JP2013007545A - Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe - Google Patents
Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe Download PDFInfo
- Publication number
- JP2013007545A JP2013007545A JP2011141679A JP2011141679A JP2013007545A JP 2013007545 A JP2013007545 A JP 2013007545A JP 2011141679 A JP2011141679 A JP 2011141679A JP 2011141679 A JP2011141679 A JP 2011141679A JP 2013007545 A JP2013007545 A JP 2013007545A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- metal
- carbon
- fiber reinforced
- heat pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は内面炭素高含有率金属含浸炭素繊維強化炭素よりなるヒートパイプ及びその製造方法並びそれを製造するプラズマエッチング装置に関する。 The present invention relates to a heat pipe made of metal-impregnated carbon fiber reinforced carbon with a high internal carbon content, a method for producing the same, and a plasma etching apparatus for producing the same.
近年、電子機器たとえば半導体装置は高密度に集積化されており、この結果、消費電力は急激に上昇し、発熱量と共に発熱密度も急激に上昇した。このため、ペルチェ素子による強制吸熱、ヒートシンク及び放熱ファンによる強制空冷構造では、冷却能力に限界が見え始め、より高い冷却能力として液冷構造を採用しつつある。 In recent years, electronic devices such as semiconductor devices have been integrated with high density. As a result, power consumption has increased rapidly, and heat generation density has also increased rapidly with the amount of heat generated. For this reason, in the forced air absorption structure using the Peltier element and the forced air cooling structure using the heat sink and the heat radiating fan, the cooling capacity is beginning to be limited, and the liquid cooling structure is being adopted as a higher cooling capacity.
これらの冷却手段と併用して効果を発揮する熱輪送部材としてヒートパイプが注目されている。 Heat pipes have attracted attention as a hot-wheel feeding member that exhibits an effect in combination with these cooling means.
図11は、第1の従来のヒートパイプを示す斜視図である。 FIG. 11 is a perspective view showing a first conventional heat pipe.
図11においては、ヒートパイプは動作温度範囲で蒸発と凝縮が可能な作動流体(図示せず)を収容する円筒状の気密性容器1101及び気密性容器1101内部に設けられたウィック(毛細管構造)1102よりなる。 In FIG. 11, the heat pipe is a cylindrical airtight container 1101 that contains a working fluid (not shown) that can evaporate and condense in the operating temperature range, and a wick (capillary structure) provided inside the airtight container 1101. 1102.
図11においては、気密性容器1101の一方側が受熱蒸発領域R1であり、他方側が放熱凝縮領域R2である。従って、受熱蒸発領域R1を発熱源の近傍に位置させると、発熱源の熱により受熱蒸発領域R1での作動流体が蒸発し、矢印S1に示すごとく、蒸気として放熱凝縮領域R2へ流れる。他方、放熱凝縮領域R2での蒸気は放熱により凝縮し、矢印S2に示すごとく、液体としてウィック1102の毛細管現象により受熱蒸発領域R1へ流れる。このようにして、作動流体が受熱蒸発領域R1、放熱凝縮領域R2間を循環することにより、ヒートパイプは熱輸送部材として作用し、発熱源からの熱をヒートパイプの気密性容器1101の受熱蒸発領域R1から遠隔の放熱凝縮領域R2へ輸送し、ヒートパイプ全体の温度を均一化する。受熱蒸発領域R1と放熱凝縮領域R2とを空間的に離間させることにより、サイズ等の設計条件の制限を緩和できる。このとき、受熱蒸発領域R1及び放熱凝縮領域R2の温度範囲が作動流体の動作温度範囲となる。 In FIG. 11, one side of the airtight container 1101 is the heat receiving evaporation region R1, and the other side is the heat radiation condensing region R2. Accordingly, when the heat receiving evaporation region R1 is positioned in the vicinity of the heat generating source, the working fluid in the heat receiving evaporation region R1 evaporates due to the heat of the heat generating source, and flows to the heat radiation condensing region R2 as steam as indicated by the arrow S1. On the other hand, the vapor in the heat radiation condensing region R2 is condensed by heat radiation, and flows to the heat receiving vaporization region R1 by the capillary phenomenon of the wick 1102 as a liquid as indicated by an arrow S2. In this way, the working fluid circulates between the heat receiving evaporation region R1 and the heat radiation condensing region R2, so that the heat pipe acts as a heat transport member, and heat from the heat generating source is received and evaporated by the airtight container 1101 of the heat pipe. It transports from area | region R1 to remote heat radiation condensation area | region R2, and equalizes the temperature of the whole heat pipe. By spatially separating the heat receiving evaporation region R1 and the heat radiation condensing region R2, restrictions on design conditions such as size can be relaxed. At this time, the temperature range of the heat receiving evaporation region R1 and the heat radiation condensation region R2 is the operating temperature range of the working fluid.
図11の気密性容器1101の受熱蒸発領域R1においては外部からの熱が内部へ伝達する際には、気密性容器1101の壁の直交方向の熱抵抗を小さく、つまり、熱伝導率を大きくする必要があり、同様に、気密性容器1101の放熱凝縮領域R2においては内部から熱が外部へ伝達する際には、やはり、気密性容器1101の壁の直交方向の熱抵抗を小さく、つまり、熱伝導率を大きくする必要がある。つまり、ヒートパイプの熱輸送能力(速度及び量の両方)を向上させるためには、気密性容器1101の壁の直交方向の異方性熱伝導率を大きくさせる必要がある。 In the heat receiving evaporation region R1 of the airtight container 1101 in FIG. 11, when heat from the outside is transferred to the inside, the thermal resistance in the orthogonal direction of the wall of the airtight container 1101 is reduced, that is, the thermal conductivity is increased. Similarly, in the heat radiation condensation region R2 of the airtight container 1101, when heat is transferred from the inside to the outside, the thermal resistance in the orthogonal direction of the wall of the airtight container 1101 is also reduced, that is, the heat It is necessary to increase the conductivity. That is, in order to improve the heat transport capability (both speed and quantity) of the heat pipe, it is necessary to increase the anisotropic thermal conductivity in the orthogonal direction of the wall of the hermetic container 1101.
図12は第2の従来のヒートパイプを示し、(A)は外観図、(B)は(A)のB−B線断面図である(参照:特許文献1)。 12A and 12B show a second conventional heat pipe, in which FIG. 12A is an external view, and FIG. 12B is a cross-sectional view taken along the line BB of FIG.
図12において、ヒートパイプは作動流体を収容しかつウィック凹凸内面201aを有する円筒状の気密性容器1201、気密性容器1201のウィック凹凸内面1201aに設けられたたとえばニッケルのコーティング層よりなる金属層1202、及び気密性容器1201の壁外周面に設けられた補強部材1203よりなる。尚、図12においても、R1は受熱蒸発領域、R2は放熱凝縮領域を示す。 In FIG. 12, the heat pipe contains a working fluid and has a cylindrical airtight container 1201 having a wick uneven inner surface 201a, and a metal layer 1202 made of, for example, a nickel coating layer provided on the wick uneven inner surface 1201a of the airtight container 1201. And a reinforcing member 1203 provided on the outer peripheral surface of the wall of the airtight container 1201. In FIG. 12, R1 indicates a heat receiving evaporation region, and R2 indicates a heat radiation condensation region.
図12においては、気密性容器1201の壁は金属を凌ぐ熱伝導率を有する壁の直交方向の異方性熱伝導材料としての炭素繊維強化炭素を用い、さらに、気密性容器1201の壁の直交方向の異方性熱伝導性を高めるために、炭素繊維強化炭素の隙間に金属を含浸させている。つまり、気密性容器1201は金属含侵炭素繊維強化炭素よりなる。 In FIG. 12, the wall of the hermetic container 1201 uses carbon fiber reinforced carbon as an anisotropic heat conductive material in the orthogonal direction of the wall having a thermal conductivity exceeding that of the metal, and is further orthogonal to the wall of the hermetic container 1201. In order to increase the anisotropic thermal conductivity in the direction, the gap between the carbon fiber reinforced carbons is impregnated with a metal. That is, the airtight container 1201 is made of metal-impregnated carbon fiber reinforced carbon.
また、気密性容器1201と作動流体との熱伝導率をさらに高めるために、気密性容器1201のウィック凹凸内面1201aに金属層1202を設けることにより作動流体との濡れ性を良好にする。尚、濡れ性を良好にする程、表面張力が弱る。従って、作動流体の濡れ性を良好にすると、熱輸送能力が増大して実質的に気密性容器1201の壁の直交方向の熱伝導率が上昇する。 In order to further increase the thermal conductivity between the airtight container 1201 and the working fluid, the metal layer 1202 is provided on the wick uneven inner surface 1201a of the airtight container 1201 to improve the wettability with the working fluid. The better the wettability, the lower the surface tension. Therefore, when the wettability of the working fluid is improved, the heat transport capability is increased and the thermal conductivity in the orthogonal direction of the wall of the airtight container 1201 is substantially increased.
さらに、金属含侵炭素繊維強化炭素は気密性容器1201の壁の直交方向の垂直異方性を主に有している分、気密性容器1201の内側に封止された作動流体の内部圧力に対して気密性容器1201は壊れ易い。これを防止するために、気密性容器1201の壁外周面に設けられた補強部材R03は気密性容器1201の壁の平行方向に配向された炭素繊維強化炭素よりなる。 Further, the metal-impregnated carbon fiber reinforced carbon mainly has vertical anisotropy in the orthogonal direction of the wall of the hermetic container 1201, so that the internal pressure of the working fluid sealed inside the hermetic container 1201 is increased. On the other hand, the airtight container 1201 is fragile. In order to prevent this, the reinforcing member R03 provided on the wall outer peripheral surface of the airtight container 1201 is made of carbon fiber reinforced carbon oriented in the parallel direction of the wall of the airtight container 1201.
図12のヒートパイプの熱輸送能力をさらに向上させるためには、とりわけ、気密性容器1201の壁内周面から作動流体への熱伝導率を高めて作動流体の熱輸送能力を高める必要があり、この熱伝導率を高めるためには、気密性容器1201の壁内周面は作動流体に対する濡れ性を良好(親性)にする必要がある。しかしながら、図12のヒートパイプにおける気密性容器1201の壁内周面の金属層203は作動流体に対する濡れ性は良好とは言えず、従って、気密性容器1201の壁内周面から作動流体への熱伝導率は小さく、この結果、吸熱蒸発領域R1での吸熱蒸発速度及び吸熱蒸発領域R2での放熱凝縮速度が小さくなり、熱輸送能力は不充分であるという課題があった。 In order to further improve the heat transfer capability of the heat pipe of FIG. 12, it is necessary to increase the heat transfer capability of the working fluid by increasing the thermal conductivity from the inner peripheral surface of the airtight container 1201 to the working fluid, in particular. In order to increase the thermal conductivity, it is necessary that the wall inner peripheral surface of the airtight container 1201 has good wettability (friendly) with respect to the working fluid. However, the metal layer 203 on the inner peripheral surface of the airtight container 1201 in the heat pipe of FIG. 12 cannot be said to have good wettability with respect to the working fluid. The thermal conductivity is small, and as a result, the endothermic evaporation rate in the endothermic evaporation region R1 and the heat dissipation condensation rate in the endothermic evaporation region R2 are reduced, and there is a problem that the heat transport capability is insufficient.
尚、濡れ性評価装置は種々にあるが、一例として液滴の接触角で評価する装置がある(参照:非特許文献1)。すなわち、図13を参照すると、固体1301の流体1302に対する濡れ性を評価する場合、固体1301上に流体1302を微少量たとえば2μL垂らし、ミラー1303による流体1302の像1302’を顕微鏡1304で観察する。この場合、固体1301の表面張力をγS、流体1302の表面張力をγF、固体3011流体1302界面の表面張力γSFとすれば、濡れ性が良好(親性)である程、表面張力γS、γF、γSFは小さくなり、流体1302の接触角θは0度に近づく。他方、濡れ性が悪く(疎性)である程、表面張力γS、γF、γSFは小さくなり、流体1302の接触角θは180度に近づく。図12の金属層1203の作動流体(たとえば、代表的な水)に対する接触角は30度〜40度と大きく、濡れ性は良好とは言えない。 There are various wettability evaluation apparatuses, and as an example, there is an apparatus that evaluates by a contact angle of a droplet (see Non-Patent Document 1). That is, referring to FIG. 13, when evaluating the wettability of the solid 1301 to the fluid 1302, the fluid 1302 is dropped on the solid 1301 by a small amount, for example, 2 μL, and an image 1302 ′ of the fluid 1302 by the mirror 1303 is observed with the microscope 1304. In this case, if the surface tension of the solid 1301 is γ S , the surface tension of the fluid 1302 is γ F , and the surface tension γ SF at the interface of the solid 3011 fluid 1302, the better the wettability (affinity), the surface tension γ S 1 , γ F , and γ SF become smaller, and the contact angle θ of the fluid 1302 approaches 0 degrees. On the other hand, the worse the wettability (relaxation), the smaller the surface tensions γ S , γ F and γ SF , and the contact angle θ of the fluid 1302 approaches 180 degrees. The contact angle of the metal layer 1203 in FIG. 12 with respect to the working fluid (for example, typical water) is as large as 30 to 40 degrees, and the wettability cannot be said to be good.
上述の課題を解決するために、本発明に係るヒートパイプは、動作温度範囲内で蒸発及び凝縮が可能な作動流体を収容するための気密性容器を具備するヒートパイプにおいて、気密性容器は金属含浸炭素繊維強化炭素材よりなり、この金属含浸炭素繊維強化炭素材の炭素含有率は気密性容器の壁内部より壁内周面側で高くし、金属含浸炭素繊維強化炭素材の壁内周面にナノメートルオーダの凹凸構造を形成したことを特徴とする。 In order to solve the above-described problems, a heat pipe according to the present invention includes a hermetic container for containing a working fluid that can be evaporated and condensed within an operating temperature range. It consists of impregnated carbon fiber reinforced carbon material, and the carbon content of this metal impregnated carbon fiber reinforced carbon material is higher on the inner wall surface side than the inside of the wall of the airtight container. It is characterized in that a concavo-convex structure having a nanometer order is formed on.
また、本発明に係るヒートパイプの製造方法は、炭素繊維が網目状に含まれたフィルム状炭素繊維強化プラスチックを筒状形状に形成する形成工程と、フィルム状炭素繊維強化プラスチックを焼成して多数の空孔を有する炭素繊維骨格を生成する焼成工程と、炭素繊維骨格の内周面を炭素を含む溶媒に浸漬する炭素溶媒浸漬工程と、炭素溶媒浸漬工程後に炭素繊維骨格を素焼する素焼工程と、素焼工程後に、炭素繊維骨格を溶融金属に含浸させて内面高炭素含有率金属含浸炭素繊維強化炭素材を生成する工程と、内面高炭素含有率金属含浸炭素繊維強化炭素材の内面をプラズマエッチングして該内面にナノメートルオーダの凹凸構造を形成するプラズマエッチング工程と、プラズマエッチング工程後に、内面高炭素含有率金属含浸炭素繊維強化炭素材の内部に作動流体を封入する作動流体封入工程と、作動流体封入工程後に、内面高炭素含有率金属含浸炭素繊維強化炭素材の両端に蓋部を接合する工程とを具備する。 The heat pipe manufacturing method according to the present invention includes a forming step of forming a film-like carbon fiber reinforced plastic containing carbon fibers in a network shape into a cylindrical shape, and firing many film-like carbon fiber reinforced plastics. A firing process for generating a carbon fiber skeleton having a plurality of pores, a carbon solvent immersing process for immersing the inner peripheral surface of the carbon fiber skeleton in a solvent containing carbon, and an uncoating process for uncoating the carbon fiber skeleton after the carbon solvent immersing process; After the calcination process, the process of impregnating the carbon fiber skeleton with molten metal to produce a metal-impregnated carbon fiber reinforced carbon material with high internal carbon content, and plasma etching of the inner surface of the metal impregnated carbon fiber reinforced carbon material with high internal carbon content And a plasma etching process for forming a concavo-convex structure of nanometer order on the inner surface, and after the plasma etching process, the inner surface has a high carbon content metal-impregnated carbon fiber strength. A working fluid enclosing step of enclosing the internal working fluid of the carbon material, after the working fluid enclosing step, and a step of bonding the lid to the opposite ends of the inner surface high carbon content metal-impregnated carbon fiber reinforced carbon material.
さらに、本発明に係るヒートパイプのプラズマエッチング装置は、動作温度範囲内で蒸発及び凝縮が可能な作動流体を収容するための気密性容器は金属含浸炭素繊維強化炭素材よりなり、金属含浸炭素繊維強化炭素材の炭素含有率は気密性容器の壁内部より壁内周面側で高くしたヒートパイプのプラズマエッチング装置において、内面高炭素含有率の金属含浸炭素繊維強化炭素材を支持する支持台と、金属含浸炭素繊維強化炭素材の内面側に摺動可能に設けられた棒状内側電極と、金属含浸炭素繊維強化炭素材の外面側に摺動可能に設けられたリング状外側電極と、棒状内側電極の先端部を取り囲むようにリング状外側電極を移動させる同期駆動部とを具備し、金属含浸炭素繊維強化炭素材の壁内周面にナノメートルオーダの凹凸構造を形成したことを特徴とする。 Furthermore, in the plasma etching apparatus for heat pipes according to the present invention, the airtight container for containing the working fluid that can be evaporated and condensed within the operating temperature range is made of a metal-impregnated carbon fiber reinforced carbon material, and the metal-impregnated carbon fiber In the heat pipe plasma etching apparatus in which the carbon content of the reinforced carbon material is higher on the inner peripheral surface side than the inside of the wall of the airtight container, a support base for supporting the metal-impregnated carbon fiber reinforced carbon material with a high inner carbon content; A rod-shaped inner electrode slidably provided on the inner surface side of the metal-impregnated carbon fiber reinforced carbon material; a ring-shaped outer electrode slidably provided on the outer surface side of the metal-impregnated carbon fiber-reinforced carbon material; and a rod-shaped inner electrode. It has a synchronous drive part that moves the ring-shaped outer electrode so as to surround the tip part of the electrode, and forms a concavo-convex structure of nanometer order on the inner wall surface of the metal-impregnated carbon fiber reinforced carbon material Characterized in that was.
本発明によれば、気密性容器の壁内周面はナノメートルオーダの凹凸構造となるので、気密性容器の壁内周面は作動流体に対する接触角はほぼ0度となり、濡れ性が非常に良好となり、この結果、作動流体の熱輸送能力を十分に大きくできる。 According to the present invention, since the wall inner peripheral surface of the hermetic container has a concavo-convex structure of the order of nanometers, the wall inner peripheral surface of the hermetic container has a contact angle with the working fluid of almost 0 degrees, and the wettability is very high. As a result, the heat transport capability of the working fluid can be sufficiently increased.
図1は本発明に係るヒートパイプの第1の実施の形態を示す一部切欠いた斜視図である。 FIG. 1 is a partially cutaway perspective view showing a first embodiment of a heat pipe according to the present invention.
図1に示すように、ヒートパイプは、動作温度範囲内で蒸発及び凝縮が可能な作動流体(図示せず)を収容するための円筒状の気密性容器1よりなる。気密性容器1の大きさは、たとえば、内径4mm、外径6mm、長さ150mm程度である。気密性容器1は円筒部11及び円筒部11を塞ぐ円形の蓋部12a、12bよりなる。尚、図1においても、R1は受熱蒸発領域、R2は放熱凝縮領域を示す。 As shown in FIG. 1, the heat pipe is composed of a cylindrical airtight container 1 for containing a working fluid (not shown) that can be evaporated and condensed within an operating temperature range. The size of the airtight container 1 is, for example, about 4 mm in inner diameter, 6 mm in outer diameter, and about 150 mm in length. The airtight container 1 includes a cylindrical portion 11 and circular lid portions 12 a and 12 b that close the cylindrical portion 11. Also in FIG. 1, R1 indicates a heat receiving evaporation region, and R2 indicates a heat radiation condensation region.
円筒部11及び蓋部12a、12bは金属含浸炭素繊維強化炭素材よりなり、この場合、金属含浸炭素繊維強化炭素材の炭素含有率は、気密性容器1の壁内部でたとえば40%程度であるのに対し、気密性容器1の壁内周面側でたとえば60%以上と高くなっている。この気密性容器1の壁内周面には図2に示すようなナノメートルオーダの凹凸構造NSが形成されている。尚、ナノメートルオーダとは約10〜500nmの範囲を示す。 The cylindrical portion 11 and the lid portions 12a and 12b are made of a metal-impregnated carbon fiber reinforced carbon material. In this case, the carbon content of the metal-impregnated carbon fiber reinforced carbon material is, for example, about 40% inside the wall of the airtight container 1. On the other hand, it is as high as 60% or more on the wall inner peripheral surface side of the airtight container 1. A nanometer-order concavo-convex structure NS as shown in FIG. 2 is formed on the inner peripheral surface of the hermetic container 1. The nanometer order indicates a range of about 10 to 500 nm.
気密性容器1の壁内周面のナノメートルオーダの凹凸構造NSは作動流体に対する接触角がほぼ0°であり、従って、良好な濡れ性を呈する。この結果、気密性容器1の壁内周面から作動流体への熱伝達率が高まる。従って、受熱蒸発領域R1での吸熱蒸発速度及び放熱凝縮領域R2での放熱凝縮速度が高まり、熱輸送能力を増加させることができる。 The nanometer-order concavo-convex structure NS on the inner peripheral surface of the hermetic container 1 has a contact angle with respect to the working fluid of approximately 0 °, and thus exhibits good wettability. As a result, the heat transfer rate from the wall inner peripheral surface of the airtight container 1 to the working fluid is increased. Therefore, the endothermic evaporation rate in the heat receiving evaporation region R1 and the heat dissipation condensation rate in the heat dissipation condensation region R2 are increased, and the heat transport capability can be increased.
図1においては、気密性容器1のナノメートルオーダの凹凸構造NSによる気密性容器1の壁内周面から作動流体への熱伝達率が高まった分、気密性容器1の金属含浸炭素繊維強化炭素材の配向方向は気密性容器1の壁の垂直方向であると共にこの壁の平行方向とすることができる。たとえば、金属含浸炭素繊維強化炭素材の気密性容器1の壁の垂直方向配向と平行方向配向との比は70%〜80%:30%〜20%とする。これにより、作動流体の内部圧力に対抗できるようになるので、図12の補強部材1203は不要となる。但し、気密性容器1の金属含浸炭素繊維強化炭素材の配向方向のほぼ100%を気密性容器1の壁の垂直方向としても、金属含浸炭素繊維強化炭素材の金属含浸量を増加させれば、作動流体の内部圧力に対抗できるようになるので、やはり、図12の補強部材1203は不要となる。 In FIG. 1, the metal-impregnated carbon fiber reinforcement of the hermetic container 1 is increased by the increase in the heat transfer rate from the inner peripheral surface of the hermetic container 1 to the working fluid due to the nanometer-order uneven structure NS of the hermetic container 1. The orientation direction of the carbon material can be a direction perpendicular to the wall of the airtight container 1 and a parallel direction of the wall. For example, the ratio of the vertical orientation and the parallel orientation of the wall of the airtight container 1 of the metal-impregnated carbon fiber reinforced carbon material is 70% to 80%: 30% to 20%. As a result, the internal pressure of the working fluid can be counteracted, so that the reinforcing member 1203 in FIG. 12 is not necessary. However, even if almost 100% of the orientation direction of the metal-impregnated carbon fiber reinforced carbon material of the hermetic container 1 is set to be perpendicular to the wall of the hermetic container 1, if the amount of metal impregnation of the metal-impregnated carbon fiber reinforced carbon material is increased. Since the internal pressure of the working fluid can be counteracted, the reinforcing member 1203 in FIG. 12 is also unnecessary.
次に、図1のヒートパイプの製造方法を図3、図4、図5を参照して説明する。 Next, a method for manufacturing the heat pipe of FIG. 1 will be described with reference to FIGS. 3, 4, and 5.
始めに、図3のフィルム状炭素骨格含有プラスチック円筒状形成工程301を参照すると、フィルム状炭素骨格含有プラスチックを丸めて円筒状とする。たとえば、プラスチックはポリイミド樹脂等である。また、炭素繊維はたとえば炭素繊維が網目状にフィルム状ポリイミド樹脂に含まれている。炭素繊維が網目状にされているので、金属含浸炭素繊維強化炭素材の配向が気密性容器1の壁の垂直方向及び平行方向の配向となる。 First, referring to the film-like carbon skeleton-containing plastic cylindrical forming step 301 in FIG. 3, the film-like carbon skeleton-containing plastic is rolled into a cylindrical shape. For example, the plastic is polyimide resin or the like. Moreover, carbon fiber is contained in the film-like polyimide resin, for example, carbon fiber in the shape of a network. Since the carbon fibers are meshed, the orientation of the metal-impregnated carbon fiber reinforced carbon material is the orientation in the vertical direction and the parallel direction of the wall of the hermetic container 1.
次に、図3の焼成工程302を参照すると、円筒状のフィルム状炭素骨格含有プラスチックを焼成する。この結果、プラスチックが焼失して炭素繊維骨格間に多数の空孔が生成される。 Next, referring to the firing step 302 of FIG. 3, the cylindrical film-like carbon skeleton-containing plastic is fired. As a result, the plastic is burned out and a large number of pores are generated between the carbon fiber skeletons.
次に、図3の炭素溶媒浸漬工程303を参照すると、円筒状炭素繊維骨格の内周面を炭素を含む溶媒たとえばエポキシ樹脂、アクリル樹脂に浸漬する。 Next, referring to the carbon solvent immersion step 303 in FIG. 3, the inner peripheral surface of the cylindrical carbon fiber skeleton is immersed in a solvent containing carbon, such as an epoxy resin or an acrylic resin.
次に、図3の素焼工程304を参照すると、高温たとえば1000℃で1〜2時間の素焼を行う。これにより、円筒状炭素繊維骨格の内周面の炭素含有率がその内部炭素含有率より高くなる。たとえば、円筒状炭素繊維骨格の内部の炭素含有率は40%程度であるのに対し、円筒状炭素繊維骨格の内周面での炭素含有率は60%以上たとえば90%〜100%となる。これにより、内面高炭素含有率円筒状炭素繊維骨格が得られる。 Next, referring to the unbaking step 304 of FIG. 3, unbaking is performed at a high temperature, for example, 1000 ° C. for 1-2 hours. Thereby, the carbon content rate of the inner peripheral surface of the cylindrical carbon fiber skeleton becomes higher than the internal carbon content rate. For example, the carbon content inside the cylindrical carbon fiber skeleton is about 40%, whereas the carbon content on the inner peripheral surface of the cylindrical carbon fiber skeleton is 60% or more, for example, 90% to 100%. Thereby, an inner surface high carbon content cylindrical carbon fiber skeleton is obtained.
次に、図3の溶融金属含浸工程305を参照すると、銅、銀、アルミニウム等の金属をその融点以上に加熱して溶融させ、高圧たとえば100気圧の環境下で内面高炭素含有率円筒状炭素繊維骨格の外周面側から溶融金属を含浸させる。これにより、溶融金属は円筒状炭素繊維骨格の内部の空孔に侵入して内面高炭素含有率円筒状金属含浸炭素繊維強化炭素材が得られる。尚、上述の金属の代りにシリコンを用いてもよい。シリコンの溶融時の粘度が小さいので、高圧環境下でなくとも含浸できる。シリコンは非金属であるが、本発明では、金属として扱う。 Next, referring to the molten metal impregnation step 305 in FIG. 3, a metal such as copper, silver or aluminum is heated to its melting point or higher to be melted, and the inner surface has a high carbon content of cylindrical carbon under an environment of high pressure, for example, 100 atmospheres. The molten metal is impregnated from the outer peripheral surface side of the fiber skeleton. Thereby, molten metal penetrate | invades into the void | hole inside a cylindrical carbon fiber frame | skeleton, and an inner surface high carbon content cylindrical metal impregnation carbon fiber reinforced carbon material is obtained. Silicon may be used in place of the above metal. Since the viscosity at the time of melting of silicon is small, it can be impregnated without being in a high pressure environment. Although silicon is non-metallic, in the present invention, it is treated as a metal.
次に、図3のプラズマエッチング工程306を参照すると、内面高炭素含有率円筒状金属含浸炭素繊維強化炭素材の内面をプラズマエッチングして内面高炭素含有率円筒状金属含浸炭素繊維強化炭素材の内面にナノメートルオーダの凹凸構造NSを形成する。 Next, referring to the plasma etching step 306 of FIG. 3, the inner surface of the inner high carbon content cylindrical metal-impregnated carbon fiber reinforced carbon material is plasma etched to form the inner surface high carbon content cylindrical metal impregnated carbon fiber reinforced carbon material. An uneven structure NS of nanometer order is formed on the inner surface.
図3のプラズマエッチング工程306は図4に示すプラズマエッチング装置によって実行される。 3 is executed by the plasma etching apparatus shown in FIG.
図4において、図3の溶融金属含浸工程305にて得られた内面高炭素含有率円筒状金属含浸炭素繊維強化炭素材を被加工材401としてアルミニウム等で形成された真空チャンバ402内の2つの支持台403、404で挟み込んで固定する。支持台403、404は絶縁材料によって形成されており、支持台403、404には、被加工材401を嵌めるための小さな窪み(図示せず)が設けられている。また、支持台403には、真空チャンバ402にAr/O2ガスを導入するためのガス導入口403aが設けられ、この場合、ガス導入口403aの内径は被加工材401の内径とほぼ同一とされている。他方、真空チャンバ402の下方側には真空ポンプ(図示せず)に接続されたガス排出口402aが設けられている。この結果、ガス導入口403aから導入されたAr/O2ガスは被加工材401の壁の内周面側を通り、ガス排出口402aから排出される。 In FIG. 4, two inner surfaces of a vacuum chamber 402 formed of aluminum or the like as a work material 401 using a cylindrical metal-impregnated carbon fiber reinforced carbon material having an inner high carbon content obtained in the molten metal impregnation step 305 of FIG. The support bases 403 and 404 are sandwiched and fixed. The support bases 403 and 404 are formed of an insulating material, and the support bases 403 and 404 are provided with small recesses (not shown) for fitting the workpiece 401. The support base 403 is provided with a gas inlet 403a for introducing Ar / O 2 gas into the vacuum chamber 402. In this case, the inner diameter of the gas inlet 403a is substantially the same as the inner diameter of the workpiece 401. Has been. On the other hand, a gas discharge port 402 a connected to a vacuum pump (not shown) is provided below the vacuum chamber 402. As a result, the Ar / O 2 gas introduced from the gas inlet 403a passes through the inner peripheral surface side of the wall of the workpiece 401 and is discharged from the gas outlet 402a.
被加工材401の内周面を加工するために、被加工材401の内外に1対の放電電極、つまり、内側電極405及び外側電極406を設けてある。内側電極405は真空チャンバ402に絶縁部材405aによって摺動可能に密着支持され、他方、外側電極406は被加工材401に摺動可能に密着支持され、外側電極支持台407に固定されている。内側電極405は高周波電源407に接続されてアノード電極として作用し、他方、外側電極406は外側電極支持台406a及び真空チャンバ402を介して接地されてカソード電極として作用する。 In order to process the inner peripheral surface of the workpiece 401, a pair of discharge electrodes, that is, an inner electrode 405 and an outer electrode 406 are provided inside and outside the workpiece 401. The inner electrode 405 is slidably supported by the vacuum chamber 402 by an insulating member 405a, while the outer electrode 406 is slidably supported by the workpiece 401 and fixed to the outer electrode support 407. The inner electrode 405 is connected to the high frequency power source 407 and functions as an anode electrode, while the outer electrode 406 is grounded via the outer electrode support 406a and the vacuum chamber 402 and functions as a cathode electrode.
内側電極405及び外側電極406は同期駆動部408によって同時に同速度で移動する。 The inner electrode 405 and the outer electrode 406 are simultaneously moved at the same speed by the synchronous driving unit 408.
図5は図4の内側電極405を示し、(A)は全体斜視図、(B)は先端部斜視図である。 5A and 5B show the inner electrode 405 of FIG. 4, in which FIG. 5A is an overall perspective view, and FIG. 5B is a front end perspective view.
図5に示すように、内側電極405は棒状であり、その直径は被加工材401の直径より小さく、その長さは被加工材401の全長より長い。内側電極405の先端は複数の突起を有し、プラズマエッチングを均一に行うために、360°全周に亘って均等に配置されている。 As shown in FIG. 5, the inner electrode 405 has a rod shape, and its diameter is smaller than the diameter of the workpiece 401 and its length is longer than the entire length of the workpiece 401. The tip of the inner electrode 405 has a plurality of protrusions, and is uniformly arranged over the entire 360 ° circumference in order to perform plasma etching uniformly.
他方、外側電極406はリング状をなしており、内側電極405の先端部を取り囲むように設けられている。このとき、さらに、内側電極405を微振動あるいは回転させるようにし、これにより、プラズマの発生位置の偏りを防止し、プラズマエッチングを被加工材401の円周方向に亘って均一に行なうことができる。 On the other hand, the outer electrode 406 has a ring shape and is provided so as to surround the tip of the inner electrode 405. At this time, the inner electrode 405 is further finely oscillated or rotated, thereby preventing the deviation of the plasma generation position and performing the plasma etching uniformly over the circumferential direction of the workpiece 401. .
図4のプラズマエッチング装置をたとえば次の条件で動作させる。
到達真空度:6.65Pa (50mTorr)
O2ガス流量:100sccm
Arガス流量:50sccm
投入電力:500W
加工時間:1〜2分(1cm2当り)
このとき、内側電極405の先端部を取り囲むように外側電極406を、図6に示すごとく、移動させる。この結果、内側電極405と外側電極406との間のみでプラズマが発生し、被加工材401の壁の内周面がナノメートルオーダの凹凸構造NSとなる。
The plasma etching apparatus of FIG. 4 is operated under the following conditions, for example.
Ultimate vacuum: 6.65Pa (50mTorr)
O 2 gas flow rate: 100sccm
Ar gas flow rate: 50sccm
Input power: 500W
Processing time: 1-2 minutes (per 1 cm 2 )
At this time, the outer electrode 406 is moved so as to surround the tip of the inner electrode 405 as shown in FIG. As a result, plasma is generated only between the inner electrode 405 and the outer electrode 406, and the inner peripheral surface of the wall of the workpiece 401 has a concavo-convex structure NS on the order of nanometers.
尚、図3のステップ306でのプラズマエッチング法は、電子サイクロトロン共鳴(ECR)エッチング法、反応性イオンエッチング(RIE)法、大気圧プラズマエッチング法等のいずれでもよく、また、処理ガスは、Ar/O2ガス以外のO2ガス、CO2ガス、CF4ガス、SF4ガス等のいずれでもよい。 The plasma etching method in step 306 in FIG. 3 may be any of electron cyclotron resonance (ECR) etching method, reactive ion etching (RIE) method, atmospheric pressure plasma etching method, etc. / O 2 O 2 gas other than the gas, CO 2 gas, CF 4 gas, may be any of such SF 4 gas.
次に、図3の作動流体封入工程307を参照すると、作動流体たとえば純水の蒸気を内面がナノメートルオーダの凹凸構造NSである円筒状金属含浸炭素繊維強化炭素材に封入する。 Next, referring to the working fluid sealing step 307 in FIG. 3, a working fluid, for example, pure water vapor, is sealed in a cylindrical metal-impregnated carbon fiber reinforced carbon material having a concavo-convex structure NS having an inner surface on the order of nanometers.
最後に、図3の蓋部接合工程308を参照すると、別途製造した円板状の蓋部12a、12bを作動流体を封入した内面がナノメートルオーダの凹凸構造NSである円筒状金属含浸炭素繊維強化炭素材の両端に接合する。この場合、蓋部12a、12bは、被加工材401と同様に、ナノメートルオーダの凹凸構造が形成されているが、必ずしも、金属含浸炭素繊維強化炭素材である必要はなく、炭素基板でもよい。また、接合方法は、好ましくは、熱伝導性を考慮して半田、ろう材を用いることがよい。さらに、ヒートパイプの気密性を確保するために、必要に応じて蓋部12a、12bの接合部分の凹凸構造を削り落としてもよい。 Finally, referring to the lid joining step 308 of FIG. 3, a cylindrical metal-impregnated carbon fiber having a concave and convex structure NS with an inner surface in which the working fluid is sealed in the disc-like lids 12a and 12b manufactured separately. Join to both ends of reinforced carbon material. In this case, the lid portions 12a and 12b are formed with a concavo-convex structure on the order of nanometers as in the workpiece 401. However, the lid portions 12a and 12b are not necessarily made of a metal-impregnated carbon fiber reinforced carbon material, and may be a carbon substrate. . In addition, it is preferable to use solder or brazing material in consideration of thermal conductivity. Furthermore, in order to ensure the airtightness of the heat pipe, the concavo-convex structure at the joint portion of the lid portions 12a and 12b may be scraped off as necessary.
図7は本発明に係るヒートパイプの第2の実施の形態を示す一部切欠いた斜視図である。 FIG. 7 is a partially cutaway perspective view showing a second embodiment of the heat pipe according to the present invention.
図7に示すように、ヒートパイプは、六角柱状の気密性容器2よりなる。気密性容器2の大きさは、たとえば、一辺3mm、長さ150mm程度である。気密性容器2は六角柱部21及び六角柱部21を塞ぐ六角形の蓋部22a、22bよりなる。尚、図7においても、R1は受熱蒸発領域、R2は放熱凝縮領域を示す。 As shown in FIG. 7, the heat pipe includes a hexagonal columnar airtight container 2. The size of the airtight container 2 is, for example, about 3 mm on a side and about 150 mm in length. The airtight container 2 includes a hexagonal column portion 21 and hexagonal lid portions 22a and 22b that close the hexagonal column portion 21. Also in FIG. 7, R1 indicates a heat receiving evaporation region, and R2 indicates a heat radiation condensation region.
六角柱状の気密性容器2は、図1の気密性容器1に比較して角の部分がエッチングされにくいので、作動流体が停滞し易くなるが、側面が平面であるので、平坦な発熱源に適するという利点を有する。 The hexagonal columnar airtight container 2 is less likely to be etched at the corners than the airtight container 1 of FIG. Has the advantage of being suitable.
図7のヒートパイプの製造方法は、図3のフィルム状炭素繊維強化プラスチック円筒状形成工程301の代りに、フィルム状炭素繊維強化プラスチック六角柱状形成工程を設ける。これにより、フィルム状炭素繊維強化プラスチックを折って六角柱状とする。その後の工程は図3の工程302〜308と同様である。 The heat pipe manufacturing method of FIG. 7 includes a film-like carbon fiber reinforced plastic hexagonal column forming step instead of the film-like carbon fiber reinforced plastic cylindrical forming step 301 of FIG. Thus, the film-like carbon fiber reinforced plastic is folded into a hexagonal column shape. The subsequent steps are the same as steps 302 to 308 in FIG.
図8は本発明に係るヒートパイプの第3の実施の形態を示す一部切欠いた斜視図である。 FIG. 8 is a partially cutaway perspective view showing a third embodiment of the heat pipe according to the present invention.
図8の気密性容器3においては、図1の気密性容器1の放熱凝縮領域R2に長さ約40mmのヒートシンク13を一体成形したものである。この場合、ヒートシンク13も金属含浸炭素繊維強化炭素材よりなり、その配向方向はヒートシンク13の各面に平行方向である。 In the airtight container 3 of FIG. 8, a heat sink 13 having a length of about 40 mm is integrally formed in the heat radiation condensing region R2 of the airtight container 1 of FIG. In this case, the heat sink 13 is also made of a metal-impregnated carbon fiber reinforced carbon material, and the orientation direction thereof is parallel to each surface of the heat sink 13.
図8のヒートパイプの製造方法においては、図3のプラズマエッチング工程306と作動流体封入工程307との間で、気密性容器3の内面高炭素含有率円筒状金属含浸炭素繊維強化炭素材とヒートシンク13とを嵌合して一体成形させるための焼成工程が実行される。これにより、熱伝導グリス等で接合するよりも、一体性に優れており、従って、熱伝導性が優れる。 8, between the plasma etching step 306 and the working fluid sealing step 307 in FIG. 3, the cylindrical inner metal impregnated carbon fiber reinforced carbon material and the heat sink of the airtight container 3 are interposed between the plasma etching step 306 and the working fluid sealing step 307. The baking process for fitting 13 and carrying out integral molding is performed. Thereby, it is excellent in unity rather than joining with heat conductive grease etc., Therefore, heat conductivity is excellent.
図9は本発明に係るヒートパイプの第4の実施の形態を示す一部切欠いた斜視図である。 FIG. 9 is a partially cutaway perspective view showing a fourth embodiment of a heat pipe according to the present invention.
図9の気密性容器4においては、図1の気密性容器1の放熱凝縮領域R2に長さ約50mmの放射状フィン14を一体成形したものである。この場合、放射状フィン14も金属含浸炭素繊維強化炭素材よりなり、その配向方向は放射状フィン14の各面に平行方向である。また、放射状フィン14の各フィンは気密性容器4を中心に点対称となっているので、各フィンへの熱拡散が均等となり、この結果、各フィンの放熱能力を最大限に利用できる。 In the airtight container 4 of FIG. 9, radial fins 14 having a length of about 50 mm are integrally formed in the heat radiation condensation region R2 of the airtight container 1 of FIG. In this case, the radial fins 14 are also made of a metal-impregnated carbon fiber reinforced carbon material, and the orientation direction thereof is parallel to each surface of the radial fins 14. Further, since the fins of the radial fins 14 are symmetric with respect to the hermetic container 4, the heat diffusion to the fins is uniform, and as a result, the heat dissipation capability of each fin can be utilized to the maximum.
図9のヒートパイプの製造方法においては、図3のプラズマエッチング工程306と作動流体封入工程307との間で、気密性容器4の内面高炭素含有率円筒状金属含浸炭素繊維強化炭素材と放射状フィン14とを嵌合して一体成形させるための焼成工程が実行される。これにより、熱伝導グリス等で接合するよりも、一体性に優れており、従って、熱伝導性が優れる。 In the heat pipe manufacturing method of FIG. 9, between the plasma etching process 306 and the working fluid sealing process 307 of FIG. A firing process for fitting the fins 14 and integrally forming them is performed. Thereby, it is excellent in unity rather than joining with heat conductive grease etc., Therefore, heat conductivity is excellent.
図10は図9の気密性容器4の応用例を示す斜視図である。 FIG. 10 is a perspective view showing an application example of the airtight container 4 of FIG.
図10においては、図9の気密性容器4の放射状フィン14に軸流ファン5を対向させてある。つまり、放射状フィン14の各フィンの配置は点対称となっているので、軸流ファン5との相性が良いことが理解できる。つまり、軸流ファン5の風量が大きい周辺部が放射状フィン14の各フィンに対応させることができる。 In FIG. 10, the axial fan 5 is made to oppose the radial fin 14 of the airtight container 4 of FIG. That is, it can be understood that the arrangement of the fins of the radial fins 14 is point-symmetric, so that the compatibility with the axial fan 5 is good. That is, the peripheral portion where the airflow of the axial flow fan 5 is large can correspond to each fin of the radial fins 14.
上述の気密性容器1、2、3、4の受熱蒸発領域R1に発熱源として半導体装置を装着する場合には、金属含浸炭素繊維強化炭素材よりなるアダプタを介して装着すればよい。また、発熱源として1つの半導体チップあるいは1つの発光ダイオード(LED)チップを装着する場合には、蓋部12a(22a)に直接装着すればよい。 When a semiconductor device is mounted as a heat generation source in the heat receiving evaporation region R1 of the airtight containers 1, 2, 3, 4 described above, it may be mounted via an adapter made of a metal-impregnated carbon fiber reinforced carbon material. Further, when one semiconductor chip or one light emitting diode (LED) chip is attached as a heat source, it may be attached directly to the lid portion 12a (22a).
さらに、上述の気密性容器1、2、3、4の円筒部11、六角柱部21は他の筒状形状たとえば多角柱状でもよい。 Furthermore, the cylindrical part 11 and the hexagonal column part 21 of the above-mentioned airtight containers 1, 2, 3, and 4 may have other cylindrical shapes such as a polygonal column.
1、2、3、4:気密性容器
11:円筒部
12a、12b:蓋部
21:六角柱部
22a、22b:蓋部
401:被加工材
402:真空チャンバ
402a:ガス排出口
403:支持台
403a:ガス導入口
404:支持台
405:内側電極
406:外側電極
407:高周波電源
408:同期駆動部
NS:凹凸構造
1, 2, 3, 4: Airtight container 11: Cylindrical portion 12a, 12b: Lid 21: Hexagonal column 22a, 22b: Lid 401: Work material 402: Vacuum chamber 402a: Gas outlet 403: Support base 403a: Gas inlet 404: Support base 405: Inner electrode 406: Outer electrode
407: High frequency power supply
408: Synchronous drive unit NS: Concave and convex structure
Claims (8)
前記気密性容器は金属含浸炭素繊維強化炭素材よりなり、
該金属含浸炭素繊維強化炭素材の炭素含有率は前記気密性容器の壁内部より壁内周面側で高くし、
該金属含浸炭素繊維強化炭素材の壁内周面にナノメートルオーダの凹凸構造を形成したことを特徴とするヒートパイプ。 In a heat pipe comprising an airtight container for containing a working fluid capable of evaporating and condensing within an operating temperature range,
The airtight container is made of a metal-impregnated carbon fiber reinforced carbon material,
The carbon content of the metal-impregnated carbon fiber reinforced carbon material is higher on the inner peripheral surface side than the inside of the wall of the airtight container,
A heat pipe, wherein a concavo-convex structure of nanometer order is formed on the inner peripheral surface of the metal-impregnated carbon fiber reinforced carbon material.
該フィルム状炭素骨格含有プラスチックを焼成して多数の空孔を有する炭素繊維骨格を生成する焼成工程と、
前記炭素繊維骨格の内周面を炭素を含む溶媒に浸漬する炭素溶媒浸漬工程と、
該炭素溶媒浸漬工程後に前記炭素繊維骨格を素焼する素焼工程と、
該素焼工程後に、前記炭素繊維骨格を溶融金属に含浸させて内面高炭素含有率金属含浸炭素繊維強化炭素材を生成する工程と、
前記内面高炭素含有率金属含浸炭素繊維強化炭素材の内面をプラズマエッチングして該内面にナノメートルオーダの凹凸構造を形成するプラズマエッチング工程と、
該プラズマエッチング工程後に、前記内面高炭素含有率金属含浸炭素繊維強化炭素材の内部に作動流体を封入する作動流体封入工程と、
該作動流体封入工程後に、前記内面高炭素含有率金属含浸炭素繊維強化炭素材の両端に蓋部を接合する工程と
を具備するヒートパイプの製造方法。 A forming step of forming a film-like carbon skeleton-containing plastic containing carbon fibers in a network shape into a cylindrical shape;
A firing step of firing the film-like carbon skeleton-containing plastic to produce a carbon fiber skeleton having a large number of pores;
A carbon solvent immersing step of immersing the inner peripheral surface of the carbon fiber skeleton in a solvent containing carbon;
An unglazed step of unfiring the carbon fiber skeleton after the carbon solvent immersion step;
A step of impregnating the carbon fiber skeleton with a molten metal after the uncoating step to produce an inner surface high carbon content metal impregnated carbon fiber reinforced carbon material;
A plasma etching step of plasma etching the inner surface of the inner surface high carbon content metal-impregnated carbon fiber reinforced carbon material to form a concavo-convex structure of nanometer order on the inner surface;
After the plasma etching step, a working fluid enclosing step of enclosing a working fluid inside the inner high carbon content metal impregnated carbon fiber reinforced carbon material,
And a step of joining lids to both ends of the inner surface high carbon content metal-impregnated carbon fiber reinforced carbon material after the working fluid enclosing step.
該金属含浸炭素繊維強化炭素材の炭素含有率は前記気密性容器の壁内部より壁内周面側で高くしたヒートパイプのプラズマエッチング装置において、
前記内面高炭素含有率の金属含浸炭素繊維強化炭素材を支持する支持台と、
前記金属含浸炭素繊維強化炭素材の内面側に摺動可能に設けられた棒状内側電極と、
前記金属含浸炭素繊維強化炭素材の外面側に摺動可能に設けられたリング状外側電極と、
前記棒状内側電極の先端部を取り囲むように前記リング状外側電極を移動させる同期駆動部と
を具備し、前記金属含浸炭素繊維強化炭素材の壁内周面にナノメートルオーダの凹凸構造を形成したことを特徴とするプラズマエッチング装置。 An airtight container for containing a working fluid capable of evaporating and condensing within an operating temperature range is made of a metal-impregnated carbon fiber reinforced carbon material,
In the plasma etching apparatus for a heat pipe, the carbon content of the metal-impregnated carbon fiber reinforced carbon material is higher on the inner peripheral surface side than the inside of the wall of the airtight container.
A support for supporting the metal-impregnated carbon fiber-reinforced carbon material having a high carbon content on the inner surface;
A rod-like inner electrode slidably provided on the inner surface side of the metal-impregnated carbon fiber reinforced carbon material,
A ring-shaped outer electrode slidably provided on the outer surface side of the metal-impregnated carbon fiber-reinforced carbon material;
And a synchronous drive unit that moves the ring-shaped outer electrode so as to surround the tip of the rod-shaped inner electrode, and formed a concavo-convex structure of nanometer order on the inner wall surface of the metal-impregnated carbon fiber reinforced carbon material A plasma etching apparatus characterized by that.
The plasma etching apparatus according to claim 7, wherein a plurality of protrusions are provided at a tip portion of the rod-shaped inner electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011141679A JP2013007545A (en) | 2011-06-27 | 2011-06-27 | Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011141679A JP2013007545A (en) | 2011-06-27 | 2011-06-27 | Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013007545A true JP2013007545A (en) | 2013-01-10 |
Family
ID=47675036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011141679A Withdrawn JP2013007545A (en) | 2011-06-27 | 2011-06-27 | Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013007545A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016071327A1 (en) * | 2014-11-03 | 2016-05-12 | At & S Austria Technologie & Systemtechnik Aktiengesellschaft | Circuit board with integrated prefabricated heat pipe and reinforced heat pipe |
JP2018008680A (en) * | 2016-05-12 | 2018-01-18 | ザ・ボーイング・カンパニーThe Boeing Company | Composite heat pipes, and sandwich panels, radiator panels and spacecraft that have composite heat pipes |
JP2018076502A (en) * | 2016-11-02 | 2018-05-17 | 地方独立行政法人大阪産業技術研究所 | Method for producing carbon fiber-reinforced plastic |
WO2024014751A1 (en) * | 2022-07-15 | 2024-01-18 | 주식회사 케이엠더블유 | Heating element cooling device |
-
2011
- 2011-06-27 JP JP2011141679A patent/JP2013007545A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016071327A1 (en) * | 2014-11-03 | 2016-05-12 | At & S Austria Technologie & Systemtechnik Aktiengesellschaft | Circuit board with integrated prefabricated heat pipe and reinforced heat pipe |
JP2018008680A (en) * | 2016-05-12 | 2018-01-18 | ザ・ボーイング・カンパニーThe Boeing Company | Composite heat pipes, and sandwich panels, radiator panels and spacecraft that have composite heat pipes |
JP7102105B2 (en) | 2016-05-12 | 2022-07-19 | ザ・ボーイング・カンパニー | Composite heat pipes and sandwich panels with composite heat pipes, radiator panels, and spacecraft |
JP2018076502A (en) * | 2016-11-02 | 2018-05-17 | 地方独立行政法人大阪産業技術研究所 | Method for producing carbon fiber-reinforced plastic |
WO2024014751A1 (en) * | 2022-07-15 | 2024-01-18 | 주식회사 케이엠더블유 | Heating element cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7866374B2 (en) | Heat pipe with capillary wick | |
US8074706B2 (en) | Heat spreader with composite micro-structure | |
JP5190305B2 (en) | Steam chamber | |
US7543960B2 (en) | Light-emitting diode assembly | |
CN1255319C (en) | Manufacturing apparatus and method for carbon nanotube | |
US20110083835A1 (en) | Heat-dissipating structure and method for fabricating the same | |
JP5568289B2 (en) | Heat dissipation component and manufacturing method thereof | |
US20100186931A1 (en) | Loop heat pipe type heat transfer device | |
US20210222958A1 (en) | Heat pipe | |
US8366831B2 (en) | Evaporation source | |
US20050269065A1 (en) | Heat pipe with hydrophilic layer and/or protective layer and method for making same | |
US20070251673A1 (en) | Heat pipe with non-metallic type wick structure | |
JP2013007545A (en) | Heat pipe, manufacturing method of the heat pipe, and plasma etching device for manufacturing the heat pipe | |
US20070193722A1 (en) | Heat pipe with capillary wick | |
JP2010243035A (en) | Heat transport device, electronic apparatus and method of manufacturing the heat transport device | |
US20070068656A1 (en) | Flat plate heat transfer device | |
TWI395918B (en) | Vapor chamber and manufacturing method thereof | |
TWI589832B (en) | Flat heat pipe and method of manufacturing the same | |
JP2010021552A (en) | Heat dissipation structure and method of manufacturing the same | |
TW201425855A (en) | Heat pipe and method for manufacturing the same | |
JP2012057841A (en) | Heat pipe, and manufacturing method thereof | |
JP4718349B2 (en) | Evaporator and loop heat pipe using this evaporator | |
WO2018214515A1 (en) | Support plate for vapor deposition device and vapor deposition device thereof | |
US11221184B1 (en) | Carbon nanotube heat pipe or thermosiphon | |
Kim et al. | Thermal performance of carbon nanotube enhanced vapor chamber wicks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140902 |