JP2012057841A - Heat pipe, and manufacturing method thereof - Google Patents

Heat pipe, and manufacturing method thereof Download PDF

Info

Publication number
JP2012057841A
JP2012057841A JP2010199818A JP2010199818A JP2012057841A JP 2012057841 A JP2012057841 A JP 2012057841A JP 2010199818 A JP2010199818 A JP 2010199818A JP 2010199818 A JP2010199818 A JP 2010199818A JP 2012057841 A JP2012057841 A JP 2012057841A
Authority
JP
Japan
Prior art keywords
heat pipe
concavo
wick
wick structure
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010199818A
Other languages
Japanese (ja)
Inventor
Naoko Tamoto
尚子 田元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010199818A priority Critical patent/JP2012057841A/en
Publication of JP2012057841A publication Critical patent/JP2012057841A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem of not capable of coping with miniaturization and enhancing of performance, which being requested lately, of a heat pipe, relating to a conventional wick structure for a heat pipe which is composed of a groove about 0.1-1 mm, metal mesh about 50-100 μm, or sintered metal about 25-250 μm.SOLUTION: The inner wall of a lower side container 2 is provided, as a wick structure, with a graphite substrate 4 in which a rough structure having an interval W of 10 μm or less is formed. The rough structure on an evaporation part side 5 is denser than the rough structure on the side of a condensing part 6.

Description

本発明は発熱電子機器の熱輸送部材として作用するヒートパイプ、ベーパーチャンバ等、特に、その毛細管構造(以下、ウィック構造という)に関する。   The present invention relates to a heat pipe, a vapor chamber, and the like that act as a heat transport member of a heat generating electronic device, and more particularly to a capillary structure (hereinafter referred to as a wick structure).

近年、電子機器たとえば発光ダイオード(LED)、半導体素子、太陽電池等の高性能化に伴いその発熱量が増加している。他方、電子機器の小型化、薄型化の要求が高まっている。この結果、電子機器の発熱密度が非常に高くなり、電子機器は熱的に厳しい状況を強いられている。このような電子機器を冷却するために、熱輸送部材としてのヒートパイプが注目されている。   2. Description of the Related Art In recent years, the amount of heat generated has increased with the enhancement of performance of electronic devices such as light emitting diodes (LEDs), semiconductor elements, and solar cells. On the other hand, there is an increasing demand for smaller and thinner electronic devices. As a result, the heat generation density of the electronic device becomes very high, and the electronic device is forced to be in a severely thermal condition. In order to cool such an electronic device, a heat pipe as a heat transport member has attracted attention.

ヒートパイプは銅などの中空密閉容器(以下、コンテナという)内に空気等の非凝縮性ガスを脱気した状態で水等の凝縮性の作動流体を封入して真空密封し、コンテナの内壁にウィック構造を設け、作動流体の相変態及び移動によって熱の移動が行われる。具体的には、ヒートパイプの蒸発部(吸熱部ともいう)側では、加熱により液相状態の作動流体が蒸発して気相状態となってヒートパイプの凝縮部(放熱部ともいう)へ移動する。他方、ヒートパイプの凝縮部側では、蒸気となった作動流体が冷却されて凝縮して再び液相状態の作動流体に変化し、ウィック構造による毛細管圧力によって蒸発部へ還流する。   The heat pipe is sealed in a vacuum by sealing a condensable working fluid such as water in a hollow sealed container such as copper (hereinafter referred to as container) with non-condensable gas such as air deaerated. A wick structure is provided, and heat is transferred by phase transformation and movement of the working fluid. Specifically, on the evaporation part (also referred to as the heat absorption part) side of the heat pipe, the working fluid in the liquid phase is evaporated by heating and becomes a gas phase state, and moves to the condensation part (also referred to as the heat dissipation part) of the heat pipe. To do. On the other hand, on the condensing part side of the heat pipe, the working fluid that has become vapor is cooled and condensed to change into a working fluid in a liquid phase again, and is returned to the evaporation part by the capillary pressure due to the wick structure.

ウィック構造は毛細管圧力つまり液相作動流体に対するポンプ力を生じさせるためのものであるので、作動流体とのいわゆる濡れ性が良好であること、かつ液相作動流体の液面に形成されるメニスカスでの実効毛細管半径が可及的に小さいことが好ましい。従って、従来のヒートパイプ用ウィック構造は、約0.1〜1mmの溝(参照:特許文献1、2)、約50〜100μmの金属メッシュ(参照:特許文献2)あるいは約25〜250μmの焼結金属(参照:特許文献2)により構成されている。   Since the wick structure is for generating a capillary pressure, that is, a pumping force for the liquid phase working fluid, the so-called wettability with the working fluid is good and a meniscus formed on the liquid surface of the liquid phase working fluid. It is preferable that the effective capillary radius is as small as possible. Therefore, the conventional heat pipe wick structure has a groove of about 0.1 to 1 mm (Reference: Patent Documents 1 and 2), a metal mesh of about 50 to 100 μm (Reference: Patent Document 2), or a sintered metal of about 25 to 250 μm. (Reference: Patent Document 2).

尚、蒸発部側と凝縮部側とでウィック構造を異ならせることにより液相作動流体を還流させるポンプ力を高くすることが知られている(参照:特許文献2)。つまり、蒸発部側では、比較的小さな毛細管構造を有してメニスカスでの実効毛細管半径を比較的小さくし、他方、凝縮部側では、比較的大きな毛細管構造を有してメニスカスでの実効毛細管半径を比較的大きくし、これらを連結させることにより、蒸発部側では、積極的に毛細管圧力を生じさせ、他方、凝縮部側では、液相作動流体の流動化を円滑にする。たとえば、約25〜250μmの焼結金属を用いた場合には、前処理としてサイズの異なる金属焼結体を用意してコンテナの内壁に定着させることによって達成できる。   It is known that the pumping force for refluxing the liquid-phase working fluid is increased by making the wick structure different between the evaporation section side and the condensation section side (see Patent Document 2). In other words, the evaporation part side has a relatively small capillary structure to reduce the effective capillary radius at the meniscus, while the condensation part side has a relatively large capillary structure to provide an effective capillary radius at the meniscus. By connecting them relatively large, capillary pressure is positively generated on the evaporation side, and fluidization of the liquid phase working fluid is made smooth on the condensation side. For example, when a sintered metal of about 25 to 250 μm is used, this can be achieved by preparing a sintered metal body having a different size as a pretreatment and fixing it on the inner wall of the container.

特開2000−193385号公報JP 2000-193385 A 特開2005−180871号公報Japanese Patent Application Laid-Open No. 2005-180871

しかしながら、20μm以上の微細構造である上述の従来のヒートパイプ用ウィック構造では、そのウィック構造によって生じるメニスカスでの実効毛細管半径の小径化に限界があるため、最近求められているヒートパイプの小型化、高性能化に対応できないという課題がある。   However, in the above-mentioned conventional heat pipe wick structure having a fine structure of 20 μm or more, there is a limit to reducing the effective capillary radius at the meniscus caused by the wick structure. However, there is a problem that it cannot cope with high performance.

上述の課題を解決するために、本発明に係る放熱材料ヒートパイプ用ウィック構造は、表面に間隔が10μm以下たとえばナノメートルオーダの凹凸構造を形成した炭素系基板を具備する。これにより、液相作動流体の液面に形成されるメニスカスでの実効毛細管半径が小さくなる。   In order to solve the above-mentioned problems, the wick structure for heat-dissipating material heat pipe according to the present invention includes a carbon-based substrate having a concavo-convex structure with a spacing of 10 μm or less, for example, nanometer order on the surface. Thereby, the effective capillary radius at the meniscus formed on the liquid surface of the liquid phase working fluid is reduced.

また、本発明に係るヒートパイプ用ウィック構造の製造方法は、炭素系基板の表面に間隔が10μm以下たとえばナノメートルのオーダの凹凸構造を加工する工程を具備する。   The method for manufacturing a wick structure for a heat pipe according to the present invention includes a step of processing a concavo-convex structure of an order of 10 μm or less, for example, nanometer, on the surface of a carbon-based substrate.

本発明によれば、ナノメートルのオーダの凹凸構造を有する炭素系基板を用いてウィックを形成しているので、実効毛細管半径が小さくなるため、毛細管圧力が大きくなり、ヒートパイプを高性能化できる。また、高性能化つまり、熱輸送能力を高めることができる分、ヒートパイプを小型化できる。   According to the present invention, since the wick is formed using a carbon-based substrate having a concavo-convex structure on the order of nanometers, the effective capillary radius is reduced, so that the capillary pressure is increased and the heat pipe can be improved in performance. . In addition, the heat pipe can be miniaturized as the performance is improved, that is, the heat transport capacity can be increased.

本発明に係るヒートパイプの実施の形態を示し、(A)は平面図、(B)は(A)のB−B線断面図である。Embodiment of the heat pipe which concerns on this invention is shown, (A) is a top view, (B) is the BB sectional drawing of (A). 図1のグラファイト基板のナノ凹凸構造の加工フローを示すフローチャートである。It is a flowchart which shows the processing flow of the nano uneven structure of the graphite substrate of FIG. 図2のプラズマエッチング前後のグラファイト基板の表面の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the surface of the graphite board | substrate before and behind the plasma etching of FIG. 本発明の効果を説明するための表である。It is a table | surface for demonstrating the effect of this invention.

図1は本発明に係るヒートパイプの実施の形態を示し、(A)は平面図、(B)は(A)のB−B線断面図である。   1A and 1B show an embodiment of a heat pipe according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a sectional view taken along line BB in FIG.

図1を参照すると、ヒートパイプのコンテナ1は、銅等の熱伝導性の良い金属よりなる下側コンテナ2及び下側コンテナ2の封止部材としての上側コンテナ3によって構成される。尚、コンテナ1は直方体をなしているが、円筒形でもよい。   Referring to FIG. 1, a heat pipe container 1 includes a lower container 2 made of a metal having good thermal conductivity such as copper, and an upper container 3 as a sealing member for the lower container 2. The container 1 has a rectangular parallelepiped shape, but may be cylindrical.

下側コンテナ2及び上側コンテナ3の内壁には間隔Wが10μm以下の凹凸構造を形成したグラファイト基板4、4’が設けられており、ウィック構造として作用する。たとえば、このグラファイト基板4、4’の凹凸構造はたとえばナノメートル(nm)のオーダである。尚、ナノメートルのオーダとは、約1nm〜100nmの範囲を意味する。   The inner walls of the lower container 2 and the upper container 3 are provided with graphite substrates 4 and 4 ′ having a concavo-convex structure with a spacing W of 10 μm or less, and function as a wick structure. For example, the concavo-convex structure of the graphite substrates 4, 4 'is, for example, on the order of nanometers (nm). The nanometer order means a range of about 1 nm to 100 nm.

下側コンテナ2の開口端部と上側コンテナ3の開口端部とを接合することにより封止する際には、空気等の非凝縮性ガスを脱気した状態で水、代替フロン等の凝縮性の作動流体を封入して真空密封する。点線5で示す領域は蒸発部を示し、発熱電子部品たとえばLED(図示せず)の下部に配設される。他方、点線6で示す領域は凝縮部を示し、放熱部材(図示せず)に配設される。蒸発部5と凝縮部6との間は断熱部材(図示せず)によって覆われていてもよい。   When sealing by joining the opening end of the lower container 2 and the opening end of the upper container 3, the condensability of water, alternative chlorofluorocarbon, etc. in a state where non-condensable gas such as air is deaerated. The working fluid is sealed and vacuum-sealed. A region indicated by a dotted line 5 indicates an evaporation portion, and is disposed below a heat generating electronic component such as an LED (not shown). On the other hand, a region indicated by a dotted line 6 indicates a condensing portion and is disposed on a heat radiating member (not shown). The space between the evaporator 5 and the condenser 6 may be covered with a heat insulating member (not shown).

図1において、蒸発部5側の凹凸構造を凝縮部6側の凹凸構造より密にして蒸発部5側と凝縮部6側とでウィック構造を異ならせる。これにより、蒸発部5側では積極的に毛細管圧力を生じさせ、他方、凝縮部6側では、液相作動流体の流体化を円滑にする。つまり、作動流体の内部抵抗が低減し、熱輸送性能が向上する。尚、複数の発熱源が存在する場合には、複数の蒸発部を設け、これら蒸発部側の凹凸構造を選択的に密にすることもできる。   In FIG. 1, the concavo-convex structure on the evaporation unit 5 side is made denser than the concavo-convex structure on the condensation unit 6 side, and the wick structure is made different between the evaporation unit 5 side and the condensation unit 6 side. As a result, capillary pressure is positively generated on the evaporation section 5 side, while fluidization of the liquid phase working fluid is made smooth on the condensation section 6 side. That is, the internal resistance of the working fluid is reduced and the heat transport performance is improved. In the case where there are a plurality of heat generation sources, a plurality of evaporation sections can be provided, and the uneven structure on the evaporation section side can be selectively made dense.

図2は図1のグラファイト基板のナノ凹凸構造の加工フローを示すフローチャートである。   FIG. 2 is a flowchart showing a processing flow of the nano uneven structure of the graphite substrate of FIG.

図2のステップ201において、図3の(A)に示す鏡面状表面を有するグラファイト基板をH2ガスを用いたプラズマエッチング法によってエッチングして図3の(B)に示す間隔がナノメートルのオーダの凹凸構造のグラファイト基板を得る。このプラズマエッチング条件は、たとえば、次のごとくである。
RFパワー:100-1000W
反応室内圧力:133-13300Pa (1-100Torr)
水素流量:5-500sccm
エッチング時間:1-100分
In step 201 of FIG. 2, the graphite substrate having the mirror-like surface shown in FIG. 3A is etched by a plasma etching method using H 2 gas, and the interval shown in FIG. 3B is on the order of nanometers. A graphite substrate having a concavo-convex structure is obtained. The plasma etching conditions are, for example, as follows.
RF power: 100-1000W
Reaction chamber pressure: 133-13300Pa (1-100Torr)
Hydrogen flow rate: 5-500sccm
Etching time: 1-100 minutes

尚、図2のステップ201でのプラズマエッチング法は、反応性イオンエッチング(RIE)法、電子サイクロトロン共鳴(ECR)エッチング法、マイクロ波プラズマエッチング法等のいずれでもよく、また、処理ガスは、H2ガス以外のArガス、O2ガス、CF4ガス等のいずれでもよい。 2 may be any of reactive ion etching (RIE), electron cyclotron resonance (ECR) etching, microwave plasma etching, etc., and the processing gas is H Ar gas other than 2 gas, O 2 gas, CF 4 gas or the like may be used.

たとえば、RIE法はドライエッチングに分類される微細加工方法の1つであり、反応室内において処理ガスに電磁波等を与えることによりプラズマ化し、グラファイト基板設置電極に高周波電圧を印加する。この結果、グラファイト基板とプラズマとの間にバイアス電圧が発生し、プラズマ中のイオン、ラジカルがグラファイト基板に衝突する。このとき、イオンによるスパッタリングと処理ガスの化学反応とが同時に起こり、高精度の凹凸微細加工をすることができる。従って、RFパワー、反応室内圧力、ガス流量、エッチング時間を上述の範囲内で制御でき、また、RIE法は異方性エッチングが可能なので、ヒートパイプ用ウィック構造を制御できる。この結果、グラファイト基板4に対して上述のRIE条件を制御して蒸発部5側の凹凸構造を凝縮部6側の凹凸構造より密にして蒸発部5側と凝縮部6側とでウィック構造を異ならせる。これにより、上述のごとく、蒸発部5側では積極的に毛細管圧力を生じさせ、他方、凝縮部6側では、液相作動流体の流体化を円滑にする。この結果、熱輸送性能が向上する。尚、複数の発熱源が存在する場合には、複数の蒸発部側の凹凸構造を選択的に制御する。   For example, the RIE method is one of microfabrication methods classified as dry etching, in which plasma is generated by applying an electromagnetic wave or the like to a processing gas in a reaction chamber, and a high frequency voltage is applied to a graphite substrate installation electrode. As a result, a bias voltage is generated between the graphite substrate and the plasma, and ions and radicals in the plasma collide with the graphite substrate. At this time, sputtering by ions and chemical reaction of the processing gas occur at the same time, so that highly accurate uneven microfabrication can be performed. Therefore, the RF power, the pressure in the reaction chamber, the gas flow rate, and the etching time can be controlled within the above ranges, and the RIE method can perform anisotropic etching, so that the heat pipe wick structure can be controlled. As a result, the above RIE condition is controlled for the graphite substrate 4 so that the uneven structure on the evaporation unit 5 side is made denser than the uneven structure on the condensation unit 6 side, and the wick structure is formed on the evaporation unit 5 side and the condensation unit 6 side. Make it different. As a result, as described above, capillary pressure is positively generated on the evaporation unit 5 side, and fluidization of the liquid-phase working fluid is made smooth on the condensing unit 6 side. As a result, the heat transport performance is improved. In the case where there are a plurality of heat sources, the concavo-convex structure on the side of the plurality of evaporation units is selectively controlled.

次に、従来の25μmの銅焼結金属よりなるウィック構造と本発明に係る間隔10μmの凹凸構造を形成したグラファイト基板よりなるウィック構造とを比較する。ここでは、ウィック構造は共に2.5cm角で厚さ0.6mmの平板とすることにより同一体積(=0.375cm3)とし、また、便宜上、蒸発部側、凝縮部側におけるウィック構造は同一とする。 Next, a conventional wick structure made of a sintered copper metal with a thickness of 25 μm and a wick structure made of a graphite substrate having a concavo-convex structure with a spacing of 10 μm according to the present invention will be compared. Here, the wick structure is a 2.5 cm square and 0.6 mm thick flat plate having the same volume (= 0.375 cm 3 ). For convenience, the wick structure on the evaporation side and the condensation side is the same.

図4の(A)に示すように、比重は、銅焼結金属の場合、8.92であり、他方、凹凸構造グラファイト基板の場合、1.5である。従って、同一体積(=0.375cm3)では、重量は、銅焼結金属の場合、3.345gであり、他方、凹凸構造グラファイト基板の場合、0.5625gであり、銅焼結金属の場合の17%に過ぎない。このように、電子機器の小型化、薄型化の要求が高まっている一方、放熱部材の重量割合が比較的大きいので、熱輸送部材としてのウィック構造つまりヒートパイプの軽量化は電子機器に対して非常に効果がある。 As shown in FIG. 4A, the specific gravity is 8.92 in the case of the copper sintered metal, and 1.5 in the case of the concavo-convex structure graphite substrate. Therefore, at the same volume (= 0.375 cm 3 ), the weight is 3.345 g for the copper sintered metal, and 0.5625 g for the concavo-convex structure graphite substrate, 17% for the copper sintered metal. Only. Thus, while the demand for downsizing and thinning of electronic devices is increasing, the weight ratio of the heat radiating member is relatively large. Very effective.

また、図4の(B)に示すように、銅焼結金属の微小構造サイズを25μmとすると、表面積は1,000,000μm2程度であり、他方、凹凸構造グラファイト基板の微小構造サイズを10μmとすると、表面積は6,250,000μm2程度であり、銅焼結金属の場合の6倍以上となる。このように、表面積が大きくなると、メニスカスでの実効毛細管半径が小さくなり、強い毛細管圧力を示し、高い熱輸送能力を発揮できる。また、高い熱輸送性能分だけ、凹凸構造グラファイト基板を小型化できる。 As shown in FIG. 4B, when the microstructure size of the sintered copper metal is 25 μm, the surface area is about 1,000,000 μm 2 , and on the other hand, when the microstructure size of the concavo-convex structure graphite substrate is 10 μm, The surface area is about 6,250,000 μm 2, which is more than six times that of sintered copper metal. As described above, when the surface area is increased, the effective capillary radius at the meniscus is decreased, a strong capillary pressure is exhibited, and a high heat transport capability can be exhibited. In addition, the concavo-convex structure graphite substrate can be miniaturized by the amount equivalent to the high heat transport performance.

尚、上述のグラファイト基板は金属を含浸させた金属含浸の稠密グラファイト基板とすることができる。これにより、稠密グラファイト基板の靭性は大きいので、加工性、コンテナとの密着性が向上し、コンテナとの間の空隙がなくなる。   The graphite substrate described above can be a metal-impregnated dense graphite substrate impregnated with metal. Thereby, since the toughness of the dense graphite substrate is large, workability and adhesion to the container are improved, and there is no gap between the container and the container.

また、上述の実施の形態では、グラファイト基板を用いたが、グラファイト基板以外の炭素系基板たとえばダイヤモンド基板表面をプラズマエッチングして凹凸構造を形成した基板を用いてもよい。   In the above-described embodiment, the graphite substrate is used. However, a carbon-based substrate other than the graphite substrate, for example, a substrate in which a concavo-convex structure is formed by plasma etching the surface of a diamond substrate may be used.

1:コンテナ
2:下側コンテナ
3:上側コンテナ
4、4’:グラファイト基板
5:蒸発部
6:凝縮部
201:ナノ凹凸構造加工ステップ
1: Container
2: Lower container
3: Upper container
4, 4 ': Graphite substrate
5: Evaporation part
6: Condensing part
201: Nano uneven structure processing step

Claims (8)

ウィック構造を具備するヒートパイプにおいて、
前記ウィック構造は表面に間隔が10μm以下の凹凸構造を形成した炭素系基板を具備するヒートパイプ。
In a heat pipe having a wick structure,
The wick structure is a heat pipe including a carbon-based substrate having a concavo-convex structure with a space of 10 μm or less on the surface.
前記凹凸構造の間隔はナノメートルのオーダである請求項1に記載のヒートパイプ。   The heat pipe according to claim 1, wherein the interval between the uneven structures is on the order of nanometers. 前記ウィック構造の両端部を蒸発部及び凝縮部と規定した場合に、
前記蒸発部側の凹凸構造は前記凝縮部側の凹凸構造より密とした請求項1に記載のヒートパイプ。
When both ends of the wick structure are defined as an evaporation part and a condensation part,
The heat pipe according to claim 1, wherein the uneven structure on the evaporation part side is denser than the uneven structure on the condensation part side.
前記炭素系基板はグラファイト基板を具備する請求項1に記載のヒートパイプ。   The heat pipe according to claim 1, wherein the carbon-based substrate comprises a graphite substrate. 炭素系基板の表面を間隔が10μm以下の凹凸構造に加工してヒートパイプのウィック構造を形成する凹凸構造加工工程を具備するヒートパイプの製造方法。   A method for manufacturing a heat pipe, comprising a concavo-convex structure processing step for forming a wick structure of a heat pipe by processing the surface of a carbon-based substrate into a concavo-convex structure with a spacing of 10 μm or less. 前記凹凸構造加工工程がプラズマエッチング工程である請求項5に記載のヒートパイプの製造方法。   The method for manufacturing a heat pipe according to claim 5, wherein the uneven structure processing step is a plasma etching step. 前記ウィック構造の両端部を蒸発部及び凝縮部と規定した場合に、
前記プラズマエッチング工程のプラズマエッチング条件を制御して前記蒸発部側の凹凸構造は前記凝縮部側の凹凸構造より密とした請求項6に記載のヒートパイプの製造方法。
When both ends of the wick structure are defined as an evaporation part and a condensation part,
The method of manufacturing a heat pipe according to claim 6, wherein the uneven structure on the evaporation part side is made denser than the uneven structure on the condensation part side by controlling plasma etching conditions in the plasma etching step.
前記炭素系基板はグラファイト基板を具備する請求項5に記載のヒートパイプの製造方法。   The method for manufacturing a heat pipe according to claim 5, wherein the carbon-based substrate comprises a graphite substrate.
JP2010199818A 2010-09-07 2010-09-07 Heat pipe, and manufacturing method thereof Pending JP2012057841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199818A JP2012057841A (en) 2010-09-07 2010-09-07 Heat pipe, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199818A JP2012057841A (en) 2010-09-07 2010-09-07 Heat pipe, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012057841A true JP2012057841A (en) 2012-03-22

Family

ID=46055162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199818A Pending JP2012057841A (en) 2010-09-07 2010-09-07 Heat pipe, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012057841A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091647A (en) * 2015-08-27 2015-11-25 朱惠冲 Plane superconduction heat pipe with graphite liquid absorption cores and preparation method of plane superconduction heat pipe
CN105115332A (en) * 2015-08-27 2015-12-02 朱惠冲 Planar super-conduction heat pipe and preparation method thereof
CN105202957A (en) * 2015-08-27 2015-12-30 朱惠冲 Plane super-heat-conductivity tube with carbon nanotube wick and preparation method thereof
JP2018189349A (en) * 2017-04-28 2018-11-29 株式会社村田製作所 Vapor chamber
US10973151B2 (en) 2017-04-28 2021-04-06 Murata Manufacturing Co., Ltd. Vapor chamber
CN114740040A (en) * 2022-04-12 2022-07-12 哈尔滨工程大学 Heat pipe phase interface visualization experiment section and experiment method under swing condition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228389A (en) * 2001-02-02 2002-08-14 Sangaku Renkei Kiko Kyushu:Kk Heat transfer promoting method and boiling heat transfer
JP2004028444A (en) * 2002-06-25 2004-01-29 Sony Corp Cooling device, electronic device, and manufacturing method of cooling device
JP2005077052A (en) * 2003-09-03 2005-03-24 Hitachi Metals Ltd Flat heat pipe
JP2007093033A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Sheet-shaped heat pipe and its manufacturing method
JP2007212028A (en) * 2006-02-08 2007-08-23 Fujikura Ltd Heat pipe
US20100200199A1 (en) * 2006-03-03 2010-08-12 Illuminex Corporation Heat Pipe with Nanostructured Wick

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228389A (en) * 2001-02-02 2002-08-14 Sangaku Renkei Kiko Kyushu:Kk Heat transfer promoting method and boiling heat transfer
JP2004028444A (en) * 2002-06-25 2004-01-29 Sony Corp Cooling device, electronic device, and manufacturing method of cooling device
JP2005077052A (en) * 2003-09-03 2005-03-24 Hitachi Metals Ltd Flat heat pipe
JP2007093033A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Sheet-shaped heat pipe and its manufacturing method
JP2007212028A (en) * 2006-02-08 2007-08-23 Fujikura Ltd Heat pipe
US20100200199A1 (en) * 2006-03-03 2010-08-12 Illuminex Corporation Heat Pipe with Nanostructured Wick

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091647A (en) * 2015-08-27 2015-11-25 朱惠冲 Plane superconduction heat pipe with graphite liquid absorption cores and preparation method of plane superconduction heat pipe
CN105115332A (en) * 2015-08-27 2015-12-02 朱惠冲 Planar super-conduction heat pipe and preparation method thereof
CN105202957A (en) * 2015-08-27 2015-12-30 朱惠冲 Plane super-heat-conductivity tube with carbon nanotube wick and preparation method thereof
JP2018189349A (en) * 2017-04-28 2018-11-29 株式会社村田製作所 Vapor chamber
US10973151B2 (en) 2017-04-28 2021-04-06 Murata Manufacturing Co., Ltd. Vapor chamber
CN114740040A (en) * 2022-04-12 2022-07-12 哈尔滨工程大学 Heat pipe phase interface visualization experiment section and experiment method under swing condition

Similar Documents

Publication Publication Date Title
JP4354270B2 (en) Vapor chamber
JP2012057841A (en) Heat pipe, and manufacturing method thereof
JP5640008B2 (en) Heat exchange structure and cooling device comprising such a structure
US20070068656A1 (en) Flat plate heat transfer device
US9685393B2 (en) Phase-change chamber with patterned regions of high and low affinity to a phase-change medium for electronic device cooling
JP2011112330A (en) Heat radiation component and method for manufacturing the same
TWI692611B (en) Heat conducting structure, manufacturing method thereof, and mobile device
US20120312506A1 (en) Loop heat pipe
JP2018004108A (en) Heat radiation module and method for manufacturing the same
WO2003017365A2 (en) Thermal transfer devices using heat pipes
TWI692920B (en) Heat conducting structure, manufacturing method thereof, and mobile device
JP4114419B2 (en) Heat transport equipment
WO2019015283A1 (en) Chip-on-film heat dissipation structure, manufacturing method thereof, and display device
JP2013007545A (en) Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe
JP2012151392A (en) Heat radiation material and manufacturing method of the same
Zhou et al. Enhanced capillary-driven thin film boiling on cost-effective gradient wire meshes for high-heat-flux applications
US20240102743A1 (en) Performance enhancement in thermal system with porous surfaces
WO2021213391A1 (en) Vapor chamber and electronic device
AU2013374153A1 (en) Heat fin
TWI692607B (en) Heat conducting structure, manufacturing method thereof, and mobile device
Liu et al. Experimental study in thermal expansion devices of phase-change material coupled to vapor chamber with gradient wettability wick
TWI692606B (en) Heat conducting structure, manufacturing method thereof, and mobile device
TWI692605B (en) Heat conducting structure, manufacturing method thereof, and mobile device
TWI823668B (en) Two-phase immersion cooling compound heat-dissipating device
TWI692608B (en) Heat conducting structure, manufacturing method thereof, and mobile device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805