JP2012062575A - Titanium-copper for electronic component - Google Patents

Titanium-copper for electronic component Download PDF

Info

Publication number
JP2012062575A
JP2012062575A JP2011237355A JP2011237355A JP2012062575A JP 2012062575 A JP2012062575 A JP 2012062575A JP 2011237355 A JP2011237355 A JP 2011237355A JP 2011237355 A JP2011237355 A JP 2011237355A JP 2012062575 A JP2012062575 A JP 2012062575A
Authority
JP
Japan
Prior art keywords
copper alloy
rolling
copper
mpa
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011237355A
Other languages
Japanese (ja)
Other versions
JP4961049B2 (en
Inventor
Naohiko Era
尚彦 江良
Hiroyasu Horie
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011237355A priority Critical patent/JP4961049B2/en
Publication of JP2012062575A publication Critical patent/JP2012062575A/en
Application granted granted Critical
Publication of JP4961049B2 publication Critical patent/JP4961049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide titanium-copper having excellent strength and bendability.SOLUTION: The titanium-copper is a copper alloy for electronic components which contains 2.0 to 4.0 mass% Ti and the remainder comprising copper and inevitable impurities. The intensity peak of X-ray diffraction from the {220} crystal plane in a rolled surface of the copper alloy has a half-value width β{220} which satisfies the relationship, 3.0≤β{220}/β{220}≤6.0 (wherein β{220} is the half-value width of the intensity peak of X-ray diffraction from the {220} crystal plane of a standard powder of pure copper). The copper alloy, in a structure examination of a section parallel to the rolling direction, has an average crystal grain size of 30 μm or less in terms of equivalent-circle diameter, and has 880 MPa or more of the 0.2% proof stress in the direction parallel to that of rolling.

Description

本発明はコネクタ等の電子部品用部材として好適なチタン銅に関する。   The present invention relates to titanium copper suitable as a member for electronic parts such as a connector.

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する部材には、必要なバネ性を得るための高い強度と、過酷な曲げ加工に耐えることのできる優れた曲げ加工性が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、特に強度が要求される信号系端子用部材として、古くから使用されてきた。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used for such devices tend to have a narrow pitch and a low profile. The smaller the connector, the narrower the pin width, and the smaller the folded shape, so that the members used have high strength to obtain the necessary spring properties and excellent bending workability that can withstand severe bending work. Is required. In this regard, a titanium-containing copper alloy (hereinafter referred to as “titanium copper”) has a relatively high strength and is most excellent in the copper alloy in terms of stress relaxation characteristics. As a signal system terminal member, it has been used for a long time.

チタン銅は時効硬化型の銅合金である。溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。一般に、冷間圧延の圧下率を高くするほど、導入される転位量が多くなって転位密度が高くなるため、析出に寄与する核生成サイトが増え、時効処理後の強度を高くすることができるが、圧下率を高くしすぎると曲げ加工性が悪化する。このため、強度及び曲げ加工性の両立を図ることが課題とされてきた。   Titanium copper is an age-hardening type copper alloy. When a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment and heat treatment is performed at a low temperature for a relatively long time from that state, a modulation structure that is a periodic variation of Ti concentration in the parent phase is caused by spinodal decomposition. Develop and improve strength. At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained. In general, the higher the rolling reduction in cold rolling, the more dislocations are introduced and the dislocation density is higher, so that the number of nucleation sites contributing to precipitation increases and the strength after aging treatment can be increased. However, if the rolling reduction is too high, the bending workability deteriorates. For this reason, it has been an object to achieve both strength and bending workability.

そこで、Fe、Co、Ni、Siなどの第三元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、結晶粒を微細化する(特許文献4)などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする技術が提案されている。   Therefore, a third element such as Fe, Co, Ni, Si or the like is added (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these elements are added to the second phase particles (Cu-Ti- X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3) and refining crystal grains (Patent Document 4), a technique has been proposed which attempts to achieve both the strength and bending workability of titanium copper.

チタン銅の場合、母相であるα相に対して整合性の悪いβ相(TiCu3)と、整合性の良いβ’相(TiCu4)が存在し、β相は曲げ加工性に悪影響を与える一方で、β’相を均一かつ微細に分散させることが強度と曲げ加工性の両立に寄与するとして、β相を抑制しつつβ’相を微細分散させたチタン銅も提案されている(特許文献5)。 In the case of titanium copper, there are a β phase (TiCu 3 ) having poor consistency with the α phase as a parent phase and a β ′ phase (TiCu 4 ) having good consistency, and the β phase has an adverse effect on bending workability. On the other hand, evenly and finely dispersing the β ′ phase contributes to both strength and bending workability, and titanium copper in which the β ′ phase is finely dispersed while suppressing the β phase has also been proposed ( Patent Document 5).

結晶方位に着目し、I{420}/I0{420}>1.0及びI{220}/I0{220}≦3.0を満たすように結晶配向を制御することで、強度、曲げ加工性及び耐応力緩和性を改善した技術も提案されている(特許文献6)。 By paying attention to the crystal orientation and controlling the crystal orientation to satisfy I {420} / I 0 {420}> 1.0 and I {220} / I 0 {220} ≦ 3.0, the strength and bending A technique for improving workability and stress relaxation resistance has also been proposed (Patent Document 6).

特開2004−231985号公報Japanese Patent Laid-Open No. 2004-231985 特開2004−176163号公報JP 2004-176163 A 特開2005−97638号公報JP-A-2005-97638 特開2006−265611号公報JP 2006-265611 A 特開2006−283142号公報JP 2006-283142 A 特開2008−308734号公報JP 2008-308734 A

このように、これまでチタン銅の強度及び曲げ加工性の改善のために各種の手法が研究されてきているが、未だその改善の余地は残されている。そこで、本発明の課題の一つは、これまでとは別の観点からチタン銅の特性改善を試み、優れた強度及び曲げ加工性を有するチタン銅を提供することである。   Thus, various methods have been studied so far for improving the strength and bending workability of titanium copper, but there is still room for improvement. Accordingly, one of the objects of the present invention is to provide titanium copper having excellent strength and bending workability by trying to improve the characteristics of titanium copper from a different viewpoint.

従来のチタン銅の製造方法は、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序で構成するのを基本としていた。背景技術に記載のチタン銅も同様の順序で製造されている。   The conventional titanium copper manufacturing method consists of ingot melting casting → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. Was based. The titanium copper described in the background art is also manufactured in the same order.

本発明者は上記課題を解決するための検討過程において、最終溶体化処理の後に行う冷間圧延及び時効処理の順序を従来とは逆に行う、すなわち、時効処理→冷間圧延の順番に代えた上で、最後に歪取焼鈍を適切な条件で実施すると曲げ加工性が有意に向上することを見出した。すなわち、従来の手順で製造したチタン銅と本発明のチタン銅を比べると、同一の強度の場合に本発明のチタン銅の方が曲げ加工性が優れているということである。本発明者はその原因を調査するため、本発明に係るチタン銅の組織を調査したところ、転位密度と結晶粒の形態に特徴点を見出した。具体的には、同一の圧下率で冷間圧延を行ったときに、冷間圧延→時効処理の順序としたときよりも時効処理→冷間圧延の順序としたときの方が、得られるチタン銅の転位密度が上昇することが分かった。換言すれば、同一の転位密度を得るのに必要な冷間圧延時の圧下率を小さくできるということである。圧下率が小さいと、冷間圧延時に結晶粒が圧延方向に延伸するのを抑制することができるため、曲げ加工性が改善する。   In the examination process for solving the above-mentioned problems, the present inventor performs the order of the cold rolling and the aging treatment after the final solution treatment in the reverse order, that is, the order of the aging treatment → cold rolling. In addition, it was found that bending workability is significantly improved when strain relief annealing is finally performed under appropriate conditions. That is, when the titanium copper manufactured according to the conventional procedure and the titanium copper of the present invention are compared, the titanium copper of the present invention is superior in bending workability in the case of the same strength. In order to investigate the cause, the present inventor investigated the structure of titanium copper according to the present invention, and found characteristic points in the dislocation density and the form of crystal grains. Specifically, when cold rolling is performed at the same rolling reduction, the titanium obtained when the order of aging treatment → cold rolling is performed rather than the order of cold rolling → aging treatment It was found that the dislocation density of copper increases. In other words, the reduction ratio during cold rolling necessary to obtain the same dislocation density can be reduced. If the rolling reduction is small, it is possible to suppress the crystal grains from being stretched in the rolling direction during cold rolling, so that bending workability is improved.

転位密度は直接測定することが困難である。それは変調構造や析出粒子の分布によって、転位の分布が不均一になるためである。間接的に評価を試みる場合には圧延面における{220}結晶面のX線回線強度ピークの半価幅と相関がある。半価幅は回折強度曲線のピーク強度の1/2の強度における回折強度曲線の幅(β)であって2θで表わされる。半価幅は冷間圧延の圧下率の上昇に伴って転位密度と共に大きくなる。そこで、本発明ではこの半価幅を指標として転位密度の状態を間接的に規定することとする。   Dislocation density is difficult to measure directly. This is because the dislocation distribution becomes non-uniform depending on the modulation structure and the distribution of the precipitated particles. When the evaluation is attempted indirectly, there is a correlation with the half width of the X-ray line intensity peak of the {220} crystal plane on the rolled surface. The half width is the width (β) of the diffraction intensity curve at an intensity that is ½ of the peak intensity of the diffraction intensity curve, and is represented by 2θ. The half width increases with the dislocation density as the rolling reduction in cold rolling increases. Therefore, in the present invention, the state of dislocation density is indirectly defined using the half width as an index.

上記知見に基づいて完成した本発明は第一の側面において、
Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、
圧延面の{220}結晶面からのX線回折強度ピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度ピークの半価幅であるβ0{220}と次式:
3.0≦β{220}/β0{220}≦6.0
を満たし、
圧延方向に平行な断面の組織観察において、平均結晶粒径が円相当径で表して30μm以下であり、且つ、
圧延平行方向の0.2%耐力が880MPa以上である銅合金である。
In the first aspect, the present invention completed based on the above findings,
It is a copper alloy for electronic parts containing 2.0 to 4.0% by mass of Ti, consisting of the remaining copper and inevitable impurities,
Β {220}, which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the rolled surface, is β, which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the pure copper standard powder. 0 {220} and the following formula:
3.0 ≦ β {220} / β 0 {220} ≦ 6.0
The filling,
In the observation of the structure of the cross section parallel to the rolling direction, the average crystal grain size is 30 μm or less in terms of equivalent circle diameter, and
A copper alloy having a 0.2% yield strength in the rolling parallel direction of 880 MPa or more.

本発明に係る第一の側面に係る銅合金の一実施形態においては、圧延平行方向の0.2%耐力が880〜1050MPaである。   In one embodiment of the copper alloy according to the first aspect of the present invention, the 0.2% yield strength in the rolling parallel direction is 880 to 1050 MPa.

本発明に係る第一の側面に係る銅合金の別の一実施形態においては、圧延方向に平行な断面の組織観察において、圧延方向に直角な方向の平均結晶粒径(T)に対する圧延方向に平行な方向の平均結晶粒径(L)の比(L/T)が1〜4である。   In another embodiment of the copper alloy according to the first aspect of the present invention, in the observation of the structure of the cross section parallel to the rolling direction, in the rolling direction relative to the average crystal grain size (T) in the direction perpendicular to the rolling direction. The ratio (L / T) of the average crystal grain size (L) in the parallel direction is 1 to 4.

本発明に係る第一の側面に係る銅合金の更に別の一実施形態においては、ばね限界値が600〜1000MPaである。   In still another embodiment of the copper alloy according to the first aspect of the present invention, the spring limit value is 600 to 1000 MPa.

本発明に係る第一の側面に係る銅合金の更に別の一実施形態においては、ばね限界値が300〜600MPaである。   In still another embodiment of the copper alloy according to the first aspect of the present invention, the spring limit value is 300 to 600 MPa.

本発明は第二の側面において、Tiを2.0〜4.0質量%含有し、更に第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、圧延面の{220}結晶面からのX線回折強度ピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度ピークの半価幅であるβ0{220}と次式:
3.0≦β{220}/β0{220}≦6.0
を満たし、
圧延方向に平行な断面の組織観察において、平均結晶粒径が円相当径で表して30μm以下であり、且つ、
圧延平行方向の0.2%耐力が975MPa以上である銅合金である。
In the second aspect, the present invention contains 2.0 to 4.0% by mass of Ti, and further includes Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si as a third element group. A copper alloy for electronic parts comprising 0 to 0.5% by mass in total of one or more selected from the group consisting of B and P, comprising the balance copper and unavoidable impurities, Β {220} which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane is β 0 {220 which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the pure copper standard powder. } And the following formula:
3.0 ≦ β {220} / β 0 {220} ≦ 6.0
The filling,
In the observation of the structure of the cross section parallel to the rolling direction, the average crystal grain size is 30 μm or less in terms of equivalent circle diameter, and
A copper alloy having a 0.2% proof stress in the rolling parallel direction of 975 MPa or more.

本発明の第二の側面に係る銅合金の一実施形態においては、圧延平行方向の0.2%耐力が975〜990MPaである。   In one embodiment of the copper alloy according to the second aspect of the present invention, the 0.2% yield strength in the rolling parallel direction is 975 to 990 MPa.

本発明の第二の側面に係る銅合金の別の一実施形態においては、圧延方向に平行な断面の組織観察において、圧延方向に直角な方向の平均結晶粒径(T)に対する圧延方向に平行な方向の平均結晶粒径(L)の比(L/T)が1〜4である。   In another embodiment of the copper alloy according to the second aspect of the present invention, in the observation of the structure of the cross section parallel to the rolling direction, parallel to the rolling direction relative to the average crystal grain size (T) in the direction perpendicular to the rolling direction. The ratio (L / T) of the average crystal grain size (L) in any direction is 1 to 4.

本発明の第二の側面に係る銅合金の更に別の一実施形態においては、ばね限界値が600〜1000MPaである。   In still another embodiment of the copper alloy according to the second aspect of the present invention, the spring limit value is 600 to 1000 MPa.

本発明の第二の側面に係る銅合金の更に別の一実施形態においては、ばね限界値が300〜600MPaである。   In still another embodiment of the copper alloy according to the second aspect of the present invention, the spring limit value is 300 to 600 MPa.

本発明は第三の側面において、本発明に係る銅合金からなる伸銅品である。   In the third aspect, the present invention is a copper-drawn product made of the copper alloy according to the present invention.

本発明は第四の側面において、本発明に係る銅合金を備えた電子部品である。   This invention is an electronic component provided with the copper alloy based on this invention in the 4th side surface.

本発明は第五の側面において、本発明に係る銅合金を備えたコネクタである。   This invention is a connector provided with the copper alloy which concerns on this invention in the 5th side surface.

本発明によれば、強度及び曲げ加工性に優れたチタン銅が得られる。   According to the present invention, titanium copper excellent in strength and bending workability can be obtained.

<Ti含有量>
Tiが2.0質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4.0質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2.0〜4.0質量%であり、好ましくは2.7〜3.5質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
<Ti content>
If Ti is less than 2.0% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of the original modulation structure of titanium copper, so that sufficient strength cannot be obtained. Conversely, if Ti exceeds 4.0% by mass, coarse TiCu 3 tends to precipitate, and the strength and bending workability tend to deteriorate. Therefore, the content of Ti in the copper alloy according to the present invention is 2.0 to 4.0 mass%, preferably 2.7 to 3.5 mass%. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

<第3元素>
所定の第3元素をチタン銅に添加すると、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度を向上させる効果がある。また、所定の第3元素は変調構造の形成を促進する。更に、Ti−Cu系の安定相の急激な粗大化を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。
<Third element>
When the predetermined third element is added to titanium copper, there is an effect of easily refining crystal grains and improving the strength even when solution treatment is performed at a high temperature at which Ti is sufficiently dissolved. In addition, the predetermined third element promotes the formation of the modulation structure. Furthermore, there is an effect of suppressing rapid coarsening of the Ti—Cu-based stable phase. Therefore, the original age hardening ability of titanium copper can be obtained.

チタン銅において上記効果が最も高いのがFeである。そして、Mn、Mg、Co、Ni、Si、Cr、V、Nb、Mo、Zr、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。   In titanium copper, Fe has the highest effect. And in Mn, Mg, Co, Ni, Si, Cr, V, Nb, Mo, Zr, B, and P, the effect according to Fe can be expected, and even if added alone, the effect is seen, but two or more Multiple additions may be made.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えると強度と曲げ加工性のバランスが劣化する傾向にある。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有することができ、合計で0.05〜0.5質量%含有するのが好ましい。   When these elements are contained in an amount of 0.05% by mass or more in total, the effect appears, but when the total exceeds 0.5% by mass, the balance between strength and bending workability tends to deteriorate. Accordingly, the total of one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element group is 0 to 0 in total. It can contain 0.5 mass%, and it is preferable to contain 0.05-0.5 mass% in total.

<結晶粒径>
チタン銅の強度及び曲げ加工性を向上させるためには、結晶粒が小さいほどよい。そこで、好ましい平均結晶粒径は30μm以下、より好ましくは20μm以下、更により好ましくは10μm以下である。下限については特に制限はないが、結晶粒径の判別が困難となるため、そのような状況を1μm未満(<1μm)とし、そのような小さな粒径も本発明の範囲に含める。ただし、極端に小さくなると応力緩和特性が低下してしまうので、応力緩和特性が必要な場合には、1μm以上が好ましい。本発明において、平均結晶粒径は光学顕微鏡か電子顕微鏡による観察で圧延方向に平行な断面の組織観察における円相当径で表す。
<Crystal grain size>
In order to improve the strength and bending workability of titanium copper, the smaller the crystal grains, the better. Therefore, the preferable average crystal grain size is 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. The lower limit is not particularly limited, but it is difficult to discriminate the crystal grain size. Therefore, such a situation is set to less than 1 μm (<1 μm), and such a small grain size is also included in the scope of the present invention. However, if the stress relaxation characteristic is required, it is preferably 1 μm or more since the stress relaxation characteristic is deteriorated if it becomes extremely small. In the present invention, the average crystal grain size is represented by the equivalent circle diameter in the structure observation of the cross section parallel to the rolling direction by observation with an optical microscope or electron microscope.

一般に、結晶粒は最終の冷間圧延における圧下率に応じて圧延方向に延伸した楕円形状を呈するが、曲げ加工性を向上させるには、できるだけ真円に近くし、結晶粒の形状に異方性のないことが望ましい。本発明では冷間圧延における圧下率を小さくすることができるので、圧延方向への延伸が少ない結晶粒を得ることができる。ただし、結晶粒の形状を真円に近づけようとして最終の冷間圧延の圧下率を低くし過ぎると強度不足となる。そこで、本発明に係るチタン銅の一実施形態では、電子顕微鏡による圧延方向に平行な断面の組織観察において、圧延方向に直角な方向の平均結晶粒径(T)に対する圧延方向に平行な方向の平均結晶粒径(L)の比(L/T)(以下、「結晶粒アスペクト比」という。)が1〜4であり、好ましくは1.5〜3.5であり、より好ましくは2〜3である。   In general, the crystal grains have an elliptical shape that extends in the rolling direction according to the rolling reduction in the final cold rolling, but in order to improve bending workability, the crystal grains are as close to a perfect circle as possible and anisotropic to the crystal grain shape. It is desirable not to have sex. In the present invention, since the reduction ratio in cold rolling can be reduced, crystal grains with less stretching in the rolling direction can be obtained. However, if the rolling reduction of the final cold rolling is made too low in an attempt to bring the crystal grain shape closer to a perfect circle, the strength becomes insufficient. Therefore, in one embodiment of the titanium copper according to the present invention, in the observation of the structure of the cross section parallel to the rolling direction by an electron microscope, the direction of the direction parallel to the rolling direction with respect to the average grain size (T) in the direction perpendicular to the rolling direction. The ratio (L / T) of average crystal grain size (L) (hereinafter referred to as “crystal grain aspect ratio”) is 1 to 4, preferably 1.5 to 3.5, more preferably 2 to 2. 3.

<半価幅>
本発明では転位密度の指標として圧延面における{220}結晶面のX線回線強度ピークの半価幅を用いる。これは、上記の理由による。そして、本発明に係るチタン銅は、圧延面の{220}結晶面からのX線回折強度ピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度ピークの半価幅であるβ0{220}と次式:
3.0≦β{220}/β0{220}≦6.0
を満たす。β{220}及びβ0{220}は同一測定条件で測定する。純銅標準粉末は325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
<Half width>
In the present invention, the half width of the X-ray line intensity peak of the {220} crystal plane on the rolled surface is used as an index of dislocation density. This is for the above reason. And, the titanium copper according to the present invention is such that β {220}, which is the half-value width of the X-ray diffraction intensity peak from the {220} crystal plane of the rolled surface, is X-ray from the {220} crystal plane of the pure copper standard powder. Β 0 {220} which is the half width of the diffraction intensity peak and the following formula:
3.0 ≦ β {220} / β 0 {220} ≦ 6.0
Meet. β {220} and β 0 {220} are measured under the same measurement conditions. The pure copper standard powder is defined as a copper powder having a purity of 99.5% with a 325 mesh (JIS Z8801).

β{220}/β0{220}は転位密度が低くなるにつれて低下し、逆に、転位密度が高くなるにつれて上昇する。β{220}/β0{220}が小さくなると、曲げ加工性は向上するが強度が低下する。逆に、β{220}/β0{220}は大きくなると、強度は向上するが曲げ加工性が低下する。強度と曲げ加工性の両立を図る上では、3.0≦β{220}/β0{220}≦6.0であることが必要であり、3.5≦β{220}/β0{220}≦5.0であることが好ましい。従来のように、最終溶体化処理後に冷間圧延→時効処理の順で行う製法では、β{220}/β0{220}を3.0程度にするために圧下率50%近くの冷間圧延を行う必要があったが、本発明の製法では圧下率10%程度で達成できる。そのため、転位密度(強度)を高めながら結晶粒アスペクト比を小さく、すなわち曲げ加工性を損なわないことができる。 β {220} / β 0 {220} decreases as the dislocation density decreases, and conversely increases as the dislocation density increases. When β {220} / β 0 {220} is decreased, the bending workability is improved but the strength is decreased. Conversely, when β {220} / β 0 {220} is increased, the strength is improved but the bending workability is lowered. In order to achieve both strength and bending workability, it is necessary that 3.0 ≦ β {220} / β 0 {220} ≦ 6.0, and 3.5 ≦ β {220} / β 0 { It is preferable that 220} ≦ 5.0. As in the prior art, in the manufacturing method performed in the order of cold rolling → aging treatment after the final solution treatment, in order to make β {220} / β 0 {220} about 3.0, Although it was necessary to perform rolling, in the manufacturing method of the present invention, it can be achieved at a reduction rate of about 10%. Therefore, the crystal grain aspect ratio can be reduced while increasing the dislocation density (strength), that is, the bending workability can be maintained.

<ばね限界値>
本発明に係る銅合金では、後述するように最終工程において歪取焼鈍を実施するか否かでばね限界値を調節することができる。そのため、上述した半価幅や結晶粒の条件を維持しながら求められるばね限界値を作り込むことができる。例えば、本発明に係る銅合金は一実施形態において、300〜1000MPaのばね限界値を有することができ、高いばね限界値を有する実施形態では600〜1000MPaとすることができ、好ましくは800〜1000MPaとすることができ、低いばね限界値を有する実施形態では300〜600MPaとすることができ、好ましくは400〜600MPaとすることができる。
<Spring limit value>
In the copper alloy according to the present invention, the spring limit value can be adjusted depending on whether or not the strain relief annealing is performed in the final process, as will be described later. Therefore, the spring limit value required while maintaining the above-described half width and crystal grain conditions can be created. For example, the copper alloy according to the present invention may have a spring limit value of 300 to 1000 MPa in one embodiment, and 600 to 1000 MPa, preferably 800 to 1000 MPa in an embodiment having a high spring limit value. In an embodiment having a low spring limit value, the pressure can be 300 to 600 MPa, and preferably 400 to 600 MPa.

<用途>
本発明に係る銅合金は種々の伸銅品、例えば板、条、管、棒及び線として提供されることができる。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクタ、ジャック、端子、リレー等の電子部品の材料として好適に使用することができる。
<Application>
The copper alloy according to the present invention can be provided as various copper products, such as plates, strips, tubes, rods and wires. The titanium copper according to the present invention is not limited, but can be suitably used as a material for electronic components such as switches, connectors, jacks, terminals, and relays.

<製法>
本発明に係るチタン銅は、特に最終の溶体化処理及びそれ以降の工程で適切な熱処理及び冷間圧延を実施することにより製造可能である。以下に、好適な製造例を工程毎に順次説明する。
<Production method>
Titanium copper according to the present invention can be produced by carrying out appropriate heat treatment and cold rolling, particularly in the final solution treatment and the subsequent steps. Below, a suitable manufacture example is demonstrated one by one for every process.

1)インゴット製造
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の第3元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.50質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造することが望ましい。
1) Ingot production Ingot production by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high melting point third element such as Fe or Cr, and after sufficiently stirring, hold for a certain period of time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element is dissolved. Therefore, Cu includes one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P in total from 0 to 0.0. It is desirable to add so as to contain 50% by mass, and then add Ti so as to contain 2.0 to 4.0% by mass to produce an ingot.

2)均質化焼鈍及び熱間圧延
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。
具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の圧下率が90%までのパスは900℃以上とするのが好ましい。そして、パス毎に適度な再結晶を起こしてTiの偏析を効果的に低減するために、パスごとの圧下量を10〜20mmで実施するとよい。
2) Homogenization annealing and hot rolling Solidification segregation and crystallized material generated during ingot production are coarse, so it is desirable to make it as small as possible by dissolving it in the parent phase as much as possible by homogenization annealing. This is because it is effective in preventing bending cracks.
Specifically, after the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, it is preferable that the temperature is 960 ° C. or lower before and during hot rolling, and that the pass from the original thickness to 90% of the total rolling reduction is 900 ° C. or higher. And in order to raise | generate moderate recrystallization for every pass and to reduce the segregation of Ti effectively, it is good to implement the amount of rolling reduction for every pass at 10-20 mm.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
3) First solution treatment It is then preferable to perform the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. In this case, it is preferable to increase the heating rate and the cooling rate as much as possible so that the second phase particles do not precipitate. Note that the first solution treatment may not be performed.

4)中間圧延
最終の溶体化処理前の中間圧延における圧下率を高くするほど、最終の溶体化処理における再結晶粒を均一かつ微細に制御できる。従って、中間圧延の圧下率は好ましくは70〜99%である。圧下率は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the rolling reduction in the intermediate rolling before the final solution treatment is increased, the recrystallized grains in the final solution treatment can be controlled more uniformly and finely. Therefore, the rolling reduction of intermediate rolling is preferably 70 to 99%. The rolling reduction is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化しやすいので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度は730〜840℃程度であり、例えばTiの添加量が3.0質量%では800℃程度)。そしてこの温度まで急速に加熱し、冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。従って、典型的には、730〜880℃のTiの固溶限が添加量と同じになる温度以上に加熱し、より典型的には730〜880℃のTiの固溶限が添加量と同じになる温度に比べて0〜20℃高い温度、好ましくは0〜10℃高い温度に加熱する。
5) Final solution treatment In the final solution treatment, it is desirable to completely dissolve the precipitates, but if heated to a high temperature until it completely disappears, the crystal grains tend to coarsen, so the heating temperature is the second phase. The temperature is around the solid solubility limit of the particle composition (the temperature at which the solid solubility limit of Ti becomes equal to the addition amount in the range where the addition amount of Ti is 2.0 to 4.0% by mass is about 730 to 840 ° C, For example, when the addition amount of Ti is 3.0 mass%, it is about 800 ° C.). And if it heats rapidly to this temperature and a cooling rate is also made fast, generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Therefore, typically, heating is performed at a temperature at which the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount, and more typically, the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount. It is heated to a temperature that is 0 to 20 ° C. higher, preferably 0 to 10 ° C. higher than the temperature that becomes.

また、最終の溶体化処理での加熱時間は短いほうが結晶粒の粗大化を抑制できる。加熱時間は例えば30〜90秒とすることができ、典型的には30〜60秒とすることができる。この時点で第2相粒子が発生しても微細かつ均一に分散していれば、強度と曲げ加工性に対してほとんど無害である。しかし粗大なものは最終の時効処理で更に成長する傾向にあるので、この時点での第2相粒子は生成してもなるべく少なく、小さくしなければならない。   Moreover, the coarsening of a crystal grain can be suppressed when the heating time in the final solution treatment is shorter. The heating time can be, for example, 30 to 90 seconds, and typically 30 to 60 seconds. Even if the second phase particles are generated at this point, if they are finely and uniformly dispersed, they are almost harmless to strength and bending workability. However, since coarse particles tend to grow further in the final aging treatment, the number of second-phase particles at this point must be reduced as much as possible.

6)時効処理
最終の溶体化処理に引き続いて、時効処理を行う。従来は最終の溶体化処理の後は冷間圧延を行うことが通例であったが、本発明に係るチタン銅を得る上では最終の溶体化処理の後、冷間圧延を行わずに直ちに時効処理を行うことが重要である。時効処理の前に冷間圧延を行う場合に比べて同一の圧下率であっても転位密度を高くすることができるからである。理論によって本発明が限定される事を意図しないが、これは結晶粒内の結晶性と剪断帯の発生に相関があると考えている。一般的に圧延を行うと転位が導入されるので結晶が歪み、半価幅が大きくなる。半価幅が小さいと結晶性が高く、半価幅が大きいと結晶性が低い。結晶性の高い状態で時効処理を行って、曲げ加工を行うと剪断帯が発達しやすく、曲げ割れの原因となりやすい。溶体化後に時効を行った場合には結晶粒内で析出反応が均一に進行し、変調構造や微細な第2相粒子が均一に発達しやすい。時効でこのような組織に制御した後に冷間圧延を行うと、時効していない場合よりも結晶が歪みやすく、剪断帯が発達しにくい。ただし加工度が高くなると転位密度が過剰に増加して曲げ加工性を損なう。よって低い加工度であっても剪断帯の発達を抑制しながら高強度が得られる。時効処理は溶体化処理後に時効処理を行うので析出の駆動力となる歪が少ないことから、慣例の時効条件よりもやや高温で行うとよい。具体的には、材料温度400〜500℃で0.1〜20時間加熱することが好ましく、材料温度400〜480℃で1〜16時間加熱することがより好ましい。
6) Aging treatment An aging treatment is performed following the final solution treatment. Conventionally, cold rolling is usually performed after the final solution treatment, but in order to obtain titanium copper according to the present invention, aging is immediately performed without performing cold rolling after the final solution treatment. It is important to do the processing. This is because the dislocation density can be increased even with the same rolling reduction as compared with the case where cold rolling is performed before the aging treatment. Although it is not intended that the present invention be limited by theory, it is believed that there is a correlation between the crystallinity within the crystal grains and the occurrence of shear bands. In general, when rolling is performed, dislocations are introduced, so that crystals are distorted and a half width is increased. When the half width is small, the crystallinity is high, and when the half width is large, the crystallinity is low. When an aging treatment is performed in a state of high crystallinity and bending is performed, a shear band is likely to develop, which tends to cause bending cracking. When aging is performed after solution treatment, the precipitation reaction proceeds uniformly in the crystal grains, and the modulated structure and fine second-phase particles tend to develop uniformly. When cold rolling is performed after controlling to such a structure by aging, the crystals are more likely to be distorted and the shear band is less likely to develop than when not aging. However, when the degree of work increases, the dislocation density increases excessively and the bending workability is impaired. Therefore, even if the degree of processing is low, high strength can be obtained while suppressing the development of the shear band. Since the aging treatment is carried out after the solution treatment, there is little distortion as a driving force for precipitation, so it is better to carry out the aging treatment at a slightly higher temperature than the conventional aging conditions. Specifically, it is preferable to heat at a material temperature of 400 to 500 ° C. for 0.1 to 20 hours, and it is more preferable to heat at a material temperature of 400 to 480 ° C. for 1 to 16 hours.

7)最終の冷間圧延
上記時効処理後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができる。この冷間圧延は実施しなくてもよいが、高い強度を得ることを目的とする場合は圧下率を5%以上、好ましくは10%以上、より好ましくは15%以上とする。但し、圧下率が高すぎると結晶粒アスペクト比が大きくなり過ぎて曲げ加工性の向上効果が小さくなることから、圧下率を40%以下、好ましくは30%以下、より好ましくは25%以下とする。
7) Final cold rolling After the aging treatment, final cold rolling is performed. The strength of titanium copper can be increased by the final cold working. This cold rolling need not be carried out, but in order to obtain high strength, the rolling reduction is set to 5% or more, preferably 10% or more, more preferably 15% or more. However, if the rolling reduction is too high, the crystal grain aspect ratio becomes too large and the effect of improving the bending workability is reduced. Therefore, the rolling reduction is set to 40% or less, preferably 30% or less, more preferably 25% or less. .

8)歪取焼鈍
電子部品の構造に応じて、異なる形状加工が要求される。一般に曲げ加工やノッチ加工などの塑性変形を施された部位は加工硬化し、素材の強度はより上昇する。このような曲げ加工部で接圧を担保する構造では塑性変形しにくいので、高いばね限界値は不要である。そのため、このような用途では歪取焼鈍は行わなくても良い。
一方、プレス打ち抜き後の形状加工時に塑性変形を受けない部位で接圧を担保する構造(例:端子の接点部から曲げ加工部までの直線部分(アーム)の距離が長い構造、またはフォーク型端子のようにノッチ加工や曲げ加工が施されない構造であって、曲げ応力がアームにかかるような構造)では、曲げたわみに対する抵抗が必要となるので高いばね限界値が重要となる。
従って、特にばね限界値が重要となる用途では最終の冷間圧延の後、歪取焼鈍を行う。特に最終の冷間圧延の圧下率が3%以上の場合には、ばね限界値が重要となる用途では歪取焼鈍を行うことが好ましい。また、最終の冷間圧延の圧下率が10%以上の場合には、ばね限界値が重要となる用途では歪取焼鈍を行うことが特に好ましい。歪取焼鈍の条件は慣用の条件でよいが、冷間圧延で導入された転位は不均一に分布している。歪取焼鈍を行うことで転位が再配列し、これにより更に強度上昇を図ることもできる。ただし、過度の歪取焼鈍を行うと転位が消滅して強度が低下するため好ましくない。そこで、例えば材料温度100℃以上350℃未満として0.001時間以上40時間以下、材料温度350℃以上550℃未満で0.0001時間以上20時間以下、又は材料温度550℃以上700℃以下で0.0001時間以上0.003時間以下の加熱を行えばよく、材料温度200℃以上400℃未満で0.001〜20時間加熱の条件で行うのが好ましく、材料温度350℃以上550℃未満で0.001〜0.5時間加熱の条件で行うのがより好ましく、低温であれば長時間(例えば材料温度200〜300℃で10〜20時間加熱)、高温であれば短時間(例えば材料温度550〜700℃以下で0.001〜0.003時間加熱)の条件で行うのがより好ましい。
8) Strain relief annealing Different shape processing is required depending on the structure of the electronic component. In general, a portion subjected to plastic deformation such as bending or notching is work-hardened, and the strength of the material is further increased. In such a structure in which the contact pressure is ensured at the bent portion, plastic deformation is difficult, and thus a high spring limit value is unnecessary. Therefore, it is not necessary to perform strain relief annealing in such applications.
On the other hand, a structure that guarantees contact pressure at a site that is not subjected to plastic deformation during shape processing after press punching (eg, a structure in which the distance between the contact part of the terminal and the bent part (arm) is long, or a fork-type terminal In such a structure in which notching or bending is not performed and the bending stress is applied to the arm), a high spring limit value is important because resistance to bending deflection is required.
Therefore, in applications where the spring limit value is particularly important, strain relief annealing is performed after the final cold rolling. In particular, when the rolling reduction of the final cold rolling is 3% or more, it is preferable to perform strain relief annealing in applications where the spring limit value is important. Further, when the rolling reduction of the final cold rolling is 10% or more, it is particularly preferable to perform strain relief annealing in applications where the spring limit value is important. The conditions for strain relief annealing may be conventional conditions, but dislocations introduced by cold rolling are unevenly distributed. By performing strain relief annealing, the dislocations are rearranged, whereby the strength can be further increased. However, excessive strain relief annealing is not preferable because dislocations disappear and strength decreases. Therefore, for example, the material temperature is 100 ° C. or more and less than 350 ° C., 0.001 hour or more and 40 hours or less, the material temperature is 350 ° C. or more and less than 550 ° C., 0.0001 hour or more and 20 hours or less, or the material temperature is 550 ° C. or more and 700 ° C. or less. Heating may be performed for 0.0001 hours or more and 0.003 hours or less, preferably at a material temperature of 200 ° C. or more and less than 400 ° C. for 0.001 to 20 hours, and 0 at a material temperature of 350 ° C. or more and less than 550 ° C. It is more preferable to perform the heating under the condition of 0.001 to 0.5 hours. If the temperature is low, the heating is performed for a long time (for example, heating at a material temperature of 200 to 300 ° C. for 10 to 20 hours). If the temperature is high, the heating is performed for a short time (for example, the material temperature 550). It is more preferable to carry out under the condition of heating at ˜700 ° C. or less for 0.001 to 0.003 hours.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。   When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

まず、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPを表1に示す組成でそれぞれ添加した後、同表に示す組成のTiをそれぞれ添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, after adding Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B and P to Cu in the compositions shown in Table 1, Ti having the composition shown in the same table was added. Each was added. After sufficient consideration was given to the retention time after the addition so that there was no undissolved residue of the added elements, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingots.

Figure 2012062575
Figure 2012062575

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とし、素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で10分間加熱とした。なお、一部の実施例では第1溶体化処理を行わなかった。次いで、中間の冷間圧延では最終板厚が0.10mmとなるように中間の板厚を調整して冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、その後、水冷した。このときの加熱条件は材料温度がTiの固溶限が添加量と同じになる温度(Ti濃度3.0質量%で約800℃、Ti濃度2.0質量%で約730℃、Ti濃度4.0質量%で約840℃)を基準として表2に記載の加熱条件で各々1分間保持とした。次いで、Ar雰囲気中で表2に記載の条件で時効処理を行った。酸洗による脱スケール後、表2に記載の条件で冷間圧延し、最後に表2に記載の各加熱条件で焼鈍を行って発明例及び比較例の試験片とした。試験片によっては溶体化処理直後の時効処理を省略した。   After the homogenization annealing which heats at 950 degreeC with respect to the said ingot for 3 hours, it hot-rolled at 900-950 degreeC, and obtained the hot-rolled sheet of 10 mm in thickness. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (2.0 mm), and a primary solution treatment was performed on the strip. The conditions for the primary solution treatment were heating at 850 ° C. for 10 minutes. In some examples, the first solution treatment was not performed. Next, in intermediate cold rolling, the intermediate plate thickness is adjusted so that the final plate thickness is 0.10 mm, cold rolling, and then inserted into an annealing furnace capable of rapid heating, and the final solution treatment is performed. And then water cooled. The heating conditions at this time were such that the material temperature was such that the solid solubility limit of Ti was the same as the addition amount (Ti concentration: 3.0% by mass, about 800 ° C., Ti concentration: 2.0% by mass, about 730 ° C., Ti concentration: 4 Each sample was held for 1 minute under the heating conditions shown in Table 2 on the basis of 0.0 mass% and about 840 ° C.). Next, an aging treatment was performed under the conditions described in Table 2 in an Ar atmosphere. After descaling by pickling, cold rolling was performed under the conditions described in Table 2, and finally, annealing was performed under the respective heating conditions described in Table 2 to obtain test pieces of invention examples and comparative examples. Depending on the test piece, the aging treatment immediately after the solution treatment was omitted.

Figure 2012062575
Figure 2012062575

得られた各試験片について、以下の条件で特性評価を行った。結果を表3に示す。
<強度>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
<曲げ加工性>
A:W曲げ
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を板厚の2倍となる曲げ半径の金型で実施して、割れが発生しない場合を○、割れが発生した場合を×とした。
B:180°曲げ
所定のコーナー半径(R)を有するブロックの角に試験片を押し当てて90°曲げを行い、90°曲げ加工部の内側に当該コーナー半径の2倍の厚さ(2R)の板(コーナー半径R)を挟んで板の端面に沿って180°折りたたむ。180°曲げ加工後の外側曲げ表面にクラックを生じない最小曲げ半径(R)を板厚(t)で除した値(R/t)を曲げ加工性の指標とした。
コーナー半径は0.01mmずつ変化させた。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<平均結晶粒径>
平均結晶粒径の測定は、圧延方向に平行な断面をFIBにて切断することで、断面を露出した後、断面をSIM観察し、単位面積当たりの結晶粒の数をカウントして、結晶粒の平均の円相当径を求めた。具体的には、100μm×100μmの枠を作成し、この枠の中に存在する結晶粒の数をカウントした。なお、枠を横切っている結晶粒については、すべて1/2個としてカウントした。枠の面積10000μm2をその合計で除したものが結晶粒1個当たりの面積の平均値である。その面積を持つ真円の直径が円相当径であるので、これを平均結晶粒径とした。
<結晶粒径アスペクト比>
圧延方向に平行な断面の組織を、電解研磨により現出させた後、電子顕微鏡(Philips社製 XL30 SFEG)で観察視野100μm×100μmを撮影した。JISH0501に基づき、切断法で圧延方向に直角な方向の平均結晶粒径及び圧延方向に平行な方向の平均結晶粒径を求め、アスペクト比を算出した。
<半価幅>
各試験片について、理学電機社製型式rint Ultima2000のX線回折装置を用いて、以下の測定条件で圧延面の回折強度曲線を取得し、{220}結晶面のX線回線強度ピークの半価幅β{220}を測定した。同様の測定条件で、純銅粉標準試料についても、半価幅β0{220}を求めた。銅粉標準試料では{220}面のピークは2θが74°付近に表れた。
・ターゲット:Cu管球
・管電圧:40kV
・管電流:40mA
・走査速度:5°/min
・サンプリング幅:0.02°
・測定範囲(2θ):60°〜80°
<ばね限界値(Kb)>
ばね限界値(Kb)は、JIS H3130(合金番号C1990)に準拠して、繰り返し式たわみ試験を実施し、永久歪が残留する曲げモーメントから表面最大応力を測定した。
About each obtained test piece, characteristic evaluation was performed on the following conditions. The results are shown in Table 3.
<Strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.
<Bending workability>
A: W bending In accordance with JIS H 3130, when a W-bending test of Badway (bending axis is in the same direction as the rolling direction) is carried out with a mold having a bending radius that is twice the plate thickness, The case where cracking occurred was marked as x.
B: 180 ° bending The test piece is pressed against a corner of a block having a predetermined corner radius (R) to bend 90 °, and a thickness (2R) that is twice the corner radius inside the 90 ° bent portion. The plate is folded 180 ° along the end face of the plate (corner radius R). The value (R / t) obtained by dividing the minimum bending radius (R) that does not cause cracks on the outer bending surface after 180 ° bending by the plate thickness (t) was used as an index of bending workability.
The corner radius was changed by 0.01 mm.
<Conductivity>
In accordance with JIS H 0505, the conductivity (EC:% IACS) was measured by a four-terminal method.
<Average crystal grain size>
The average crystal grain size is measured by cutting a cross section parallel to the rolling direction with FIB, exposing the cross section, observing the cross section with SIM, and counting the number of crystal grains per unit area. The average equivalent circle diameter was obtained. Specifically, a frame of 100 μm × 100 μm was created, and the number of crystal grains present in this frame was counted. Note that all the crystal grains crossing the frame were counted as ½. The average value of the area per crystal grain is obtained by dividing the frame area of 10,000 μm 2 by the total. Since the diameter of the perfect circle having the area is the equivalent circle diameter, this was defined as the average crystal grain size.
<Crystal grain size aspect ratio>
The structure of the cross section parallel to the rolling direction was revealed by electropolishing, and then an observation field of view 100 μm × 100 μm was photographed with an electron microscope (Philips XL30 SFEG). Based on JISH0501, the average crystal grain size in the direction perpendicular to the rolling direction and the average crystal grain size in the direction parallel to the rolling direction were determined by a cutting method, and the aspect ratio was calculated.
<Half width>
For each test piece, a diffraction intensity curve of the rolled surface was obtained under the following measurement conditions using an X-ray diffractometer manufactured by Rigaku Electric Co., Ltd. model Ultima 2000, and the half value of the X-ray line intensity peak on the {220} crystal plane The width β {220} was measured. Under the same measurement conditions, the half-value width β 0 {220} was also obtained for the pure copper powder standard sample. In the copper powder standard sample, the peak of the {220} plane appeared at 2θ around 74 °.
・ Target: Cu tube ・ Tube voltage: 40 kV
・ Tube current: 40 mA
・ Scanning speed: 5 ° / min
・ Sampling width: 0.02 °
Measurement range (2θ): 60 ° -80 °
<Spring limit value (Kb)>
As for the spring limit value (Kb), a repetitive deflection test was carried out in accordance with JIS H3130 (alloy number C1990), and the surface maximum stress was measured from the bending moment in which permanent strain remained.

Figure 2012062575
Figure 2012062575

<考察>
発明例No.1〜26は強度と曲げ加工性がバランス良く向上していることが分かる。発明例13〜26は製造工程に変化を与えた変形例である。発明例13では2回目の溶体化処理温度を高めに設定し、上限の平均結晶粒径を得た。参考例14は最終冷間圧延の圧下率が低いのでβが請求範囲の下限になり、アスペクト比も低くなり、強度が発明例よりは劣った。発明例17及び18は発明例No.2及び発明例No.4の工程の歪取焼鈍をそれぞれ省略した例であり、歪取焼鈍を省略した場合でもβの値が本発明の規定の範囲内となり、強度と曲げ加工性がバランスよく向上することが分かる。発明例17及び18に対して、発明例19、20及び21では歪取焼鈍を行ったことで、強度及びKb値が上昇した。発明例22〜25は1回目の溶体化処理を省略した例であり、更に、No.24及び25は歪取焼鈍を行わなかった例であるが、1回目の溶体化処理を省略し、そして、歪取焼鈍を行わなくても、βの値が本発明の規定の範囲内であり、強度と曲げ加工性がバランス良く向上していることがわかる。発明例26は歪取焼鈍を低温短時間で行った例である。
一方で、比較例No.1〜3では、溶体化処理後に時効処理を行わずに冷間圧延を行っていることから半価幅が小さく、強度と曲げ加工性のバランスが発明例に比べて劣っている。また、比較例No.4〜5では溶体化処理後に時効処理を行ったが、比較例No.4では冷間圧延における圧下率が高くなり、半価幅が大きくなりすぎたために、強度と曲げ加工性のバランスが発明例に比べて劣っている。比較例No.5では溶体化処理における加熱温度が高すぎたために結晶粒径が大きくなった。最終の冷間圧延の圧下率が高いため比較的高い強度が得られたが、曲げ加工性が劣った。比較例No.6、7、9及び10では、溶体化温度が高すぎたので結晶粒径が上限を超え、曲げ加工性が劣化した。また、比較例7及び8では溶体化処理後に時効処理を行わずに冷間圧延を行っていることから半価幅が小さく、強度と曲げ加工性のバランスが悪かった。比較例No.11では高温で歪取焼鈍したので再結晶が始まって転位密度が低減してβが低くなり、再固溶も始まったので強度と導電率が下がった。
<Discussion>
Invention Example No. 1 to 26 show that the strength and bending workability are improved in a well-balanced manner. Inventive Examples 13 to 26 are modified examples in which the manufacturing process is changed. In Invention Example 13, the second solution treatment temperature was set higher, and an upper limit average crystal grain size was obtained. In Reference Example 14, since the rolling reduction of the final cold rolling was low, β was the lower limit of the claims, the aspect ratio was also low, and the strength was inferior to that of the inventive examples. Invention Examples 17 and 18 are Invention Examples No. 2 and Invention Example No. This is an example in which the strain relief annealing in step 4 is omitted, and even when the strain relief annealing is omitted, the value of β is within the range defined by the present invention, and it can be seen that the strength and bending workability are improved in a well-balanced manner. In contrast to Inventive Examples 17 and 18, in Inventive Examples 19, 20, and 21, the strength and Kb value increased by performing strain relief annealing. Invention Examples 22 to 25 are examples in which the first solution treatment was omitted. 24 and 25 are examples in which the strain relief annealing was not performed, but the first solution treatment was omitted, and the value of β was within the specified range of the present invention even without the strain relief annealing. It can be seen that the strength and bending workability are improved in a well-balanced manner. Invention Example 26 is an example in which the strain relief annealing is performed at a low temperature in a short time.
On the other hand, Comparative Example No. In Nos. 1 to 3, since the cold rolling is not performed after the solution treatment, the half width is small, and the balance between strength and bending workability is inferior to that of the inventive examples. Comparative Example No. In Nos. 4 to 5, the aging treatment was performed after the solution treatment. In No. 4, the reduction ratio in cold rolling was high and the half width was too large, so the balance between strength and bending workability was inferior to that of the inventive examples. Comparative Example No. In No. 5, the crystal grain size was increased because the heating temperature in the solution treatment was too high. Since the final cold rolling reduction was high, relatively high strength was obtained, but bending workability was poor. Comparative Example No. In 6, 7, 9 and 10, since the solution temperature was too high, the crystal grain size exceeded the upper limit, and the bending workability deteriorated. Further, in Comparative Examples 7 and 8, since the cold rolling was performed without performing the aging treatment after the solution treatment, the half width was small, and the balance between strength and bending workability was poor. Comparative Example No. In No. 11, since strain relief annealing was performed at high temperature, recrystallization began, the dislocation density decreased, β decreased, and re-solution began, so the strength and conductivity decreased.

Claims (13)

Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、
圧延面の{220}結晶面からのX線回折強度ピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度ピークの半価幅であるβ0{220}と次式:
3.0≦β{220}/β0{220}≦6.0
を満たし、
圧延方向に平行な断面の組織観察において、平均結晶粒径が円相当径で表して30μm以下であり、且つ、
圧延平行方向の0.2%耐力が880MPa以上である銅合金。
It is a copper alloy for electronic parts containing 2.0 to 4.0% by mass of Ti, consisting of the remaining copper and inevitable impurities,
Β {220}, which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the rolled surface, is β, which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the pure copper standard powder. 0 {220} and the following formula:
3.0 ≦ β {220} / β 0 {220} ≦ 6.0
The filling,
In the observation of the structure of the cross section parallel to the rolling direction, the average crystal grain size is 30 μm or less in terms of equivalent circle diameter, and
A copper alloy having a 0.2% proof stress in the rolling parallel direction of 880 MPa or more.
圧延平行方向の0.2%耐力が880〜1050MPaである請求項1に記載の銅合金。   The copper alloy according to claim 1, wherein the 0.2% yield strength in the rolling parallel direction is 880 to 1050 MPa. 圧延方向に平行な断面の組織観察において、圧延方向に直角な方向の平均結晶粒径(T)に対する圧延方向に平行な方向の平均結晶粒径(L)の比(L/T)が1〜4である請求項1又は2に記載の銅合金。   In the structure observation of the cross section parallel to the rolling direction, the ratio (L / T) of the average crystal grain size (L) in the direction parallel to the rolling direction to the average crystal grain size (T) in the direction perpendicular to the rolling direction is 1 to 1. The copper alloy according to claim 1 or 2, which is 4. ばね限界値が600〜1000MPaである請求項1〜3の何れか一項に記載の銅合金。   The copper alloy according to any one of claims 1 to 3, wherein a spring limit value is 600 to 1000 MPa. ばね限界値が300〜600MPaである請求項1〜3の何れか一項に記載の銅合金。   The copper alloy according to any one of claims 1 to 3, wherein a spring limit value is 300 to 600 MPa. Tiを2.0〜4.0質量%含有し、更に第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、
圧延面の{220}結晶面からのX線回折強度ピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度ピークの半価幅であるβ0{220}と次式:
3.0≦β{220}/β0{220}≦6.0
を満たし、
圧延方向に平行な断面の組織観察において、平均結晶粒径が円相当径で表して30μm以下であり、且つ、
圧延平行方向の0.2%耐力が975MPa以上である銅合金。
It contains 2.0 to 4.0% by mass of Ti, and the third element group is selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B and P It is a copper alloy for electronic parts containing 0 to 0.5 mass% in total of 1 type or 2 types, and consisting of the remaining copper and unavoidable impurities,
Β {220}, which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the rolled surface, is β, which is the half width of the X-ray diffraction intensity peak from the {220} crystal plane of the pure copper standard powder. 0 {220} and the following formula:
3.0 ≦ β {220} / β 0 {220} ≦ 6.0
The filling,
In the observation of the structure of the cross section parallel to the rolling direction, the average crystal grain size is 30 μm or less in terms of equivalent circle diameter, and
A copper alloy having a 0.2% yield strength in the rolling parallel direction of 975 MPa or more.
圧延平行方向の0.2%耐力が975〜990MPaである請求項6に記載の銅合金。   The copper alloy according to claim 6, wherein the 0.2% yield strength in the rolling parallel direction is 975 to 990 MPa. 圧延方向に平行な断面の組織観察において、圧延方向に直角な方向の平均結晶粒径(T)に対する圧延方向に平行な方向の平均結晶粒径(L)の比(L/T)が1〜4である請求項6又は7に記載の銅合金。   In the structure observation of the cross section parallel to the rolling direction, the ratio (L / T) of the average crystal grain size (L) in the direction parallel to the rolling direction to the average crystal grain size (T) in the direction perpendicular to the rolling direction is 1 to 1. The copper alloy according to claim 6 or 7, which is 4. ばね限界値が600〜1000MPaである請求項6〜8の何れか一項に記載の銅合金。   The copper alloy according to any one of claims 6 to 8, wherein the spring limit value is 600 to 1000 MPa. ばね限界値が300〜600MPaである請求項6〜8の何れか一項に記載の銅合金。   The copper alloy according to any one of claims 6 to 8, wherein the spring limit value is 300 to 600 MPa. 請求項1〜10の何れか一項記載の銅合金からなる伸銅品。   A copper product comprising the copper alloy according to any one of claims 1 to 10. 請求項1〜10の何れか一項記載の銅合金を備えた電子部品。   The electronic component provided with the copper alloy as described in any one of Claims 1-10. 請求項1〜10の何れか一項記載の銅合金を備えたコネクタ。   The connector provided with the copper alloy as described in any one of Claims 1-10.
JP2011237355A 2009-11-25 2011-10-28 Titanium copper for electronic parts Active JP4961049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237355A JP4961049B2 (en) 2009-11-25 2011-10-28 Titanium copper for electronic parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009267991 2009-11-25
JP2009267991 2009-11-25
JP2011237355A JP4961049B2 (en) 2009-11-25 2011-10-28 Titanium copper for electronic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010145045A Division JP4889801B2 (en) 2009-11-25 2010-06-25 Manufacturing method of titanium copper for electronic parts

Publications (2)

Publication Number Publication Date
JP2012062575A true JP2012062575A (en) 2012-03-29
JP4961049B2 JP4961049B2 (en) 2012-06-27

Family

ID=46058573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237355A Active JP4961049B2 (en) 2009-11-25 2011-10-28 Titanium copper for electronic parts

Country Status (1)

Country Link
JP (1) JP4961049B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064970A1 (en) * 2012-10-25 2014-05-01 Jx日鉱日石金属株式会社 High-strength titanium-copper alloy
CN104271784A (en) * 2012-04-24 2015-01-07 Jx日矿日石金属株式会社 Cu-ni-si type copper alloy
KR20150055055A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
KR101735196B1 (en) 2014-08-29 2017-05-12 제이엑스금속주식회사 High-strength titanium-copper foil, and method for producing the same
KR101736037B1 (en) 2014-08-29 2017-05-16 제이엑스금속주식회사 High-strength titanium-copper foil, and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160543A (en) * 2002-09-19 2004-06-10 Mitsubishi Materials Corp Method of manufacturing ingot for manufacturing ti-containing copper alloy plate or bar of excellent workability
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
JP2011026635A (en) * 2009-07-22 2011-02-10 Dowa Metaltech Kk Copper alloy sheet and method for manufacturing the same, and electric and electronic component
JP2011132594A (en) * 2009-11-25 2011-07-07 Jx Nippon Mining & Metals Corp Titanium-copper for electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160543A (en) * 2002-09-19 2004-06-10 Mitsubishi Materials Corp Method of manufacturing ingot for manufacturing ti-containing copper alloy plate or bar of excellent workability
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
JP2011026635A (en) * 2009-07-22 2011-02-10 Dowa Metaltech Kk Copper alloy sheet and method for manufacturing the same, and electric and electronic component
JP2011132594A (en) * 2009-11-25 2011-07-07 Jx Nippon Mining & Metals Corp Titanium-copper for electronic component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271784A (en) * 2012-04-24 2015-01-07 Jx日矿日石金属株式会社 Cu-ni-si type copper alloy
CN104271784B (en) * 2012-04-24 2016-03-30 Jx日矿日石金属株式会社 Cu-Ni-Si class copper alloy
WO2014064970A1 (en) * 2012-10-25 2014-05-01 Jx日鉱日石金属株式会社 High-strength titanium-copper alloy
JP2014084514A (en) * 2012-10-25 2014-05-12 Jx Nippon Mining & Metals Corp High-strength titanium-copper
KR20150055055A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
KR20150055071A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
KR101735196B1 (en) 2014-08-29 2017-05-12 제이엑스금속주식회사 High-strength titanium-copper foil, and method for producing the same
KR101736037B1 (en) 2014-08-29 2017-05-16 제이엑스금속주식회사 High-strength titanium-copper foil, and method for producing the same

Also Published As

Publication number Publication date
JP4961049B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4889801B2 (en) Manufacturing method of titanium copper for electronic parts
JP5226057B2 (en) Copper alloys, copper products, electronic components and connectors
JP5319590B2 (en) Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP5718436B1 (en) Titanium copper for electronic parts
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP5368581B2 (en) Titanium copper for electronic parts
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP6151636B2 (en) Titanium copper for electronic parts
JP2015096642A (en) Titanium copper for electronic component
JP6080823B2 (en) Titanium copper for electronic parts
JP4961049B2 (en) Titanium copper for electronic parts
JP6125410B2 (en) Titanium copper for electronic parts
JP5718021B2 (en) Titanium copper for electronic parts
JP2015127440A (en) Titanium copper for electronic component
JP5628712B2 (en) Titanium copper for electronic parts
JP4663030B1 (en) Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP2016130370A (en) Titanium copper for electronic part
JP5378286B2 (en) Titanium copper and method for producing the same
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts
JP2016117952A (en) Titanium copper for electronic component
JP2016117951A (en) Titanium copper for electronic component
JP2013204138A (en) Titanium copper and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4961049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250