JP2012070305A - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
JP2012070305A
JP2012070305A JP2010214790A JP2010214790A JP2012070305A JP 2012070305 A JP2012070305 A JP 2012070305A JP 2010214790 A JP2010214790 A JP 2010214790A JP 2010214790 A JP2010214790 A JP 2010214790A JP 2012070305 A JP2012070305 A JP 2012070305A
Authority
JP
Japan
Prior art keywords
component
image
gradient
value
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010214790A
Other languages
English (en)
Other versions
JP5254297B2 (ja
Inventor
Toshiyuki Ono
利幸 小野
Yasunori Taguchi
安則 田口
Nobuyuki Matsumoto
信幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010214790A priority Critical patent/JP5254297B2/ja
Priority to US13/179,676 priority patent/US9143755B2/en
Publication of JP2012070305A publication Critical patent/JP2012070305A/ja
Application granted granted Critical
Publication of JP5254297B2 publication Critical patent/JP5254297B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues

Abstract

【課題】奥行感の増した立体感のある画像を生成する。
【解決手段】画像処理装置100は、取得部101と分離部103と処理部104と合成部105とを備える。取得部101は、入力画像に撮像されている被写体の奥行値を取得する。分離部103は、入力画像を、グラデーションを含む成分である第1成分と、第1成分以外の成分である第2成分とに分離する。処理部104は、第1成分を奥行値に応じた強さで強調した処理済成分を生成する。合成部105は、処理済成分と、第2成分とを合成した合成成分を生成する。
【選択図】図1

Description

本発明の実施形態は、画像の立体感を向上させる画像処理装置に関する。
取得した画像について、カメラなどの撮像機器から被写体までの距離が分かっている場合、距離に応じた両眼視差だけずらした2枚の画像を作成し、それぞれ右目と左目で観測することで、両眼立体視により画像を立体的に見ることができる。しかしながら、本システムを実現するためには、例えば、右目用と左目用の映像を空間的または時間的に分割して表示するディスプレイが必要である。また、視聴者は対応する眼鏡をかける必要があるなど、構成が複雑になる。そこで、映像表示を2次元のままに、立体感の増した映像が表示することができれば、簡易的に立体的な映像を視聴できるため、視聴者の利益が大きい。
被写体の陰影を強調することで凹凸感が増し、画像の立体感が増す効果がある。ここで、凹凸感とは、被写体表面の凹凸の表現力と定義する。凹凸感は陰影を表現する要素の1つである、画像のグラデーションを強調する手法が知られている。この手法では、画像の勾配を計算し、勾配強度の小さい成分を強調することで、処理を実現している。
宮岡伸一郎:「画像の勾配空間フィルタリング」、電子情報通信学会技術研究報告、Vol.109、No.182、pp.143−150、2009年8月
しかしながら、従来技術では、全画面一様に陰影が強調されるため、例えば、距離の遠い背景の凹凸感も増す。凹凸感の増した被写体は処理前よりも距離が近く知覚されるため、前景に被写体が存在した場合、前景と背景の距離が近く知覚され、結果的に奥行感の低い平面的な構図の画像となる問題があった。ここで、奥行感とは、被写体間の奥行方向の距離の表現力と定義する。凹凸感と奥行感は共に、画像の立体感を構成する主要な要素であると考えられる。
実施形態の画像処理装置は、取得部と分離部と処理部と合成部とを備える。取得部は、入力画像に撮像されている被写体の奥行値を取得する。分離部は、入力画像を、グラデーションを含む成分である第1成分と、第1成分以外の成分である第2成分とに分離する。処理部は、第1成分を奥行値に応じた強さで強調した処理済成分を生成する。合成部は、処理済成分と、第2成分とを合成した合成成分を生成する。
第1の実施形態に係わる画像処理装置のブロック図。 第1の実施形態に係わる画像処理装置による画像処理のフローチャート。 撮影された画像を示した模式図。 撮影された画像を示した模式図。 奥行値を用いて閾値を設定する画像処理装置のブロック図。 画像の領域を示す図。 入力画像から分離した骨格成分画像と分離成分画像の一例を示す図。 第2の実施形態に係わる画像処理装置のブロック図。 第2の実施形態に係わる画像処理装置による画像処理のフローチャート。 第1または第2の実施形態に係わる画像処理装置のハードウェア構成図。
以下に添付図面を参照して、この発明に係わる画像処理装置の好適な実施形態を詳細に説明する。
(第1の実施形態)
図1は、第1の実施形態に係わる画像処理装置の構成例を示すブロック図である。図1に示すように、第1の実施形態の画像処理装置100は、取得部101と、算出部102と、分離部103と、処理部104と、合成部105とを備えている。
取得部101は、入力画像に撮像されている被写体の奥行値を取得する。算出部102は、入力画像の画素値の勾配を算出する。分離部103は、勾配の大きさに応じて、入力画像を、グラデーションを含む成分である第1成分と、第1成分以外の成分である第2成分とに分離する。
本実施形態では、分離部103は、閾値より大きいか否かにより、算出された勾配を、骨格勾配成分と、骨格勾配成分以外の分離勾配成分とに分離する。そして、分離部103は、骨格勾配成分を勾配として有する骨格成分画像と、分離勾配成分を勾配として有する分離成分画像とを生成する。骨格成分画像には、勾配が強い部分である、例えばエッジが含まれる。分離勾配画像には、勾配が弱い部分である、例えばエッジを除いたグラデーションなどが含まれる。すなわち、分離部103により、入力画像が、グラデーションを含む成分である分離勾配画像(第1成分)と、第1成分以外の成分である骨格成分画像(第2成分)とに分離される。
処理部104は、分離勾配画像を奥行値に応じて処理して処理済成分(処理済成分画像)を生成する。合成部105は、骨格成分画像と処理済成分画像とを合成した合成成分(合成成分画像)を生成する。
次に、図1および図2を用いて、第1の実施形態に係わる画像処理装置100の動作について説明する。なお、図2は、第1の実施形態に係わる画像処理装置100による画像処理の全体の流れの一例を示すフローチャートである。
まず取得部101は、入力画像に映っている被写体の奥行値Rを取得する(ステップS11)。ここで、奥行値とは、入力画像の画素毎に取得される、例えばカメラ等の撮像装置などの所定の視点から被写体までの距離に対応する値のことである。奥行値は、例えば距離センサを用いて直接取得することができる。また、2つの視点から撮影された画像の組であるステレオ画像を用いて、ステレオ画像間の視差に応じて奥行値を取得することもできる。特に、立体映像コンテンツに含まれる、右目用画像と左目用画像を用いて奥行値を取得することができる。また、1枚の画像から、画像のぼやけ度合やコントラストの情報を用いて、奥行値を推定して取得してもよい。ここで、本実施形態では、座標(x,y)における奥行値R(x,y)は、値が大きいほど手前を示し、0から1の値をとるものとする。なお、奥行値の範囲は一例であり、例えば値が小さいほど手前を示す奥行値を用いてもよい。
次に、算出部102は、入力画像の勾配を算出する(ステップS12)。入力画像をIinとしたとき、算出部102は、勾配ginを以下の(1)式で算出する。
Figure 2012070305
ただし、(x,y)は、座標を示すインデックスであり、例えば、Iin(x,y)は、Iinの座標(x,y)における画素値を示す。なお、カラー画像が入力される場合は、例えばYUVのうちY成分(明度)を画素値として処理し、UV成分はY成分に応じて処理する。(1)式に示したように、勾配gin(x,y)は、水平方向(x方向)と垂直方向(y方向)の勾配を持つベクトルである。
次に、分離部103は、算出部102で算出した勾配の大きさに基づいて、骨格成分画像と骨格成分画像を取り除いた残りの分離成分画像とを生成する。まず、分離部103は、勾配を、その大きさに基づいて骨格勾配成分gstと分離勾配成分ggrとに分離する(ステップS13)。分離部103は、例えば、予め定められた閾値Tを用いて、以下の(2)式により、勾配gin(x,y)を骨格勾配成分gstと分離勾配成分ggrとに分離する。
Figure 2012070305
このとき、閾値Tは奥行値に応じて可変にしてもよい。例えば、閾値Tを、奥行値が奥であるほど大きな値とする。例えば、分離部103が、以下の(3)式により、奥行値R(x,y)が小さいほど(奥であるほど)値が大きくなる閾値T(x,y)を算出してもよい。この場合は、(2)式のTを、(3)式のT(x,y)に置き換えればよい。ただし、λは正の実数である。
Figure 2012070305
これにより、ある凹凸情報を持つ物体が、画像中で奥に存在しても手前に存在しても、物体の骨格成分と分離成分を変わらずに分離することができる。この理由を、図3および図4を用いて説明する。図3および図4は、ある物体が、それぞれ異なる奥行で撮影された画像を示した模式図である。
図3に示すように、ある距離で物体402が撮影された画像401について、破線で示した直線の画素値がグラフ411に示すように表されるとする。グラフ411は、物体402が、あるグラデーションを持っていることを示している。
図4の画像501は、図3の画像401と比較して同一の物体402が遠くに撮影された画像を示している。物体402が遠くに撮影されているため、画像中における物体402の面積は小さくなる。従って、グラフ511に示されるように、物体402のグラデーションによる画素値の変化量は変化しないものの、グラデーションの勾配は大きくなることが分かる。そのため、同一の物体が、奥行が変わって撮影されたときに、グラデーション成分を変わらずに抽出するためには、奥行値が奥を示すほど閾値を大きく設定することが有効である。
図5は、奥行値を用いて閾値を設定するように構成した画像処理装置100−2の構成例を示すブロック図である。画像処理装置100−2は、取得部101−2から分離部103−2へ奥行値が入力される点が異なる。
また、骨格勾配成分gstと分離勾配成分ggrの値は、0および0以外の値のみでなく、それぞれ勾配の強さと弱さの程度を示す値にしてもよい。例えば、(2)式の代わりに以下の(4)式を用いることができる。
Figure 2012070305
ただし、h(g)は、勾配の大きさについて単調増加する0から1の実数をとる係数であり、例えば以下の(5)式で表される。ただし、σ、σは正の実数である。
Figure 2012070305
次に、分離部103は、骨格勾配成分gstを勾配として持つ、骨格成分画像Istを生成する(ステップS14)。ある勾配を持つ画像を生成する方法は、ポアソン方程式に問題を帰着して解く方法が広く知られている(例えば、R.Fattalら、「Gradient domain high dynamic range compression」、SIGGRAPH議事録、pp.249−256、2002年)。
分離部103は、図6に示す、画像の端周囲1画素の領域Ωでは入力画像の画素値を保持するという境界条件を表す以下の(6)式を満たしつつ、領域Ωを除く内部の領域Γでは勾配が骨格勾配成分gstに近くなる画像(骨格成分画像)Istを以下の(7)式により算出する。
Figure 2012070305
Figure 2012070305
(7)式は、式変形により、以下の(8)式のポアソン方程式に帰着され、Jacobi法、Gauss−Seidel法、およびSOR法等により解くことができる。
Figure 2012070305
また、骨格成分画像Istは、サイン変換した係数を処理することでも解くことができる。例えば、Jacobi法を用いて解く場合は、以下の(9)式を(x,y)∈Γについて反復する。
Figure 2012070305
(divg)(x,y)は、gの水平方向成分と垂直方向成分をそれぞれg、gとして、以下の(10)式で計算する。
Figure 2012070305
nが事前に定められた数に到達するか、反復によるIst の変化が十分小さくなるまで反復を繰り返した後のIst を、最終的な骨格成分画像Istとする。
次に、分離部103は、分離勾配成分ggrを勾配として持つ、分離成分画像Igrを生成する(ステップS15)。分離成分画像Igrは、以下の(11)式を満たす条件の下で、以下の(12)式により算出する。
Figure 2012070305
Figure 2012070305
(11)式の解法は、ステップS14と同様である。また、分離成分画像は入力画像から骨格成分画像を減算することで算出することもできる。
図7は、入力画像から分離した骨格成分画像と分離成分画像の一例を示す図である。各グラフは、各画像の輝度を1次元で模式的に示したグラフである。グラフ701に示すような波形の画像信号(入力画像)が入力されたとき、骨格成分画像と分離成分画像は、それぞれグラフ711およびグラフ712のような形状となる。
図7に示したように、骨格成分画像は、主に画像のエッジとエッジ間の平均輝度を表す画像である。分離成分画像は、主にグラデーションや微小なテクスチャを含み、陰影を表現する画像である。
なお、骨格成分画像と分離成分画像の算出方法は、ステップS12からステップS15で説明した方法に限らない。例えば、予め画像中で強い勾配を持たない領域が分かっている場合や、グラデーションを含む被写体の領域が分かっている場合は、該当領域毎に画素値を平均することにより骨格成分画像を算出することができる。また、分離成分画像は、入力画像から骨格成分画像を減算することにより算出できる。
次に、処理部104は、奥行値に応じて分離成分画像を処理して処理済成分画像を算出する(ステップS16)。本実施形態では、手前に存在する被写体ほど陰影を強く表現して凹凸感を増すことで、奥に存在する被写体と手前に存在する被写体の奥行方向の距離が広がって知覚される画像を生成し、奥行感の増した画像を取得する。凹凸感の増した被写体は、より手前側に出て知覚される。処理部104は、分離成分画像Igrと奥行値Rにより、以下の(13)式により処理済成分画像を計算する。
Figure 2012070305
ただし、α(r)は、奥行値が手前であるほど大きな値をとる処理係数であり、例えば以下の(14)式で表すことができる。ただし、βは正の定数である。
Figure 2012070305
また、さらに正の定数ωを用いて、以下の(15)式のように非線形の形でα(r)を表してもよい。
Figure 2012070305
以上のように、処理係数αは任意の正数を値としてとることができ、処理係数αが1より大きければ分離成分画像は強調され、出力画像の陰影が強くなる。また、処理係数αが1より小さいときは、分離成分画像は抑制され、出力画像の陰影は弱くなる。さらに、分離成分画像の処理は、処理係数αの乗算に限らない。例えば、以下の(16)式のように加算により絶対値を操作してもよい。
Figure 2012070305
ただし、sign(i)は、iの正負の符号である。また、距離に応じて値を大きく変換するテーブルを予め作成しておき、テーブルにより分離成分画像の絶対値を変換してもよい。
また、ここでは奥行値の取りうる値のうち最も手前を表す値を基準値とし、基準値と奥行値との差分が小さいほど分離成分画像を強調する例を示したが、基準値はこれに限られない。奥行値が中間のある奥行を表す値、または、最奥を表す値を基準値とし、この基準値に近いほど分離成分画像を強調してもよい。例えば、ある中間の奥行値をrbaseとすると、奥行値R(x,y)がrbaseに近いほど大きくなるαを(13)式で用いればよい。αとしては、例えば、ωを正の定数として、以下の(17)式で表される値を用いることができる。
Figure 2012070305
これにより、ある奥行値rbaseにのみ照明が強く当たっている場合などに、該当位置の被写体を強調して表現することができる。
最後に、合成部105は、骨格成分画像Istと、(13)式で算出される処理済成分画像とを合成し、合成成分画像を生成する(ステップS17)。合成部105は、例えば以下の(18)式により合成成分画像Icombを生成する。
Figure 2012070305
以上の処理により生成された合成成分画像Icombが、本実施形態に係わる画像処理装置100の出力画像である。
このように、第1の実施形態に係わる画像処理装置100によれば、画像の陰影を表す成分について、手前の被写体ほど強く表現することで、被写体間の奥行方向の距離の表現力の増した立体感の向上した画像の取得が可能となる。
(第2の実施形態)
図8は、第2の実施形態に係わる画像処理装置200の構成例を示すブロック図である。図8に示すように、第2の実施形態の画像処理装置200は、取得部101と、算出部102と、分離部203と、処理部204と、合成部205とを備えている。
第2の実施形態では、分離部203、処理部204および合成部205の機能と、生成部206を追加したことが第1の実施形態と異なっている。その他の構成および機能は、第1の実施形態に係わる画像処理装置100の構成を表すブロック図である図1と同様であるので、同一符号を付し、ここでの説明は省略する。
分離部203は、勾配の大きさに応じて、入力画像から算出された勾配を、グラデーションを含む成分である第1成分と、第1成分以外の成分である第2成分とに分離する。本実施形態では、閾値より大きいか否かにより分離した分離勾配成分および骨格勾配成分が、それぞれ第1成分および第2成分に相当する。
処理部204は、分離勾配成分を奥行値に応じて処理して処理済成分(処理済分離勾配成分)を生成する。合成部205は、骨格勾配成分と処理済分離勾配成分とを合成した合成成分(合成勾配成分)を生成する。生成部206は、合成勾配成分を勾配として持つ画像を生成する。
次に、図8および図9を用いて、第2の実施形態に係わる画像処理装置200の動作について説明する。なお、図9は、第2の実施形態に係わる画像処理装置200による画像処理の全体の流れの一例を示すフローチャートである。
ステップS31からステップS33までは、第1の実施形態に係わる画像処理装置100におけるステップS11からステップS13までと同様の処理なので、その説明を省略する。
次に、処理部204は、奥行値に応じて分離勾配成分を処理して処理済分離勾配成分を算出する(ステップS34)。ここでは、第1の実施形態と同様に、手前に存在する被写体ほど陰影を強く表現する方法を示す。ただし、陰影を強調する奥行は最も手前を基準とする以外に、奥と手前の中間や、最も奥に設定してもよい。処理部204は、以下の(19)式により処理済分離勾配成分を算出する。
Figure 2012070305
ただし、α(r)は奥行値が手前であるほど大きな値をとる処理係数であり、式(15)や式(17)を用いることができる。また、ggr(x,y)の水平方向成分と垂直方向成分を、異なる係数で処理してもよい。
次に、合成部205は、骨格勾配成分gstと、(19)式により算出された処理済分離勾配成分とから、合成勾配成分gcombを生成する(ステップS35)。合成部205は、以下の(20)式のように、骨格勾配成分gstと処理済分離勾配成分との加算により合成勾配成分gcombを算出する。
Figure 2012070305
次に、生成部206は、合成勾配成分gcombを勾配として持つ画像を、第2の実施形態に係わる画像処理装置200の出力画像Ioutとして生成する(ステップS36)。生成部206の動作は、第1の実施形態のステップS14およびステップS15で説明した動作と同様である。生成部206は、図6に示す画像の端周囲1画素の領域Ωでは入力画像の画素値を保持する境界条件である以下の(21)式を満たしつつ、領域Ωを除く内部の領域Γでは勾配成分がgcombに近くなる画像として、以下の(22)式により出力画像を算出する。
Figure 2012070305
Figure 2012070305
(22)式は、例えば、Jacobi法により解くことができ、以下の(23)式の反復により出力画像が得られる。
Figure 2012070305
nが事前に定められた数に到達するか、反復によるIout の変化が十分小さくなるまで反復を繰り返した後のIout を、最終的な出力画像Ioutとする。
このように、第2の実施形態に係わる画像処理装置200によれば、画像の陰影を表す成分について、手前の被写体ほど強く表現することで、被写体間の奥行方向の距離の表現力の増した立体感の向上した画像の取得が可能となる。
第1の実施形態は、計算コストのかかる勾配成分からの画像生成処理であるステップS14およびステップS15を、分離成分の処理であるステップS16の前に実行する。これにより、処理係数αを変更した場合でも、ステップS14およびステップS15を処理することなくステップS17へ進むことができる。このため、処理係数変更時の計算コストを小さくできる。第2の実施形態は、合成勾配成分から出力画像を生成するため、より自然なグラデーションを持つ画像が取得できる。
これまでの実施形態では画像の立体感を処理する手順を示したが、動画のフレームを処理することで動画を処理することもできる。また、右目用と左目用の2枚の画像を持つ3次元画像コンテンツのそれぞれの画像を処理することで、立体感の向上した3次元画像を生成することができる。また、ディスプレイから複数の視点に視差のついた画像を表示して3次元画像を表示するシステムについても、各画像を処理することで立体感の向上した3次元画像を生成できる。
以上説明したとおり、第1および第2の実施形態によれば、奥行感の増した、立体感のある画像の生成が可能となる。
次に、第1または第2の実施形態に係わる画像処理装置のハードウェア構成について図10を用いて説明する。図10は、第1または第2の実施形態に係わる画像処理装置のハードウェア構成を示す説明図である。
第1または第2の実施形態に係わる画像処理装置は、CPU(Central Processing Unit)51などの制御装置と、ROM(Read Only Memory)52やRAM(Random Access Memory)53などの記憶装置と、ネットワークに接続して通信を行う通信I/F54と、HDD(Hard Disk Drive)、CD(Compact Disc)ドライブ装置などの外部記憶装置と、ディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置と、各部を接続するバス61を備えており、通常のコンピュータを利用したハードウェア構成となっている。
第1または第2の実施形態に係わる画像処理装置で実行される画像処理プログラムは、インストール可能な形式または実行可能な形式のファイルでCD−ROM(Compact Disk Read Only Memory)、フレキシブルディスク(FD)、CD−R(Compact Disk Recordable)、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されてコンピュータプログラムプロダクトとして提供される。
また、第1または第2の実施形態に係わる画像処理装置で実行される画像処理プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、第1または第2の実施形態に係わる画像処理装置で実行される画像処理プログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
また、第1または第2の実施形態の画像処理プログラムを、ROM等に予め組み込んで提供するように構成してもよい。
第1または第2の実施形態に係わる画像処理装置で実行される画像処理プログラムは、上述した各部(取得部、算出部、分離部、処理部、合成部等)を含むモジュール構成となっており、実際のハードウェアとしてはCPU51(プロセッサ)が上記記憶媒体から画像処理プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、上述した各部が主記憶装置上に生成されるようになっている。
なお、本実施形態は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
100、100−2、200 画像処理装置
101 取得部
102 算出部
103、203 分離部
104、204 処理部
105、205 合成部
206 生成部

Claims (7)

  1. 入力画像に撮像されている被写体の奥行値を取得する取得部と、
    前記入力画像を、グラデーションを含む成分である第1成分と、前記第1成分以外の成分である第2成分とに分離する分離部と、
    前記第1成分を前記奥行値に応じた強さで強調した処理済成分を生成する処理部と、
    前記処理済成分と、前記第2成分とを合成した合成成分を生成する合成部と、
    を備えることを特徴とする画像処理装置。
  2. 前記処理部は、予め定められた基準値と前記奥行値との差分が小さいほど、前記第1成分を強調する量を大きくすること、
    を特徴とする請求項1に記載の画像処理装置。
  3. 前記基準値は、前記奥行値の取りうる値のうち最も手前を表す値であること、
    を特徴とする請求項2に記載の画像処理装置。
  4. 前記入力画像の画素値の勾配を算出する算出部をさらに備え、
    前記分離部は、前記入力画像を、前記勾配が閾値以下である前記第1成分と、前記勾配が前記閾値より大きい前記第2成分と、に分離すること、
    を特徴とする請求項1に記載の画像処理装置。
  5. 前記分離部は、算出された前記勾配を、前記閾値以下の前記勾配である第1勾配と前記閾値より大きい前記勾配である第2勾配とに分離し、前記第1勾配を画素値の勾配として有する前記第1成分を生成し、前記第2勾配を画素値の勾配として有する前記第2成分を生成すること、
    を特徴とする請求項4に記載の画像処理装置。
  6. 前記分離部は、算出された前記勾配を、前記閾値以下の前記勾配である前記第1成分と、前記閾値より大きい前記勾配である前記第2成分とに分離し、
    前記合成成分を画素値の勾配として有する画像を生成する生成部をさらに備えること、
    を特徴とする請求項4に記載の画像処理装置。
  7. 前記分離部は、前記奥行値が手前を表すほど小さい値である閾値を用いて、前記入力画像を前記第1成分と前記第2成分とに分離すること、
    を特徴とする請求項4に記載の画像処理装置。
JP2010214790A 2010-09-27 2010-09-27 画像処理装置 Expired - Fee Related JP5254297B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010214790A JP5254297B2 (ja) 2010-09-27 2010-09-27 画像処理装置
US13/179,676 US9143755B2 (en) 2010-09-27 2011-07-11 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214790A JP5254297B2 (ja) 2010-09-27 2010-09-27 画像処理装置

Publications (2)

Publication Number Publication Date
JP2012070305A true JP2012070305A (ja) 2012-04-05
JP5254297B2 JP5254297B2 (ja) 2013-08-07

Family

ID=45870741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214790A Expired - Fee Related JP5254297B2 (ja) 2010-09-27 2010-09-27 画像処理装置

Country Status (2)

Country Link
US (1) US9143755B2 (ja)
JP (1) JP5254297B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175910B2 (ja) 2010-09-16 2013-04-03 株式会社東芝 画像処理装置、画像処理方法およびプログラム
MX2019013865A (es) 2019-04-22 2021-02-18 Takeshi Kuroda Metodo y aparato para producir emblema tridimensional hecho de resina sintetica termoplastica.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363680A (ja) * 2003-06-02 2004-12-24 Pioneer Electronic Corp 表示装置及び方法
JP2005018529A (ja) * 2003-06-27 2005-01-20 Ricoh Co Ltd 画像処理装置
JP2008176447A (ja) * 2007-01-17 2008-07-31 Sony Corp 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
JP2009053748A (ja) * 2007-08-23 2009-03-12 Nikon Corp 画像処理装置、画像処理プログラムおよびカメラ
JP2010147937A (ja) * 2008-12-19 2010-07-01 Sharp Corp 画像処理装置
JP2010154422A (ja) * 2008-12-26 2010-07-08 Casio Computer Co Ltd 画像処理装置
JP2010206362A (ja) * 2009-03-02 2010-09-16 Sharp Corp 映像処理装置、映像処理方法及びそれをコンピュータに実行させるためのプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121294B2 (ja) 2006-05-08 2013-01-16 パナソニック株式会社 画像処理方法、画像処理装置、プログラム、記録媒体および集積回路
US8213052B2 (en) * 2009-07-31 2012-07-03 Eastman Kodak Company Digital image brightness adjustment using range information
JP5175910B2 (ja) 2010-09-16 2013-04-03 株式会社東芝 画像処理装置、画像処理方法およびプログラム
JP5760727B2 (ja) * 2011-06-14 2015-08-12 リコーイメージング株式会社 画像処理装置および画像処理方法
US8553942B2 (en) * 2011-10-21 2013-10-08 Navteq B.V. Reimaging based on depthmap information
US8831336B2 (en) * 2011-11-11 2014-09-09 Texas Instruments Incorporated Method, system and computer program product for detecting an object in response to depth information

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363680A (ja) * 2003-06-02 2004-12-24 Pioneer Electronic Corp 表示装置及び方法
JP2005018529A (ja) * 2003-06-27 2005-01-20 Ricoh Co Ltd 画像処理装置
JP2008176447A (ja) * 2007-01-17 2008-07-31 Sony Corp 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
JP2009053748A (ja) * 2007-08-23 2009-03-12 Nikon Corp 画像処理装置、画像処理プログラムおよびカメラ
JP2010147937A (ja) * 2008-12-19 2010-07-01 Sharp Corp 画像処理装置
JP2010154422A (ja) * 2008-12-26 2010-07-08 Casio Computer Co Ltd 画像処理装置
JP2010206362A (ja) * 2009-03-02 2010-09-16 Sharp Corp 映像処理装置、映像処理方法及びそれをコンピュータに実行させるためのプログラム

Also Published As

Publication number Publication date
US20120076433A1 (en) 2012-03-29
US9143755B2 (en) 2015-09-22
JP5254297B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
CN102474644B (zh) 立体图像显示系统、视差转换装置、视差转换方法
KR101697184B1 (ko) 메쉬 생성 장치 및 그 방법, 그리고, 영상 처리 장치 및 그 방법
Battisti et al. Objective image quality assessment of 3D synthesized views
JP5587894B2 (ja) 深さマップを生成するための方法及び装置
JP5567578B2 (ja) 入力された三次元ビデオ信号を処理するための方法及びシステム
KR101385514B1 (ko) 깊이 맵 정보를 이용한 입체 영상 변환 방법 및 장치
US20120176481A1 (en) Processing image data from multiple cameras for motion pictures
US10095953B2 (en) Depth modification for display applications
WO2010113859A1 (ja) 映像処理装置、映像処理方法及びコンピュータプログラム
JP2012019513A (ja) 2d画像を3d画像に変換するための方法および装置
KR101696918B1 (ko) 3차원 비디오를 위한 컴포트 노이즈 및 필름 그레인 처리
TW201432622A (zh) 產生一關於一影像之深度圖
KR100517517B1 (ko) 중간 시점 영상 합성 방법 및 그를 적용한 3d 디스플레이장치
JP2010063083A (ja) 画像処理装置、および画像処理方法、並びにプログラム
Shao et al. Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection
JP2012120057A (ja) 画像処理装置、および画像処理方法、並びにプログラム
JP2015534745A (ja) 立体画像の生成、送信、及び受信方法、及び関連する装置
KR20110093616A (ko) 오버레이 영역의 3d 영상 변환 방법 및 그 장치
JP5254297B2 (ja) 画像処理装置
JP5488482B2 (ja) 奥行き推定データ生成装置、奥行き推定データ生成プログラム及び擬似立体画像表示装置
JP5515864B2 (ja) 画像処理方法、画像処理装置および画像処理プログラム
JP5500092B2 (ja) 奥行き推定データ生成装置、奥行き推定データ生成プログラム及び擬似立体画像表示装置
JP5711634B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2012084961A (ja) 奥行き信号生成装置、擬似立体画像信号生成装置、奥行き信号生成方法、擬似立体画像信号生成方法、奥行き信号生成プログラム、擬似立体画像信号生成プログラム
Lee et al. View extrapolation method using depth map for 3D video systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees