構成では起こり難い。活性領域41と透明領域42の屈折率差が小さいと、活性領域41と透明領域42の界面ではささやき回廊モードが形成されにくいからである。 On the other hand, the parasitic oscillation caused by the whispering gallery mode is unlikely to occur in the configurations of FIGS. 3 (c) and 3 (d). This is because if the refractive index difference between the active region 41 and the transparent region 42 is small, a whispering gallery mode is hardly formed at the interface between the active region 41 and the transparent region 42.
 透明領域42の外周部は空気と界面を形成するので、この領域にはささやき回廊モードが形成されるが、この領域には利得がないため、寄生発振が起こり難い。 Since the outer peripheral portion of the transparent region 42 forms an interface with air, a whispering gallery mode is formed in this region, but since there is no gain in this region, parasitic oscillation hardly occurs.
 以上から、図3(a)の平面構造を有して図3(c)と図3(d)の断面構造を有する場合は、寄生ファブリーペロー共振器による寄生発振も、ささやき回廊モードによる寄生発振も生じ難いこととなる。 From the above, in the case of having the planar structure of FIG. 3A and the cross-sectional structures of FIG. 3C and FIG. 3D, the parasitic oscillation by the parasitic Fabry-Perot resonator is also the parasitic oscillation by the whispering gallery mode. It is difficult to occur.
 図3(a)の平面構造を有して図3(b)の断面構造を有する場合は、活性領域41内でのささやき回廊モードに起因する寄生発振は生じ得る。この場合は、前述の通り、活性領域41の側面を粗面化する、あるいは図2(d)にしめすような側面形状を採用することにより、活性領域41内でのささやき回廊モードに起因する寄生発振を抑制できる。 In the case of having the planar structure of FIG. 3A and the cross-sectional structure of FIG. 3B, parasitic oscillation due to the whispering gallery mode in the active region 41 may occur. In this case, as described above, the side surface of the active region 41 is roughened, or the side surface shape shown in FIG. Oscillation can be suppressed.
 本実施例のように、奇数の頂点を有する正多角形を外形形状とする透明領域42を用いると、透明領域42の辺に互いに平行な辺の組み合わせが無いために、寄生ファブリーペロー共振器に起因する寄生発振を低減できる。 When the transparent region 42 having an outer shape of a regular polygon having an odd number of vertices is used as in the present embodiment, there is no combination of sides parallel to the sides of the transparent region 42, so that the parasitic Fabry-Perot resonator is used. The resulting parasitic oscillation can be reduced.
 なお、活性層41の外形形状を奇数の頂点を有する多角系とすることもできる。これによって、活性層41内の寄生ファブリーペロー共振器の発生を防ぐことができる。 It should be noted that the outer shape of the active layer 41 may be a polygonal system having an odd number of vertices. As a result, generation of a parasitic Fabry-Perot resonator in the active layer 41 can be prevented.
[第四実施例]
 図4に本発明の第四実施例の固体レーザ光増幅器50の構成を示す。また、図4にこの固体レーザ光増幅器50を用いて構成した固体レーザレーザ発振器60の構成を示す。図4(a)は固体レーザ光増幅器50を上面側から見た図である。図4(b)は固体レーザ光増幅器50のY-Y'断面図である。図4(c)は固体レーザレーザ発振器60の側面図である。
[Fourth embodiment]
FIG. 4 shows the configuration of a solid-state laser optical amplifier 50 according to the fourth embodiment of the present invention. FIG. 4 shows a configuration of a solid-state laser laser oscillator 60 configured using the solid-state laser optical amplifier 50 . FIG. 4A is a view of the solid-state laser optical amplifier 50 as viewed from the upper surface side. FIG. 4B is a YY ′ cross-sectional view of the solid-state laser optical amplifier 50 . FIG. 4C is a side view of the solid state laser oscillator 60 .
 固体レーザ媒質51は平板状の薄膜であり、外形は円形状である。外形が円形状の透明領域52と、外形が円形状の活性領域53とから成る。透明領域52は活性領域53の上方に設けられると共に、活性領域53の周縁部を取り囲むように設けられている。このため、固体レーザ媒質1の厚さは活性領域53の厚さより大きくなっている。また、固体レーザ媒質51の外形は活性領域53の外形より大きくなっている。 The solid laser medium 51 is a flat thin film, and the outer shape is circular. A transparent region 52 having a circular outer shape and an active region 53 having a circular outer shape. The transparent region 52 is provided above the active region 53 and is provided so as to surround the peripheral portion of the active region 53. For this reason, the thickness of the solid-state laser medium 1 is larger than the thickness of the active region 53. Further, the outer shape of the solid-state laser medium 51 is larger than the outer shape of the active region 53.
 固体レーザ媒質51の一つの面には高反射率層58が設けられている。この高反射率層58は固体レーザ光増幅器50が増幅する光の波長に対して高い反射率を有している。固体レーザ媒質51の高反射率層58が設けられた面がヒートシンク56に接着されている。ヒートシンク56の外形は固体レーザ媒質51の外形より大きい。 A high reflectivity layer 58 is provided on one surface of the solid-state laser medium 51. The high reflectivity layer 58 has a high reflectivity with respect to the wavelength of light amplified by the solid-state laser optical amplifier 50 . The surface of the solid laser medium 51 on which the high reflectance layer 58 is provided is bonded to the heat sink 56. The outer shape of the heat sink 56 is larger than the outer shape of the solid-state laser medium 51.
 固体レーザ媒質51の高反射率層58が設けられた面とは反対側の面には無反射コート層59が設けられている。固体レーザ媒質51の活性領域53は高反射率層58が設けられる面側に設けられている。 A non-reflective coating layer 59 is provided on the surface of the solid laser medium 51 opposite to the surface on which the high reflectivity layer 58 is provided. The active region 53 of the solid-state laser medium 51 is provided on the surface side where the high reflectivity layer 58 is provided.
 励起用の半導体レーザ54が、サブマウント55を介してヒートシンク56上に設けられている。半導体レーザ54はサブマウント55にジャンクションダウンで実装されている。また、サブマウント55はヒートシンク56上に接着されている。 A semiconductor laser 54 for excitation is provided on a heat sink 56 via a submount 55. The semiconductor laser 54 is mounted on the submount 55 in a junction-down manner. The submount 55 is bonded on the heat sink 56.
 半導体レーザ54はサブマウント55にジャンクションダウンで実装されているので、半導体レーザ54のレーザ光出射点はヒートシンク56から、ほぼ、サブマウント55の高さの位置となる。したがって、サブマウント55は光学的アライメント部材としても機能する。 Since the semiconductor laser 54 is mounted on the submount 55 in a junction-down manner, the laser beam emission point of the semiconductor laser 54 is almost at the height of the submount 55 from the heat sink 56. Therefore, the submount 55 also functions as an optical alignment member.
 励起用の半導体レーザ54は固体レーザ媒質51に近接して設けられており、光学系を介すことなく、半導体レーザ54からの励起光57は、直接、固体レーザ媒質51に導入されている。 The pumping semiconductor laser 54 is provided close to the solid-state laser medium 51, and the pumping light 57 from the semiconductor laser 54 is directly introduced into the solid-state laser medium 51 without passing through an optical system.
 図4(c)に固体レーザ光増幅器50を用いて構成した固体レーザレーザ発振器60を示す。固体レーザレーザ発振器60は、固体レーザ光増幅器50と出力反射鏡61を備えている。 FIG. 4C shows a solid-state laser laser oscillator 60 configured using a solid-state laser optical amplifier 50 . The solid-state laser laser oscillator 60 includes a solid-state laser optical amplifier 50 and an output reflecting mirror 61.
 高反射率層58と出力反射鏡61とがファブリーペロー共振器を形成することにより、レーザ発振光62が生成される。レーザ発振光62の一部が出力光63として外部に取りだされる。 The high reflectivity layer 58 and the output reflecting mirror 61 form a Fabry-Perot resonator, whereby the laser oscillation light 62 is generated. A part of the laser oscillation light 62 is taken out as output light 63.
 本実施例では、半導体レーザ54からの励起光57を、直接、固体レーザ媒質51に導入しているので、固体レーザ光増幅器50を小型化でき、かつ、構造を簡易化できる。 In this embodiment, since the excitation light 57 from the semiconductor laser 54 is directly introduced into the solid-state laser medium 51, the solid-state laser optical amplifier 50 can be reduced in size and the structure can be simplified.
 本実施例では、活性領域53の厚さよりも固体レーザ媒質51の厚さが大きいので、半導体レーザ54からの励起光57を固体レーザ媒質51に導入することが容易である。 In this embodiment, since the thickness of the solid-state laser medium 51 is larger than the thickness of the active region 53, it is easy to introduce the excitation light 57 from the semiconductor laser 54 into the solid-state laser medium 51.
 本実施例では、活性領域53の周縁部にも透明領域52が設けられているので、固体レーザ媒質51の外形は活性領域53の外形より大きい。このため、より多数の半導体レーザ54によって活性領域53を励起することができる。 In the present embodiment, since the transparent region 52 is also provided at the peripheral portion of the active region 53, the outer shape of the solid laser medium 51 is larger than the outer shape of the active region 53. For this reason, the active region 53 can be excited by a larger number of semiconductor lasers 54.
 本実施例では、活性領域53の周縁部にも透明領域52が設けられているので、ささやき回廊モードによる寄生発振を防ぐことができる。 In this embodiment, since the transparent region 52 is also provided at the peripheral portion of the active region 53, parasitic oscillation due to the whispering gallery mode can be prevented.
 本実施例では、活性領域53の上方の透明領域52を励起光57が通過するので、活性領域53が大口径化した場合も、活性領域53を均一に励起することができる。 In this embodiment, since the excitation light 57 passes through the transparent region 52 above the active region 53, the active region 53 can be uniformly excited even when the active region 53 has a large diameter.
 図4の構成において、固体レーザ媒質51に代えて、図1に示した固体媒質10を用いることができる。図4の構成において、固体レーザ媒質51に代えて、図2に示した固体レーザ媒質30を用いることができる。図4の構成において、固体レーザ媒質51に代えて、図3に示した固体レーザ媒質40を用いることができる。 In the configuration of FIG. 4, the solid medium 10 shown in FIG. 1 can be used instead of the solid laser medium 51. In the configuration of FIG. 4, the solid-state laser medium 30 shown in FIG. 2 can be used instead of the solid-state laser medium 51. In the configuration of FIG. 4, the solid laser medium 40 shown in FIG. 3 can be used instead of the solid laser medium 51.
[第五実施例]
 図5に本発明の第五実施例の構成を示す。固体レーザ光増幅器70は、固体レーザ光増幅器50のヒートシンク56をヒートシンク71に代え、励起光源を半導体レーザ54から半導体レーザスタック72に代えた構成となっている。
[Fifth Example]
FIG. 5 shows the configuration of the fifth embodiment of the present invention. The solid-state laser optical amplifier 70 has a configuration in which the heat sink 56 of the solid-state laser optical amplifier 50 is replaced with a heat sink 71 and the excitation light source is replaced with the semiconductor laser stack 72 from the semiconductor laser 54.
 半導体レーザスタック72は複数の半導体レーザチップを積層させた構造を有している。半導体レーザスタック72の各半導体レーザチップに対応してシリンドリカルレンズ73が設けられている。 The semiconductor laser stack 72 has a structure in which a plurality of semiconductor laser chips are stacked. A cylindrical lens 73 is provided corresponding to each semiconductor laser chip of the semiconductor laser stack 72.
 ヒートシンク71は活性領域53より大きいが、透明領域52よりは小さな外形とされている。固体レーザ媒質51の活性領域53はサブマウント77を介してヒートシンク71に接着されている。 The heat sink 71 is larger than the active region 53 but smaller than the transparent region 52. The active region 53 of the solid-state laser medium 51 is bonded to the heat sink 71 via a submount 77.
 ヒートシンク71は安価な銅によって形成されている。サブマウント77は適切な組成比の銅タングステン合金などによって形成され、活性領域53を形成する材料(YAG)と熱膨張率が略一致している。この構成によって活性領域53に加えられる熱歪を抑制している。 The heat sink 71 is made of inexpensive copper. The submount 77 is formed of a copper-tungsten alloy or the like having an appropriate composition ratio, and the thermal expansion coefficient is substantially the same as the material (YAG) forming the active region 53. With this configuration, thermal strain applied to the active region 53 is suppressed.
 固体レーザ媒質51の透明領域52はヒートシンク71より張り出している。このため、半導体レーザスタック72からの励起光75は、ヒートシンク71によってけられることなく、固体レーザ媒質51の側面76に導入される。 The transparent region 52 of the solid laser medium 51 protrudes from the heat sink 71. For this reason, the excitation light 75 from the semiconductor laser stack 72 is introduced into the side surface 76 of the solid-state laser medium 51 without being scattered by the heat sink 71.
 半導体レーザスタック72からの励起光75はシリンドリカルレンズ73によって平行光に変換されてから、共通シリンドリカルレンズ74によって固体レーザ媒質51の側面76に導入される。 The excitation light 75 from the semiconductor laser stack 72 is converted into parallel light by the cylindrical lens 73 and then introduced into the side surface 76 of the solid-state laser medium 51 by the common cylindrical lens 74.
 一般的に、図5に示したような励起光学系では、半導体レーザスタック62のスタック数を増やすと、共通シリンドリカルレンズ74の収差によって集光されたレーザ光の径が大きくなるという問題がある。このため、固体レーザ媒質71が薄いと励起光を効率よく導入することができない。 Generally, in the excitation optical system as shown in FIG. 5, when the number of the semiconductor laser stacks 62 is increased, there is a problem that the diameter of the laser beam condensed due to the aberration of the common cylindrical lens 74 increases. For this reason, if the solid-state laser medium 71 is thin, excitation light cannot be efficiently introduced.
 これに対して、本実施例では固体レーザ媒質75の全体の厚さは透明領域52の厚さを厚くすることによって調整することができる。したがって、スタック数の多い半導体レーザスタック72を用いても、固体レーザ媒質51の厚さを適切にすることにより、励起光75を効率よく固体レーザ媒質51に導入することができる。スタック数を増やせば、励起光を大出力化できるので、固体レーザ光増幅器70の大出力化を実現することができる。 In contrast, in the present embodiment, the entire thickness of the solid-state laser medium 75 can be adjusted by increasing the thickness of the transparent region 52. Therefore, even if the semiconductor laser stack 72 having a large number of stacks is used, the excitation light 75 can be efficiently introduced into the solid-state laser medium 51 by making the thickness of the solid-state laser medium 51 appropriate. If the number of stacks is increased, the output of the pumping light can be increased, so that the output of the solid-state laser optical amplifier 70 can be increased.
 本実施例では、活性領域53の周縁部にも透明領域52が設けられているので、より多数の半導体レーザスタック72によって活性領域53を励起することができる。また、ささやき回廊モードによる寄生発振を抑制できる。 In this embodiment, since the transparent region 52 is also provided in the peripheral portion of the active region 53, the active region 53 can be excited by a larger number of semiconductor laser stacks 72. Further, parasitic oscillation due to the whispering gallery mode can be suppressed.
 図5の構成において、固体レーザ媒質51に代えて、図1に示した固体レーザ媒質10を用いることができる。図5の構成において、固体レーザ媒質51に代えて、図2に示した固体レーザ媒質30を用いることができる。図5の構成において、固体レーザ媒質51に代えて、図3に示した固体レーザ媒質40を用いることができる。 In the configuration of FIG. 5, the solid laser medium 10 shown in FIG. 1 can be used instead of the solid laser medium 51. In the configuration of FIG. 5, the solid-state laser medium 30 shown in FIG. 2 can be used instead of the solid-state laser medium 51. In the configuration of FIG. 5, the solid-state laser medium 40 shown in FIG. 3 can be used instead of the solid-state laser medium 51.
[第六実施例]
 図6(a)に本発明の第六実施例の固体レーザ光増幅器80の構成を示す。固体レーザ光増幅器80は、固体レーザ光増幅器70のヒートシンク71をヒートシンク81に代えた構成となっている。
[Sixth embodiment]
FIG. 6A shows the configuration of a solid-state laser optical amplifier 80 according to the sixth embodiment of the present invention. The solid-state laser optical amplifier 80 has a configuration in which the heat sink 71 of the solid-state laser optical amplifier 70 is replaced with a heat sink 81.
 ヒートシンク81は液体82で満たされた冷却槽84を備えている。固体レーザ媒質51は液体82によって直接冷却される構成となっている。固体レーザ媒質51はOリング83と図示しない取り付け機構を介してヒートシンク81に取り付けられている。Oリング83は液体82が漏えいすることを防いでいる。 The heat sink 81 includes a cooling tank 84 filled with a liquid 82. The solid laser medium 51 is directly cooled by the liquid 82. The solid-state laser medium 51 is attached to the heat sink 81 via an O-ring 83 and an attachment mechanism (not shown). The O-ring 83 prevents the liquid 82 from leaking.
 固体レーザ媒質51は透明領域52を備えているので、透明領域52を十分に厚くすることによって物理的に高い強度を持たせることができる。このため、液体82の圧力によって固体レーザ媒質51が破損することが防げる。 Since the solid-state laser medium 51 includes the transparent region 52, it is possible to give a physically high intensity by making the transparent region 52 sufficiently thick. For this reason, the solid laser medium 51 can be prevented from being damaged by the pressure of the liquid 82.
 本実施例によれば、固体レーザ媒質51を破損させずに、液体82を用いて、直接冷却するので高い冷却効率が得られる。 According to this embodiment, since the solid laser medium 51 is directly damaged using the liquid 82 without damaging it, high cooling efficiency can be obtained.
 特許文献10には、活性領域と透明領域を積層した固体レーザ媒質の活性領域側を直接冷却する構造が開示されているが、固体レーザ媒質を側面から励起する構造は開示されていない。また、活性領域の周縁部に透明領域を設ける構造は開示されていない。 Patent Document 10 discloses a structure that directly cools the active region side of a solid-state laser medium in which an active region and a transparent region are stacked, but does not disclose a structure that excites the solid-state laser medium from the side surface. Moreover, the structure which provides a transparent area | region in the peripheral part of an active area | region is not disclosed.
 これに対して、本実施例では活性領域と透明領域を積層し、かつ、活性領域の周縁部に透明領域を設けた固体レーザ媒質を側面から励起する構成とした。このため、固体レーザレーザ媒質51の側面から励起光75を導入して固体レーザレーザ媒質51を励起することができる。 On the other hand, in this embodiment, the active region and the transparent region are stacked, and the solid laser medium provided with the transparent region at the periphery of the active region is excited from the side. For this reason, the solid-state laser laser medium 51 can be excited by introducing the excitation light 75 from the side surface of the solid-state laser laser medium 51.
 また、本実施例では活性領域の周縁部に透明領域を設けた固体レーザ媒質を用いているので、ささやき回廊モードに起因する寄生発振が抑制される。 Further, in this embodiment, since a solid-state laser medium provided with a transparent region at the periphery of the active region is used, parasitic oscillation due to the whispering gallery mode is suppressed.
 図6(a)の構成を図4に準じた構成に変形することもできる。 6A can be modified into a configuration according to FIG.
 図6(b)に固体レーザ光増幅器80の変形例を示す。固体レーザレーザ媒質51に放熱フィン85を接着した構成としたことが特徴である。放熱フィン85は適当な組成比の銅タングステン合金や銅モリブテン合金を用いて固体レーザレーザ媒質51のレーザ結晶材料であるYAGの熱膨張係数に近い値としている。この放熱フィン85には図示しない凹凸が設けられ、液体82との接触面積が増加するように構成されている。これにより、冷却効率が向上する。 FIG. 6B shows a modification of the solid-state laser optical amplifier 80 . The solid-state laser laser medium 51 is characterized in that a heat radiation fin 85 is bonded. The radiating fin 85 is made of a copper tungsten alloy or a copper molybdenum alloy having an appropriate composition ratio and has a value close to the thermal expansion coefficient of YAG, which is the laser crystal material of the solid-state laser laser medium 51. The radiating fins 85 are provided with irregularities (not shown) so that the contact area with the liquid 82 is increased. Thereby, cooling efficiency improves.
 図6(b)の構成によれば、固体レーザレーザ媒質51と放熱フィン85の熱膨張係数を略一致させたので、固体レーザレーザ媒質51に熱歪が加わることを抑制できる。 6B, since the thermal expansion coefficients of the solid-state laser laser medium 51 and the radiating fins 85 are substantially matched, it is possible to suppress thermal strain from being applied to the solid-state laser laser medium 51.
 図6(b)の構成によれば、ヒートシンク81を銅などの安価な材料で構築することができる。このため、活性領域53を大口径化する場合に高いコスト効率を得ることができる。 6B, the heat sink 81 can be constructed of an inexpensive material such as copper. For this reason, when making the active region 53 large-diameter, high cost efficiency can be obtained.
 図6の構成において、固体レーザ媒質51に代えて、図1に示した固体媒質10を用いることができる。また、固体レーザ媒質10の活性領域1として図2(d)に示した側面37の形状を採用することができる。 In the configuration of FIG. 6, the solid medium 10 shown in FIG. 1 can be used instead of the solid laser medium 51. Further, the shape of the side surface 37 shown in FIG. 2D can be adopted as the active region 1 of the solid-state laser medium 10 .
1…活性領域、2…透明領域、3…透明領域2の一つの面、4…活性領域1の一つの面、5…透明領域2の別の面、6…透明領域2の側面、7…活性領域1の側面、8…高反射率層、9…無反射コート層、10…固体レーザ媒質、11…活性領域1の別の面、12…励起光、13…寄生発振、15…活性領域1の傾斜した側面、16…入力光、17…出力光、20…固体レーザレーザ発振器、21…レーザ発振、22…出力反射鏡、30固体レーザ媒質、31…ヒートシンク、32…圧力、33…薄い気体層(真空層)、34…エバネッセント光、35…透過光、36…反射光、37…活性領域1の凹凸を含む形状の側面、38…ささやき回廊モード、40…固体レーザ媒質、41…活性領域、42…透明領域、43…寄生発振、44…透明領域42の辺、50…固体レーザ光増幅器、51…固体レーザ媒質、52…透明領域、53…活性領域、54半導体レーザ、55…サブマウント、56…ヒートシンク、57…励起光、58…高反射率層、59…無反射コート層、60…固体レーザレーザ発振器、61…出力反射鏡、62…レーザ発振光、63…出力光、70…固体レーザ光増幅器、71…ヒートシンク、72…半導体レーザスタック、73…シリンドリカルレンズ、74…共通シリンドリカルレンズ、75…励起光、76…固体レーザ媒質51の側面、77…サブマウント、80…固体レーザ光増幅器、81…ヒートシンク、82…液体、83…Oリング、84…冷却槽、85…放熱フィン。 DESCRIPTION OF SYMBOLS 1 ... Active region, 2 ... Transparent region, 3 ... One surface of transparent region 2, 4 ... One surface of active region 1, 5 ... Another surface of transparent region 2, 6 ... Side surface of transparent region 2, 7 ... Side surface of active region 1, 8 ... high reflectance layer, 9 ... non-reflective coating layer, 10 ... solid laser medium, 11 ... another surface of active region 1, 12 ... excitation light, 13 ... parasitic oscillation, 15 ... active region 1 inclined side surface, 16 ... input light, 17 ... output light, 20 ... solid laser oscillator, 21 ... laser oscillation, 22 ... output reflector, 30 solid laser medium, 31 ... heat sink, 32 ... pressure, 33 ... thin Gas layer (vacuum layer), 34 ... evanescent light, 35 ... transmitted light, 36 ... reflected light, 37 ... side surface including irregularities of active region 1, 38 ... whispering gallery mode, 40 ... solid laser medium, 41 ... active Area 42 ... Transparent area 43 ... Parasitic oscillation 44 ... Side of the transparent region 42 50 Solid-state laser optical amplifier 51 Solid-state laser medium 52 Transparent region 53 Active region 54 Semiconductor laser 55 Submount 56 Heat sink 57 Excitation light 58 High Reflectance layer, 59 ... Non-reflective coating layer, 60 ... Solid laser laser oscillator, 61 ... Output reflecting mirror, 62 ... Laser oscillation light, 63 ... Output light, 70 ... Solid laser optical amplifier, 71 ... Heat sink, 72 ... Semiconductor laser Stack 73 ... Cylindrical lens, 74 ... Common cylindrical lens, 75 ... Excitation light, 76 ... Side surface of solid laser medium 51, 77 ... Submount, 80 ... Solid laser optical amplifier, 81 ... Heat sink, 82 ... Liquid, 83 ... O Ring, 84 ... cooling tank, 85 ... radiating fin.

Claims (9)

  1.  活性領域と透明領域を備えた固体レーザ媒質において、
     活性領域は平板状であり、
     透明領域は平板状であり、
     活性領域の一つの面には高反射率層が設けられ、
     活性領域の高反射率層が設けられた面はヒートシンクに接触して冷却され、
     透明領域の外形は活性領域の外形より大きく、
     活性領域の外形が透明領域の外形をはみ出さないように配置され、
     励起光が透明領域の側面から導入され、
     励起光が透明領域を経て活性領域に至り、活性領域を励起することを特徴とする固体レーザ媒質。
    In a solid-state laser medium having an active region and a transparent region,
    The active region is flat,
    The transparent area is flat,
    A high reflectivity layer is provided on one surface of the active region,
    The surface provided with the high reflectivity layer in the active region is cooled in contact with the heat sink,
    The outline of the transparent area is larger than the outline of the active area,
    Arranged so that the outer shape of the active region does not protrude from the outer shape of the transparent region,
    Excitation light is introduced from the side of the transparent region,
    A solid-state laser medium characterized in that excitation light reaches an active region through a transparent region and excites the active region.
  2.  請求項1の固体レーザ媒質において、前記活性領域の外形形状が微細な凹凸を含むことを特徴とする固体レーザ媒質。 2. The solid-state laser medium according to claim 1, wherein an outer shape of the active region includes fine irregularities.
  3.  請求項1の固体レーザ媒質において、前記活性領域の側面が、活性領域の高反射率層が設けられた面に対して垂直でないことを特徴とする固体レーザ媒質。 2. The solid-state laser medium according to claim 1, wherein a side surface of the active region is not perpendicular to a surface of the active region provided with the high reflectance layer.
  4.  請求項1の固体レーザ媒質において、
     活性領域と透明領域は気体層もしくは真空層を介して接触していることを特徴とする固体レーザ媒質。
    The solid-state laser medium of claim 1,
    An active region and a transparent region are in contact with each other through a gas layer or a vacuum layer.
  5.  活性領域と活性領域の周縁部を取り囲む透明領域を備えた固体レーザ媒質において、透明領域の外形形状が互いに平行な辺の組み合わせが無い形状としたことを特徴とする固体レーザ媒質。 A solid-state laser medium comprising a transparent region surrounding an active region and a peripheral portion of the active region, wherein the outer shape of the transparent region is a shape having no combination of sides parallel to each other.
  6.  固体レーザ媒質、ヒートシンク、及び、複数の半導体レーザを備えた固体レーザ光増幅器において、
     固体レーザ媒質は透明領域と活性領域を有し、活性領域に接して固体レーザ光増幅器の増幅光波長に対して高い反射率を有する高反射率層が設けられ、
     活性領域の高反射率層が設けられた面と反対側に透明領域が設けられ、
     高反射率層と平行な面内において活性領域の周縁部を取り囲むように透明領域が設けられ、
     ヒートシンク上に、固体レーザ活性領域に設けられた高反射率側が接するように固体レーザ薄膜媒質が設けられ、
     複数の半導体レーザがヒートシンク上に固体レーザ媒質の側面に近接して設けられ、
     光学系を介さずに、複数の半導体レーザからの励起光が、直接、固体レーザ媒質の側面に導入されることを特徴とする固体レーザ光増幅器。
    In a solid-state laser optical amplifier including a solid-state laser medium, a heat sink, and a plurality of semiconductor lasers,
    The solid laser medium has a transparent region and an active region, and is provided with a high reflectivity layer having a high reflectivity with respect to the amplified light wavelength of the solid laser optical amplifier in contact with the active region,
    A transparent region is provided on the side opposite to the surface provided with the high reflectance layer of the active region,
    A transparent region is provided so as to surround the periphery of the active region in a plane parallel to the high reflectivity layer,
    A solid laser thin film medium is provided on the heat sink so that the high reflectance side provided in the solid laser active region is in contact with the heat sink,
    A plurality of semiconductor lasers are provided on the heat sink adjacent to the side surface of the solid-state laser medium,
    A solid-state laser optical amplifier, wherein excitation light from a plurality of semiconductor lasers is directly introduced into a side surface of a solid-state laser medium without passing through an optical system.
  7.  固体レーザ媒質、ヒートシンク、複数の半導体レーザスタック、及び、各半導体レーザスタックに対応した結合光学系を備えた固体レーザ光増幅器において、
     固体レーザ媒質は透明領域と活性領域を有し、活性領域に接して固体レーザ光増幅器の増幅光波長に対して高い反射率を有する高反射率層が設けられ、
     活性領域の高反射率層が設けられた面と反対側に透明領域が設けられ、
     高反射率層と平行な面内において活性領域の周縁部を取り囲むように透明領域が設けられ、
     ヒートシンク上に、固体レーザ活性領域に設けられた高反射率側が接するように固体レーザ薄膜媒質が設けられ、
     ヒートシンクは活性領域全面と接触し、
     固体レーザ媒質の外形はヒートシンクの外形より大きく、
     固体レーザ媒質はヒートシンクより張り出してヒートシンクに設けられ、
     各半導体レーザスタックからの励起光は結合光学系を介して固体レーザ媒質の側面に導入されることを特徴とする固体レーザ光増幅器。
    In a solid-state laser optical amplifier having a solid-state laser medium, a heat sink, a plurality of semiconductor laser stacks, and a coupling optical system corresponding to each semiconductor laser stack,
    The solid laser medium has a transparent region and an active region, and is provided with a high reflectivity layer having a high reflectivity with respect to the amplified light wavelength of the solid laser optical amplifier in contact with the active region,
    A transparent region is provided on the side opposite to the surface provided with the high reflectance layer of the active region,
    A transparent region is provided so as to surround the periphery of the active region in a plane parallel to the high reflectivity layer,
    A solid laser thin film medium is provided on the heat sink so that the high reflectance side provided in the solid laser active region is in contact with the heat sink,
    The heat sink is in contact with the entire active area,
    The external shape of the solid laser medium is larger than the external shape of the heat sink,
    The solid laser medium projects from the heat sink and is provided on the heat sink.
    A solid-state laser optical amplifier, wherein excitation light from each semiconductor laser stack is introduced to a side surface of a solid-state laser medium through a coupling optical system.
  8.  固体レーザ媒質、ヒートシンク、を備えた固体レーザ光増幅器において、
     固体レーザ媒質は透明領域と活性領域を有し、活性領域に接して固体レーザ光増幅器の増幅光波長に対して高い反射率を有する高反射率層が設けられ、
     活性領域の高反射率層が設けられた面と反対側に透明領域が設けられ、
     高反射率層と平行な面内において活性領域の周縁部を取り囲むように透明領域が設けられ、
     ヒートシンクには液体を備えた冷却槽が設けられ、
     この冷却槽中の液体と固体レーザ活性領域に設けられた高反射率側が接するように固体レーザ薄膜媒質が設けられ、
     透明領域の側面から励起光が導入されたことを特徴とする固体レーザ光増幅器。
    In a solid-state laser optical amplifier including a solid-state laser medium and a heat sink,
    The solid laser medium has a transparent region and an active region, and is provided with a high reflectivity layer having a high reflectivity with respect to the amplified light wavelength of the solid laser optical amplifier in contact with the active region,
    A transparent region is provided on the side opposite to the surface provided with the high reflectance layer of the active region,
    A transparent region is provided so as to surround the periphery of the active region in a plane parallel to the high reflectivity layer,
    The heat sink is provided with a cooling tank with liquid,
    The solid laser thin film medium is provided so that the liquid in the cooling tank is in contact with the high reflectance side provided in the solid laser active region,
    A solid-state laser optical amplifier, wherein excitation light is introduced from a side surface of a transparent region.
  9.  活性領域と透明領域を備えた固体レーザ媒質において、
     活性領域は平板状であり、
     透明領域は平板状であり、
     活性領域の一つの面には高反射率層が設けられ、
     活性領域と透明領域は積層され、
     活性領域の高反射率層が設けられた面には放熱フィンが接着されたことを特徴とする固体レーザ媒質。
    In a solid-state laser medium having an active region and a transparent region,
    The active region is flat,
    The transparent area is flat,
    A high reflectivity layer is provided on one surface of the active region,
    The active area and the transparent area are laminated,
    A solid-state laser medium, wherein a radiation fin is adhered to a surface of the active region on which a high reflectivity layer is provided.
PCT/JP2016/055747 2015-03-03 2016-02-26 Solid-state laser medium and solid-state laser beam amplifier WO2016140154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016520106A JPWO2016140154A1 (en) 2015-03-03 2016-02-26 Solid state laser medium and solid state laser optical amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041193 2015-03-03
JP2015-041193 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140154A1 true WO2016140154A1 (en) 2016-09-09

Family

ID=56848930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055747 WO2016140154A1 (en) 2015-03-03 2016-02-26 Solid-state laser medium and solid-state laser beam amplifier

Country Status (2)

Country Link
JP (1) JPWO2016140154A1 (en)
WO (1) WO2016140154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025109A1 (en) * 2019-08-08 2021-02-11 国立大学法人大阪大学 Laser amplifier
RU2763262C1 (en) * 2021-05-28 2021-12-28 Евгений Владленович Бурый Laser quantron with diode pumping of the active medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141585A (en) * 2000-10-30 2002-05-17 Shibuya Kogyo Co Ltd Solid state laser oscillator
JP2004152817A (en) * 2002-10-29 2004-05-27 Japan Science & Technology Agency Laser apparatus
JP2004349701A (en) * 2003-05-19 2004-12-09 Boeing Co:The Method for generating diode pump solid disk laser and uniform laser gain
WO2004114476A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Solid laser excitation module
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2012248558A (en) * 2011-05-25 2012-12-13 Panasonic Corp Laser light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141585A (en) * 2000-10-30 2002-05-17 Shibuya Kogyo Co Ltd Solid state laser oscillator
JP2004152817A (en) * 2002-10-29 2004-05-27 Japan Science & Technology Agency Laser apparatus
JP2004349701A (en) * 2003-05-19 2004-12-09 Boeing Co:The Method for generating diode pump solid disk laser and uniform laser gain
WO2004114476A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Solid laser excitation module
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2012248558A (en) * 2011-05-25 2012-12-13 Panasonic Corp Laser light source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025109A1 (en) * 2019-08-08 2021-02-11 国立大学法人大阪大学 Laser amplifier
WO2021024457A1 (en) * 2019-08-08 2021-02-11 国立大学法人大阪大学 Laser amplifier
RU2763262C1 (en) * 2021-05-28 2021-12-28 Евгений Владленович Бурый Laser quantron with diode pumping of the active medium

Also Published As

Publication number Publication date
JPWO2016140154A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
US6785304B2 (en) Waveguide device with mode control and pump light confinement and method of using same
JP5330801B2 (en) Laser gain medium, laser oscillator and laser amplifier
JP2006313900A (en) Externally resonating surface-emitting laser
JP2007194597A (en) External resonator surface emitting laser
KR101100434B1 (en) End-pumped vertical external cavity surface emitting laser
JP2007311780A (en) Vertical external cavity surface-emitting laser
JP2017530554A (en) Laser active medium and manufacturing method thereof
JP2007110039A (en) Solid-state laser excitation module
US20100215067A1 (en) Grazing-incidence-disk laser element
JP2006339638A (en) Surface emitting laser coupled together with pump laser on single heat sink
JP5926340B2 (en) LD module
WO2020137136A1 (en) Laser device
WO2016140154A1 (en) Solid-state laser medium and solid-state laser beam amplifier
EP1770833A1 (en) Solid-state laser excitation module
US6944196B2 (en) Solid state laser amplifier
JP5247795B2 (en) Optical module
US20080025353A1 (en) Wavelength locked diode-laser bar
JP6342080B2 (en) Planar waveguide laser device
US8223813B2 (en) Semiconductor laser pumped solid-state laser device
EP1670104B1 (en) Solid-state laser pumped module and laser oscillator
JP6145194B2 (en) LD module
JP4440812B2 (en) Semiconductor laser pumped solid-state laser device
JP3340683B2 (en) Solid-state laser excitation module
JP2006286735A (en) Solid laser oscillation device
JP6083709B2 (en) Solid state laser equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520106

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758848

Country of ref document: EP

Kind code of ref document: A1