WO2010113859A1 - 映像処理装置、映像処理方法及びコンピュータプログラム - Google Patents

映像処理装置、映像処理方法及びコンピュータプログラム Download PDF

Info

Publication number
WO2010113859A1
WO2010113859A1 PCT/JP2010/055544 JP2010055544W WO2010113859A1 WO 2010113859 A1 WO2010113859 A1 WO 2010113859A1 JP 2010055544 W JP2010055544 W JP 2010055544W WO 2010113859 A1 WO2010113859 A1 WO 2010113859A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
depth
image
enhanced
frame object
Prior art date
Application number
PCT/JP2010/055544
Other languages
English (en)
French (fr)
Inventor
健明 末永
山本 健一郎
正宏 塩井
大津 誠
幹生 瀬戸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/262,457 priority Critical patent/US20120026289A1/en
Priority to CN2010800150969A priority patent/CN102379127A/zh
Priority to EP10758630A priority patent/EP2416582A4/en
Publication of WO2010113859A1 publication Critical patent/WO2010113859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues

Definitions

  • the present invention relates to a video processing apparatus, a video processing method, and a computer program for causing a computer to operate as the video processing apparatus.
  • a stereoscopic viewing method using binocular parallax has been proposed as one of the methods for enhancing the stereoscopic effect or the sense of depth.
  • the stereoscopic method is a method of giving a viewer an illusion by sending a left-eye parallax image and a right-eye parallax image to each of the viewer's left and right eyes, and giving a stereoscopic effect or a sense of depth to a two-dimensional plane. It is.
  • the method of sending the left-eye parallax image and the right-eye parallax image to each of the left and right eyes is synchronized with the video display device that alternately displays the left-eye parallax image and the right-eye parallax image and the switching frequency of each parallax image. Then, there is a method using glasses that switch the left and right shutters to block the optical path (for example, Patent Document 1).
  • the left-eye parallax image and the right-eye parallax image are color-converted into a red image and a blue image, respectively, and by using a video display device that displays each color-converted image in a superimposed manner, and red and blue glasses, There is an anaglyph method that sends a red image and a blue image to each eye. Furthermore, there is a method of sending a left-eye parallax image and a right-eye parallax image to the left and right eyes, respectively, by using a video display device that displays each of the left-eye parallax image and the right-eye parallax image with different polarizations and polarized glasses. There is (for example, Patent Document 2).
  • trick art uses the above-mentioned pictorial techniques to describe the background in a plane work and the overlapping relationship between each object, so that some of the two-dimensionally drawn objects are almost three-dimensional space in the real world. An illusion can be created as if it were protruding into the plane, giving a three-dimensional effect or depth to the two-dimensional work.
  • the present invention has been made in view of such circumstances, and a video processing apparatus and a video processing method capable of improving the sense of depth of video only by image processing without using a dedicated video display device and special glasses.
  • Another object of the present invention is to provide a computer program for operating a computer as the video processing apparatus.
  • a video processing apparatus is a video processing apparatus that performs a process of enhancing a sense of depth of an input video, and includes depth information indicating a distance in a depth direction of each of a plurality of video portions constituting the video.
  • Depth information acquisition means to be acquired video division means for dividing the video into a plurality of video portions having different distances in the depth direction based on the depth information acquired by the depth information acquisition means and the video, and the video division
  • a depth-enhanced video for emphasizing the depth of the video is superimposed on the one video portion divided by the means, and the depth-enhanced image has another distance in the depth direction shorter than that of the one video portion. It is characterized by comprising video composition means for synthesizing each video portion and the depth-enhanced image so that the video portions are superimposed.
  • the video processing apparatus includes a generation unit that generates a depth-enhanced video having a luminance or color different from that of the video based on the luminance or color of the input video, and the video synthesis unit includes the generation unit.
  • the depth-enhanced video generated in this way is synthesized.
  • the generation unit may be configured such that the luminance or color is based on the luminance or color of one video portion and / or another video portion divided by the video dividing unit.
  • a feature is that different depth-emphasized videos are generated.
  • the video processing apparatus is configured such that a plurality of videos are input in chronological order, and acquires moving direction information indicating the moving direction of the video portion between the videos input in chronological order.
  • a moving direction information acquisition unit is provided, and the generation unit generates a depth-enhanced video having a shape corresponding to the movement direction information acquired by the moving direction information acquisition unit.
  • the video processing apparatus is configured such that a plurality of videos are input in chronological order, and acquires moving direction information indicating the moving direction of the video portion between the videos input in chronological order.
  • the video processing apparatus includes a storage unit that stores a predetermined three-dimensional image, and the generation unit acquires the three-dimensional image stored in the storage unit and the movement direction information acquisition unit.
  • Rotation processing means for rotating the three-dimensional image so that the movement direction indicated by the movement direction information of one video portion has a predetermined positional relationship, and the three-dimensional image rotated by the rotation processing means is A depth-emphasized video having a two-dimensional shape obtained by projecting onto a two-dimensional plane is generated.
  • a video processing method is a video processing method for performing a process of enhancing a sense of depth of an input video, and depth information indicating a distance in a depth direction of each of a plurality of video parts constituting the video.
  • a depth for acquiring the depth information and the video based on the acquired depth information and dividing the video into a plurality of video parts having different distances in the depth direction, and emphasizing the depth of the video in the divided video part The emphasis video is superimposed, and each video portion and the depth emphasis image are synthesized so that another video portion having a shorter distance in the depth direction than the one video portion is superimposed on the depth emphasis image.
  • a computer program according to the present invention is a computer program that causes a computer to execute processing for enhancing a sense of depth of an image, and indicates the distance in the depth direction of each of a plurality of image portions constituting the image. Based on the depth information and the video, a step of dividing the video into a plurality of video parts having different distances in the depth direction, and a depth-enhanced video for emphasizing the depth of the video in the divided video part. A step of superimposing and further synthesizing each video portion and the depth-enhanced image such that another video portion having a shorter distance in the depth direction than the one video portion is superimposed on the depth-enhanced image.
  • the depth information indicating the distance in the depth direction of each of the plurality of video portions constituting the video is acquired, and based on the acquired depth information, the video is a plurality of videos having different distances in the depth direction. Divide into parts. A depth-enhanced video for emphasizing the depth of the video is superimposed on at least one video part, and another video part having a shorter distance in the depth direction than the one video part is further superimposed on the depth-enhanced image. Each video portion and the depth-enhanced image are synthesized so as to be superimposed.
  • the synthesized video is one video part, depth-enhanced video, and other video part superimposed in this order, so the depth of one video part and the other video part is depth-enhanced video. Is emphasized by. Specifically, when a depth-enhanced video is superimposed on a part of one video part, the viewer recognizes that the depth-enhanced video is located on the near side of the one video part. In addition, when another video portion is superimposed on a part of the depth-enhanced video, the viewer recognizes that the other video portion is positioned on the near side of the depth-enhanced video portion. Therefore, it is possible to give the viewer a sense of depth that one video portion and another video portion are separated in the depth direction.
  • depth-enhanced videos is not limited to one, and each video part and depth-enhanced video are divided so that the video is divided into three or more video parts and the depth-enhanced video is inserted between each video part.
  • the technical idea of synthesizing is also included in the present invention.
  • the generation unit generates a depth-enhanced video having a luminance or color different from that of the video based on the luminance or color of the input video. Therefore, the depth-enhanced image and the video portion have different brightness or color. Therefore, it is possible to effectively enhance the depth of one video part and another video part.
  • the generation means generates a depth-enhanced video having a luminance or color different from that of the video portion based on the luminance or color of one video portion and / or another video portion. Therefore, the depth-enhanced image and the video portion have different brightness or color. Therefore, it is possible to effectively enhance the depth of one video part and another video part.
  • the movement direction information acquisition means acquires movement direction information indicating the movement direction of the video portion between the videos input in chronological order.
  • generation means produces
  • the storage means stores a three-dimensional image that is the basis of the depth-enhanced video.
  • the rotation processing unit rotates the three-dimensional image so that the three-dimensional image stored in the storage unit and the movement direction indicated by the movement direction information acquired by the movement direction information acquisition unit have a predetermined positional relationship. Let That is, the three-dimensional image rotates so as to face the moving direction of the video part.
  • the generation unit generates a depth-enhanced video having a two-dimensional shape obtained by projecting the rotated three-dimensional image onto a predetermined two-dimensional plane. Therefore, the synthesized depth-enhanced video has a shape that faces the moving direction of the video part. Therefore, the movement of the video part is emphasized.
  • the three-dimensional image means an image in a three-dimensional space, and the three-dimensional image includes a planar image as well as a three-dimensional image in the three-dimensional space.
  • FIG. 10 is a block diagram illustrating a configuration example of a video processing apparatus according to Modification 1.
  • FIG. 10 is a block diagram illustrating a configuration example of a video processing apparatus according to Modification 2.
  • FIG. 10 is a block diagram illustrating a configuration example of a video processing apparatus according to Modification 2.
  • FIG. 1 is a block diagram showing a configuration example of a video processing apparatus 1 according to an embodiment of the present invention.
  • the video processing apparatus 1 according to the present embodiment includes a video acquisition unit 11, a depth information acquisition unit 12, a video division unit 13, a pop-out information acquisition unit 14, a frame object generation unit 15, and a video synthesis unit 16.
  • the video acquisition unit 11 acquires a video to be processed to improve the stereoscopic effect or the depth feeling, and outputs the acquired video to the video dividing unit 13.
  • the video acquired by the video acquisition unit 11 may be either a still image or a moving image.
  • a still image is composed of one frame of video
  • a moving image is composed of multiple frames of video in time series order.
  • the video may be compressed by a predetermined encoding method such as JPEG (Joint Photographic Experts Group), MPEG-2 (Moving Picture Expert Group phase 2) or the like, or may be uncompressed. good.
  • the image acquisition unit 11 obtains the acquired image by decoding the acquired image into, for example, an RGB format or a YUV format according to a predetermined encoding method.
  • the video is output to the video dividing unit 13.
  • processing performed on one frame of video that constitutes a still image or a moving image is performed.
  • FIG. 2 is an explanatory diagram showing an example of the video acquired by the video acquisition unit 11.
  • the video shown in FIG. 2 is data indicating the brightness and color of each of a plurality of pixels arranged two-dimensionally, and a plurality of objects having different distances in the depth direction, such as birds, trees, sun, sky, clouds, etc. It consists of video corresponding to the subject.
  • the distance in the depth direction refers to the distance between the subject related to the object and a predetermined position, for example, the position of the photographing apparatus used for capturing the video.
  • the distance is referred to as depth as appropriate.
  • the depth information acquisition unit 12 acquires depth information indicating the depth of each of the plurality of objects constituting the video obtained from the video acquisition unit 11, and outputs the acquired depth information to the video division unit 13.
  • the distance between the imaging device and each subject in the depth direction is measured at the time of imaging, and depth information having distance information obtained by measurement is input to the video processing device 1 separately from the video. Shall be.
  • what is necessary is just to measure the distance between an imaging device and each to-be-photographed object, for example applying a stereo method.
  • a common subject is imaged by two imaging units that are separated from each other, the parallax of the subject in the two images captured by each imaging unit is calculated, and the imaging device and the subject are calculated based on the principle of triangulation. Find the distance.
  • the imaging apparatus is provided with an infrared irradiating unit for ranging to irradiate the subject with infrared rays and an infrared detecting unit for measuring the intensity of infrared rays reflected from the subject, and based on the intensity of infrared rays reflected from each subject. The distance between the imaging device and the subject may be obtained.
  • FIG. 3 is an explanatory diagram conceptually showing depth information.
  • an image having depth information associated with each of a plurality of objects constituting a video is called a depth image.
  • the depth is indicated by numbers in ascending order of 1, 2,.
  • the depth image is composed of a plurality of pixels similar to the input video, and any numerical value of 1 to 5 indicating the depth corresponding to each pixel constituting the input video is And assigned as pixel values of each pixel of the depth image.
  • the depth information is shown in five stages. However, the depth information may be less than five or more than five, and of course, there is no problem even if the information is shown steplessly. .
  • the video division unit 13 divides the video acquired by the video acquisition unit 11 into a foreground video portion F11 and a background video portion F12 based on the depth information acquired by the depth information acquisition unit 12 (FIGS. 4A and 4B). reference). Then, the video dividing unit 13 outputs the divided foreground video part F11 and background video part F12 to the frame object generation unit 15 and the video composition unit 16. Specifically, the video dividing unit 13 compares the depth corresponding to each pixel of the acquired video with a predetermined threshold, and if the depth is less than the threshold, the pixel is set as the pixel of the foreground video portion F11. If the depth is greater than or equal to the threshold value, the pixel of the background video portion F12 is used.
  • the threshold value is a constant stored in advance by the video dividing unit 13.
  • the variable indicating the foreground video portion F11 and the background video portion F12 is Px (n)
  • the variable indicating the depth of each pixel is Depth (n)
  • Px (n) is represented by the following formulas (1) and (2).
  • Px (n) background (Th1 ⁇ Depth (n)) (1)
  • Px (n) Foreground (Th1 ⁇ Depth (n)) (2)
  • FIG. 4A is an explanatory diagram conceptually showing a foreground video portion F11 and FIG. 4B is a conceptual diagram showing a background video portion F12.
  • the threshold Th1 is 2
  • the foreground video portion F11 (white region surrounded by a solid line in FIG. 4A).
  • the background video portion F12 (a white region surrounded by a solid line in FIG. 4B (a region excluding a gray region surrounded by a broken line)).
  • the threshold value Th1 has been described as a value recorded in advance in the video dividing unit 13, but may be a value that can be freely set by a viewer using the video processing device 1. Further, the threshold Th1 may be obtained by calculation.
  • the pop-out information acquisition unit 14 acquires pop-out information indicating the pop-out direction set for each object in the video F ⁇ b> 1 and outputs the acquired pop-out information to the frame object generation unit 15.
  • the pop-out direction is information indicating in which direction the pop-out feeling should be given when emphasizing the pop-out of each object in the video.
  • the pop-up information includes a vertical axis (vertical direction) of the image F1 as a Y axis, a horizontal direction (horizontal direction) as an X axis, and a virtual axis in the front-rear direction perpendicular to the image plane. It is represented by a three-dimensional vector in a three-dimensional space with the Z axis.
  • This pop-out information is specified for each object as shown in FIG. 5B. In this embodiment, the pop-out information is handled as a normalized unit vector.
  • the frame object generation unit 15 determines the shape of the frame object H3 based on the storage unit 15a that stores information that is the basis of the frame object H3 (see FIG. 9) for emphasizing the depth of the video, and the pop-out information.
  • a rotation processing unit 15b and a projection conversion unit 15c, and a color determination unit 15d that determines the luminance and color of the frame object H3 based on the luminance and color of the foreground video portion F11 and the background video portion F12.
  • the frame object H3 is inserted between the foreground video portion F11 and the background video portion F12 to give a sense of relative distance between the foreground and the background, and to allow the viewer to perceive a stereoscopic effect and a sense of depth. It is an object for.
  • a frame-shaped image surrounding the outer periphery of the image F1 is generated as the frame object H3.
  • the storage unit 15a stores in advance information that is the basis of the frame object H3. Specifically, a three-dimensional image in a three-dimensional space is stored. Hereinafter, the three-dimensional image is referred to as an original three-dimensional frame object H1 (see FIG. 6).
  • FIG. 6 is an explanatory diagram conceptually showing the original three-dimensional frame object H1.
  • the original three-dimensional frame object H1 has a rectangular frame shape that is centered at the origin in the three-dimensional space and substantially parallel to the XY plane.
  • H2 represents a normal vector H2 of the original three-dimensional frame object H1.
  • the frame object generation unit 15 determines the shape of the frame object H3 based on the original three-dimensional frame object H1 and the pop-out information.
  • 7A to 7C are explanatory diagrams conceptually showing a method for determining the shape of the frame object H3.
  • FIG. 7A it is assumed that an object F21 exists in the video F2 and its pop-out information is designated.
  • the video F2 is a simplified version of the video F1 in order to explain the method of generating the frame object H3.
  • the shape of the frame object H3 is such that the original three-dimensional frame object H1 is rotated according to the pop-out direction in the virtual three-dimensional space shown in FIG. 7B, that is, given an inclination, and the inclined three-dimensional frame objects H11, H21 ( Obtained by projecting onto the XY plane. Details will be described below.
  • an inclination vector that defines the inclination of the original three-dimensional frame object H1 is calculated.
  • the inclination vector is expressed by the following equation (4).
  • (X1, y1, z1) (a * x, b * y, c * z) (4)
  • (x1, y1, z1) is pop-out information
  • a, b, c are constants (0 ⁇ a, b, c ⁇ 1.0) stored in advance by the frame object generation unit 15.
  • the rotation processing unit 15b rotates the original three-dimensional frame object H1 so that the normal vector H2 of the original three-dimensional frame object H1 matches the inclination vector (x1, y1, z1).
  • the projective conversion unit 15c converts the three-dimensional frame objects H11 and H21 after the rotation processing into a two-dimensional shape that is orthogonally projected onto the XY plane, and stores the two-dimensional shape as the shape of the frame object H3.
  • the rotation processing unit 15b rotates the original three-dimensional frame object H1 so that the normal vector H2 of the original three-dimensional frame object H1 substantially matches the inclination vector (0, 0, 1).
  • the final shape obtained by projecting the three-dimensional frame object H11 after the rotation processing onto the XY plane is the shape shown in the XY plane of FIG. 7B.
  • the gradient vector is (x, 0, ⁇ (1 ⁇ x ⁇ 2)).
  • the rotation processing unit 15b moves the original three-dimensional frame object H1 so that the normal vector H2 of the original three-dimensional frame object H1 substantially matches the inclination vector (x, 0, ⁇ (1 ⁇ x ⁇ 2)).
  • the final shape obtained by projecting the three-dimensional frame object H21 after the rotation processing onto the XY plane has a shape as shown in the XY plane of FIG.
  • the frame object generation unit 15 determines the luminance and color of the frame.
  • 8A to 8F are explanatory diagrams conceptually showing a method of determining the brightness and color of the frame object H3.
  • the color determination unit 15d determines the color of the frame object H3 based on the luminance of the entire video, that is, the luminance of both the foreground video portion F11 and the background video portion F12.
  • 8A is an image F3 acquired by the image acquisition unit 11 at a certain point in time
  • FIG. 8B is a luminance histogram of the image F3.
  • the average value of the luminance of the image F3 is represented by f3.
  • the color determination unit 15d stores in advance the threshold Th2, the color C1 of the frame object H3 when the average luminance f3 is equal to or greater than the threshold Th2, and the color C2 of the frame object H3 when it is less than the threshold Th2. . Note that the color C1 and the color C2 have different luminance. Since the average luminance f3 of the video F3 is equal to or greater than the threshold Th2, the color determination unit 15d determines C1 as the color of the frame object H3 as illustrated in FIG. 8C.
  • FIG. 8D is a video F4 acquired by the video acquisition unit 11 at another time point
  • FIG. 8E is a luminance histogram of the video F4.
  • the average value of the luminance of the video F4 is represented by f4. Since the average luminance f4 of the video F4 is less than the threshold Th2, the color determination unit 15d determines the color C2 as the color of the frame object H3 as shown in FIG. 8F.
  • the color of the frame object H3 is not particularly limited. However, it is preferable to select a color whose luminance is lower than the threshold Th2 when the average luminance is equal to or higher than the threshold Th2, and a color whose luminance is higher than the threshold Th2 when the average luminance is lower than the threshold Th2.
  • the constant d may be stored in advance in the color determination unit 15d, and the luminance of the frame object H3 may be determined by the following equations (5) and (6).
  • Luminance of frame object H3 average luminance ⁇ d (average luminance ⁇ threshold Th2) (5)
  • Luminance of frame object H3 average luminance + d (average luminance ⁇ threshold Th2) (6)
  • a translucent frame object H3 may be generated based on the background video portion F12.
  • the frame object H3 is translucent, even if the background video portion F12 is obscured by the frame object H3, the viewer can know the content of the obscured background video portion F12. Therefore, it is possible to reduce the amount of information reduction of the video and to emphasize the depth of the video.
  • the frame object H3 may be arranged as an object simulating a frame, a window frame, a television frame, or the like.
  • the color of the frame object H3 is determined based on the colors of the images F3 and F4, for example, the average saturation. May be determined to be different from the color of the video.
  • the luminance and color of the frame object H3 may be determined based on the luminance and color of the images F3 and F4.
  • the color and brightness of the frame object H3 may be determined based on the average brightness of only the foreground video portion F11. good. That is, the color and brightness of the frame object H3 may be determined so that the brightness of the foreground video portion F11 and the brightness of the frame object H3 are different. In this case, since the difference between the frame object H3 and the foreground video portion F11 is significant, the depth of the foreground video portion F11 can be effectively enhanced. Similarly, the color and brightness of the frame object H3 may be determined based on the average brightness of only the background video portion F12.
  • the color and luminance of the frame object H3 may be determined so that the luminance of the background video portion F12 and the luminance of the frame object H3 are different.
  • the difference between the frame object H3 and the background video portion F12 is conspicuous, the depth of the background video portion F12 can be effectively enhanced.
  • the average luminance of the foreground video portion F11 and the background video portion F12 is calculated separately, and the luminance and color of the frame object H3 are determined so that the calculated average luminance and the luminance of the frame object H3 are different.
  • You may comprise as follows. In this case, since the differences among the frame object H3, the foreground video portion F11, and the background video portion F12 are conspicuous, the depths of the foreground video portion F11 and the background video portion F12 can be effectively enhanced.
  • the frame object generation unit 15 generates a frame object H3 having the shape determined by the projection conversion unit 15c and the color determined by the color determination unit 15d, and outputs the generated frame object H3 to the video composition unit 16. .
  • FIG. 1A and 9B are explanatory diagrams conceptually showing the processing contents of the video composition unit 16.
  • the video composition unit 16 receives the foreground video portion F11 and the background video portion F12 output from the video division unit 13 and the frame object H3 output from the frame object generation unit 15.
  • 9A and 9B the video composition unit 16 superimposes the background video portion F12 on the background video portion F12 so that the frame object H3 is superimposed on the background video portion F12, and the foreground video portion F11 is superimposed on the frame object H3.
  • the frame object H3 and the foreground video portion F11 are combined. Further, when the shapes and dimensions of the video and the frame object H3 do not match, as shown in FIG.
  • an area outside the frame object H3 is generated, but the video composition unit 16 has a background that protrudes outside the frame object H3.
  • predetermined complementary videos I1 and I2 are synthesized in the area.
  • the foreground video portion F11 that protrudes outside the frame object H3 is displayed as it is. That is, the foreground image portion F11 is displayed so as to be superimposed on the complementary images I1 and I2.
  • the complementary images I1 and I2 are arbitrary images such as a monochrome image and a wall texture, for example.
  • the video when the video around the display device can be acquired, the video may be displayed as a complementary video.
  • the video composition unit 16 outputs a composite video obtained by combining the background video part F12, the frame object H3, and the foreground video part F11 to the external display unit 2.
  • the display unit 2 is, for example, a liquid crystal display panel, a plasma display, or an organic EL (Electro-Luminescence) display, and receives the synthesized video output from the video processing device 11 and displays the synthesized video.
  • the display unit 2 is exemplified as the output destination of the composite video, a printer, a transmission device, and other various output devices may be employed as long as the composite video can be output.
  • FIG. 10 is a flowchart showing the flow of the video processing method performed by the video processing apparatus 1.
  • each component starts operation, and the video acquisition unit 11 acquires the video input to the video processing device 1 and outputs the acquired video to the video division unit 13 ( Step S11).
  • the depth information acquisition unit 12 acquires the depth information input to the video processing device 1 and outputs the acquired depth information to the video division unit 13 (step S12).
  • the video dividing unit 13 inputs the video and depth information, and determines the arrangement position of the frame object H3 based on the video and depth information (step S13).
  • the video dividing unit 13 divides the video into a foreground video portion F11 and a background video portion F12 based on the depth information and the video based on the arrangement position of the frame object H3, and the divided foreground video portion F11 and background video are divided.
  • the part F12 is output to the frame object generation unit 15 and the video composition unit 16 (step S14).
  • the pop-out information acquisition unit 14 acquires the pop-out information input to the video processing device 1 and outputs the acquired pop-out information to the frame object generation unit 15 (step S15).
  • the frame object generation unit 15 generates a frame object H3 and outputs the generated frame object H3 to the video composition unit 16 (step S16).
  • FIG. 11 is a flowchart showing a flow of operation of the frame object generation unit 15.
  • the frame object generation unit 15 reads the original three-dimensional frame object H1 from the storage unit 15a (step S31). Then, the rotation processing unit 15b of the frame object generation unit 15 executes a process of rotating the original three-dimensional frame object H1 according to the pop-out information (step S32), and the projection conversion unit 15c performs the three-dimensional processing after the rotation process.
  • the shape of the frame object H3 is determined by projective transformation of the frame objects H11 and H21 (step S33).
  • the color determination unit 15d determines the luminance and color of the frame object H3 based on the luminance and color of the video (step S34), and finishes the process related to the generation of the frame object H3.
  • the video composition unit 16 inputs the foreground video portion F11, the background video portion F12, and the frame object H3, and superimposes the background video portion F12, the frame object H3, and the foreground video portion F11 in this order.
  • the complementary images I1 and I2 are synthesized, and the synthesized video obtained by the synthesis is output to the display unit 2 (step S17).
  • the display unit 2 inputs the synthesized video output from the video synthesizing unit 16, displays the synthesized video (step S18), and ends the process.
  • the video processing procedure for one frame of video has been described above. However, when processing a plurality of frames of video constituting a moving image, the same video processing may be executed for each video. Note that if the arrangement position, shape, and color of the frame object H3 change suddenly with respect to a plurality of frames of video, the viewer may feel uncomfortable, so the arrangement position determined for each video adjacent in time series, A low-pass filter that keeps the generated shape and color variation constant may be provided.
  • the video processing device 1 and the video processing method configured as described above it is possible to improve the sense of depth of video only by image processing without using a dedicated video display device and special glasses.
  • the video processing apparatus 1 and the video processing method according to the present embodiment include a liquid crystal television including a display unit 2, a television such as an organic EL television and a plasma television, a still image camera including the display unit 2, a video camera, and a mobile phone.
  • PDA Personal Digital Assistants
  • other portable devices personal computers, information displays, BD (Blu-ray Disc: registered trademark) recorders, DVD (Digital Versatile Disc) recorders, HDD (Hard Disk Drive recorders)
  • the present invention can be applied to various recorders such as recorders, digital photo frames, and other furniture and home appliances provided with a display.
  • FIG. 12 is a block diagram illustrating a configuration example of the video processing apparatus 101 according to the first modification.
  • the depth information is configured to be acquired separately from the video.
  • the video processing apparatus 101 according to the modification 1 obtains depth information from the video acquired by the video acquisition unit 111 by various operations. Is configured to get. Specifically, since the configurations of the video acquisition unit 111 and the depth information acquisition unit 112 are different, the differences will be mainly described below.
  • the video acquisition unit 111 acquires a video to be processed to improve the stereoscopic effect or the depth feeling, and outputs the acquired video to the video dividing unit 13 and also to the depth information acquisition unit 112.
  • the depth information acquisition unit 112 receives the video output from the video acquisition unit 111, calculates depth information based on the input video, and outputs the calculated depth information to the video division unit 13.
  • depth information may be created from the encoded information.
  • MPEG-4 Moving Picture Expert Group phase4
  • MPEG Moving Picture Experts Group
  • the video can be divided into the foreground video portion F11 and the background video portion F12 without inserting depth information to the video processing device 101, and the frame object H3 can be inserted. Can be emphasized.
  • FIG. 13 is a block diagram illustrating a configuration example of the video processing apparatus 201 according to the second modification.
  • the pop-up information is configured to be acquired separately from the video.
  • the video processing device 201 according to the modification 2 obtains the pop-out information by various calculations from the video acquired by the video acquisition unit 211. Is configured to get.
  • the configurations of the video acquisition unit 211 and the pop-out information acquisition unit 214 are different, the above differences will be mainly described below.
  • the video acquisition unit 211 acquires a video to be processed to improve a stereoscopic effect or a depth feeling, in particular, a moving image encoded in units of objects such as a background and a person, and the acquired video is supplied to the video dividing unit 13. Output to the pop-out information acquisition unit 214.
  • the pop-out information acquisition unit 214 calculates a change in the moving direction and size of the object in the video constituting the continuous frame. Then, the pop-out information acquisition unit 214 calculates an X-axis vector component of the pop-out information based on the amount of movement of the object in the horizontal direction. In the three-dimensional space shown in FIG. 7, when the object is moving in the positive X-axis direction, the X-axis vector component of the pop-out information is set to a positive value, and the value is set to be larger as the movement amount of the object is larger.
  • the pop-out information acquisition unit 214 calculates the Y-axis vector component of the pop-out information based on the amount of vertical movement of the object.
  • the pop-out information acquisition unit 214 changes in the direction in which the size of the object increases, the Z-axis vector component of the pop-out information is set to a positive value, and the value of the pop-out information acquisition unit 214 increases as the amount of change in the size of the object increases. Set a larger value.
  • the X-axis vector component of the pop-out information is set to a negative value, and the absolute value of the value is set to increase as the amount of change in the object size increases. To do.
  • the video can be divided into the foreground video portion F11 and the background video portion F12 without inserting the pop-out information to the video processing device 201, and the frame object H3 can be inserted. Can be emphasized.
  • the first modification and the second modification may be combined, and the depth information and the pop-out information may be calculated from the video input to the video processing apparatus 201.
  • the depth of the video can be emphasized without giving both the depth information and the pop-out information to the video processing device 201.
  • the frame-type frame object H3 is illustrated as the depth-enhanced video that emphasizes the depth of the video.
  • the video processing device 1 according to the modification 3 displays the curtain object H301 instead of the frame object H3. It is configured as follows. Specifically, the video processing device 1 according to the modification 3 includes a curtain object generation unit (not shown) instead of the frame object generation unit 15.
  • FIG. 14 is a schematic diagram showing a curtain object H301 that is an example of a depth-enhanced video.
  • the curtain object generation unit stores curtain-shaped curtain objects H301 located on both sides in the horizontal direction of the video, and outputs the curtain objects H301 to the video composition unit 16.
  • the shape and color of the curtain object H301 are constant regardless of the content of the video.
  • the curtain object generation unit inputs the foreground video portion F11 and the background video portion F12, and changes the color and luminance of the curtain object H301 based on the luminance of the foreground video portion F11 and the background video portion F12. You may comprise.
  • the original three-dimensional curtain object having a three-dimensional shape is stored, pop-out information is input, and the original three-dimensional curtain object is rotated and projectively converted using the pop-out information, thereby generating a two-dimensional shape curtain object H301. May be configured to generate.
  • the frame shape is exemplified in the embodiment, and the curtain shape is illustrated in the third modification.
  • the shape of the depth-enhanced video is not limited to this as long as the depth of the video can be emphasized.
  • a bracket-enhanced depth-enhanced video may be employed.
  • the depth-enhanced video is preferably configured to be located on the end side of the video so that the main part of the background video is not hidden.
  • Modification 4 In the embodiment, as shown in FIG. 7B, when the pop-out information of the video has only the Z-axis component, the shape of the frame object H403 is not particularly deformed, so that the pop-out in the Z-axis direction cannot be emphasized.
  • the video processing device 1 according to the modification 4 changes the shape of the frame object H403 so as to protrude in the Z-axis direction, thereby moving the frame object H403 toward the viewer side. It is constructed so that the popping out of the can be emphasized. Since only the processing content of the frame object generation unit 15 is different from the embodiment, the above differences will be mainly described below.
  • FIG. 15 is an explanatory diagram conceptually showing a method for determining the shape of the frame object H403 according to the fourth modification.
  • the frame object generation unit 15 includes only the Z-axis component of the pop-out information, or when the Z-axis component is larger than the X-axis component and the Y-axis component by a predetermined value or more, particularly when the Z-axis component is positive, FIG. As shown in FIG.
  • the horizontal center portion of the original three-dimensional frame object H401 is bent so as to protrude in the positive direction of the X axis with a substantially central portion in the horizontal direction as a mountain, and further, the horizontal frame portion (long side portion of the frame) of the original three-dimensional frame object H401 Is deformed into a three-dimensional shape that is spread in the vertical direction. Then, the frame object generation unit 15 calculates a two-dimensional shape obtained by projecting the deformed three-dimensional frame object H401 onto the XY plane, and determines the calculated two-dimensional shape as the shape of the frame object H403.
  • the frame object generation unit 15 bends the original three-dimensional frame object H401 so that it protrudes in the negative direction of the X-axis with the substantially horizontal central portion of the original three-dimensional frame object H401 as a valley.
  • the horizontal frame portion (long side portion of the frame) of the object H401 is deformed into a three-dimensional shape that is narrowed by pushing in the vertical direction.
  • the frame object generation unit 15 calculates a two-dimensional shape obtained by projecting and transforming the deformed three-dimensional frame object H401 onto the XY plane, and determines the calculated two-dimensional shape as the shape of the frame object.
  • the processing content of the video composition unit 16 is the same as in the present embodiment.
  • the video composition unit 16 synthesizes the background video part F12 so that the frame object H403, the complementary videos I401, I402, I403, and I404, and the foreground video part F11 are sequentially superimposed, and the synthesized video part obtained by the synthesis is externally generated. Output to.
  • the video processing device 1 and the video processing method according to the modified example 4 there are two images in which the object moves in the Z-axis direction, that is, the object approaches the near side, or the object jumps out to the near side. Even in a video in which the pop-out directions of the left and right are different, for example, a video in which a person located in the center spreads both hands toward the left and right ends of the screen, the pop-out feeling can be emphasized.
  • FIG. 16 is a block diagram illustrating a video processing apparatus according to the fifth modification.
  • the video processing apparatus according to the modified example 5 is realized by causing the computer 3 to execute the computer program 4a according to the present invention.
  • the computer 3 includes a CPU (Central Processing Unit) 31 that controls the entire apparatus.
  • the CPU 31 includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33 for storing temporary information generated in accordance with the calculation, and a recording medium on which the computer program 4a according to the embodiment of the present invention is recorded.
  • An external storage device 34 that reads the computer program 4a from 4a, for example, a CD-ROM, and an internal storage device 35 such as a hard disk that records the computer program 4a read by the external storage device 34 are connected.
  • the CPU 31 implements the video processing method according to the present invention by reading the computer program 4a from the internal storage device 35 into the RAM 33 and executing various arithmetic processes.
  • the processing procedure of the CPU 31 is as shown in FIGS.
  • the processing procedure is the same as the processing content of each component that configures the video processing device 1 according to the present embodiment and the modification 4, and thus detailed description thereof is omitted.
  • the computer 3 can function as the video processing apparatus according to the present embodiment, and the video processing method according to the present embodiment can be performed. The same effects as in the embodiment and the first to fourth modifications are obtained.
  • the computer program 4a according to the fifth modification is not limited to the one recorded in the recording medium 4, and is downloaded, stored, and executed via a wired or wireless communication network. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

専用の映像表示装置及び特殊な眼鏡を用いず、画像処理のみによって映像の奥行き感を向上させることができる映像処理装置を提供する。映像取得部11にて取得した映像の奥行き感を強調する処理を行う映像処理装置1に、前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報を取得する奥行き情報取得部12と、奥行き情報取得部12にて取得した奥行き情報及び前記映像に基づいて、映像を奥行き方向の距離が異なる複数の映像部分に分割する映像分割部13と、映像分割部13にて分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成する映像合成部16とを備える。

Description

映像処理装置、映像処理方法及びコンピュータプログラム
 入力された映像の奥行き感を強調する処理を行う映像処理装置、映像処理方法、及びコンピュータを前記映像処理装置として動作させるためのコンピュータプログラムに関する。
 テレビ、携帯電話などの映像表示装置に表示される二次元映像の立体感又は奥行き感を高める様々な手法が提案されている。例えば、立体感又は奥行き感を高める方法の一つとして両眼視差を利用した立体視手法が提案されている。立体視手法は、視聴者の左右の目それぞれに、左目用視差画像と、右目用視差画像とを送ることによって、視聴者に錯覚を起こさせ、二次元平面に立体感又は奥行き感を与える手法である。
 左右の目それぞれに左目用視差画像及び右目用視差画像を送る方式には、左目用視差画像と右目用視差画像とを交互に切り替えて表示する映像表示装置と、各視差画像の切り替え周波数に同期して、左右のシャッタを切り替えて光路を遮断する眼鏡とを用いた方式がある(例えば、特許文献1)。
 また、左目用視差画像及び右目用視差画像を夫々赤色画像及び青色画像に色変換し、色変換された各画像を重畳的に表示する映像表示装置と、赤青眼鏡とを用いることによって、左右の目それぞれに赤色画像及び青色画像を送るアナグリフ方式がある。
 更に、左目用視差画像及び右目用視差画像それぞれを異なる偏光にて表示する映像表示装置と、偏光眼鏡とを用いることによって、左右の目それぞれに左目用視差画像及び右目用視差画像を送る方式がある(例えば、特許文献2)。
 他方、絵画の分野では、遠近法、陰影法、前進色及び後退色の組み合わせなどの絵画的技巧を利用して絵画の立体感又は奥行き感を高めることが行われている。これらの絵画的技巧を利用して作成される絵画作品は、トリックアート又はトロンプ・ルイユと呼ばれている。トリックアートは、前述の絵画的技巧を利用して、平面作品における背景、各オブジェクト間の重畳関係を描写することで、二次元的に描写されたオブジェクトの一部が恰も現実世界の三次元空間に飛び出しているように錯覚を起こさせ、平面作品に立体感又は奥行き感を与えることができる。
特開昭60-7291号公報 特開平1-171390号公報
 しかしながら、特許文献1,2に係るシステムにおいては、専用の映像表示装置及び特殊な眼鏡を用意する必要があった。また、視聴者は特殊な眼鏡の装着を義務付けられ、視聴方法が著しく制限されるという問題があった。
 本発明は、斯かる事情に鑑みてなされたものであり、専用の映像表示装置及び特殊な眼鏡を用いず、画像処理のみによって映像の奥行き感を向上させることができる映像処理装置、映像処理方法及びコンピュータを前記映像処理装置として動作させるためのコンピュータプログラムを提供することを目的とする。
 本発明に係る映像処理装置は、入力された映像の奥行き感を強調する処理を行う映像処理装置であって、前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報を取得する奥行き情報取得手段と、該奥行き情報取得手段にて取得した奥行き情報及び前記映像に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割する映像分割手段と、該映像分割手段にて分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成する映像合成手段とを備えることを特徴とする。
 本発明に係る映像処理装置は、入力された映像の輝度又は色に基づいて、輝度又は色が該映像と異なる奥行き強調映像を生成する生成手段を備え、前記映像合成手段は、前記生成手段にて生成された奥行き強調映像を合成するようにしてあることを特徴とする。
 本発明に係る映像処理装置は、前記生成手段は、前記映像分割手段にて分割された一の映像部分及び/又は他の映像部分の輝度又は色に基づいて、輝度又は色が該映像部分と異なる奥行き強調映像を生成するようにしてあることを特徴とする。
 本発明に係る映像処理装置は、時系列順に複数の映像が入力されるように構成されており、時系列順に入力された各映像間における映像部分の移動方向を示した移動方向情報を取得する移動方向情報取得手段を備え、前記生成手段は、該移動方向情報取得手段にて取得した移動方向情報に応じた形状を有する奥行き強調映像を生成するようにしてあることを特徴とする。
 本発明に係る映像処理装置は、時系列順に複数の映像が入力されるように構成されており、時系列順に入力された各映像間における映像部分の移動方向を示した移動方向情報を取得する移動方向情報取得手段と、該移動方向情報取得手段にて取得した移動方向情報に応じた形状を有する奥行き強調映像を生成する生成手段とを備え、前記映像合成手段は、前記生成手段にて生成された奥行き強調映像を合成するようにしてあることを特徴とする。
 本発明に係る映像処理装置は、所定の三次元画像を記憶する記憶手段を備え、前記生成手段は、前記記憶手段が記憶している三次元画像と、前記移動方向情報取得手段にて取得した一の映像部分の移動方向情報が示す移動方向とが所定の位置関係になるように、該三次元画像を回転させる回転処理手段を備え、該回転処理手段にて回転した三次元画像を所定の二次元平面に射影させて得られる二次元形状を有する奥行き強調映像を生成するようにしてあることを特徴とする。
 本発明に係る映像処理方法は、入力された映像の奥行き感を強調する処理を行う映像処理方法であって、前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報を取得し、取得した奥行き情報及び前記映像に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割し、分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成することを特徴とする。
 本発明に係るコンピュータプログラムは、コンピュータに、映像の奥行き感を強調する処理を実行させるコンピュータプログラムであって、前記コンピュータに、前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報及び前記映像に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割するステップと、分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成するステップとを実行させることを特徴とする。
 本発明にあっては、映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報を取得し、取得した奥行き情報に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割する。そして、少なくとも一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像が合成される。合成された映像は、一の映像部分、奥行き強調映像、及び他の映像部分がこの順で重畳的に合成されたものであるため、一の映像部分及び他の映像部分の奥行きが奥行き強調映像によって強調される。
 具体的には、一の映像部分の一部に奥行き強調映像が重畳的に合成された場合、視聴者は、奥行き強調映像が一の映像部分の手前側に位置していると認識する。また、奥行き強調映像の一部に他の映像部分が重畳的に合成された場合、視聴者は、他の映像部分が奥行き強調映像部分の手前側に位置していると認識する。従って、一の映像部分と、他の映像部分とが奥行き方向に離隔しているという奥行き感を、視聴者に与えることが可能になる。
 なお、奥行き強調映像の数は1つに限定されず、映像を、3以上の映像部分に分割し、各映像部分間夫々に奥行き強調映像が挿入されるように、各映像部分及び奥行き強調映像を合成する技術的思想も本発明に含まれる。
 本発明にあっては、生成手段は、入力された映像の輝度又は色に基づいて、輝度又は色が該映像と異なる奥行き強調映像を生成する。従って、奥行き強調画像と、映像部分とは異なる輝度又は色を有する。よって、一の映像部分及び他の映像部分の奥行きを効果的に強調することが可能になる。
 本発明にあっては、生成手段は、一の映像部分及び/又は他の映像部分の輝度又は色に基づいて、輝度又は色が該映像部分と異なる奥行き強調映像を生成する。従って、奥行き強調画像と、映像部分とは異なる輝度又は色を有する。よって、一の映像部分及び他の映像部分の奥行きを効果的に強調することが可能になる。
 本発明にあっては、移動方向情報取得手段は、時系列順に入力された各映像間における映像部分の移動方向を示した移動方向情報を取得する。そして、生成手段は、取得した移動方向情報に応じた形状を有する奥行き強調画像を生成する。つまり、生成手段は、映像部分の移動を強調することが可能な形状を有する奥行き強調画像を生成する。
 本発明にあっては、記憶手段は、奥行き強調映像の元になる三次元画像を記憶している。回転処理手段は、記憶手段が記憶している三次元画像と、移動方向情報取得手段にて取得した移動方向情報が示す移動方向とが所定の位置関係になるように、該三次元画像を回転させる。つまり、三次元画像は、映像部分の移動方向を向くように回転する。そして、生成手段は、回転した三次元画像を所定の二次元平面に射影させて得られる二次元形状を有する奥行き強調映像を生成する。従って、合成される奥行き強調映像は、映像部分の移動方向を向いたような形状となる。よって、映像部分の移動が強調される。
 なお、三次元画像とは、三次元空間における画像を意味し、三次元画像には、三次元空間における立体的な画像はもちろん、平面的な画像も含まれる。
 本発明によれば、専用の映像表示装置及び特殊な眼鏡を用いず、画像処理のみによって映像の奥行き感を向上させることができる。
本発明の実施の形態に係る映像処理装置の一構成例を示すブロック図である。 映像取得部が取得した映像の一例を示す説明図である。 奥行き情報を概念的に示す説明図である。 前景映像部分を概念的に示す説明図である。 背景映像部分を概念的に示す説明図である。 飛び出し情報を概念的に示した説明図である。 飛び出し情報を概念的に示した説明図である。 原三次元枠オブジェクトを概念的に示す説明図である。 枠オブジェクトの形状決定方法を概念的に示す説明図である。 枠オブジェクトの形状決定方法を概念的に示す説明図である。 枠オブジェクトの形状決定方法を概念的に示す説明図である。 枠オブジェクトの輝度及び色の決定方法を概念的に示す説明図である。 枠オブジェクトの輝度及び色の決定方法を概念的に示す説明図である。 枠オブジェクトの輝度及び色の決定方法を概念的に示す説明図である。 枠オブジェクトの輝度及び色の決定方法を概念的に示す説明図である。 枠オブジェクトの輝度及び色の決定方法を概念的に示す説明図である。 枠オブジェクトの輝度及び色の決定方法を概念的に示す説明図である。 映像合成部の処理内容を概念的に示す説明図である。 映像合成部の処理内容を概念的に示す説明図である。 映像処理装置が実施する映像処理方法の流れを示すフローチャートである。 枠オブジェクト生成部の動作の流れを示すフローチャートである。 変形例1に係る映像処理装置の一構成例を示すブロック図である。 変形例2に係る映像処理装置の一構成例を示すブロック図である。 奥行き強調映像の一例であるカーテンオブジェクトを示す模式図である。 変形例4に係る枠オブジェクトの形状決定方法を概念的に示す説明図である。 変形例5に係る映像処理装置を示すブロック図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
 図1は、本発明の実施の形態に係る映像処理装置1の一構成例を示すブロック図である。本実施の形態に係る映像処理装置1は、映像取得部11、奥行き情報取得部12、映像分割部13、飛び出し情報取得部14、枠オブジェクト生成部15及び映像合成部16を備える。
<映像取得部>
 映像取得部11は、立体感又は奥行き感を向上させる映像処理対象の映像を取得し、取得した映像を映像分割部13へ出力する。映像取得部11にて取得される映像は、静止画像又は動画像のいずれでも良い。静止画は、1フレームの映像で構成され、動画像は、時系列順の複数フレームの映像で構成される。また、該映像は、所定の符号化方式、例えばJPEG(Joint Photographic Experts Group)、MPEG-2(Moving Picture Expert Group phase2)等で圧縮されたものであっても、非圧縮のものであっても良い。符号化された映像を取得する構成である場合、映像取得部11は、取得した映像を所定の符号化方式に従って、該映像を例えばRGB形式やYUV形式の映像に復号し、復号して得た映像を映像分割部13へ出力する。
 以下、本実施の形態では、説明の簡単のため、静止画又は動画を構成する1フレームの映像に対して行う処理を説明するが、動画の場合、時系列順に連続する各フレームの映像に対して同様の処理を行うものとする。
 図2は、映像取得部11が取得した映像の一例を示す説明図である。図2に示した映像は、二次元に配列された複数の画素夫々の輝度及び色を示したデータであり、奥行き方向の距離が異なる複数のオブジェクト、例えば鳥、木、太陽、空、雲等の被写体に相当する映像から構成されている。奥行き方向の距離とは、オブジェクトに係る被写体と、所定位置、例えば該映像の撮像に用いた撮影装置の位置との距離をいう。以下、該距離を適宜、奥行きという。
<奥行き情報取得部>
 奥行き情報取得部12は、映像取得部11から得られる映像を構成する複数のオブジェクト夫々の奥行きを示した奥行き情報を取得し、取得した奥行き情報を映像分割部13へ出力する。本実施の形態では、奥行き方向における撮影装置及び各被写体間の距離を撮像時に計測しておき、計測して得られた距離の情報を有する奥行き情報が映像とは別に映像処理装置1に入力されるものとする。
 なお、撮影装置及び各被写体間の距離は、例えばステレオ法を応用して計測すれば良い。具体的には、離隔配置した2つの撮像部で共通の被写体を撮像し、各撮像部で撮像された2枚の映像における被写体の視差を算出し、三角測量の原理により撮像装置と被写体との距離を求める。
 また、被写体に赤外線を照射する測距用の赤外線照射部と、被写体で反射された赤外線の強度を測定する赤外線検出部とを撮像装置に設け、各被写体から反射された赤外線の強度に基づいて、撮像装置と被写体との距離を求めても良い。
 図3は、奥行き情報を概念的に示す説明図である。図3に示すように、映像を構成する複数のオブジェクト夫々に対応付けられた奥行きの情報を有する画像を奥行き画像という。奥行きは、例えば、距離の短い順に1、2、…、5の昇順の数字で示されている。具体的には、奥行き画像は、入力された映像と同様の複数の画素から構成されており、入力された映像を構成する各画素に対応する奥行きを示した1~5のいずれかの数値が、奥行き画像の各画素の画素値として割り当てられている。なお、ここでは説明の簡単のために、奥行き情報を5段階で示すものとするが、奥行き情報は5段階未満乃至は5段階より多くても良く、もちろん無段階で示すものとしても問題はない。
<映像分割部>
 映像分割部13は、映像取得部11で取得した映像を、奥行き情報取得部12で取得した奥行き情報に基づいて、前景映像部分F11と、背景映像部分F12とに分割する(図4A及び図4B参照)。そして、映像分割部13は、分割した前景映像部分F11及び背景映像部分F12を、枠オブジェクト生成部15及び映像合成部16へ出力する。具体的には、映像分割部13は、取得した映像の各画素に対応する奥行きと、所定の閾値とを比較し、奥行きが閾値未満である場合、該画素を前景映像部分F11の画素とし、奥行きが閾値以上である場合、背景映像部分F12の画素とする。閾値は、映像分割部13が予め記憶している定数である。
 各画素を示した変数をn=0、1、2…、前景映像部分F11及び背景映像部分F12の別を示す変数をPx(n)、各画素の奥行きを示す変数をDepth(n)、閾値をTh1とした場合、Px(n)は、下記式(1)、(2)で表される。
 Px(n)=背景 (Th1<Depth(n))…(1)
 Px(n)=前景 (Th1≧Depth(n))…(2)
 図4Aは前景映像部分F11を、図4Bは背景映像部分F12を、それぞれ概念的に示す説明図である。閾値Th1が2である場合、図2に示した映像F1は、図3に示した奥行き画像G1及び閾値Th1=2に基づき、前景映像部分F11(図4A中の実線で囲まれた白色領域)と背景映像部分F12(図4B中の実線で囲まれた白色領域(破線で囲まれたグレー領域を除いた領域))に分割される。
 なお、閾値Th1は予め映像分割部13に記録されている値として説明を行ったが、映像処理装置1を使用する視聴者が自由に設定できる値としても良い。また、閾値Th1を計算で求めても良い。例えば、閾値Th1は、下記式(3)で表される。
 Th=(ΣDepth(n))/(w*h)…(3)
 但し、nは0、1、2、…、w*hの整数、hは映像F1の高さ(垂直方向に配列した画素の数)、wは映像F1の幅(水平方向に配列した画素の数)である。
<飛び出し情報取得部>
 飛び出し情報取得部14は、映像F1内の各オブジェクトに設定された飛び出しの方向を示した飛び出し情報を取得し、取得した飛び出し情報を枠オブジェクト生成部15へ出力する。ここで、飛び出しの方向とは、映像内の各オブジェクトの飛び出しを強調する際に、どちらの方向に飛び出し感を与えるべきかを示した情報である。
 図5A及び図5Bは、飛び出し情報を概念的に示した説明図である。飛び出し情報は例えば、図5Aに示すように、映像F1の縦方向(垂直方向)をY軸、横方向(水平方向)をX軸、映像面に対して垂直な前後方向の仮想的な軸をZ軸とした3次元空間における3次元のベクトルで表される。この飛び出し情報は、図5Bに示すように、オブジェクトごとに指定されているものとする。なお、本実施の形態では飛び出し情報は正規化された単位ベクトルとして扱うものとする。
<枠オブジェクト生成部>
 枠オブジェクト生成部15は、映像の奥行きを強調するための枠オブジェクトH3(図9参照)の基になる情報を記憶する記憶部15aと、飛び出し情報に基づいて、枠オブジェクトH3の形状を決定するための回転処理部15b及び射影変換部15cと、前景映像部分F11及び背景映像部分F12の輝度及び色に基づいて枠オブジェクトH3の輝度及び色を決定する色決定部15dとを備える。ここで枠オブジェクトH3とは、前景映像部分F11と、背景映像部分F12との間に挿入することで前景及び背景との相対的な距離感を与え、視聴者に立体感、奥行き感を知覚させるためのオブジェクトである。本実施の形態では、枠オブジェクトH3として、映像F1の外周を囲う枠状の映像を生成する。
 記憶部15aは、枠オブジェクトH3の基になる情報を予め記憶している。具体的には、三次元空間における三次元画像を記憶している。以下、該三次元画像を原三次元枠オブジェクトH1(図6参照)という。
 図6は、原三次元枠オブジェクトH1を概念的に示す説明図である。原三次元枠オブジェクトH1は、三次元空間における原点に中心が位置し、XY平面に略平行な矩形枠状をなしている。H2は、原三次元枠オブジェクトH1の法線ベクトルH2を示している。
 まず、枠オブジェクト生成部15は、原三次元枠オブジェクトH1と、飛び出し情報とに基づいて、枠オブジェクトH3の形状を決定する。
 図7A~図7Cは、枠オブジェクトH3の形状決定方法を概念的に示す説明図である。ここでは、図7Aに示すように、映像F2内にオブジェクトF21が存在し、その飛び出し情報が指定されているものとする。なお、映像F2は、枠オブジェクトH3の生成方法を説明すべく、映像F1を簡略化したものである。枠オブジェクトH3の形状は、図7Bで示した仮想的な3次元空間中で原三次元枠オブジェクトH1を飛び出し方向に応じて回転させ、即ち傾きを与え、傾いた三次元枠オブジェクトH11,H21(図7C参照)をXY平面上に射影することによって得られる。以下、詳細に説明する。
 まず、原三次元枠オブジェクトH1の傾きを規定する傾きベクトルを算出する。傾きベクトルは下記式(4)で表される。
 (x1,y1,z1)=(a*x,b*y,c*z)…(4)
 但し、(x1,y1,z1)は飛び出し情報、a,b,cは、枠オブジェクト生成部15が予め記憶している定数(0≦a,b,c≦1.0)である。
 そして、回転処理部15bは、原三次元枠オブジェクトH1の法線ベクトルH2が傾きベクトル(x1,y1,z1)に一致するように、原三次元枠オブジェクトH1を回転させる。
 次いで、射影変換部15cは、回転処理後の三次元枠オブジェクトH11,H21をXY平面に正射影した二次元形状に変換し、該二次元形状を枠オブジェクトH3の形状として記憶する。
 例えば、図7Bに示すようにオブジェクトF21の飛び出し情報が(0,0,1)で与えられ、a=1.0、b=1.0、c=1.0である場合、傾きベクトルは(0,0,1)となる。そして、回転処理部15bは、原三次元枠オブジェクトH1の法線ベクトルH2が傾きベクトル(0,0,1)と略一致するように、該原三次元枠オブジェクトH1を回転させる。回転処理後の三次元枠オブジェクトH11をXY平面上に投射した最終的な形状は図7BのXY平面に示した形となる。
 また、図7Cに示すように、オブジェクトF21の飛び出し情報が(x,0,√(1-x^2))で与えられ、a=1.0、b=1.0、c=1.0である場合、傾きベクトルは(x,0,√(1-x^2))となる。そして、回転処理部15bは、原三次元枠オブジェクトH1の法線ベクトルH2が傾きベクトル(x,0,√(1-x^2)と略一致するように、該原三次元枠オブジェクトH1を回転させる。回転処理後の三次元枠オブジェクトH21をXY平面上に投射した最終的な形状は図7CのXY平面に示すような形となる。
 次に、枠オブジェクト生成部15は枠の輝度及び色を決定する。
 図8A~図8Fは、枠オブジェクトH3の輝度及び色の決定方法を概念的に示す説明図である。色決定部15dは、枠オブジェクトH3の色を映像全体の輝度、つまり前景映像部分F11及び背景映像部分F12双方の輝度に基づいて決定する。図8Aは、特にある一の時点で映像取得部11が取得した映像F3、図8Bは、映像F3の輝度ヒストグラムであり、映像F3の輝度の平均値がf3で表されている。色決定部15dは、予め閾値Th2と、平均輝度f3が閾値Th2以上であった場合の枠オブジェクトH3の色C1と、閾値Th2未満であった場合の枠オブジェクトH3の色C2を記憶している。なお、色C1及び色C2は、異なる輝度を有している。映像F3の平均輝度f3は閾値Th2以上であるため、色決定部15dは、図8Cに示すように枠オブジェクトH3の色としてC1を決定する。
 同様に、図8Dは他の時点で映像取得部11が取得した映像F4、図8Eは、映像F4の輝度ヒストグラムであり、映像F4の輝度の平均値がf4で表されている。映像F4の平均輝度f4は閾値Th2未満であるため、色決定部15dは、図8Fに示すように枠オブジェクトH3の色として色C2を決定する。
 なお、枠オブジェクトH3の色については、特に限定されない。但し、平均輝度が閾値Th2以上である場合は閾値Th2より輝度が低い色を、平均輝度が閾値Th2より低い場合は閾値Th2より輝度が高い色を選ぶ方が好ましい。
 また、予め定数dを色決定部15dに記憶させておき、枠オブジェクトH3の輝度を下記式(5)、(6)で決定するようにすると良い。
 枠オブジェクトH3の輝度=平均輝度-d (平均輝度≧閾値Th2)…(5)
 枠オブジェクトH3の輝度=平均輝度+d (平均輝度<閾値Th2)…(6)
 更に、背景映像部分F12に基づいて、半透明の枠オブジェクトH3を生成するように構成しても良い。枠オブジェクトH3が半透明である場合、枠オブジェクトH3によって背景映像部分F12が覆い隠されても、視聴者は、覆い隠された背景映像部分F12の内容を伺い知ることができる。従って、映像の情報削減量を抑え、かつ映像の奥行きを強調することができる。
 更にまた、枠オブジェクトH3を額縁、窓の枠やテレビの枠などを模したオブジェクトとして配置しても良い。
 更にまた、映像F3,F4の輝度に基づいて、枠オブジェクトH3の色C1,C2を決定する例を説明したが、映像F3,F4の色、例えば平均彩度に基づいて、枠オブジェクトH3の色を映像の色と異なるように決定するように構成しても良い。また、映像F3,F4の輝度及び色夫々に基づいて、枠オブジェクトH3の輝度及び色を決定するように構成しても良い。
 更にまた、映像全体の輝度に基づいて枠オブジェクトH3の色及び輝度を決定する例を説明したが、前景映像部分F11のみの平均輝度に基づいて、枠オブジェクトH3の色及び輝度を決定しても良い。つまり、前景映像部分F11の輝度と、枠オブジェクトH3の輝度とが異なるように、該枠オブジェクトH3の色及び輝度を決定しても良い。この場合、枠オブジェクトH3と、前景映像部分F11との差異が際だつため、前景映像部分F11の奥行きを効果的に強調することが可能になる。
 同様に、背景映像部分F12のみの平均輝度に基づいて、枠オブジェクトH3の色及び輝度を決定しても良い。つまり、背景映像部分F12の輝度と、枠オブジェクトH3の輝度とが異なるように、該枠オブジェクトH3の色及び輝度を決定しても良い。この場合、枠オブジェクトH3と、背景映像部分F12との差異が際だつため、背景映像部分F12の奥行きを効果的に強調することが可能になる。
 更に、前景映像部分F11及び背景映像部分F12の平均輝度を各別に算出し、算出された各平均輝度と、枠オブジェクトH3の輝度とが異なるように、該枠オブジェクトH3の輝度及び色を決定するように構成しても良い。この場合、枠オブジェクトH3、前景映像部分F11、背景映像部分F12夫々の差異が際だつため、前景映像部分F11及び背景映像部分F12の奥行きを効果的に強調することが可能になる。
 枠オブジェクト生成部15は、射影変換部15cにて決定した形状と、色決定部15dにて決定した色とを有する枠オブジェクトH3を生成し、生成した枠オブジェクトH3を映像合成部16へ出力する。
<映像合成部>
 図9A及び図9Bは、映像合成部16の処理内容を概念的に示す説明図である。映像合成部16は、映像分割部13から出力された前景映像部分F11及び背景映像部分F12と、枠オブジェクト生成部15から出力された枠オブジェクトH3を入力する。そして、映像合成部16は、図9A及び図9Bに示すように背景映像部分F12に枠オブジェクトH3が重畳され、更に枠オブジェクトH3に前景映像部分F11が重畳されるように、背景映像部分F12、枠オブジェクトH3及び前景映像部分F11を合成する。また、映像及び枠オブジェクトH3の形状及び寸法が一致しない場合、図9Bに示すように、枠オブジェクトH3の外側の領域が発生するが、映像合成部16は、枠オブジェクトH3の外側にはみ出た背景映像部分F12を表示させないように、該領域には所定の補完映像I1,I2を合成する。なお、枠オブジェクトH3の外側にはみ出た前景映像部分F11は、そのまま表示させる。つまり、補完映像I1,I2に重畳させるように、前景映像部分F11を表示させる。補完映像I1,I2は、例えば、単色の映像、壁のテクスチャ等の任意の映像である。枠オブジェクトH3の外側にはみ出た背景映像部分F12をそのまま表示した場合、視聴者が背景映像部分F12の奥行きを誤って認識するおそれがあるところ、補完映像I1,I2によって、枠オブジェクトH3の外側にはみ出た映像部分を覆うことによって、奥行きの誤認を防止することができ、効果的に映像の奥行きを強調することが可能になる。
 なお、表示装置周辺の映像を取得できる場合は、該映像を補完映像として表示することとしても良い。
 映像合成部16は、背景映像部分F12、枠オブジェクトH3及び前景映像部分F11の合成によって得られた合成映像を外部の表示部2へ出力する。
 表示部2は、例えば液晶表示パネル、プラズマディスプレイ、有機EL(Electro-Luminescence)ディスプレイであり、映像処理装置11から出力された合成映像を入力し、合成映像を表示する。
 なお、合成映像の出力先として表示部2を例示したが、合成映像を出力することが可能であれば、プリンタ、送信装置その他、各種出力装置を採用しても良い。
 図10は、映像処理装置1が実施する映像処理方法の流れを示すフローチャートである。処理動作開始の指示が与えられた場合、各構成部は動作を開始し、映像取得部11は、映像処理装置1に入力した映像を取得し、取得した映像を映像分割部13へ出力する(ステップS11)。次いで、奥行き情報取得部12は、映像処理装置1に入力した奥行き情報を取得し、取得した奥行き情報を映像分割部13へ出力する(ステップS12)。
 そして、映像分割部13は、映像及び奥行き情報を入力し、該映像及び奥行き情報に基づいて、枠オブジェクトH3の配置位置を決定する(ステップS13)。次いで、映像分割部13は、奥行き情報及び映像を枠オブジェクトH3の配置位置に基づいて、映像を前景映像部分F11と、背景映像部分F12とに分割し、分割された前景映像部分F11及び背景映像部分F12を枠オブジェクト生成部15及び映像合成部16へ出力する(ステップS14)。
 次いで、飛び出し情報取得部14は、映像処理装置1に入力した飛び出し情報を取得し、取得した飛び出し情報を枠オブジェクト生成部15へ出力する(ステップS15)。
 そして、枠オブジェクト生成部15は、枠オブジェクトH3の生成を生成し、生成した枠オブジェクトH3を映像合成部16へ出力する(ステップS16)。
 図11は、枠オブジェクト生成部15の動作の流れを示すフローチャートである。枠オブジェクト生成部15は、記憶部15aから原三次元枠オブジェクトH1を読み出す(ステップS31)。そして、枠オブジェクト生成部15の回転処理部15bは、飛び出し情報に応じて、原三次元枠オブジェクトH1を回転させる処理を実行し(ステップS32)、射影変換部15cは、回転処理後の三次元枠オブジェクトH11,H21の射影変換によって、枠オブジェクトH3の形状を決定する(ステップS33)。
 そして、色決定部15dは、映像の輝度及び色に基づいて、枠オブジェクトH3の輝度及び色を決定し(ステップS34)、枠オブジェクトH3の生成に係る処理を終える。
 ステップS16の処理に次いで、映像合成部16は、前景映像部分F11及び背景映像部分F12と、枠オブジェクトH3とを入力し、背景映像部分F12、枠オブジェクトH3、前景映像部分F11をこの順で重畳的に合成し、また補完映像I1,I2を合成し、合成して得た合成映像を表示部2へ出力する(ステップS17)。
 そして、表示部2は、映像合成部16から出力された合成映像を入力し、該合成映像を表示し(ステップS18)、処理を終える。
 以上、1フレームの映像に対する映像処理手順を説明したが、動画を構成する複数フレームの映像を処理する場合、同様の映像処理を各映像に対して実行すれば良い。
 なお、複数フレームの映像に対して枠オブジェクトH3の配置位置、形状及び色が急激に変化すると視聴者に違和感を与えるおそれがあるため、時系列順に隣り合う各映像夫々で決定された配置位置、生成された形状及び色の変化量を一定に抑えるローパスフィルタを備えても良い。
 このように構成された映像処理装置1及び映像処理方法にあっては、専用の映像表示装置及び特殊な眼鏡を用いず、画像処理のみによって映像の奥行き感を向上させることができる。
 なお、本実施の形態に係る映像処理装置1及び映像処理方法は、表示部2を備える液晶テレビ、有機ELテレビ、プラズマテレビ等のテレビ、表示部2を備える静止画カメラ、ビデオカメラ、携帯電話機、PDA(Personal Digital Assistants)等の各種携帯機器、パーソナルコンピュータ、インフォメーションディスプレイ、映像を出力するBD(Blu-ray Disc:登録商標)レコーダ、DVD(Digital Versatile Disc)レコーダ、HDD(Hard Disk Drive)レコーダ等の各種レコーダ、デジタルフォトフレーム、その他ディスプレイが設けられた各種家具及び家電に適用することが可能である。
(変形例1)
 図12は、変形例1に係る映像処理装置101の一構成例を示すブロック図である。本実施の形態では、奥行き情報を映像とは別に取得するように構成されているところ、変形例1に係る映像処理装置101は、映像取得部111にて取得した映像から各種演算によって奥行き情報を取得するように構成されている。具体的には、映像取得部111及び奥行き情報取得部112の構成が異なるため、以下では主に上記相異点について説明する。
 映像取得部111は、立体感又は奥行き感を向上させる映像処理対象の映像を取得し、取得した映像を映像分割部13へ出力すると共に、奥行き情報取得部112へ出力する。
 奥行き情報取得部112は、映像取得部111から出力された映像を入力し、入力した映像に基づいて奥行き情報を算出し、算出して得た奥行き情報を映像分割部13へ出力する。
 奥行き情報の算出方法は、例えば特開平9-161074号公報に示された方法を利用すれば良い。
 また、映像がなんらかの方式で符号化されている場合、その符号化情報から奥行き情報を作成しても良い。例えばMoving Picture Experts Group(MPEG)によって作られた標準動画規格の一つであるMPEG-4(Moving Picture Expert Group phase4)では背景や人物などのオブジェクト単位で符号化することが可能である。映像が該機能を用いて、背景と人物が別々に符号化されていた場合は、この情報を用いて奥行き情報を作成する。
 変形例1にあっては、映像処理装置101に奥行き情報を与えなくても、映像を前景映像部分F11、背景映像部分F12に分割し、枠オブジェクトH3を挿入することができ、映像の奥行きを強調することができる。
(変形例2)
 図13は、変形例2に係る映像処理装置201の一構成例を示すブロック図である。本実施の形態では、飛び出し情報を映像とは別に取得するように構成されているところ、変形例2に係る映像処理装置201は、映像取得部211にて取得した映像から各種演算によって飛び出し情報を取得するように構成されている。具体的には、映像取得部211及び飛び出し情報取得部214の構成が異なるため、以下では主に上記相異点について説明する。
 映像取得部211は、立体感又は奥行き感を向上させる映像処理対象の映像、特に、背景や人物などのオブジェクト単位で符号化された動画の映像を取得し、取得した映像を映像分割部13へ出力すると共に、飛び出し情報取得部214へ出力する。
 飛び出し情報取得部214は、連続するフレームを構成する映像中のオブジェクトの移動方向及び大きさの変化を算出する。そして、飛び出し情報取得部214は、オブジェクトの水平方向の移動量に基づいて、飛び出し情報のX軸ベクトル成分を算出する。図7に示す三次元空間において、オブジェクトがX軸正方向へ移動している場合、飛び出し情報のX軸ベクトル成分を正の値とし、オブジェクトの移動量が大きい程、該値を大きく設定する。逆に、オブジェクトがX軸負方向へ移動している場合、飛び出し情報のX軸ベクトル成分を負の値とし、オブジェクトの移動量が大きい程、該値の絶対値を大きく設定する。
 同様に、飛び出し情報取得部214は、オブジェクトの垂直方向の移動量に基づいて、飛び出し情報のY軸ベクトル成分を算出する。
 また、飛び出し情報取得部214は、オブジェクトの大きさが大きくなる方向へ変化している場合、飛び出し情報のZ軸ベクトル成分を正の値とし、オブジェクトの大きさの変化量が大きい程、該値を大きく設定する。逆に、オブジェクトの大きさが小さくなる方向へ変化している場合、飛び出し情報のX軸ベクトル成分を負の値とし、オブジェクトの大きさの変化量が大きい程、該値の絶対値を大きく設定する。
 変形例2にあっては、映像処理装置201に飛び出し情報を与えなくても、映像を前景映像部分F11、背景映像部分F12に分割し、枠オブジェクトH3を挿入することができ、映像の奥行きを強調することができる。
 なお、変形例1及び変形例2を組み合わせ、映像処理装置201に入力した映像から奥行き情報及び飛び出し情報夫々を算出するように構成しても良い。この場合、映像処理装置201に奥行き情報及び飛び出し情報の双方を与えなくても、映像の奥行きを強調することができる。
(変形例3)
 実施の形態では、映像の奥行きを強調する奥行き強調映像として、額縁型の枠オブジェクトH3を例示したところ、変形例3に係る映像処理装置1は、枠オブジェクトH3に代えてカーテンオブジェクトH301を表示するように構成されている。具体的には、変形例3に係る映像処理装置1は、枠オブジェクト生成部15に代えて、図示しないカーテンオブジェクト生成部を備える。
 図14は、奥行き強調映像の一例であるカーテンオブジェクトH301を示す模式図である。カーテンオブジェクト生成部は、映像の水平方向両側夫々に位置するカーテン形状のカーテンオブジェクトH301を記憶しており、該カーテンオブジェクトH301を映像合成部16へ出力する。カーテンオブジェクトH301の形状及び色は映像の内容に拘わらず一定である。なお、言うまでもなく、カーテンオブジェクト生成部が前景映像部分F11及び背景映像部分F12を入力し、該前景映像部分F11及び背景映像部分F12の輝度に基づいて、カーテンオブジェクトH301の色及び輝度を変更するように構成しても良い。また、三次元形状の原三次元カーテンオブジェクトを記憶しておき、飛び出し情報を入力し、該飛び出し情報を用いて原三次元カーテンオブジェクトを回転及び射影変換することによって、二次元形状のカーテンオブジェクトH301を生成するように構成しても良い。
 なお、奥行き強調映像の一例として実施の形態では枠形状、変形例3ではカーテン形状を例示したが、映像の奥行きを強調可能であれば、奥行き強調映像の形状はこれに限定されない。例えば、かぎ括弧形状の奥行き強調映像を採用しても良い。なお、背景映像の主要部分が隠れ無いよう、奥行き強調映像は、映像の端側に位置するように構成する方が好ましい。
(変形例4)
 実施の形態では、図7Bに示すように映像の飛び出し情報がZ軸成分のみを有する場合、枠オブジェクトH403の形状は特に変形しないため、Z軸方向への飛び出しを強調することができない。変形例4に係る映像処理装置1は、飛び出し情報がZ軸成分のみを有する場合、枠オブジェクトH403の形状をZ軸方向へ迫り出すように変更することによって、Z軸方向、つまり視聴者側への飛び出しを強調することができるように構成したものである。実施の形態とは、枠オブジェクト生成部15の処理内容のみが異なるため、以下では主に上記相異点について説明する。
 図15は、変形例4に係る枠オブジェクトH403の形状決定方法を概念的に示す説明図である。枠オブジェクト生成部15は、飛び出し情報のZ軸成分のみを含む場合、又はZ軸成分がX軸成分、Y軸成分に比べて所定値以上大きい場合、特にZ軸成分が正の場合、図15に示すように、原三次元枠オブジェクトH401の水平方向略中央部を山としてX軸正方向へ迫り出すように屈曲させ、更に原三次元枠オブジェクトH401の水平枠部分(枠の長辺部分)を垂直方向へ押し広げた立体形状に変形させる。そして、枠オブジェクト生成部15は、変形後の三次元枠オブジェクトH401をXY平面に射影変換した二次元形状を算出し、算出された二次元形状を枠オブジェクトH403の形状として決定する。
 逆に、Z軸成分が負の場合、枠オブジェクト生成部15は、原三次元枠オブジェクトH401の水平方向略中央部を谷としてX軸負方向へ迫り出すように屈曲させ、更に原三次元枠オブジェクトH401の水平枠部分(枠の長辺部分)を垂直方向へ押し狭めた立体形状に変形させる。そして、枠オブジェクト生成部15は、変形後の三次元枠オブジェクトH401をXY平面に射影変換した二次元形状を算出し、算出された二次元形状を枠オブジェクトの形状として決定する。
 映像合成部16の処理内容は、本実施の形態と同様である。映像合成部16は、背景映像部分F12に、枠オブジェクトH403、補完映像I401,I402,I403,I404、及び前景映像部分F11が順に重畳させるように合成し、合成して得た合成映像部分を外部へ出力する。
 変形例4に係る映像処理装置1及び映像処理方法にあっては、オブジェクトがZ軸方向、つまりオブジェクトが手前側に迫ってくるような映像、あるいは手前側に飛び出してくるオブジェクトが2個存在し、各々の飛び出し方向が左右別々である映像、例えば中央に位置する人間が画面左右両端に向かって両手を広げたような映像であっても、飛び出し感を強調することができる。
(変形例5)
 図16は、変形例5に係る映像処理装置を示すブロック図である。変形例5に係る映像処理装置は、本発明に係るコンピュータプログラム4aをコンピュータ3に実行させることによって実現される。
 コンピュータ3は、装置全体を制御するCPU(Central Processing Unit)31を備える。CPU31は、ROM(Read Only Memory)32と、演算に伴って発生する一時的な情報を記憶するRAM(Random Access Memory)33と、本発明の実施の形態に係るコンピュータプログラム4aを記録した記録媒体4a、例えばCD-ROMからコンピュータプログラム4aを読み取る外部記憶装置34と、外部記憶装置34により読み取ったコンピュータプログラム4aを記録するハードディスク等の内部記憶装置35とが接続されている。CPU31は、内部記憶装置35からコンピュータプログラム4aをRAM33に読み出して各種演算処理を実行することによって、本発明に係る映像処理方法を実施する。CPU31の処理手順は、図10及び図11に示す通りであり、ステップS11~18、ステップS31~34の処理手順を実行する。該処理手順は、本実施の形態及び変形例4に係る映像処理装置1を構成した各構成部の処理内容と同様であるため、その詳細な説明を省略する。
 変形例5に係るコンピュータ3及びコンピュータプログラム4aにあっては、コンピュータ3を本実施の形態に係る映像処理装置として機能させ、また本実施の形態に係る映像処理方法を実施させることができ、本実施の形態及び変形例1~4と同様の効果を奏する。
 なお、本変形例5に係るコンピュータプログラム4aは、言うまでもなく記録媒体4に記録されているものに限定されず、有線又は無線の通信網を介してダウンロードし、記憶し、実行されるものであっても良い。
 また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 映像処理装置
 2 出力部
 3 コンピュータ
 4 記録媒体
 4a コンピュータプログラム
 11 映像取得部
 12 奥行き情報取得部
 13 映像分割部
 14 飛び出し情報取得部
 15 枠オブジェクト生成部
 16 映像合成部
 15a 記憶部
 15b 回転処理部
 15c 射影変換部
 15d 色決定部
 31 CPU
 32 ROM
 33 RAM
 35 外部記憶装置
 36 入力部
 37 出力部
 F11 前景映像部分
 F12 背景映像部分
 H1 原三次元枠オブジェクト
 H3 枠オブジェクト

Claims (8)

  1.  入力された映像の奥行き感を強調する処理を行う映像処理装置であって、
     前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報を取得する奥行き情報取得手段と、
     該奥行き情報取得手段にて取得した奥行き情報及び前記映像に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割する映像分割手段と、
     該映像分割手段にて分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成する映像合成手段と
     を備えることを特徴とする映像処理装置。
  2.  入力された映像の輝度又は色に基づいて、輝度又は色が該映像と異なる奥行き強調映像を生成する生成手段を備え、
     前記映像合成手段は、
     前記生成手段にて生成された奥行き強調映像を合成するようにしてある
     ことを特徴とする請求項1に記載の映像処理装置。
  3.  前記生成手段は、
     前記映像分割手段にて分割された一の映像部分及び/又は他の映像部分の輝度又は色に基づいて、輝度又は色が該映像部分と異なる奥行き強調映像を生成するようにしてある
     ことを特徴とする請求項2に記載の映像処理装置。
  4.  時系列順に複数の映像が入力されるように構成されており、
     時系列順に入力された各映像間における映像部分の移動方向を示した移動方向情報を取得する移動方向情報取得手段を備え、
     前記生成手段は、
     該移動方向情報取得手段にて取得した移動方向情報に応じた形状を有する奥行き強調映像を生成するようにしてある
     ことを特徴とする請求項2又は請求項3に記載の映像処理装置。
  5.  時系列順に複数の映像が入力されるように構成されており、
     時系列順に入力された各映像間における映像部分の移動方向を示した移動方向情報を取得する移動方向情報取得手段と、
     該移動方向情報取得手段にて取得した移動方向情報に応じた形状を有する奥行き強調映像を生成する生成手段と
     を備え、
     前記映像合成手段は、
     前記生成手段にて生成された奥行き強調映像を合成するようにしてある
     ことを特徴とする請求項1に記載の映像処理装置。
  6.  所定の三次元画像を記憶する記憶手段を備え、
     前記生成手段は、
     前記記憶手段が記憶している三次元画像と、前記移動方向情報取得手段にて取得した一の映像部分の移動方向情報が示す移動方向とが所定の位置関係になるように、該三次元画像を回転させる回転処理手段を備え、
     該回転処理手段にて回転した三次元画像を所定の二次元平面に射影させて得られる二次元形状を有する奥行き強調映像を生成するようにしてある
     ことを特徴とする請求項4又は請求項5に記載の映像処理装置。
  7.  入力された映像の奥行き感を強調する処理を行う映像処理方法であって、
     前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報を取得し、
     取得した奥行き情報及び前記映像に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割し、
     分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成する
     ことを特徴とする映像処理方法。
  8.  コンピュータに、映像の奥行き感を強調する処理を実行させるコンピュータプログラムであって、
     前記コンピュータに、
     前記映像を構成する複数の映像部分夫々の奥行き方向の距離を示した奥行き情報及び前記映像に基づいて、該映像を奥行き方向の距離が異なる複数の映像部分に分割するステップと、
     分割された一の映像部分に、前記映像の奥行きを強調するための奥行き強調映像が重畳され、更に該奥行き強調画像に、前記一の映像部分よりも奥行き方向の距離が短い他の映像部分が重畳されるように各映像部分及び奥行き強調画像を合成するステップと
     を実行させることを特徴とするコンピュータプログラム。
PCT/JP2010/055544 2009-03-31 2010-03-29 映像処理装置、映像処理方法及びコンピュータプログラム WO2010113859A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/262,457 US20120026289A1 (en) 2009-03-31 2010-03-29 Video processing device, video processing method, and memory product
CN2010800150969A CN102379127A (zh) 2009-03-31 2010-03-29 影像处理装置、影像处理方法以及计算机程序
EP10758630A EP2416582A4 (en) 2009-03-31 2010-03-29 VIDEO PROCESSING DEVICE, VIDEO PROCESSING METHOD, AND COMPUTER PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009087396A JP4903240B2 (ja) 2009-03-31 2009-03-31 映像処理装置、映像処理方法及びコンピュータプログラム
JP2009-087396 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113859A1 true WO2010113859A1 (ja) 2010-10-07

Family

ID=42828148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055544 WO2010113859A1 (ja) 2009-03-31 2010-03-29 映像処理装置、映像処理方法及びコンピュータプログラム

Country Status (5)

Country Link
US (1) US20120026289A1 (ja)
EP (1) EP2416582A4 (ja)
JP (1) JP4903240B2 (ja)
CN (1) CN102379127A (ja)
WO (1) WO2010113859A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169716A1 (en) * 2010-12-29 2012-07-05 Nintendo Co., Ltd. Storage medium having stored therein a display control program, display control apparatus, display control system, and display control method
CN103220539A (zh) * 2012-01-21 2013-07-24 瑞昱半导体股份有限公司 图像深度产生装置及其方法
CN103226810A (zh) * 2012-01-26 2013-07-31 索尼公司 图像处理设备和图像处理方法
JP2015039075A (ja) * 2011-05-31 2015-02-26 株式会社東芝 立体画像表示装置および立体画像表示方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9100640B2 (en) * 2010-08-27 2015-08-04 Broadcom Corporation Method and system for utilizing image sensor pipeline (ISP) for enhancing color of the 3D image utilizing z-depth information
KR101670927B1 (ko) * 2010-11-05 2016-11-01 삼성전자주식회사 디스플레이 장치 및 방법
JP5036088B2 (ja) * 2011-01-14 2012-09-26 シャープ株式会社 立体画像処理装置、立体画像処理方法およびプログラム
CN102812715B (zh) * 2011-01-27 2015-08-19 松下电器产业株式会社 三维图像摄影装置以及三维图像拍摄方法
KR101917764B1 (ko) * 2011-09-08 2018-11-14 삼성디스플레이 주식회사 입체 영상 표시 장치 및 입체 영상 표시 방법
US9740937B2 (en) 2012-01-17 2017-08-22 Avigilon Fortress Corporation System and method for monitoring a retail environment using video content analysis with depth sensing
KR20130098042A (ko) * 2012-02-27 2013-09-04 삼성전자주식회사 깊이 정보 생성 장치 및 이를 포함하는 촬영 장치
KR20140010823A (ko) * 2012-07-17 2014-01-27 삼성전자주식회사 영상 데이터 스케일링 방법 및 영상 디스플레이 장치
US10021366B2 (en) * 2014-05-02 2018-07-10 Eys3D Microelectronics, Co. Image process apparatus
KR102192986B1 (ko) 2014-05-23 2020-12-18 삼성전자주식회사 영상 디스플레이 장치 및 영상 디스플레이 방법
US10198976B2 (en) 2015-07-31 2019-02-05 Canon Kabushiki Kaisha Display set and display method
US10475233B2 (en) 2016-04-08 2019-11-12 Maxx Media Group, LLC System, method and software for converting images captured by a light field camera into three-dimensional images that appear to extend vertically above or in front of a display medium
CN105975085A (zh) * 2016-06-01 2016-09-28 云南滇中恒达科技有限公司 一种新媒体ar互动投影系统
CN106447677A (zh) * 2016-10-12 2017-02-22 广州视源电子科技股份有限公司 图像处理方法和装置
WO2018187724A1 (en) * 2017-04-06 2018-10-11 Maxx Media Group, LLC System, method and software for converting images captured by a light field camera into three-dimensional images that appear to extend vertically above or in front of a display medium
US10380714B2 (en) * 2017-09-26 2019-08-13 Denso International America, Inc. Systems and methods for ambient animation and projecting ambient animation on an interface
WO2022202700A1 (ja) * 2021-03-22 2022-09-29 株式会社オルツ 画像を3次元的に表示するための方法、プログラムおよびシステム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607291A (ja) 1983-06-24 1985-01-16 Matsushita Electric Ind Co Ltd 立体映像再生装置
JPH01171390A (ja) 1987-12-25 1989-07-06 Sharp Corp 立体映像表示装置
JPH06274650A (ja) * 1993-03-23 1994-09-30 Dainippon Printing Co Ltd 画像合成装置
JPH09161074A (ja) 1995-12-04 1997-06-20 Matsushita Electric Ind Co Ltd 画像処理装置
JPH11266466A (ja) * 1998-03-18 1999-09-28 Matsushita Electric Ind Co Ltd 動画表示方法および画面形状の形成方法
JP2003032706A (ja) * 2001-07-16 2003-01-31 Chushiro Shindo 平面視テレビ兼用実体視テレビ
JP2003101690A (ja) * 2001-09-21 2003-04-04 Yamaguchi Technology Licensing Organization Ltd 画像処理方法及びデジタルカメラ並びに記録媒体
JP2005295163A (ja) * 2004-03-31 2005-10-20 Omron Entertainment Kk 写真プリント装置、写真プリント装置の制御方法、プログラム、および、プログラムを記録した記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208723A (zh) * 2005-02-23 2008-06-25 克雷格·萨默斯 用于3维照相机和3维视频的自动场景建模
US8325220B2 (en) * 2005-12-02 2012-12-04 Koninklijke Philips Electronics N.V. Stereoscopic image display method and apparatus, method for generating 3D image data from a 2D image data input and an apparatus for generating 3D image data from a 2D image data input
CN101312539B (zh) * 2008-07-03 2010-11-10 浙江大学 用于三维电视的分级图像深度提取方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607291A (ja) 1983-06-24 1985-01-16 Matsushita Electric Ind Co Ltd 立体映像再生装置
JPH01171390A (ja) 1987-12-25 1989-07-06 Sharp Corp 立体映像表示装置
JPH06274650A (ja) * 1993-03-23 1994-09-30 Dainippon Printing Co Ltd 画像合成装置
JPH09161074A (ja) 1995-12-04 1997-06-20 Matsushita Electric Ind Co Ltd 画像処理装置
JPH11266466A (ja) * 1998-03-18 1999-09-28 Matsushita Electric Ind Co Ltd 動画表示方法および画面形状の形成方法
JP2003032706A (ja) * 2001-07-16 2003-01-31 Chushiro Shindo 平面視テレビ兼用実体視テレビ
JP2003101690A (ja) * 2001-09-21 2003-04-04 Yamaguchi Technology Licensing Organization Ltd 画像処理方法及びデジタルカメラ並びに記録媒体
JP2005295163A (ja) * 2004-03-31 2005-10-20 Omron Entertainment Kk 写真プリント装置、写真プリント装置の制御方法、プログラム、および、プログラムを記録した記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416582A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169716A1 (en) * 2010-12-29 2012-07-05 Nintendo Co., Ltd. Storage medium having stored therein a display control program, display control apparatus, display control system, and display control method
JP2015039075A (ja) * 2011-05-31 2015-02-26 株式会社東芝 立体画像表示装置および立体画像表示方法
CN103220539A (zh) * 2012-01-21 2013-07-24 瑞昱半导体股份有限公司 图像深度产生装置及其方法
CN103220539B (zh) * 2012-01-21 2017-08-15 瑞昱半导体股份有限公司 图像深度产生装置及其方法
CN103226810A (zh) * 2012-01-26 2013-07-31 索尼公司 图像处理设备和图像处理方法
US20130195347A1 (en) * 2012-01-26 2013-08-01 Sony Corporation Image processing apparatus and image processing method
US9317957B2 (en) * 2012-01-26 2016-04-19 Sony Corporation Enhancement of stereoscopic effect of an image through use of modified depth information

Also Published As

Publication number Publication date
JP4903240B2 (ja) 2012-03-28
EP2416582A4 (en) 2013-01-23
CN102379127A (zh) 2012-03-14
EP2416582A1 (en) 2012-02-08
JP2010238108A (ja) 2010-10-21
US20120026289A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4903240B2 (ja) 映像処理装置、映像処理方法及びコンピュータプログラム
Battisti et al. Objective image quality assessment of 3D synthesized views
KR101385514B1 (ko) 깊이 맵 정보를 이용한 입체 영상 변환 방법 및 장치
US8488869B2 (en) Image processing method and apparatus
JP5750505B2 (ja) 立体映像エラー改善方法及び装置
US9525858B2 (en) Depth or disparity map upscaling
ES2676055T3 (es) Receptor de imagen eficaz para múltiples vistas
JP4963124B2 (ja) 映像処理装置、映像処理方法及びそれをコンピュータに実行させるためのプログラム
US10095953B2 (en) Depth modification for display applications
US8270768B2 (en) Depth perception
US20150002636A1 (en) Capturing Full Motion Live Events Using Spatially Distributed Depth Sensing Cameras
WO2012176431A1 (ja) 多視点画像生成装置、多視点画像生成方法
JP2013527646A5 (ja)
TWI531212B (zh) 呈現立體影像之系統及方法
Schmeing et al. Depth image based rendering: A faithful approach for the disocclusion problem
Stankiewicz et al. Multiview video: Acquisition, processing, compression, and virtual view rendering
KR101458986B1 (ko) 키넥트 기반 실시간 다시점 영상 생성 방법
JP2015087851A (ja) 画像処理装置及び画像処理プログラム
JP2014072809A (ja) 画像生成装置、画像生成方法、画像生成装置用プログラム
JP2011119926A (ja) 映像処理装置、映像処理方法及びコンピュータプログラム
Cheng et al. 51.3: An Ultra‐Low‐Cost 2‐D/3‐D Video‐Conversion System
Lin et al. A stereoscopic video conversion scheme based on spatio-temporal analysis of MPEG videos
JP5254297B2 (ja) 画像処理装置
Chellappa et al. Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision
KR101192313B1 (ko) 깊이 영상의 시간적 상관도 향상 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015096.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13262457

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010758630

Country of ref document: EP