WO2018008154A1 - Optical component and optical module - Google Patents

Optical component and optical module Download PDF

Info

Publication number
WO2018008154A1
WO2018008154A1 PCT/JP2016/070337 JP2016070337W WO2018008154A1 WO 2018008154 A1 WO2018008154 A1 WO 2018008154A1 JP 2016070337 W JP2016070337 W JP 2016070337W WO 2018008154 A1 WO2018008154 A1 WO 2018008154A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
filter
optical signal
filter element
film
Prior art date
Application number
PCT/JP2016/070337
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 望月
覚志 村尾
瑞基 白尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018525622A priority Critical patent/JP6452900B2/en
Priority to PCT/JP2016/070337 priority patent/WO2018008154A1/en
Publication of WO2018008154A1 publication Critical patent/WO2018008154A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical component and an optical module used for an optical communication device using a wavelength division multiplexing system.
  • the optical multiplexer / demultiplexer has a function of an optical multiplexer that multiplexes a plurality of optical signals having different wavelength bands, or an optical demultiplexer that divides a multiplexed wavelength signal that is a multiplexed optical signal according to a difference in wavelength band. It is an optical component.
  • a plurality of bandpass filters that transmit light in a part of all wavelength bands of a multiwavelength signal and reflect light in other wavelength bands, and a plurality of bands
  • Patent Document 1 discloses an optical multiplexer / demultiplexer including a plurality of bandpass filters, a mirror that faces the plurality of bandpass filters, and a block substrate that supports the plurality of bandpass filters and mirrors.
  • the bandpass filter of an optical multiplexer / demultiplexer is generally configured using a dielectric multilayer film.
  • the bandpass filter increases the thickness of the dielectric multilayer film when the number of layers of the dielectric multilayer film is increased in order to have a sharp peak in the transmission spectrum representing the relationship between wavelength and transmittance. Will do.
  • the entire band-pass filter, including the substrate that is the base of the band-pass filter may be deformed by a strong stress from the laminate of dielectric multilayer films. Due to the deformation, the incident surface of the band-pass filter is curved, so that the angle of the reflected light from the band-pass filter changes depending on the incident position of the light on the incident surface.
  • the traveling direction of the reflected light from the bandpass filter is shifted.
  • the optical multiplexer / demultiplexer it is difficult to maintain the output performance because the shift of the light traveling direction in each of the plurality of bandpass filters changes the position or angle of the light beam emitted from the optical multiplexer / demultiplexer. For this reason, the optical multiplexer / demultiplexer reduces the tolerance of manufacturing errors, which cause fluctuations in the incident position on the filter element, in order to maintain output performance regardless of deformation of the filter element that transmits and reflects light. Will be invited.
  • the present invention has been made in view of the above, and an object thereof is to obtain an optical component capable of maintaining output performance regardless of deformation of a filter element.
  • the present invention includes a first filter element, a second filter element, a reflective element, a first reflective structure, and a second reflective structure.
  • the first filter element reflects the first optical signal and transmits the second optical signal.
  • the second filter element reflects the first optical signal and the second optical signal and transmits the third optical signal.
  • the reflective element reflects the first optical signal, the second optical signal, and the third optical signal.
  • the first reflection structure constitutes one of the first filter element, the second filter element, and the reflection element, and the first filter element, the second filter element, and the reflection of the first substrate and the first substrate.
  • the second reflective structure constitutes one of the first filter element, the second filter element, and the reflective element other than the first reflective structure, and the second substrate and the medium of the second substrate are directed in the opposite direction. And a second optical film formed on the formed interface.
  • the optical component according to the present invention has an effect that the output performance can be maintained regardless of the deformation of the filter element.
  • Sectional schematic diagram of the optical multiplexer / demultiplexer that is the optical component according to the first embodiment of the present invention The figure which showed one part including a band pass filter among the optical multiplexer / demultiplexers shown in FIG. The figure which showed one part including a band pass filter among the optical multiplexer / demultiplexers shown in FIG.
  • Sectional schematic diagram of the optical multiplexer / demultiplexer according to the comparative example of the first embodiment Sectional schematic diagram of an optical multiplexer / demultiplexer that is an optical component according to a modification of the first embodiment
  • Sectional schematic diagram of the optical multiplexer / demultiplexer that is the optical component according to the second embodiment of the present invention Sectional schematic diagram of the optical multiplexer / demultiplexer that is the optical component according to the third embodiment of the present invention
  • Schematic diagram of a transmission module that is an optical module according to a fourth embodiment of the present invention.
  • Schematic diagram of a receiving module which is an optical module according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 50 that is an optical component according to a first embodiment of the present invention.
  • the optical multiplexer / demultiplexer 50 is a light that can function as both an optical multiplexer that multiplexes a plurality of optical signals having different wavelength bands and an optical demultiplexer that divides the multiplexed optical signal according to the difference in wavelength bands. It is a part.
  • a case where the optical multiplexer / demultiplexer 50 is an optical multiplexer is taken as an example.
  • the input and output of the optical signal in the optical demultiplexer is opposite to the input and output of the optical signal in the optical multiplexer.
  • the optical multiplexer / demultiplexer 50 includes a block substrate 1 as a support substrate, bandpass filters 21, 22 and 23 as filter elements, and a mirror 3 as a reflection element.
  • the block substrate 1 is a block-shaped substrate that is made of a glass material and serves as a base of the optical multiplexer / demultiplexer 50.
  • the block substrate 1 supports the bandpass filters 21, 22, 23 and the mirror 3, and also functions as a medium that transmits light between the bandpass filters 21, 22, 23 and the mirror 3.
  • the band pass filters 21, 22, and 23 are disposed on the first surface 11 that is a common surface of the block substrate 1.
  • the mirror 3 is disposed on the second surface 12 of the block substrate 1 located on the back side of the first surface 11.
  • the band-pass filter 21 as the first filter element includes a filter substrate 210 and a filter film 211.
  • the filter film 211 is formed on the interface of the filter substrate 210 facing the block substrate 1.
  • the band-pass filter 22 as the second filter element includes a filter substrate 220 and a filter film 221.
  • the filter film 221 is formed on the interface of the filter substrate 220 facing away from the block substrate 1.
  • the band pass filter 23 includes a filter substrate 230 and a filter film 231.
  • the filter film 231 is formed on the interface of the filter substrate 230 facing the block substrate 1.
  • the filter films 211, 211, and 231 are all laminated bodies of dielectric multilayer films and have different wavelength characteristics. All of the filter substrates 210, 220, and 230 are made of a glass material that is a light transmissive material having a common refractive index with the material of the block substrate 1.
  • FIG. 1 shows the band-pass filters 21, 22, and 23 in a state where the curvature is caused by the stress of the filter films 211, 221, and 231, respectively.
  • the common refractive index includes the case where the refractive indexes are the same as each other and the case where the refractive indexes are different from each other even if the refractive indexes are different from each other, the influence on the light transmission characteristics can be ignored.
  • the block substrate 1 and the filter substrates 210, 220, and 230 may be made of a light transmissive material other than a glass material.
  • the light transmissive material may be quartz, silicon as a semiconductor material, gallium arsenide and indium phosphide, lithium niobate as a ferroelectric material, or polymer resin.
  • the mirror 3 reflects light in a wide wavelength band including the reflection wavelength bands of the filter films 211, 211, and 231.
  • the mirror 3 is made of a metal material or other highly reflective material.
  • the band-pass filter 21 and the band-pass filter 23 are a first reflective structure including a first substrate and a first optical film formed on an interface of the first substrate that is directed toward the medium.
  • the bandpass filter 21 includes a filter substrate 210 that is a first substrate and a filter film 211 that is a first optical film.
  • the bandpass filter 23 includes a filter substrate 230 that is a first substrate and a filter film 231 that is a first optical film.
  • the band pass filter 22 is a second reflective structure including a second substrate and a second optical film formed on an interface of the second substrate facing away from the medium.
  • the bandpass filter 22 includes a filter substrate 220 that is a second substrate and a filter film 221 that is a second optical film.
  • the optical multiplexer / demultiplexer 50 is provided with two bandpass filters 21 and 23 that are first reflection structures and one bandpass filter 22 that is a second reflection structure.
  • the second reflection structure is disposed between the two first reflection structures.
  • the optical signals 40, 41, 42 and 43 are input to the optical multiplexer / demultiplexer 50.
  • the wavelength bands of the optical signals 40, 41, 42, and 43 are different from each other.
  • the fact that the wavelength bands are different from each other means that the wavelengths when the intensity reaches a peak are different from each other.
  • the optical signal 40 input to the optical multiplexer / demultiplexer 50 enters the block substrate 1 from the first surface 11.
  • the optical signal 40 transmitted through the block substrate 1 and reaching the second surface 12 is reflected by the mirror 3.
  • the optical signal 40 reflected by the mirror 3 travels toward the band pass filter 21.
  • the optical signal 41 input to the optical multiplexer / demultiplexer 50 enters the filter substrate 210 of the bandpass filter 21.
  • the filter film 211 has a wavelength characteristic that includes the wavelength band of the optical signal 40 in the reflection wavelength band and includes the wavelength band of the optical signal 41 in the transmission wavelength band.
  • the filter film 211 of the band-pass filter 21 that is the first filter element reflects the optical signal 40 that is the first optical signal and transmits the optical signal 41 that is the second optical signal.
  • the optical signal 40 and the optical signal 41 are multiplexed by the band pass filter 21.
  • the multi-wavelength signal of the optical signal 40 and the optical signal 41 travels in the block substrate 1 and is reflected by the mirror 3 and travels toward the band pass filter 22.
  • the multi-wavelength signal transmitted through the block substrate 1 is incident on the filter substrate 220 of the bandpass filter 22.
  • the optical signal 42 input to the optical multiplexer / demultiplexer 50 enters the filter film 221 of the bandpass filter 22.
  • the filter film 221 has a wavelength characteristic that includes the wavelength bands of the optical signal 40 and the optical signal 41 in the reflection wavelength band and includes the wavelength band of the optical signal 42 in the transmission wavelength band.
  • the filter film 221 of the bandpass filter 22 that is the second filter element reflects the multi-wavelength signal of the optical signal 40 and the optical signal 41 and transmits the optical signal 42 that is the third optical signal.
  • the optical signal 42 is multiplexed with the optical signal 40 and the optical signal 41 by the band pass filter 22.
  • the multiple wavelength signals of the optical signals 40, 41, and 42 are reflected by the mirror 3 and travel toward the band pass filter 23.
  • the optical signal 43 input to the optical multiplexer / demultiplexer 50 enters the filter substrate 230 of the bandpass filter 23.
  • the filter film 231 has a wavelength characteristic that includes the wavelength bands of the optical signals 40, 41, and 42 in the reflection wavelength band and includes the wavelength band of the optical signal 43 in the transmission wavelength band.
  • the optical signal 43 is multiplexed with the optical signals 40, 41, and 42 by the band pass filter 23.
  • the multiplexed wavelength signal 44 of the optical signals 40, 41, 42 and 43 is output from the optical multiplexer / demultiplexer 50 after passing through the block substrate 1.
  • FIG. 2 is a diagram showing a part of the optical multiplexer / demultiplexer 50 including the bandpass filter 21.
  • the optical signal 401 indicates the optical signal 40 that is incident on a position shifted from the original incident position of the optical multiplexer / demultiplexer 50 due to mounting deviation of any element in the light source of the optical signal 40 or the optical multiplexer / demultiplexer 50.
  • the incident position of the optical signal 401 on the block substrate 1 is shifted upward with respect to the original incident position of the optical signal 40.
  • the band pass filter 21 is deformed by the action of the stress of the filter film 211. Since the filter film 211 is curved, the incident surfaces of the optical signals 40 and 401 in the filter film 211 have a concave shape.
  • the optical signal 401 travels in parallel with the optical signal 40 and enters the optical multiplexer / demultiplexer 50, the optical signal 401 enters the optical multiplexer / demultiplexer 50 until it reaches the filter film 211. Travel along a path parallel to the travel path.
  • the incident position of the optical signal 40 in the filter film 211 is the center position of the filter film 211.
  • the optical signal 401 enters the filter film 211 at a position shifted upward from the center position. Since the incident surface has a concave shape, there is a difference between the inclination of the incident surface at the incident position of the optical signal 40 and the inclination of the incident surface at the incident position of the optical signal 401.
  • the reflection angle of the optical signal 401 on the incident surface is larger than the reflection angle of the optical signal 40.
  • the inclination of the traveling path of the optical signal 401 from the filter film 211 toward the mirror 3 is larger than the inclination of the traveling path of the optical signal 40.
  • the inclination of the traveling path is assumed to be an inclination based on the normal line of the first surface 11 and the second surface 12.
  • the travel path of the optical signal 401 shifts downward from the travel path of the optical signal 40, and the shift width increases as the travel progresses.
  • the traveling path of the optical signal 401 is shifted above the traveling path of the optical signal 40.
  • FIG. 3 is a diagram showing a part of the optical multiplexer / demultiplexer 50 including the bandpass filter 22.
  • the optical signal 411 indicates the optical signal 41 that is incident on a position shifted from the original incident position of the optical multiplexer / demultiplexer 50 due to mounting deviation of any element in the light source of the optical signal 41 or the optical multiplexer / demultiplexer 50.
  • the incident position of the optical signal 411 on the block substrate 1 is shifted upward with respect to the original incident position of the optical signal 41.
  • the band pass filter 22 is deformed by the action of stress of the filter film 221. Since the filter film 221 is curved, the incident surfaces of the optical signals 41 and 411 in the filter film 221 have a convex shape.
  • the optical signal 411 travels in parallel with the optical signal 41 and enters the optical multiplexer / demultiplexer 50, the optical signal 411 enters the optical multiplexer / demultiplexer 50 until the filter film 221 reaches the filter film 221. Travel along a path parallel to the travel path.
  • the incident position of the optical signal 41 in the filter film 221 is the center position of the filter film 221.
  • the optical signal 411 is incident on the filter film 221 at a position shifted upward from the center position. Since the incident surface has a convex shape, a difference occurs between the inclination of the incident surface at the incident position of the optical signal 41 and the inclination of the incident surface at the incident position of the optical signal 411.
  • the reflection angle of the optical signal 411 on the incident surface is smaller than the reflection angle of the optical signal 41.
  • the inclination of the traveling path of the optical signal 411 from the filter film 221 toward the mirror 3 is smaller than the inclination of the traveling path of the optical signal 41.
  • the travel path of the optical signal 411 shifts upward from the travel path of the optical signal 41, and the shift width increases as the travel progresses. If the incident position of the optical signal 411 on the incident surface is shifted downward from the center position, the traveling path of the optical signal 411 is shifted downward from the traveling path of the optical signal 41.
  • the direction in which the travel path of the optical signal shifts due to reflection at the bandpass filter 21 shown in FIG. 2 is opposite to the direction in which the travel path of the optical signal shifts due to reflection at the bandpass filter 22 shown in FIG. Become.
  • the optical multiplexer / demultiplexer 50 enables the band-pass filters 21 and 22 to cancel the deviation of the optical signal traveling path when the optical signal traveling path is deviated due to a manufacturing error.
  • FIG. 4 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 60 according to a comparative example of the first embodiment.
  • the band-pass filters 21, 22, and 23 each have filter films 211, 221, and 231 formed at the interface on the block substrate 1 side among the filter substrates 210, 220, and 230.
  • the incident surfaces of the filter films 211, 211, and 231 are all concave.
  • the direction in which the traveling path of the optical signal is shifted by the reflection at each of the bandpass filters 21, 22, 23 is the same. For this reason, in the optical multiplexer / demultiplexer 60, the deviation of the traveling path of the optical signal is amplified by the reflection at each of the bandpass filters 21, 22, and 23.
  • the optical multiplexer / demultiplexer 50 uses the band-pass filters 21 and 22 in which the filter films 211 and 221 are formed on the interfaces on the different sides of the filter substrates 210 and 220, thereby providing an optical signal. It is possible to cancel out the deviation of the traveling path.
  • the optical multiplexer / demultiplexer 50 can reduce a shift in the traveling direction that may occur due to reflection by the deformed bandpass filters 21, 22, and 23. Therefore, the optical multiplexer / demultiplexer 50 is involved in the deformation of the bandpass filters 21, 22, and 23 without reducing the tolerance of the manufacturing error that causes the fluctuation of the incident positions on the bandpass filters 21, 22, and 23. Therefore, output performance can be maintained.
  • FIGS. 1 to 3 are shown with emphasis on deformation for the sake of explanation, and do not show actual shapes.
  • 2 and FIG. 3 show the shift of the optical signal with emphasis for explanation, and do not indicate the shift of the actual travel path.
  • the block substrate 1 and the filter substrates 210, 220, and 230 are all made of a material having a common refractive index.
  • the filter films 211 and 231 of the band-pass filters 21 and 23 that are the first reflective structure and the filter film 221 of the band-pass filter 22 that is the second reflective structure both transmit a medium having a common refractive index. Light enters. Therefore, the optical multiplexer / demultiplexer 50 can be easily designed so that the optical signals can be reflected at the same reflection angle in each of the filter films 211, 221, and 231.
  • the optical multiplexer / demultiplexer 50 can reduce the deviation of the incident position from the center position on the incident surface of each filter film 211, 221, 231 by reducing the deviation of the traveling path of the optical signal.
  • the optical multiplexer / demultiplexer 50 can reduce the loss of light in each filter film 211, 221, 231 by allowing light to enter near the center position of the incident surface of each filter film 211, 221, 231.
  • the band-pass filters 21, 22, and 23 are all arranged with an interval.
  • the band-pass filters 21 and 22 that are adjacent to each other and have different directions of bending due to deformation can avoid a situation in which stress due to deformation is exerted on each other by providing an interval.
  • the bandpass filters 22 and 23 can avoid a situation in which stress due to deformation is exerted on each other.
  • the filter films 211, 221, and 231 of the bandpass filters 21, 22, and 23 may be formed on the interfaces of the filter substrates 210, 220, and 230 that have been previously recessed.
  • the number of bandpass filters provided in the optical multiplexer / demultiplexer 50 is not limited to three.
  • the number of bandpass filters can be changed according to the number of optical signals to be multiplexed.
  • the number of optical signals input to the optical multiplexer / demultiplexer 50 is not limited to four, and may be two, three, or five or more.
  • the number of bandpass filters provided in the optical multiplexer / demultiplexer 50 is an even number
  • the number of bandpass filters configured by the first reflective structure and the number of bandpass filters configured by the second reflective structure are: The same.
  • the optical multiplexer / demultiplexer 50 can effectively cancel out the deviation of the traveling path of the optical signal by providing the same number of band-pass filters having filter films formed on the interfaces on different sides of the filter substrate.
  • the optical multiplexer / demultiplexer 50 when the number of bandpass filters provided in the optical multiplexer / demultiplexer 50 is an odd number, the number of bandpass filters constituted by the first reflection structure and the number of bandpass filters constituted by the second reflection structure. The difference from is 1. Also in this case, the optical multiplexer / demultiplexer 50 can effectively cancel the deviation of the traveling path of the optical signal.
  • the band-pass filter constituted by the first reflection structure and the band-pass filter constituted by the second reflection structure are alternately arranged in both cases where the number of band-pass filters is even and odd. .
  • the light that passes through the optical multiplexer / demultiplexer 50 is alternately reflected by the bandpass filter that is configured by the first reflective structure and the bandpass filter that is configured by the second reflective structure, whereby the optical multiplexer / demultiplexer 50 is The deviation of the optical signal from the original traveling path can be suppressed.
  • the optical multiplexer / demultiplexer 50 can reduce the light loss in each filter film by reducing the deviation of the incident position from the center position on the incident surface of each filter film.
  • the filter element provided in the optical multiplexer / demultiplexer 50 is not limited to a bandpass filter, and may be a polarization filter.
  • the optical multiplexer / demultiplexer 50 can obtain the same effect as when a band-pass filter is used when multiplexing optical signals having different polarizations using a polarization filter.
  • the optical multiplexer / demultiplexer 50 is an optical demultiplexer, the effect similar to the effect mentioned above about the optical multiplexer can be acquired.
  • the optical component includes the first filter element that is the first reflection structure and the second filter element that is the second reflection structure.
  • the spread of deviation can be suppressed.
  • the optical component has an effect that the output performance can be maintained regardless of the deformation of the filter element.
  • FIG. 5 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 70 that is an optical component according to a modification of the first embodiment.
  • the bandpass filters 21, 22, 23 and the mirror 3 are arranged on a common surface of the block substrate 1.
  • the block substrate 1 supports the bandpass filters 21, 22, 23 and the mirror 3.
  • the band-pass filters 21, 22, 23 and the mirror 3 face each other through an air layer that is a medium for propagating light.
  • the medium may be a light transmissive material filled between the bandpass filters 21, 22, 23 and the mirror 3 in addition to the air layer.
  • the optical component can maintain the output performance regardless of the deformation of the filter element.
  • FIG. FIG. 6 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 80 that is an optical component according to the second embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the optical multiplexer / demultiplexer 80 according to the second embodiment is provided with a mirror 30 instead of the mirror 3 of the first embodiment.
  • the mirror 30 that is a reflective element includes a mirror substrate 300 and a reflective film 301.
  • the reflective film 301 is formed on the interface of the mirror substrate 300 that faces away from the block substrate 1.
  • the mirror 30 reflects the light transmitted through the mirror substrate 300.
  • the reflective film 301 is a laminate of dielectric multilayer films.
  • the reflection film 301 has a reflection wavelength characteristic that reflects light in a wide wavelength band including the reflection wavelength bands of the filter films 211, 211, and 231.
  • the mirror substrate 300 is made of a glass material that is a light-transmitting material having a common refractive index with the material of the block substrate 1 and the filter substrates 210, 220, and 230. Similar to the block substrate 1 and the filter substrates 210, 220, and 230, the mirror substrate 300 may be made of a light transmissive material other than a glass material.
  • filter films 211, 221, and 231 are formed on the interface on the block substrate 1 side of the filter substrates 210, 220, and 230.
  • the bandpass filters 21, 22, and 23 are first reflective structures including a first substrate and a first optical film formed at an interface of the first substrate that is directed toward the medium.
  • the bandpass filters 21, 22, and 23 include filter substrates 210, 220, and 230 that are first substrates, and filter films 211, 221, and 231 that are first optical films.
  • the mirror 30 is a second reflective structure including a second substrate and a second optical film formed on the interface of the second substrate facing away from the medium.
  • the mirror 30 includes a mirror substrate 300 that is a second substrate and a reflective film 301 that is a second optical film.
  • the mirror 30 is deformed by the action of the stress of the reflective film 301. Since the reflection film 301 is curved, the light signal incident surface of the reflection film 301 has a convex shape. On the other hand, the incident surfaces of the filter films 211, 221, and 231 of the bandpass filters 21, 22, and 23 are all concave.
  • the direction in which the traveling path of the optical signal shifts due to reflection at the mirror 30 is opposite to the direction in which the signal path of the optical signal shifts due to reflection at the bandpass filters 21, 22, and 23.
  • the optical multiplexer / demultiplexer 80 can cancel the deviation of the traveling path of the optical signal by the mirror 30 and the band pass filters 21, 22, and 23 when the traveling path of the optical signal is shifted due to the manufacturing error. .
  • the number of bandpass filters provided in the optical multiplexer / demultiplexer 80 is an odd number or an even number, it is possible to effectively cancel the deviation of the traveling path of the optical signal.
  • the optical component includes the filter element that is the first reflection structure and the reflection element that is the second reflection structure, so that the shift in the traveling direction that may occur due to the deformation of the filter element is increased. Can be suppressed. Thereby, the optical component has an effect that the output performance can be maintained regardless of the deformation of the filter element.
  • the bandpass filters 21, 22, 23 and the mirror 30 are arranged on the common surface of the block substrate 1, as in the modification of the first embodiment shown in FIG. Also good.
  • FIG. 7 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 90 that is an optical component according to the third embodiment of the present invention.
  • the optical multiplexer / demultiplexer 90 according to the third embodiment is provided with a mirror 31 that is a first reflecting element and a mirror 32 that is a second reflecting element, instead of the mirror 3 according to the first embodiment.
  • the mirror 31 includes a mirror substrate 310 and a reflective film 311.
  • the reflective film 311 is formed on the interface of the mirror substrate 310 facing away from the block substrate 1.
  • the reflective film 311 reflects the light transmitted through the mirror substrate 310.
  • the mirror 32 includes a mirror substrate 320 and a reflective film 321.
  • the reflection film 321 is formed on the interface of the mirror substrate 320 facing the block substrate 1.
  • the reflective film 321 reflects light incident from the block substrate 1.
  • the reflection films 311 and 321 are laminated bodies of dielectric multilayer films.
  • the reflection films 311 and 321 have reflection wavelength characteristics that reflect light in a wide wavelength band including the reflection wavelength bands of the filter films 211, 221, and 231.
  • the mirror substrates 310 and 320 are made of a glass material that is a light transmissive material having a common refractive index with the material of the block substrate 1 and the filter substrates 210, 220, and 230. Similar to the block substrate 1 and the filter substrates 210, 220, and 230, the mirror substrates 310 and 320 may be made of a light transmissive material other than a glass material.
  • the mirror 32 is a first reflective structure including a first substrate and a first optical film formed at an interface of the first substrate directed to the medium.
  • the mirror 32 includes a mirror substrate 320 that is a first substrate and a reflective film 321 that is a first optical film.
  • the mirror 32 is deformed by the action of the stress of the reflective film 321. Since the reflection film 321 is curved, the light signal incident surface of the reflection film 321 has a concave shape.
  • the mirror 31 includes a second reflection structure including a second substrate and a second optical film formed on the interface of the second substrate facing away from the medium. It is.
  • the mirror 31 includes a mirror substrate 310 that is a second substrate and a reflective film 311 that is a second optical film.
  • the mirror 31 is deformed by the action of stress on the reflective film 311. Since the reflection film 311 is curved, the light signal incident surface of the reflection film 311 has a convex shape.
  • the band pass filters 21, 22, and 23 are configured in the same manner as in the first embodiment.
  • the optical multiplexer / demultiplexer 90 is provided with band-pass filters 21 and 23 and a mirror 32 which are first reflection structures, and a band-pass filter 22 and a mirror 31 which are second reflection structures.
  • the direction in which the travel path of the optical signal shifts due to reflection at the mirror 31 is opposite to the direction in which the travel path of the optical signal shifts due to reflection at the mirror 32.
  • the optical multiplexer / demultiplexer 90 cancels the deviation of the optical signal traveling path by the mirrors 31 and 32 when the optical signal traveling path is deviated due to a manufacturing error, and the bandpass filters 21 and 22. , 23 cancel each other.
  • the optical multiplexer / demultiplexer 90 has different shapes between the bandpass filters 21, 22, and 23 and the mirrors 31 and 32. It is possible to effectively cancel the deviation.
  • the optical multiplexer / demultiplexer 90 has a bandpass formed of the first reflection structure when the number of bandpass filters provided in the optical multiplexer / demultiplexer 90 is an even number. It is assumed that the number of filters and the number of band pass filters configured by the second reflection structure are the same. Further, when the number of bandpass filters provided in the optical multiplexer / demultiplexer 90 is an odd number, the number of bandpass filters constituted by the first reflection structure and the number of bandpass filters constituted by the second reflection structure. The difference from is 1. Thereby, the optical multiplexer / demultiplexer 90 can effectively cancel the deviation of the traveling path of the optical signal.
  • the band-pass filter constituted by the first reflection structure and the band-pass filter constituted by the second reflection structure are alternately arranged in both cases where the number of band-pass filters is even and odd. .
  • the optical multiplexer / demultiplexer 90 can suppress the deviation of the optical signal from the original traveling path, and can reduce the loss of light in each filter film.
  • the optical component includes the first filter element and the first reflection element that are the first reflection structure, and the second filter element and the second reflection element that are the second reflection structure. Further, it is possible to suppress an increase in the shift in the traveling direction that may occur due to the deformation of the filter element and the reflective element. Thereby, the optical component has an effect that the output performance can be maintained regardless of the deformation of the filter element and the reflection element.
  • bandpass filters 21, 22, 23 and mirrors 31, 32 are arranged on a common surface of the block substrate 1, as in the modification of the first embodiment shown in FIG. May be.
  • FIG. 8 is a schematic diagram of a transmission module 100 that is an optical module according to a fourth embodiment of the present invention.
  • the transmission module 100 multiplexes a plurality of optical signals and transmits a multiplexed wavelength signal.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the transmission module 100 includes a plurality of laser diodes (Laser Diodes, LDs) 51, which are light emitting elements, a plurality of lenses 52, an optical multiplexer / demultiplexer 50, a lens 53, and an optical fiber 54.
  • the optical multiplexer / demultiplexer 50 is an optical multiplexer.
  • Each of the plurality of LDs 51 outputs optical signals 40, 41, 42, and 43 having different wavelength bands.
  • the optical signals 40, 41, 42, and 43 from the plurality of LDs 51 propagate through different optical signal paths.
  • the light emitted from the LD 51 is input to the optical multiplexer / demultiplexer 50 through the lens 52.
  • the optical multiplexer / demultiplexer 50 multiplexes the optical signals 40, 41, 42, 43 input from the plurality of LDs 51.
  • the optical multiplexer / demultiplexer 50 outputs a multiple wavelength signal.
  • the multiple wavelength signal is output from the transmission module 100 via the lens 53 and the optical fiber 54.
  • FIG. 9 is a schematic diagram of a receiving module 110 that is an optical module according to a fourth embodiment of the present invention.
  • the receiving module 110 receives the multiple wavelength signal 44 and divides the multiple wavelength signal 44 according to the difference in wavelength band.
  • the receiving module 110 includes a photodiode (Photodiode, PD) 55 that is a light receiving element instead of the LD 51 of the transmitting module 100.
  • the optical multiplexer / demultiplexer 50 in the receiving module 110 is an optical demultiplexer.
  • the optical multiplexer / demultiplexer 50 receives the multiplexed wavelength signal 44 that has passed through the optical fiber 54 and the lens 53.
  • the optical multiplexer / demultiplexer 50 divides the multiplexed wavelength signal 44 into optical signals 40, 41, 42, and 43 for each wavelength band.
  • the optical signals 40, 41, 42, and 43 output from the optical multiplexer / demultiplexer 50 enter the PD 55 through the lens 52, respectively.
  • the plurality of PDs 55 detect the optical signals 40, 41, 42, and 43, respectively.
  • the optical module according to the fourth embodiment is not limited to the one including the optical multiplexer / demultiplexer 50 according to the first embodiment, and the optical multiplexer / demultiplexer 70 according to the modification of the first embodiment and the optical multiplexer / demultiplexers according to the second and third embodiments.
  • One of the wave devices 80 and 90 may be included.
  • the optical module includes any one of the optical multiplexers / demultiplexers 50, 70, 80, and 90 according to the first to third embodiments, so that the output performance can be maintained regardless of the deformation of the filter element and the reflective element.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

This optical component (50) includes a first filter element (21), a second filter element (22), a reflective element (3), a first reflection structure, and a second reflection structure. The first filter element reflects a first optical signal and transmits a second optical signal. The second filter element reflects the first optical signal and the second optical signal and transmits a third optical signal. The reflective element reflects the first optical signal, the second optical signal, and the third optical signal. The first reflection structure constitutes one of the first filter element, the second filter element, and the reflective element and includes a first substrate (210) and a first optical film (211) formed at the interface of the first substrate oriented toward a medium (1). The second reflection structure constitutes one of the first filter element, the second filter element, and the reflective element not included in the first reflection structure and includes a second substrate (220) and a second optical film (221) formed at the interface of the second substrate oriented away from the medium.

Description

光部品および光モジュールOptical components and optical modules
 本発明は、波長分割多重方式を利用した光通信機器に使用される光部品および光モジュールに関する。 The present invention relates to an optical component and an optical module used for an optical communication device using a wavelength division multiplexing system.
 光合分波器は、波長帯域の異なる複数の光信号を多重化させる光合波器、あるいは多重化された光信号である多重波長信号を波長帯域の違いにより分割する光分波器の機能を持つ光部品である。光合分波器の技術の1つとして、多重波長信号の全波長帯域のうちの一部の波長帯域の光を透過させ他の波長帯域の光を反射する複数のバンドパスフィルタと、複数のバンドパスフィルタに対向するミラーとの間での多重反射を用いて、光信号の多重化あるいは分割を行う方式が知られている。特許文献1には、複数のバンドパスフィルタと、複数のバンドパスフィルタに対向するミラーと、複数のバンドパスフィルタおよびミラーを支持するブロック基板とを備える光合分波器が開示されている。 The optical multiplexer / demultiplexer has a function of an optical multiplexer that multiplexes a plurality of optical signals having different wavelength bands, or an optical demultiplexer that divides a multiplexed wavelength signal that is a multiplexed optical signal according to a difference in wavelength band. It is an optical component. As one of the technologies of the optical multiplexer / demultiplexer, a plurality of bandpass filters that transmit light in a part of all wavelength bands of a multiwavelength signal and reflect light in other wavelength bands, and a plurality of bands There is known a method of multiplexing or dividing an optical signal by using multiple reflection between a mirror facing a pass filter. Patent Document 1 discloses an optical multiplexer / demultiplexer including a plurality of bandpass filters, a mirror that faces the plurality of bandpass filters, and a block substrate that supports the plurality of bandpass filters and mirrors.
特開2011-128539号公報JP 2011-128539 A
 光合分波器のバンドパスフィルタは、一般に、誘電体多層膜を用いて構成される。バンドパスフィルタは、波長と透過率との関係を表した透過スペクトルに急峻なピークを持たせるために誘電体多層膜の層の数を増加させると、誘電体多層膜の積層体の厚みが増大することになる。この場合、誘電体多層膜の積層体からの強い応力により、バンドパスフィルタのベースである基板を含めてバンドパスフィルタの全体が変形する場合がある。変形によりバンドパスフィルタの入射面が湾曲することで、入射面における光の入射位置に依存して、バンドパスフィルタからの反射光線の角度が変化することになる。 The bandpass filter of an optical multiplexer / demultiplexer is generally configured using a dielectric multilayer film. The bandpass filter increases the thickness of the dielectric multilayer film when the number of layers of the dielectric multilayer film is increased in order to have a sharp peak in the transmission spectrum representing the relationship between wavelength and transmittance. Will do. In this case, the entire band-pass filter, including the substrate that is the base of the band-pass filter, may be deformed by a strong stress from the laminate of dielectric multilayer films. Due to the deformation, the incident surface of the band-pass filter is curved, so that the angle of the reflected light from the band-pass filter changes depending on the incident position of the light on the incident surface.
 光合分波器の入力ポートあるいはバンドパスフィルタの実装位置の誤差によって、バンドパスフィルタにおける光の入射位置がずれた場合に、バンドパスフィルタからの反射光の進行方向にずれが生じる。光合分波器は、複数のバンドパスフィルタのそれぞれにおける光の進行方向のずれが、光合分波器から出射される光線の位置あるいは角度を変化させることで、出力性能の維持が困難となる。そのため、光合分波器は、光を透過および反射させるフィルタ素子の変形に関わらず出力性能を維持可能とするために、フィルタ素子への入射位置の変動要因となる製造誤差の許容度の縮小を招くこととなる。 When the incident position of light in the bandpass filter is shifted due to an error in the input port of the optical multiplexer / demultiplexer or the mounting position of the bandpass filter, the traveling direction of the reflected light from the bandpass filter is shifted. In the optical multiplexer / demultiplexer, it is difficult to maintain the output performance because the shift of the light traveling direction in each of the plurality of bandpass filters changes the position or angle of the light beam emitted from the optical multiplexer / demultiplexer. For this reason, the optical multiplexer / demultiplexer reduces the tolerance of manufacturing errors, which cause fluctuations in the incident position on the filter element, in order to maintain output performance regardless of deformation of the filter element that transmits and reflects light. Will be invited.
 本発明は、上記に鑑みてなされたものであって、フィルタ素子の変形に関わらず出力性能を維持可能とする光部品を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain an optical component capable of maintaining output performance regardless of deformation of a filter element.
 上述した課題を解決し、目的を達成するために、本発明は、第1フィルタ素子、第2フィルタ素子、反射素子、第1反射構造体および第2反射構造体を備える。第1フィルタ素子は、第1の光信号を反射し、かつ第2の光信号を透過させる。第2フィルタ素子は、第1の光信号および第2の光信号を反射し、かつ第3の光信号を透過させる。反射素子は、第1の光信号、第2の光信号および第3の光信号を反射する。第1反射構造体は、第1フィルタ素子、第2フィルタ素子および反射素子のうちの1つを構成し、第1基板と、第1基板のうち、第1フィルタ素子、第2フィルタ素子および反射素子の間の媒質へ向けられた界面に形成された第1光学膜と、を含む。第2反射構造体は、第1フィルタ素子、第2フィルタ素子、反射素子のうち第1反射構造体以外の1つを構成し、第2基板と、第2基板のうち媒質とは逆へ向けられた界面に形成された第2光学膜と、を含む。 In order to solve the above-described problems and achieve the object, the present invention includes a first filter element, a second filter element, a reflective element, a first reflective structure, and a second reflective structure. The first filter element reflects the first optical signal and transmits the second optical signal. The second filter element reflects the first optical signal and the second optical signal and transmits the third optical signal. The reflective element reflects the first optical signal, the second optical signal, and the third optical signal. The first reflection structure constitutes one of the first filter element, the second filter element, and the reflection element, and the first filter element, the second filter element, and the reflection of the first substrate and the first substrate. A first optical film formed at an interface between the elements directed to the medium. The second reflective structure constitutes one of the first filter element, the second filter element, and the reflective element other than the first reflective structure, and the second substrate and the medium of the second substrate are directed in the opposite direction. And a second optical film formed on the formed interface.
 本発明にかかる光部品は、フィルタ素子の変形に関わらず出力性能を維持できるという効果を奏する。 The optical component according to the present invention has an effect that the output performance can be maintained regardless of the deformation of the filter element.
本発明の実施の形態1にかかる光部品である光合分波器の断面模式図Sectional schematic diagram of the optical multiplexer / demultiplexer that is the optical component according to the first embodiment of the present invention 図1に示す光合分波器のうちバンドパスフィルタを含む一部を示した図The figure which showed one part including a band pass filter among the optical multiplexer / demultiplexers shown in FIG. 図1に示す光合分波器のうちバンドパスフィルタを含む一部を示した図The figure which showed one part including a band pass filter among the optical multiplexer / demultiplexers shown in FIG. 実施の形態1の比較例にかかる光合分波器の断面模式図Sectional schematic diagram of the optical multiplexer / demultiplexer according to the comparative example of the first embodiment 実施の形態1の変形例にかかる光部品である光合分波器の断面模式図Sectional schematic diagram of an optical multiplexer / demultiplexer that is an optical component according to a modification of the first embodiment 本発明の実施の形態2にかかる光部品である光合分波器の断面模式図Sectional schematic diagram of the optical multiplexer / demultiplexer that is the optical component according to the second embodiment of the present invention 本発明の実施の形態3にかかる光部品である光合分波器の断面模式図Sectional schematic diagram of the optical multiplexer / demultiplexer that is the optical component according to the third embodiment of the present invention 本発明の実施の形態4にかかる光モジュールである送信モジュールの模式図Schematic diagram of a transmission module that is an optical module according to a fourth embodiment of the present invention. 本発明の実施の形態4にかかる光モジュールである受信モジュールの模式図Schematic diagram of a receiving module which is an optical module according to a fourth embodiment of the present invention.
 以下に、本発明の実施の形態にかかる光部品および光モジュールを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an optical component and an optical module according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる光部品である光合分波器50の断面模式図である。光合分波器50は、波長帯域の異なる複数の光信号を多重化させる光合波器、および多重化された光信号を波長帯域の違いにより分割する光分波器のいずれとしても機能し得る光部品である。実施の形態では、光合分波器50が光合波器である場合を例とする。光分波器における光信号の入力および出力は、光合波器における光信号の入力および出力とは逆となる。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 50 that is an optical component according to a first embodiment of the present invention. The optical multiplexer / demultiplexer 50 is a light that can function as both an optical multiplexer that multiplexes a plurality of optical signals having different wavelength bands and an optical demultiplexer that divides the multiplexed optical signal according to the difference in wavelength bands. It is a part. In the embodiment, a case where the optical multiplexer / demultiplexer 50 is an optical multiplexer is taken as an example. The input and output of the optical signal in the optical demultiplexer is opposite to the input and output of the optical signal in the optical multiplexer.
 光合分波器50は、支持基板であるブロック基板1、フィルタ素子であるバンドパスフィルタ21,22,23、および反射素子であるミラー3を備える。ブロック基板1は、ガラス材料で構成され、光合分波器50のベースとなるブロック形状の基板である。ブロック基板1は、バンドパスフィルタ21,22,23およびミラー3を支持するとともに、バンドパスフィルタ21,22,23およびミラー3の間で光を透過させる媒質の機能も果たす。 The optical multiplexer / demultiplexer 50 includes a block substrate 1 as a support substrate, bandpass filters 21, 22 and 23 as filter elements, and a mirror 3 as a reflection element. The block substrate 1 is a block-shaped substrate that is made of a glass material and serves as a base of the optical multiplexer / demultiplexer 50. The block substrate 1 supports the bandpass filters 21, 22, 23 and the mirror 3, and also functions as a medium that transmits light between the bandpass filters 21, 22, 23 and the mirror 3.
 バンドパスフィルタ21,22,23は、ブロック基板1のうち共通の面である第1面11に配置されている。ミラー3は、ブロック基板1のうち第1面11の裏側に位置する第2面12に配置されている。 The band pass filters 21, 22, and 23 are disposed on the first surface 11 that is a common surface of the block substrate 1. The mirror 3 is disposed on the second surface 12 of the block substrate 1 located on the back side of the first surface 11.
 第1フィルタ素子であるバンドパスフィルタ21は、フィルタ基板210およびフィルタ膜211を備える。フィルタ膜211は、フィルタ基板210のうちブロック基板1へ向けられた界面に形成されている。 The band-pass filter 21 as the first filter element includes a filter substrate 210 and a filter film 211. The filter film 211 is formed on the interface of the filter substrate 210 facing the block substrate 1.
 第2フィルタ素子であるバンドパスフィルタ22は、フィルタ基板220およびフィルタ膜221を備える。フィルタ膜221は、フィルタ基板220のうちブロック基板1とは逆へ向けられた界面に形成されている。 The band-pass filter 22 as the second filter element includes a filter substrate 220 and a filter film 221. The filter film 221 is formed on the interface of the filter substrate 220 facing away from the block substrate 1.
 バンドパスフィルタ23は、フィルタ基板230およびフィルタ膜231を備える。フィルタ膜231は、フィルタ基板230のうちブロック基板1へ向けられた界面に形成されている。 The band pass filter 23 includes a filter substrate 230 and a filter film 231. The filter film 231 is formed on the interface of the filter substrate 230 facing the block substrate 1.
 フィルタ膜211,221,231は、いずれも誘電体多層膜の積層体であって、互いに異なる波長特性を備える。フィルタ基板210,220,230は、いずれも、ブロック基板1の材料と共通の屈折率の光透過性材料であるガラス材料で構成されている。なお、図1には、それぞれフィルタ膜211,221,231の応力によって湾曲が生じている状態のバンドパスフィルタ21,22,23を示している。共通の屈折率とは、互いに同じ屈折率である場合と、互い異なる屈折率であっても光の透過特性への影響を無視し得る程度の違いである場合とを含むものとする。 The filter films 211, 211, and 231 are all laminated bodies of dielectric multilayer films and have different wavelength characteristics. All of the filter substrates 210, 220, and 230 are made of a glass material that is a light transmissive material having a common refractive index with the material of the block substrate 1. FIG. 1 shows the band- pass filters 21, 22, and 23 in a state where the curvature is caused by the stress of the filter films 211, 221, and 231, respectively. The common refractive index includes the case where the refractive indexes are the same as each other and the case where the refractive indexes are different from each other even if the refractive indexes are different from each other, the influence on the light transmission characteristics can be ignored.
 ブロック基板1およびフィルタ基板210,220,230は、ガラス材料以外の光透過性材料で構成されたものであっても良い。光透過性材料は、水晶、半導体材料であるシリコン、ガリウムヒ素およびリン化インジウム、強誘電体材料であるニオブ酸リチウム、あるいはポリマー樹脂であっても良い。 The block substrate 1 and the filter substrates 210, 220, and 230 may be made of a light transmissive material other than a glass material. The light transmissive material may be quartz, silicon as a semiconductor material, gallium arsenide and indium phosphide, lithium niobate as a ferroelectric material, or polymer resin.
 ミラー3は、各フィルタ膜211,221,231の反射波長帯域を含む広い波長帯域の光を反射する。ミラー3は、金属材料あるいはその他の高反射性材料で構成されている。 The mirror 3 reflects light in a wide wavelength band including the reflection wavelength bands of the filter films 211, 211, and 231. The mirror 3 is made of a metal material or other highly reflective material.
 バンドパスフィルタ21およびバンドパスフィルタ23は、第1基板と、第1基板のうち媒質へ向けられた界面に形成された第1光学膜とを含む第1反射構造体である。バンドパスフィルタ21は、第1基板であるフィルタ基板210と第1光学膜であるフィルタ膜211を備える。バンドパスフィルタ23は、第1基板であるフィルタ基板230と第1光学膜であるフィルタ膜231を備える。 The band-pass filter 21 and the band-pass filter 23 are a first reflective structure including a first substrate and a first optical film formed on an interface of the first substrate that is directed toward the medium. The bandpass filter 21 includes a filter substrate 210 that is a first substrate and a filter film 211 that is a first optical film. The bandpass filter 23 includes a filter substrate 230 that is a first substrate and a filter film 231 that is a first optical film.
 バンドパスフィルタ22は、第2基板と、第2基板のうち媒質とは逆へ向けられた界面に形成された第2光学膜とを含む第2反射構造体である。バンドパスフィルタ22は、第2基板であるフィルタ基板220と第2光学膜であるフィルタ膜221を備える。 The band pass filter 22 is a second reflective structure including a second substrate and a second optical film formed on an interface of the second substrate facing away from the medium. The bandpass filter 22 includes a filter substrate 220 that is a second substrate and a filter film 221 that is a second optical film.
 光合分波器50には、第1反射構造体である2つのバンドパスフィルタ21,23と、第2反射構造体である1つのバンドパスフィルタ22とが設けられている。第2反射構造体は、2つの第1反射構造体の間に配置されている。 The optical multiplexer / demultiplexer 50 is provided with two bandpass filters 21 and 23 that are first reflection structures and one bandpass filter 22 that is a second reflection structure. The second reflection structure is disposed between the two first reflection structures.
 光信号40,41,42,43は、光合分波器50へ入力される。光信号40,41,42,43の各波長帯域は互いに異なる。本実施形態において、波長帯域が互いに異なるとは、強度がピークとなるときの波長が互いに異なることを指すものとする。 The optical signals 40, 41, 42 and 43 are input to the optical multiplexer / demultiplexer 50. The wavelength bands of the optical signals 40, 41, 42, and 43 are different from each other. In the present embodiment, the fact that the wavelength bands are different from each other means that the wavelengths when the intensity reaches a peak are different from each other.
 光合分波器50へ入力された光信号40は、第1面11からブロック基板1へ入射する。ブロック基板1内を透過し第2面12へ到達した光信号40は、ミラー3で反射する。ミラー3で反射した光信号40は、バンドパスフィルタ21へ向けて進行する。 The optical signal 40 input to the optical multiplexer / demultiplexer 50 enters the block substrate 1 from the first surface 11. The optical signal 40 transmitted through the block substrate 1 and reaching the second surface 12 is reflected by the mirror 3. The optical signal 40 reflected by the mirror 3 travels toward the band pass filter 21.
 光合分波器50へ入力された光信号41は、バンドパスフィルタ21のフィルタ基板210へ入射する。フィルタ膜211は、光信号40の波長帯域を反射波長帯域に含み、かつ光信号41の波長帯域を透過波長帯域に含む波長特性を備える。第1フィルタ素子であるバンドパスフィルタ21のフィルタ膜211は、第1の光信号である光信号40を反射し、かつ第2の光信号である光信号41を透過する。光信号40および光信号41は、バンドパスフィルタ21よって多重化される。 The optical signal 41 input to the optical multiplexer / demultiplexer 50 enters the filter substrate 210 of the bandpass filter 21. The filter film 211 has a wavelength characteristic that includes the wavelength band of the optical signal 40 in the reflection wavelength band and includes the wavelength band of the optical signal 41 in the transmission wavelength band. The filter film 211 of the band-pass filter 21 that is the first filter element reflects the optical signal 40 that is the first optical signal and transmits the optical signal 41 that is the second optical signal. The optical signal 40 and the optical signal 41 are multiplexed by the band pass filter 21.
 光信号40および光信号41の多重波長信号は、ブロック基板1内を進行してミラー3で反射し、バンドパスフィルタ22へ向かう。ブロック基板1を透過した多重波長信号は、バンドパスフィルタ22のフィルタ基板220へ入射する。 The multi-wavelength signal of the optical signal 40 and the optical signal 41 travels in the block substrate 1 and is reflected by the mirror 3 and travels toward the band pass filter 22. The multi-wavelength signal transmitted through the block substrate 1 is incident on the filter substrate 220 of the bandpass filter 22.
 光合分波器50へ入力された光信号42は、バンドパスフィルタ22のフィルタ膜221へ入射する。フィルタ膜221は、光信号40および光信号41の波長帯域を反射波長帯域に含み、かつ光信号42の波長帯域を透過波長帯域に含む波長特性を備える。第2フィルタ素子であるバンドパスフィルタ22のフィルタ膜221は、光信号40および光信号41の多重波長信号を反射し、かつ第3の光信号である光信号42を透過する。光信号42は、バンドパスフィルタ22よって光信号40および光信号41と多重化される。光信号40,41,42の多重波長信号は、ミラー3で反射してバンドパスフィルタ23へ向かう。 The optical signal 42 input to the optical multiplexer / demultiplexer 50 enters the filter film 221 of the bandpass filter 22. The filter film 221 has a wavelength characteristic that includes the wavelength bands of the optical signal 40 and the optical signal 41 in the reflection wavelength band and includes the wavelength band of the optical signal 42 in the transmission wavelength band. The filter film 221 of the bandpass filter 22 that is the second filter element reflects the multi-wavelength signal of the optical signal 40 and the optical signal 41 and transmits the optical signal 42 that is the third optical signal. The optical signal 42 is multiplexed with the optical signal 40 and the optical signal 41 by the band pass filter 22. The multiple wavelength signals of the optical signals 40, 41, and 42 are reflected by the mirror 3 and travel toward the band pass filter 23.
 光合分波器50へ入力された光信号43は、バンドパスフィルタ23のフィルタ基板230へ入射する。フィルタ膜231は、光信号40,41,42の波長帯域を反射波長帯域に含み、かつ光信号43の波長帯域を透過波長帯域に含む波長特性を備える。光信号43は、バンドパスフィルタ23によって光信号40,41,42と多重化される。光信号40,41,42,43の多重波長信号44は、ブロック基板1を透過した後、光合分波器50から出力される。 The optical signal 43 input to the optical multiplexer / demultiplexer 50 enters the filter substrate 230 of the bandpass filter 23. The filter film 231 has a wavelength characteristic that includes the wavelength bands of the optical signals 40, 41, and 42 in the reflection wavelength band and includes the wavelength band of the optical signal 43 in the transmission wavelength band. The optical signal 43 is multiplexed with the optical signals 40, 41, and 42 by the band pass filter 23. The multiplexed wavelength signal 44 of the optical signals 40, 41, 42 and 43 is output from the optical multiplexer / demultiplexer 50 after passing through the block substrate 1.
 図2は、光合分波器50のうちバンドパスフィルタ21を含む一部を示した図である。光信号401は、光信号40の光源あるいは光合分波器50におけるいずれかの要素の実装ずれにより、光合分波器50の本来の入射位置からずれた位置に入射した光信号40を示したものとする。図2では、ブロック基板1における光信号401の入射位置は、本来の光信号40の入射位置に対し上方向にシフトしている。 FIG. 2 is a diagram showing a part of the optical multiplexer / demultiplexer 50 including the bandpass filter 21. The optical signal 401 indicates the optical signal 40 that is incident on a position shifted from the original incident position of the optical multiplexer / demultiplexer 50 due to mounting deviation of any element in the light source of the optical signal 40 or the optical multiplexer / demultiplexer 50. And In FIG. 2, the incident position of the optical signal 401 on the block substrate 1 is shifted upward with respect to the original incident position of the optical signal 40.
 バンドパスフィルタ21は、フィルタ膜211の応力の作用によって変形している。フィルタ膜211が湾曲することで、フィルタ膜211のうち光信号40,401の入射面は、凹形状をなしている。 The band pass filter 21 is deformed by the action of the stress of the filter film 211. Since the filter film 211 is curved, the incident surfaces of the optical signals 40 and 401 in the filter film 211 have a concave shape.
 光信号401が光信号40と平行に進行して光合分波器50へ入射した場合、光信号401は、光合分波器50へ入射してからフィルタ膜211へ至るまでは、光信号40の進行経路に平行する経路を進行する。 When the optical signal 401 travels in parallel with the optical signal 40 and enters the optical multiplexer / demultiplexer 50, the optical signal 401 enters the optical multiplexer / demultiplexer 50 until it reaches the filter film 211. Travel along a path parallel to the travel path.
 フィルタ膜211における光信号40の入射位置は、フィルタ膜211の中心位置とする。光信号401は、フィルタ膜211のうち中心位置から上方向へシフトした位置に入射する。入射面が凹形状をなしていることで、光信号40の入射位置における入射面の傾きと、光信号401の入射位置における入射面の傾きとには違いが生じることになる。 The incident position of the optical signal 40 in the filter film 211 is the center position of the filter film 211. The optical signal 401 enters the filter film 211 at a position shifted upward from the center position. Since the incident surface has a concave shape, there is a difference between the inclination of the incident surface at the incident position of the optical signal 40 and the inclination of the incident surface at the incident position of the optical signal 401.
 入射面における光信号401の反射角度は、光信号40の反射角度と比較して大きくなる。フィルタ膜211からミラー3へ向かう光信号401の進行経路の傾きは、光信号40の進行経路の傾きに比べて大きくなる。ここで、進行経路の傾きは、第1面11および第2面12の法線を基準とする傾きとする。光信号401の進行経路は、光信号40の進行経路より下にシフトするようになり、進行するにつれてシフト幅は拡大していく。なお、入射面における光信号401の入射位置が中心位置から下方向にシフトしていた場合は、光信号401の進行経路は、光信号40の進行経路より上にシフトするようになる。 The reflection angle of the optical signal 401 on the incident surface is larger than the reflection angle of the optical signal 40. The inclination of the traveling path of the optical signal 401 from the filter film 211 toward the mirror 3 is larger than the inclination of the traveling path of the optical signal 40. Here, the inclination of the traveling path is assumed to be an inclination based on the normal line of the first surface 11 and the second surface 12. The travel path of the optical signal 401 shifts downward from the travel path of the optical signal 40, and the shift width increases as the travel progresses. When the incident position of the optical signal 401 on the incident surface is shifted downward from the center position, the traveling path of the optical signal 401 is shifted above the traveling path of the optical signal 40.
 図3は、光合分波器50のうちバンドパスフィルタ22を含む一部を示した図である。光信号411は、光信号41の光源あるいは光合分波器50におけるいずれかの要素の実装ずれにより、光合分波器50の本来の入射位置からずれた位置に入射した光信号41を示したものとする。図3では、ブロック基板1における光信号411の入射位置は、本来の光信号41の入射位置に対し上方向にシフトしている。 FIG. 3 is a diagram showing a part of the optical multiplexer / demultiplexer 50 including the bandpass filter 22. The optical signal 411 indicates the optical signal 41 that is incident on a position shifted from the original incident position of the optical multiplexer / demultiplexer 50 due to mounting deviation of any element in the light source of the optical signal 41 or the optical multiplexer / demultiplexer 50. And In FIG. 3, the incident position of the optical signal 411 on the block substrate 1 is shifted upward with respect to the original incident position of the optical signal 41.
 バンドパスフィルタ22は、フィルタ膜221の応力の作用によって変形している。フィルタ膜221が湾曲することで、フィルタ膜221のうち光信号41,411の入射面は、凸形状をなしている。 The band pass filter 22 is deformed by the action of stress of the filter film 221. Since the filter film 221 is curved, the incident surfaces of the optical signals 41 and 411 in the filter film 221 have a convex shape.
 光信号411が光信号41と平行に進行して光合分波器50へ入射した場合、光信号411は、光合分波器50へ入射してからフィルタ膜221へ至るまでは、光信号41の進行経路に平行する経路を進行する。 When the optical signal 411 travels in parallel with the optical signal 41 and enters the optical multiplexer / demultiplexer 50, the optical signal 411 enters the optical multiplexer / demultiplexer 50 until the filter film 221 reaches the filter film 221. Travel along a path parallel to the travel path.
 フィルタ膜221における光信号41の入射位置は、フィルタ膜221の中心位置とする。光信号411は、フィルタ膜221のうち中心位置から上方向へシフトした位置に入射する。入射面が凸形状をなしていることで、光信号41の入射位置における入射面の傾きと、光信号411の入射位置における入射面の傾きとには違いが生じることになる。 The incident position of the optical signal 41 in the filter film 221 is the center position of the filter film 221. The optical signal 411 is incident on the filter film 221 at a position shifted upward from the center position. Since the incident surface has a convex shape, a difference occurs between the inclination of the incident surface at the incident position of the optical signal 41 and the inclination of the incident surface at the incident position of the optical signal 411.
 入射面における光信号411の反射角度は、光信号41の反射角度と比較して小さくなる。フィルタ膜221からミラー3へ向かう光信号411の進行経路の傾きは、光信号41の進行経路の傾きに比べて小さくなる。光信号411の進行経路は、光信号41の進行経路より上にシフトするようになり、進行するにつれてシフト幅は拡大していく。なお、入射面における光信号411の入射位置が中心位置から下方向にシフトしていた場合は、光信号411の進行経路は、光信号41の進行経路より下にシフトするようになる。 The reflection angle of the optical signal 411 on the incident surface is smaller than the reflection angle of the optical signal 41. The inclination of the traveling path of the optical signal 411 from the filter film 221 toward the mirror 3 is smaller than the inclination of the traveling path of the optical signal 41. The travel path of the optical signal 411 shifts upward from the travel path of the optical signal 41, and the shift width increases as the travel progresses. If the incident position of the optical signal 411 on the incident surface is shifted downward from the center position, the traveling path of the optical signal 411 is shifted downward from the traveling path of the optical signal 41.
 図2に示すバンドパスフィルタ21での反射により光信号の進行経路がシフトする向きと、図3に示すバンドパスフィルタ22での反射により光信号の進行経路がシフトする向きとは、互いに逆となる。光合分波器50は、製造誤差に起因して光信号の進行経路にずれが生じた場合に、バンドパスフィルタ21,22によって光信号の進行経路のずれを相殺可能とする。 The direction in which the travel path of the optical signal shifts due to reflection at the bandpass filter 21 shown in FIG. 2 is opposite to the direction in which the travel path of the optical signal shifts due to reflection at the bandpass filter 22 shown in FIG. Become. The optical multiplexer / demultiplexer 50 enables the band- pass filters 21 and 22 to cancel the deviation of the optical signal traveling path when the optical signal traveling path is deviated due to a manufacturing error.
 図4は、実施の形態1の比較例にかかる光合分波器60の断面模式図である。比較例において、バンドパスフィルタ21,22,23は、いずれもフィルタ基板210,220,230のうちブロック基板1側の界面にフィルタ膜211,221,231が形成されている。フィルタ膜211,221,231の入射面は、いずれも凹形状をなしている。この場合、各バンドパスフィルタ21,22,23での反射により光信号の進行経路がシフトする向きがいずれも同じとなる。このため、光合分波器60において、光信号の進行経路のずれは、各バンドパスフィルタ21,22,23での反射によって増幅されることとなる。 FIG. 4 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 60 according to a comparative example of the first embodiment. In the comparative example, the band- pass filters 21, 22, and 23 each have filter films 211, 221, and 231 formed at the interface on the block substrate 1 side among the filter substrates 210, 220, and 230. The incident surfaces of the filter films 211, 211, and 231 are all concave. In this case, the direction in which the traveling path of the optical signal is shifted by the reflection at each of the bandpass filters 21, 22, 23 is the same. For this reason, in the optical multiplexer / demultiplexer 60, the deviation of the traveling path of the optical signal is amplified by the reflection at each of the bandpass filters 21, 22, and 23.
 これに対し、実施の形態1の光合分波器50は、フィルタ基板210,220の互いに異なる側の界面にフィルタ膜211,221が形成されたバンドパスフィルタ21,22を用いることで、光信号の進行経路のずれを相殺可能とする。光合分波器50は、変形したバンドパスフィルタ21,22,23での反射によって生じ得る進行方向のずれを低減させることができる。よって、光合分波器50は、バンドパスフィルタ21,22,23への入射位置の変動要因となる製造誤差の許容度を縮小しなくても、バンドパスフィルタ21,22,23の変形に関わらず出力性能を維持することができる。 On the other hand, the optical multiplexer / demultiplexer 50 according to the first embodiment uses the band- pass filters 21 and 22 in which the filter films 211 and 221 are formed on the interfaces on the different sides of the filter substrates 210 and 220, thereby providing an optical signal. It is possible to cancel out the deviation of the traveling path. The optical multiplexer / demultiplexer 50 can reduce a shift in the traveling direction that may occur due to reflection by the deformed bandpass filters 21, 22, and 23. Therefore, the optical multiplexer / demultiplexer 50 is involved in the deformation of the bandpass filters 21, 22, and 23 without reducing the tolerance of the manufacturing error that causes the fluctuation of the incident positions on the bandpass filters 21, 22, and 23. Therefore, output performance can be maintained.
 なお、図1から図3に示すバンドパスフィルタ21,22,23の形状は、説明のために変形を強調して示したものであって、実際の形状を示したものではない。また、図2および図3に示す光信号の進行経路は、説明のためにずれを強調して示したものであって、実際の進行経路のずれを示したものではない。 Note that the shapes of the band- pass filters 21, 22, and 23 shown in FIGS. 1 to 3 are shown with emphasis on deformation for the sake of explanation, and do not show actual shapes. 2 and FIG. 3 show the shift of the optical signal with emphasis for explanation, and do not indicate the shift of the actual travel path.
 ブロック基板1およびフィルタ基板210,220,230は、いずれも共通の屈折率の材料で構成されている。第1反射構造体であるバンドパスフィルタ21,23のフィルタ膜211,231と、第2反射構造体であるバンドパスフィルタ22のフィルタ膜221とには、いずれも共通の屈折率の媒体を透過した光が入射する。このため、各フィルタ膜211,221,231において同等の反射角度で光信号を反射可能となるような光合分波器50の設計が容易となる。 The block substrate 1 and the filter substrates 210, 220, and 230 are all made of a material having a common refractive index. The filter films 211 and 231 of the band- pass filters 21 and 23 that are the first reflective structure and the filter film 221 of the band-pass filter 22 that is the second reflective structure both transmit a medium having a common refractive index. Light enters. Therefore, the optical multiplexer / demultiplexer 50 can be easily designed so that the optical signals can be reflected at the same reflection angle in each of the filter films 211, 221, and 231.
 光合分波器50は、光信号の進行経路のずれを低減させることで、各フィルタ膜211,221,231の入射面における中心位置からの入射位置のずれを低減可能とする。光合分波器50は、各フィルタ膜211,221,231の入射面の中心位置近くへ光を入射可能とすることで、各フィルタ膜211,221,231における光の損失を低減できる。 The optical multiplexer / demultiplexer 50 can reduce the deviation of the incident position from the center position on the incident surface of each filter film 211, 221, 231 by reducing the deviation of the traveling path of the optical signal. The optical multiplexer / demultiplexer 50 can reduce the loss of light in each filter film 211, 221, 231 by allowing light to enter near the center position of the incident surface of each filter film 211, 221, 231.
 バンドパスフィルタ21,22,23は、いずれも間隔を設けて配置される。互いに隣り合いかつ変形による湾曲の向きが互いに異なるバンドパスフィルタ21,22は、間隔が設けられることで、変形による応力をお互いに及ぼし合う事態を回避できる。バンドパスフィルタ22,23も同様に、変形による応力をお互いに及ぼし合う事態を回避できる。バンドパスフィルタ21,22,23のフィルタ膜211,221,231は、あらかじめ凹形状が施されたフィルタ基板210,220,230の界面に形成されたものであっても良い。 The band- pass filters 21, 22, and 23 are all arranged with an interval. The band- pass filters 21 and 22 that are adjacent to each other and have different directions of bending due to deformation can avoid a situation in which stress due to deformation is exerted on each other by providing an interval. Similarly, the bandpass filters 22 and 23 can avoid a situation in which stress due to deformation is exerted on each other. The filter films 211, 221, and 231 of the bandpass filters 21, 22, and 23 may be formed on the interfaces of the filter substrates 210, 220, and 230 that have been previously recessed.
 光合分波器50に設けられるバンドパスフィルタの数は3つに限られない。バンドパスフィルタの数は、多重化させる光信号の数にしたがって変更可能とする。光合分波器50へ入力される光信号の数は4つに限られず、2つ、3つ、あるいは5つ以上であっても良い。 The number of bandpass filters provided in the optical multiplexer / demultiplexer 50 is not limited to three. The number of bandpass filters can be changed according to the number of optical signals to be multiplexed. The number of optical signals input to the optical multiplexer / demultiplexer 50 is not limited to four, and may be two, three, or five or more.
 光合分波器50に設けられるバンドパスフィルタの数が偶数である場合、第1反射構造体で構成されるバンドパスフィルタの数と第2反射構造体で構成されるバンドパスフィルタの数とは同じとする。光合分波器50は、フィルタ基板の互いに異なる側の界面にフィルタ膜が形成されたバンドパスフィルタを同数設けることで、光信号の進行経路のずれを効果的に相殺することができる。 When the number of bandpass filters provided in the optical multiplexer / demultiplexer 50 is an even number, the number of bandpass filters configured by the first reflective structure and the number of bandpass filters configured by the second reflective structure are: The same. The optical multiplexer / demultiplexer 50 can effectively cancel out the deviation of the traveling path of the optical signal by providing the same number of band-pass filters having filter films formed on the interfaces on different sides of the filter substrate.
 また、光合分波器50に設けられるバンドパスフィルタの数が奇数である場合、第1反射構造体で構成されるバンドパスフィルタの数と第2反射構造体で構成されるバンドパスフィルタの数との差を1とする。この場合も、光合分波器50は、光信号の進行経路のずれを効果的に相殺することができる。 Further, when the number of bandpass filters provided in the optical multiplexer / demultiplexer 50 is an odd number, the number of bandpass filters constituted by the first reflection structure and the number of bandpass filters constituted by the second reflection structure. The difference from is 1. Also in this case, the optical multiplexer / demultiplexer 50 can effectively cancel the deviation of the traveling path of the optical signal.
 さらに、バンドパスフィルタの数が偶数および奇数のいずれの場合も、第1反射構造体で構成されるバンドパスフィルタと、第2反射構造体で構成されるバンドパスフィルタとは交互に配置される。光合分波器50を進行する光が第1反射構造体で構成されるバンドパスフィルタと第2反射構造体で構成されるバンドパスフィルタとで交互に反射することで、光合分波器50は、光信号の本来の進行経路からの乖離を抑制可能とする。また、光合分波器50は、各フィルタ膜の入射面における中心位置からの入射位置のずれを低減できることで、各フィルタ膜における光の損失を低減できる。 Furthermore, the band-pass filter constituted by the first reflection structure and the band-pass filter constituted by the second reflection structure are alternately arranged in both cases where the number of band-pass filters is even and odd. . The light that passes through the optical multiplexer / demultiplexer 50 is alternately reflected by the bandpass filter that is configured by the first reflective structure and the bandpass filter that is configured by the second reflective structure, whereby the optical multiplexer / demultiplexer 50 is The deviation of the optical signal from the original traveling path can be suppressed. Moreover, the optical multiplexer / demultiplexer 50 can reduce the light loss in each filter film by reducing the deviation of the incident position from the center position on the incident surface of each filter film.
 光合分波器50に設けられるフィルタ素子は、バンドパスフィルタに限らず偏波フィルタであっても良い。光合分波器50は、偏波フィルタを用いて互いに異なる偏波である光信号を多重化する場合も、バンドパスフィルタが用いられる場合と同様の効果を得ることができる。なお、光合分波器50が光分波器である場合も、光合波器について上述した効果と同様の効果を得ることができる。 The filter element provided in the optical multiplexer / demultiplexer 50 is not limited to a bandpass filter, and may be a polarization filter. The optical multiplexer / demultiplexer 50 can obtain the same effect as when a band-pass filter is used when multiplexing optical signals having different polarizations using a polarization filter. In addition, also when the optical multiplexer / demultiplexer 50 is an optical demultiplexer, the effect similar to the effect mentioned above about the optical multiplexer can be acquired.
 実施の形態1によると、光部品は、第1反射構造体である第1フィルタ素子と第2反射構造体である第2フィルタ素子とを備えることで、フィルタ素子の変形によって生じ得る進行方向のずれの拡大を抑制できる。これにより、光部品は、フィルタ素子の変形に関わらず出力性能を維持できるという効果を奏する。 According to the first embodiment, the optical component includes the first filter element that is the first reflection structure and the second filter element that is the second reflection structure. The spread of deviation can be suppressed. Thereby, the optical component has an effect that the output performance can be maintained regardless of the deformation of the filter element.
 図5は、実施の形態1の変形例にかかる光部品である光合分波器70の断面模式図である。変形例において、バンドパスフィルタ21,22,23およびミラー3は、ブロック基板1の共通の面の上に配置されている。ブロック基板1は、バンドパスフィルタ21,22,23およびミラー3を支持する。バンドパスフィルタ21,22,23とミラー3は、光を進行させる媒質である空気層を介して互いに対向する。媒質は、空気層以外に、バンドパスフィルタ21,22,23およびミラー3の間に充填された光透過性材料であっても良い。変形例においても、光部品は、フィルタ素子の変形に関わらず出力性能を維持することができる。 FIG. 5 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 70 that is an optical component according to a modification of the first embodiment. In the modification, the bandpass filters 21, 22, 23 and the mirror 3 are arranged on a common surface of the block substrate 1. The block substrate 1 supports the bandpass filters 21, 22, 23 and the mirror 3. The band- pass filters 21, 22, 23 and the mirror 3 face each other through an air layer that is a medium for propagating light. The medium may be a light transmissive material filled between the bandpass filters 21, 22, 23 and the mirror 3 in addition to the air layer. Also in the modification, the optical component can maintain the output performance regardless of the deformation of the filter element.
実施の形態2.
 図6は、本発明の実施の形態2にかかる光部品である光合分波器80の断面模式図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。実施の形態2にかかる光合分波器80には、実施の形態1のミラー3に代えて、ミラー30が設けられている。
Embodiment 2. FIG.
FIG. 6 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 80 that is an optical component according to the second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. The optical multiplexer / demultiplexer 80 according to the second embodiment is provided with a mirror 30 instead of the mirror 3 of the first embodiment.
 反射素子であるミラー30は、ミラー基板300および反射膜301を備える。反射膜301は、ミラー基板300のうちブロック基板1とは逆へ向けられた界面に形成されている。ミラー30は、ミラー基板300を透過した光を反射する。 The mirror 30 that is a reflective element includes a mirror substrate 300 and a reflective film 301. The reflective film 301 is formed on the interface of the mirror substrate 300 that faces away from the block substrate 1. The mirror 30 reflects the light transmitted through the mirror substrate 300.
 反射膜301は、誘電体多層膜の積層体である。反射膜301は、各フィルタ膜211,221,231の反射波長帯域を含む広い波長帯域の光を反射する反射波長特性を備える。ミラー基板300は、ブロック基板1およびフィルタ基板210,220,230の材料と共通の屈折率の光透過性材料であるガラス材料で構成されている。ミラー基板300は、ブロック基板1およびフィルタ基板210,220,230と同様に、ガラス材料以外の光透過性材料で構成されたものであっても良い。 The reflective film 301 is a laminate of dielectric multilayer films. The reflection film 301 has a reflection wavelength characteristic that reflects light in a wide wavelength band including the reflection wavelength bands of the filter films 211, 211, and 231. The mirror substrate 300 is made of a glass material that is a light-transmitting material having a common refractive index with the material of the block substrate 1 and the filter substrates 210, 220, and 230. Similar to the block substrate 1 and the filter substrates 210, 220, and 230, the mirror substrate 300 may be made of a light transmissive material other than a glass material.
 バンドパスフィルタ21,22,23は、いずれもフィルタ基板210,220,230のうちブロック基板1側の界面にフィルタ膜211,221,231が形成されている。バンドパスフィルタ21,22,23は、第1基板と、第1基板のうち媒質へ向けられた界面に形成された第1光学膜とを含む第1反射構造体である。バンドパスフィルタ21,22,23は、第1基板であるフィルタ基板210,220,230と、第1光学膜であるフィルタ膜211,221,231を備える。 In each of the bandpass filters 21, 22, and 23, filter films 211, 221, and 231 are formed on the interface on the block substrate 1 side of the filter substrates 210, 220, and 230. The bandpass filters 21, 22, and 23 are first reflective structures including a first substrate and a first optical film formed at an interface of the first substrate that is directed toward the medium. The bandpass filters 21, 22, and 23 include filter substrates 210, 220, and 230 that are first substrates, and filter films 211, 221, and 231 that are first optical films.
 ミラー30は、第2基板と、第2基板のうち媒質とは逆へ向けられた界面に形成された第2光学膜とを含む第2反射構造体である。ミラー30は、第2基板であるミラー基板300と第2光学膜である反射膜301を備える。 The mirror 30 is a second reflective structure including a second substrate and a second optical film formed on the interface of the second substrate facing away from the medium. The mirror 30 includes a mirror substrate 300 that is a second substrate and a reflective film 301 that is a second optical film.
 ミラー30は、反射膜301の応力の作用によって変形している。反射膜301が湾曲することで、反射膜301のうち光信号の入射面は、凸形状をなしている。一方、バンドパスフィルタ21,22,23のフィルタ膜211,221,231の入射面は、いずれも凹形状をなしている。 The mirror 30 is deformed by the action of the stress of the reflective film 301. Since the reflection film 301 is curved, the light signal incident surface of the reflection film 301 has a convex shape. On the other hand, the incident surfaces of the filter films 211, 221, and 231 of the bandpass filters 21, 22, and 23 are all concave.
 ミラー30での反射により光信号の進行経路がシフトする向きと、バンドパスフィルタ21,22,23での反射により光信号の信号経路がシフトする向きとは、互いに逆となる。光合分波器80は、製造誤差に起因して光信号の進行経路にずれが生じた場合に、ミラー30とバンドパスフィルタ21,22,23によって光信号の進行経路のずれを相殺可能とする。 The direction in which the traveling path of the optical signal shifts due to reflection at the mirror 30 is opposite to the direction in which the signal path of the optical signal shifts due to reflection at the bandpass filters 21, 22, and 23. The optical multiplexer / demultiplexer 80 can cancel the deviation of the traveling path of the optical signal by the mirror 30 and the band pass filters 21, 22, and 23 when the traveling path of the optical signal is shifted due to the manufacturing error. .
 実施の形態2では、光合分波器80に設けられるバンドパスフィルタの数が奇数および偶数のいずれである場合も同様に、光信号の進行経路のずれを効果的に相殺することができる。 In the second embodiment, similarly, when the number of bandpass filters provided in the optical multiplexer / demultiplexer 80 is an odd number or an even number, it is possible to effectively cancel the deviation of the traveling path of the optical signal.
 実施の形態2によると、光部品は、第1反射構造体であるフィルタ素子と第2反射構造体である反射素子とを備えることで、フィルタ素子の変形によって生じ得る進行方向のずれの拡大を抑制できる。これにより、光部品は、フィルタ素子の変形に関わらず出力性能を維持できるという効果を奏する。 According to the second embodiment, the optical component includes the filter element that is the first reflection structure and the reflection element that is the second reflection structure, so that the shift in the traveling direction that may occur due to the deformation of the filter element is increased. Can be suppressed. Thereby, the optical component has an effect that the output performance can be maintained regardless of the deformation of the filter element.
 実施の形態2の光部品は、図5に示す実施の形態1の変形例と同様に、ブロック基板1の共通の面の上にバンドパスフィルタ21,22,23およびミラー30が配置されていても良い。 In the optical component of the second embodiment, the bandpass filters 21, 22, 23 and the mirror 30 are arranged on the common surface of the block substrate 1, as in the modification of the first embodiment shown in FIG. Also good.
実施の形態3.
 図7は、本発明の実施の形態3にかかる光部品である光合分波器90の断面模式図である。実施の形態3にかかる光合分波器90には、実施の形態1のミラー3に代えて、第1反射素子であるミラー31および第2反射素子であるミラー32が設けられている。
Embodiment 3 FIG.
FIG. 7 is a schematic cross-sectional view of an optical multiplexer / demultiplexer 90 that is an optical component according to the third embodiment of the present invention. The optical multiplexer / demultiplexer 90 according to the third embodiment is provided with a mirror 31 that is a first reflecting element and a mirror 32 that is a second reflecting element, instead of the mirror 3 according to the first embodiment.
 ミラー31は、ミラー基板310および反射膜311を備える。反射膜311は、ミラー基板310のうちブロック基板1とは逆へ向けられた界面に形成されている。反射膜311は、ミラー基板310を透過した光を反射する。 The mirror 31 includes a mirror substrate 310 and a reflective film 311. The reflective film 311 is formed on the interface of the mirror substrate 310 facing away from the block substrate 1. The reflective film 311 reflects the light transmitted through the mirror substrate 310.
 ミラー32は、ミラー基板320および反射膜321を備える。反射膜321は、ミラー基板320のうちブロック基板1へ向けられた界面に形成されている。反射膜321は、ブロック基板1から入射した光を反射する。 The mirror 32 includes a mirror substrate 320 and a reflective film 321. The reflection film 321 is formed on the interface of the mirror substrate 320 facing the block substrate 1. The reflective film 321 reflects light incident from the block substrate 1.
 反射膜311,321は、誘電体多層膜の積層体である。反射膜311,321は、各フィルタ膜211,221,231の反射波長帯域を含む広い波長帯域の光を反射する反射波長特性を備える。ミラー基板310,320は、ブロック基板1およびフィルタ基板210,220,230の材料と共通の屈折率の光透過性材料であるガラス材料で構成されている。ミラー基板310,320は、ブロック基板1およびフィルタ基板210,220,230と同様に、ガラス材料以外の光透過性材料で構成されたものであっても良い。 The reflection films 311 and 321 are laminated bodies of dielectric multilayer films. The reflection films 311 and 321 have reflection wavelength characteristics that reflect light in a wide wavelength band including the reflection wavelength bands of the filter films 211, 221, and 231. The mirror substrates 310 and 320 are made of a glass material that is a light transmissive material having a common refractive index with the material of the block substrate 1 and the filter substrates 210, 220, and 230. Similar to the block substrate 1 and the filter substrates 210, 220, and 230, the mirror substrates 310 and 320 may be made of a light transmissive material other than a glass material.
 ミラー32は、第1基板と、第1基板のうち媒質へ向けられた界面に形成された第1光学膜とを含む第1反射構造体である。ミラー32は、第1基板であるミラー基板320と第1光学膜である反射膜321とを備える。ミラー32は、反射膜321の応力の作用によって変形している。反射膜321が湾曲することで、反射膜321のうち光信号の入射面は、凹形状をなしている。 The mirror 32 is a first reflective structure including a first substrate and a first optical film formed at an interface of the first substrate directed to the medium. The mirror 32 includes a mirror substrate 320 that is a first substrate and a reflective film 321 that is a first optical film. The mirror 32 is deformed by the action of the stress of the reflective film 321. Since the reflection film 321 is curved, the light signal incident surface of the reflection film 321 has a concave shape.
 ミラー31は、実施の形態2のミラー30と同様に、第2基板と、第2基板のうち媒質とは逆へ向けられた界面に形成された第2光学膜とを含む第2反射構造体である。ミラー31は、第2基板であるミラー基板310と第2光学膜である反射膜311を備える。ミラー31は、反射膜311の応力の作用によって変形している。反射膜311が湾曲することで、反射膜311のうち光信号の入射面は、凸形状をなしている。 Similar to the mirror 30 of the second embodiment, the mirror 31 includes a second reflection structure including a second substrate and a second optical film formed on the interface of the second substrate facing away from the medium. It is. The mirror 31 includes a mirror substrate 310 that is a second substrate and a reflective film 311 that is a second optical film. The mirror 31 is deformed by the action of stress on the reflective film 311. Since the reflection film 311 is curved, the light signal incident surface of the reflection film 311 has a convex shape.
 バンドパスフィルタ21,22,23は、実施の形態1の場合と同様に構成されている。光合分波器90には、第1反射構造体であるバンドパスフィルタ21,23およびミラー32と、第2反射構造体であるバンドパスフィルタ22およびミラー31とが設けられている。 The band pass filters 21, 22, and 23 are configured in the same manner as in the first embodiment. The optical multiplexer / demultiplexer 90 is provided with band- pass filters 21 and 23 and a mirror 32 which are first reflection structures, and a band-pass filter 22 and a mirror 31 which are second reflection structures.
 ミラー31での反射により光信号の進行経路がシフトする向きと、ミラー32での反射により光信号の進行経路がシフトする向きとは、互いに逆となる。光合分波器90は、製造誤差に起因して光信号の進行経路にずれが生じた場合に、光信号の進行経路のずれをミラー31,32同士によって相殺するとともに、バンドパスフィルタ21,22,23同士によって相殺する。これにより、光合分波器90は、バンドパスフィルタ21,22,23とミラー31,32とで形状が異なるために、変形による反射角度の変化に違いが生じていても、光信号の進行経路のずれを効果的に相殺することができる。 The direction in which the travel path of the optical signal shifts due to reflection at the mirror 31 is opposite to the direction in which the travel path of the optical signal shifts due to reflection at the mirror 32. The optical multiplexer / demultiplexer 90 cancels the deviation of the optical signal traveling path by the mirrors 31 and 32 when the optical signal traveling path is deviated due to a manufacturing error, and the bandpass filters 21 and 22. , 23 cancel each other. As a result, the optical multiplexer / demultiplexer 90 has different shapes between the bandpass filters 21, 22, and 23 and the mirrors 31 and 32. It is possible to effectively cancel the deviation.
 実施の形態3の光合分波器90は、実施の形態1と同様に、光合分波器90に設けられるバンドパスフィルタの数が偶数である場合、第1反射構造体で構成されるバンドパスフィルタの数と第2反射構造体で構成されるバンドパスフィルタの数とは同じとする。また、光合分波器90に設けられるバンドパスフィルタの数が奇数である場合、第1反射構造体で構成されるバンドパスフィルタの数と第2反射構造体で構成されるバンドパスフィルタの数との差を1とする。これにより、光合分波器90は、光信号の進行経路のずれを効果的に相殺することができる。 Similarly to the first embodiment, the optical multiplexer / demultiplexer 90 according to the third embodiment has a bandpass formed of the first reflection structure when the number of bandpass filters provided in the optical multiplexer / demultiplexer 90 is an even number. It is assumed that the number of filters and the number of band pass filters configured by the second reflection structure are the same. Further, when the number of bandpass filters provided in the optical multiplexer / demultiplexer 90 is an odd number, the number of bandpass filters constituted by the first reflection structure and the number of bandpass filters constituted by the second reflection structure. The difference from is 1. Thereby, the optical multiplexer / demultiplexer 90 can effectively cancel the deviation of the traveling path of the optical signal.
 さらに、バンドパスフィルタの数が偶数および奇数のいずれの場合も、第1反射構造体で構成されるバンドパスフィルタと、第2反射構造体で構成されるバンドパスフィルタとは交互に配置される。これにより、光合分波器90は、光信号の本来の進行経路からの乖離を抑制可能とし、各フィルタ膜における光の損失を低減できる。 Furthermore, the band-pass filter constituted by the first reflection structure and the band-pass filter constituted by the second reflection structure are alternately arranged in both cases where the number of band-pass filters is even and odd. . Thereby, the optical multiplexer / demultiplexer 90 can suppress the deviation of the optical signal from the original traveling path, and can reduce the loss of light in each filter film.
 実施の形態3によると、光部品は、第1反射構造体である第1フィルタ素子および第1反射素子と、第2反射構造体である第2フィルタ素子および第2反射素子とを備えることで、フィルタ素子および反射素子の変形によって生じ得る進行方向のずれの拡大を抑制できる。これにより、光部品は、フィルタ素子および反射素子の変形に関わらず出力性能を維持できるという効果を奏する。 According to the third embodiment, the optical component includes the first filter element and the first reflection element that are the first reflection structure, and the second filter element and the second reflection element that are the second reflection structure. Further, it is possible to suppress an increase in the shift in the traveling direction that may occur due to the deformation of the filter element and the reflective element. Thereby, the optical component has an effect that the output performance can be maintained regardless of the deformation of the filter element and the reflection element.
 実施の形態3の光部品は、図5に示す実施の形態1の変形例と同様に、ブロック基板1の共通の面の上にバンドパスフィルタ21,22,23およびミラー31,32が配置されていても良い。 In the optical component of the third embodiment, bandpass filters 21, 22, 23 and mirrors 31, 32 are arranged on a common surface of the block substrate 1, as in the modification of the first embodiment shown in FIG. May be.
実施の形態4.
 図8は、本発明の実施の形態4にかかる光モジュールである送信モジュール100の模式図である。送信モジュール100は、複数の光信号を多重化し、多重波長信号を送信する。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
Embodiment 4 FIG.
FIG. 8 is a schematic diagram of a transmission module 100 that is an optical module according to a fourth embodiment of the present invention. The transmission module 100 multiplexes a plurality of optical signals and transmits a multiplexed wavelength signal. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 送信モジュール100は、発光素子である複数のレーザダイオード(Laser Diode,LD)51、複数のレンズ52、光合分波器50、レンズ53および光ファイバ54を備える。光合分波器50は、光合波器である。 The transmission module 100 includes a plurality of laser diodes (Laser Diodes, LDs) 51, which are light emitting elements, a plurality of lenses 52, an optical multiplexer / demultiplexer 50, a lens 53, and an optical fiber 54. The optical multiplexer / demultiplexer 50 is an optical multiplexer.
 複数のLD51のそれぞれは、互いに波長帯域が異なる光信号40,41,42,43を出力する。複数のLD51からの各光信号40,41,42,43は、それぞれ異なる光信号経路を伝搬する。LD51から出射された光は、レンズ52を経て光合分波器50へ入力される。 Each of the plurality of LDs 51 outputs optical signals 40, 41, 42, and 43 having different wavelength bands. The optical signals 40, 41, 42, and 43 from the plurality of LDs 51 propagate through different optical signal paths. The light emitted from the LD 51 is input to the optical multiplexer / demultiplexer 50 through the lens 52.
 光合分波器50は、複数のLD51から入力された光信号40,41,42,43を多重化させる。光合分波器50は、多重波長信号を出力する。多重波長信号は、レンズ53および光ファイバ54を経て送信モジュール100から出力される。 The optical multiplexer / demultiplexer 50 multiplexes the optical signals 40, 41, 42, 43 input from the plurality of LDs 51. The optical multiplexer / demultiplexer 50 outputs a multiple wavelength signal. The multiple wavelength signal is output from the transmission module 100 via the lens 53 and the optical fiber 54.
 図9は、本発明の実施の形態4にかかる光モジュールである受信モジュール110の模式図である。受信モジュール110は、多重波長信号44を受信し、多重波長信号44を波長帯域の違いにより分割する。 FIG. 9 is a schematic diagram of a receiving module 110 that is an optical module according to a fourth embodiment of the present invention. The receiving module 110 receives the multiple wavelength signal 44 and divides the multiple wavelength signal 44 according to the difference in wavelength band.
 受信モジュール110は、送信モジュール100のLD51に代えて、受光素子であるフォトダイオード(Photodiode,PD)55を備える。受信モジュール110における光合分波器50は、光分波器である。光合分波器50には、光ファイバ54およびレンズ53を経た多重波長信号44が入力される。光合分波器50は、多重波長信号44を波長帯域ごとの光信号40,41,42,43へ分割する。光合分波器50から出力された光信号40,41,42,43は、それぞれレンズ52を経てPD55へ入射する。複数のPD55は、それぞれ光信号40,41,42,43を検出する。 The receiving module 110 includes a photodiode (Photodiode, PD) 55 that is a light receiving element instead of the LD 51 of the transmitting module 100. The optical multiplexer / demultiplexer 50 in the receiving module 110 is an optical demultiplexer. The optical multiplexer / demultiplexer 50 receives the multiplexed wavelength signal 44 that has passed through the optical fiber 54 and the lens 53. The optical multiplexer / demultiplexer 50 divides the multiplexed wavelength signal 44 into optical signals 40, 41, 42, and 43 for each wavelength band. The optical signals 40, 41, 42, and 43 output from the optical multiplexer / demultiplexer 50 enter the PD 55 through the lens 52, respectively. The plurality of PDs 55 detect the optical signals 40, 41, 42, and 43, respectively.
 実施の形態4の光モジュールは、実施の形態1にかかる光合分波器50を含むものに限られず、実施の形態1の変形例の光合分波器70、実施の形態2および3の光合分波器80,90のいずれかを含むものであっても良い。光モジュールは、実施の形態1から3の光合分波器50,70,80,90のいずれかを含むことで、フィルタ素子および反射素子の変形に関わらず出力性能を維持できるという効果を奏する。 The optical module according to the fourth embodiment is not limited to the one including the optical multiplexer / demultiplexer 50 according to the first embodiment, and the optical multiplexer / demultiplexer 70 according to the modification of the first embodiment and the optical multiplexer / demultiplexers according to the second and third embodiments. One of the wave devices 80 and 90 may be included. The optical module includes any one of the optical multiplexers / demultiplexers 50, 70, 80, and 90 according to the first to third embodiments, so that the output performance can be maintained regardless of the deformation of the filter element and the reflective element.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 ブロック基板、3,30,31,32 ミラー、11 第1面、12 第2面、21,22,23 バンドパスフィルタ、50,70,80,90 光合分波器、51 LD、55 PD、100 送信モジュール、110 受信モジュール、210,220,230 フィルタ基板、211,221,231 フィルタ膜、300,310,320 ミラー基板、301,311,321 反射膜。 1 block substrate, 3, 30, 31, 32 mirror, 11 first surface, 12 second surface, 21, 22, 23 band pass filter, 50, 70, 80, 90 optical multiplexer / demultiplexer, 51 LD, 55 PD, 100 transmitting module, 110 receiving module, 210, 220, 230 filter substrate, 211, 221, 231 filter film, 300, 310, 320 mirror substrate, 301, 311, 321 reflective film.

Claims (12)

  1.  第1の光信号を反射し、かつ第2の光信号を透過させる第1フィルタ素子と、
     前記第1の光信号および前記第2の光信号を反射し、かつ第3の光信号を透過させる第2フィルタ素子と、
     前記第1の光信号、前記第2の光信号および前記第3の光信号を反射する反射素子と、
     前記第1フィルタ素子、前記第2フィルタ素子および前記反射素子のうちの1つを構成し、第1基板と、前記第1基板のうち、前記第1フィルタ素子、前記第2フィルタ素子および前記反射素子の間の媒質へ向けられた界面に形成された第1光学膜と、を含む第1反射構造体と、
     前記第1フィルタ素子、前記第2フィルタ素子、前記反射素子のうち前記第1反射構造体以外の1つを構成し、第2基板と、前記第2基板のうち前記媒質とは逆へ向けられた界面に形成された第2光学膜と、を含む第2反射構造体と、
     を備えることを特徴とする光部品。
    A first filter element that reflects the first optical signal and transmits the second optical signal;
    A second filter element that reflects the first optical signal and the second optical signal and transmits a third optical signal;
    A reflective element that reflects the first optical signal, the second optical signal, and the third optical signal;
    One of the first filter element, the second filter element, and the reflection element is formed, and the first filter element, the second filter element, and the reflection of the first substrate and the first substrate are included. A first optical structure formed at the interface between the elements directed to the medium; a first reflective structure comprising:
    One of the first filter element, the second filter element, and the reflective element other than the first reflective structure is configured, and the second substrate and the medium of the second substrate are directed in reverse. A second reflective structure including a second optical film formed on the interface;
    An optical component comprising:
  2.  前記第1フィルタ素子は、前記第1反射構造体であって、
     前記第2フィルタ素子は、前記第2反射構造体であって、
     前記第1光学膜は、前記第1の光信号を反射し前記第2の光信号を透過させるフィルタ膜であって、
     前記第2光学膜は、前記第1の光信号および前記第2の光信号を反射し前記第3の光信号を透過させるフィルタ膜であることを特徴とする請求項1に記載の光部品。
    The first filter element is the first reflective structure,
    The second filter element is the second reflective structure,
    The first optical film is a filter film that reflects the first optical signal and transmits the second optical signal,
    The optical component according to claim 1, wherein the second optical film is a filter film that reflects the first optical signal and the second optical signal and transmits the third optical signal.
  3.  前記第1フィルタ素子および前記第2フィルタ素子は、前記第1反射構造体であって、
     前記反射素子は、前記第2反射構造体であって、
     前記第1フィルタ素子の前記第1光学膜は、前記第1の光信号を反射し前記第2の光信号を透過させるフィルタ膜であって、
     前記第2フィルタ素子の前記第1光学膜は、前記第1の光信号および前記第2の光信号を反射し前記第3の光信号を透過させるフィルタ膜であって、
     前記第2光学膜は、前記第1の光信号、前記第2の光信号および前記第3の光信号を反射する反射膜であることを特徴とする請求項1に記載の光部品。
    The first filter element and the second filter element are the first reflective structure,
    The reflective element is the second reflective structure,
    The first optical film of the first filter element is a filter film that reflects the first optical signal and transmits the second optical signal,
    The first optical film of the second filter element is a filter film that reflects the first optical signal and the second optical signal and transmits the third optical signal,
    The optical component according to claim 1, wherein the second optical film is a reflective film that reflects the first optical signal, the second optical signal, and the third optical signal.
  4.  前記反射素子は、第1反射素子および第2反射素子を含み、
     前記第1フィルタ素子および前記第1反射素子は、前記第1反射構造体であって、
     前記第2フィルタ素子および前記第2反射素子は、前記第2反射構造体であって、
     前記第1フィルタ素子の前記第1光学膜は、前記第1の光信号を反射し前記第2の光信号を透過させるフィルタ膜であって、
     前記第2フィルタ素子の前記第2光学膜は、前記第1の光信号および前記第2の光信号を反射し前記第3の光信号を透過させるフィルタ膜であることを特徴とする請求項1に記載の光部品。
    The reflective element includes a first reflective element and a second reflective element,
    The first filter element and the first reflective element are the first reflective structure,
    The second filter element and the second reflective element are the second reflective structure,
    The first optical film of the first filter element is a filter film that reflects the first optical signal and transmits the second optical signal,
    2. The second optical film of the second filter element is a filter film that reflects the first optical signal and the second optical signal and transmits the third optical signal. Optical components described in 1.
  5.  前記第1フィルタ素子および前記第2フィルタ素子を含み、光信号を反射および透過させる複数のフィルタ素子を備え、
     前記複数のフィルタ素子に含まれるフィルタ素子の数が偶数である場合に、前記複数のフィルタ素子のうち前記第1反射構造体であるフィルタ素子の数と前記第2反射構造体であるフィルタ素子の数とは同じであって、
     前記複数のフィルタ素子に含まれるフィルタ素子の数が奇数である場合に、前記複数のフィルタ素子のうち前記第1反射構造体であるフィルタ素子の数と前記第2反射構造体であるフィルタ素子の数との差が1であることを特徴とする請求項2または4に記載の光部品。
    A plurality of filter elements including the first filter element and the second filter element for reflecting and transmitting an optical signal;
    When the number of filter elements included in the plurality of filter elements is an even number, the number of filter elements that are the first reflection structure and the filter element that is the second reflection structure among the plurality of filter elements. The number is the same,
    When the number of filter elements included in the plurality of filter elements is an odd number, the number of filter elements that are the first reflection structure and the filter element that is the second reflection structure among the plurality of filter elements. The optical component according to claim 2, wherein a difference from the number is 1.
  6.  前記第1反射構造体であるフィルタ素子と前記第2反射構造体であるフィルタ素子とは交互に配置されていることを特徴とする請求項5に記載の光部品。 The optical component according to claim 5, wherein the filter element that is the first reflection structure and the filter element that is the second reflection structure are alternately arranged.
  7.  前記第1フィルタ素子、前記第2フィルタ素子および前記反射素子を支持し、光を透過させる支持基板を備え、
     前記第1フィルタ素子および前記第2フィルタ素子は、前記支持基板の第1面に配置され、
     前記反射素子は、前記支持基板の第2面に配置されていることを特徴とする請求項1から6のいずれか1つに記載の光部品。
    A support substrate that supports the first filter element, the second filter element, and the reflective element and transmits light;
    The first filter element and the second filter element are disposed on a first surface of the support substrate,
    The optical component according to claim 1, wherein the reflective element is disposed on a second surface of the support substrate.
  8.  前記第1フィルタ素子、前記第2フィルタ素子および前記反射素子を支持する支持基板を備え、
     前記第1フィルタ素子、前記第2フィルタ素子および前記反射素子は、前記支持基板の共通の面に配置されていることを特徴とする請求項1から6のいずれか1つに記載の光部品。
    A support substrate that supports the first filter element, the second filter element, and the reflective element;
    The optical component according to claim 1, wherein the first filter element, the second filter element, and the reflective element are arranged on a common surface of the support substrate.
  9.  前記支持基板、前記第1基板および前記第2基板は、いずれも共通の屈折率の材料で構成されていることを特徴とする請求項7に記載の光部品。 The optical component according to claim 7, wherein the support substrate, the first substrate, and the second substrate are all made of a material having a common refractive index.
  10.  前記第1フィルタ素子および前記第2フィルタ素子は、間隔を設けて配置されていることを特徴とする請求項1から9のいずれか1つに記載の光部品。 The optical component according to any one of claims 1 to 9, wherein the first filter element and the second filter element are arranged with a space therebetween.
  11.  光信号を出力する複数の発光素子と、
     前記複数の発光素子からの前記光信号が入力される請求項1から10のいずれか1つに記載の光部品と、
     を備えることを特徴とする光モジュール。
    A plurality of light emitting elements that output optical signals;
    The optical component according to any one of claims 1 to 10, wherein the optical signals from the plurality of light emitting elements are input.
    An optical module comprising:
  12.  多重化された複数の光信号である多重波長信号が入力される請求項1から10のいずれか1つに記載の光部品と、
     前記多重波長信号から分割された光信号を検出する受光素子と、
     を備えることを特徴とする光モジュール。
    The optical component according to any one of claims 1 to 10, wherein a multiplexed wavelength signal that is a plurality of multiplexed optical signals is input;
    A light receiving element for detecting an optical signal divided from the multiple wavelength signal;
    An optical module comprising:
PCT/JP2016/070337 2016-07-08 2016-07-08 Optical component and optical module WO2018008154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018525622A JP6452900B2 (en) 2016-07-08 2016-07-08 Optical components and optical modules
PCT/JP2016/070337 WO2018008154A1 (en) 2016-07-08 2016-07-08 Optical component and optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070337 WO2018008154A1 (en) 2016-07-08 2016-07-08 Optical component and optical module

Publications (1)

Publication Number Publication Date
WO2018008154A1 true WO2018008154A1 (en) 2018-01-11

Family

ID=60912401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070337 WO2018008154A1 (en) 2016-07-08 2016-07-08 Optical component and optical module

Country Status (2)

Country Link
JP (1) JP6452900B2 (en)
WO (1) WO2018008154A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646352A (en) * 2018-07-17 2018-10-12 北极光电(深圳)有限公司 A kind of multichannel film filter assembly and preparation method thereof
JP6410005B1 (en) * 2018-04-05 2018-10-24 三菱電機株式会社 Optical multiplexer / demultiplexer and manufacturing method thereof
WO2019142358A1 (en) * 2018-01-22 2019-07-25 三菱電機株式会社 Optical multiplexing-demultiplexing device
WO2019245105A1 (en) * 2018-06-21 2019-12-26 (주)코셋 Wavelength multiplexing/demultiplexing device
JP6804698B1 (en) * 2020-02-21 2020-12-23 三菱電機株式会社 Integrated optical module
US20220171208A1 (en) * 2020-11-30 2022-06-02 Jinghui Li Large-spacing multi-channel wdm module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488176A (en) * 1977-12-26 1979-07-13 Yokogawa Hokushin Electric Corp Photo detector
JP2005091996A (en) * 2003-09-19 2005-04-07 Hitachi Maxell Ltd Optical component packaging module and optical communication module
JP2007163631A (en) * 2005-12-12 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241017A (en) * 2006-03-10 2007-09-20 Epson Toyocom Corp Half mirror
JP2016006479A (en) * 2014-05-28 2016-01-14 日立金属株式会社 Optical transmission module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488176A (en) * 1977-12-26 1979-07-13 Yokogawa Hokushin Electric Corp Photo detector
JP2005091996A (en) * 2003-09-19 2005-04-07 Hitachi Maxell Ltd Optical component packaging module and optical communication module
JP2007163631A (en) * 2005-12-12 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142358A1 (en) * 2018-01-22 2019-07-25 三菱電機株式会社 Optical multiplexing-demultiplexing device
CN111630440A (en) * 2018-01-22 2020-09-04 三菱电机株式会社 Optical multiplexer/demultiplexer
US11199663B2 (en) 2018-04-05 2021-12-14 Mitsubishi Electric Corporation Optical multiplexer/demultiplexer and method for manufacturing the same
JP6410005B1 (en) * 2018-04-05 2018-10-24 三菱電機株式会社 Optical multiplexer / demultiplexer and manufacturing method thereof
WO2019193710A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Optical multiplexer/demultiplexer and method for manufacturing same
WO2019245105A1 (en) * 2018-06-21 2019-12-26 (주)코셋 Wavelength multiplexing/demultiplexing device
CN108646352A (en) * 2018-07-17 2018-10-12 北极光电(深圳)有限公司 A kind of multichannel film filter assembly and preparation method thereof
JP6804698B1 (en) * 2020-02-21 2020-12-23 三菱電機株式会社 Integrated optical module
WO2021166216A1 (en) * 2020-02-21 2021-08-26 三菱電機株式会社 Integrated optical module
CN115104053A (en) * 2020-02-21 2022-09-23 三菱电机株式会社 Integrated optical module
CN115104053B (en) * 2020-02-21 2023-10-20 三菱电机株式会社 Integrated optical module
US20220171208A1 (en) * 2020-11-30 2022-06-02 Jinghui Li Large-spacing multi-channel wdm module
US11668947B2 (en) * 2020-11-30 2023-06-06 Auxora (Shenzhen) Inc. Large-spacing multi-channel WDM module

Also Published As

Publication number Publication date
JP6452900B2 (en) 2019-01-16
JPWO2018008154A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6452900B2 (en) Optical components and optical modules
US9042731B2 (en) Optical module having a plurality of optical sources
US8909058B2 (en) Optical transceiver system
JP5495889B2 (en) Optical multiplexer / demultiplexer and manufacturing method thereof
US6751373B2 (en) Wavelength division multiplexing with narrow band reflective filters
US9065587B2 (en) Optical multiplexing using laser arrays
US9118434B2 (en) Optical transmitting apparatus and optical detecting apparatus
JP2007025422A (en) Wavelength branching filter and optical communication module
US10578804B2 (en) Optical slab
US20100290128A1 (en) Optical module
US20160327746A1 (en) Bidirectional optical multiplexing employing a high contrast grating
US9571219B2 (en) Wavelength-division multiplexer (WDM) and de-multiplexer (WDDM)
JP5983479B2 (en) Optical element
US20210173147A1 (en) Method for manufacturing optical multiplexer/demultiplexer
KR101061521B1 (en) Wavelength multiplier
JPH05203830A (en) Optical multiplexer demultiplexer
JPH0527136A (en) Optical multiplexer/demultiplexer
JP6048182B2 (en) Optical transmission module
WO2018042663A1 (en) Optical component and optical module
JP6195807B2 (en) Optical multiplexer and optical multiplexer manufacturing method
CN111630440B (en) Optical multiplexer/demultiplexer
JP2005241998A (en) Optical filter unit and optical filter module
JP6822319B2 (en) Wavelength Division Optical Transmission Module
JP2005249966A (en) Optical member, its manufacturing method, and optical module
JP6955193B2 (en) Photosynthetic demultiplexer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525622

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908198

Country of ref document: EP

Kind code of ref document: A1