JP2012056786A - Method for producing crystallized glass and crystallized glass article - Google Patents

Method for producing crystallized glass and crystallized glass article Download PDF

Info

Publication number
JP2012056786A
JP2012056786A JP2010200563A JP2010200563A JP2012056786A JP 2012056786 A JP2012056786 A JP 2012056786A JP 2010200563 A JP2010200563 A JP 2010200563A JP 2010200563 A JP2010200563 A JP 2010200563A JP 2012056786 A JP2012056786 A JP 2012056786A
Authority
JP
Japan
Prior art keywords
glass
crystallized glass
crystallization
heat treatment
crystal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200563A
Other languages
Japanese (ja)
Other versions
JP5762707B2 (en
Inventor
Katsuhiko Yamaguchi
勝彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2010200563A priority Critical patent/JP5762707B2/en
Publication of JP2012056786A publication Critical patent/JP2012056786A/en
Application granted granted Critical
Publication of JP5762707B2 publication Critical patent/JP5762707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide crystallized glass which is excellent in uniformity of physical properties within a material and in reproducibility of physical properties between different production lots, and a method for easily and inexpensively producing such crystallized glass in a high yield.SOLUTION: The method for producing crystallized glass includes at least a step preceding crystallization of thermally treating raw glass in a temperature range of At(°C) to (At+120)°C, wherein At(°C) is the deformation point of the raw glass; and a crystallization step of thermally treating, after the step preceding crystallization, the resulting glass at a temperature higher than that in the step preceding crystallization.

Description

本発明は、結晶化ガラスの製造方法に関し、その特性および品質が、非常に安定な結晶化ガラスを製造する技術に関する。   The present invention relates to a method for producing crystallized glass, and relates to a technique for producing crystallized glass whose characteristics and quality are very stable.

結晶化ガラスはガラスセラミックスとも呼ばれ、アモルファスガラスを熱処理することにより内部に結晶を析出させたものをいう。結晶化ガラスは、析出した結晶により、原ガラスにはない物性を発現させることができ、ゼロ膨張部材、ハードディスクの基板材料、WDM(波長分割多重方式)光通信システム用の光フィルター基板材など種々の用途に使用されている。   Crystallized glass is also called glass ceramics, and refers to a crystal in which crystals are precipitated by heat-treating amorphous glass. Crystallized glass can exhibit physical properties that are not found in the original glass due to the precipitated crystals. Various materials such as zero-expansion members, hard disk substrate materials, and optical filter substrate materials for WDM (wavelength division multiplexing) optical communication systems. It is used for

その中でも、光学的・機械的な精密部材として使用される際には、その品質安定性が非常に重要となる。すなわち、結晶化ガラス部材のどの部位においても、或いは異なる製造ロットにおいても均一な物性を有することが重要である。
結晶化ガラスが均一な物性を得るためには、結晶化ガラスの均質性が高いことが必要である。結晶化ガラスの場合、その物性に大きく寄与するのはガラス相に析出した結晶であるので、結晶化ガラスの均質性を高めるためには、特に、出来るだけ結晶の大きさを揃え、かつ均一に結晶を分散させることが好ましい。
Among them, when used as an optical / mechanical precision member, the quality stability is very important. That is, it is important to have uniform physical properties in any part of the crystallized glass member or in different production lots.
In order to obtain uniform physical properties, the crystallized glass needs to have high homogeneity. In the case of crystallized glass, it is crystals precipitated in the glass phase that greatly contribute to the physical properties thereof. Therefore, in order to increase the homogeneity of the crystallized glass, in particular, the crystal size should be uniform and uniform. It is preferable to disperse the crystals.

しかしながら従来においては、均質性が高い結晶化ガラスを高い歩留まりで製造することは非常に困難であった。その理由は、結晶化ガラスの均質性向上のためには、材料の組成や結晶を析出させる為の製造条件を高い精度で同一のものとすることが必要であると考えられており、それらのファクターを原ガラス体の各部または製造ロット毎に全て高い精度で同一とすることは非常に困難であり、また、低コストでの量産を前提とした工業的な製造において、それらのファクターのいくつかは、製造者の意図しない変動が不可避であるからである。
特に製品形状としてのサイズがより大きい場合は、原ガラスのバルク体の組成の均質性、結晶析出の為の熱処理時の熱量、ガラスバルク体各部への熱伝導の違いなどにより、バルク体全体としての結晶化状態の不均一化が発生し、高い歩留まりで、均一な物性を得る事が非常に困難であった。
However, in the past, it was very difficult to produce crystallized glass with high homogeneity at a high yield. The reason for this is that, in order to improve the homogeneity of the crystallized glass, it is considered necessary to make the composition of the material and the production conditions for precipitating the crystals the same with high accuracy. It is very difficult to set the same factor for each part or production lot of the original glass body with high accuracy, and some of these factors are used in industrial production assuming mass production at low cost. This is because fluctuations that are not intended by the manufacturer are inevitable.
In particular, when the size of the product shape is larger, the bulk body as a whole depends on the homogeneity of the composition of the bulk body of the original glass, the amount of heat during heat treatment for crystal precipitation, the difference in heat conduction to each part of the glass bulk body, etc. As a result, it was very difficult to obtain uniform physical properties with high yield.

特許文献1には、WDM(波長分割多重方式)光通信システム用の光フィルター基板材用の結晶化ガラスの組成が開示されているが、この結晶化ガラスを従来の製造方法で製造しても、高い歩留まりで均一な物性を得ることは非常に困難であった。
特開2001−48584号公報
Patent Document 1 discloses a composition of crystallized glass for an optical filter substrate material for a WDM (wavelength division multiplexing) optical communication system. Even if this crystallized glass is manufactured by a conventional manufacturing method, It was very difficult to obtain uniform physical properties with a high yield.
JP 2001-48584 A

本発明は、材料内部における物性の均一性や、異なる製造ロット間での物性の再現性に優れた結晶化ガラス、および、そのような結晶化ガラスを高い歩留まりで容易に低コストで製造する方法を提供することを課題とする。   The present invention relates to a crystallized glass excellent in uniformity of physical properties inside a material and reproducibility of physical properties between different production lots, and a method for manufacturing such crystallized glass easily and at low cost with a high yield. It is an issue to provide.

本発明者は上記の課題に鑑み、鋭意研究を重ねた結果、結晶化ガラスの結晶化状態の不均一性は、結晶を析出させる為の製造条件が本質的な原因ではなく、結晶を析出させる為の工程以前にその本質的な原因があることを発見した。それは結晶を析出させる為の熱処理以前に原ガラスが受けている熱履歴の不均一性である。   As a result of intensive studies in view of the above problems, the present inventor has found that the non-uniformity of the crystallized state of the crystallized glass is not caused by the manufacturing conditions for precipitating the crystal, but causes the crystal to precipitate. I discovered that there was an essential cause before the process. It is the non-uniformity of the thermal history experienced by the original glass before the heat treatment for precipitating crystals.

結晶を析出させる為の熱処理以前に原ガラスが受けている熱履歴が不均一となる要因としては、例えば、原ガラスのストリップ成形時に受ける熱履歴やアニール処理時の熱履歴が挙げられる。
結晶化ガラス製造の為の原ガラスは、特開昭50−51516号公報に記載されている様に、連続溶解方式によって、溶融ガラスを連続して成形鋳型に流下しながら、ストリップと呼ばれる板状あるいは棒状の形状に連続して成形しながら引き出すことによって製造することが行われる場合がある。
この時、鋳型の中央部と端部とでは溶融ガラスの温度降下速度が異なり、端部の方が温度の降下速度が速い。また、鋳型の端部までガラスを充填させる事を目的として、端部のみをバーナーなどで加熱することがあり、この場合でも中央部と端部とで熱履歴が異なることがある。
また、ストリップ成形後の原ガラスは簡易的なアニール処理が施される。この処理は、成形後、コンベア上に載置されたストリップがトンネル炉を通過することによって行われるが、この様なトンネル炉ではガラス各部の熱伝導を均一とするような緻密な熱処理を行うことは不可能である。
Factors that cause the non-uniform thermal history of the original glass before the heat treatment for precipitating crystals include, for example, the thermal history received during strip forming of the original glass and the thermal history during annealing.
As described in Japanese Patent Application Laid-Open No. 50-51516, the original glass for producing crystallized glass is a plate-like shape called a strip while continuously flowing the molten glass into a forming mold by a continuous melting method. Or manufacture may be performed by pulling out while shape | molding continuously in a rod-shaped shape.
At this time, the temperature drop rate of the molten glass is different between the center portion and the end portion of the mold, and the temperature drop rate is faster at the end portion. In addition, for the purpose of filling the glass to the end of the mold, only the end may be heated with a burner or the like, and even in this case, the thermal history may be different between the center and the end.
The original glass after strip forming is subjected to a simple annealing treatment. This processing is performed by forming a strip placed on a conveyor after molding through a tunnel furnace. In such a tunnel furnace, a precise heat treatment is performed so that the heat conduction of each part of the glass is uniform. Is impossible.

このように、結晶を析出させる為の熱処理以前に原ガラスが受けている熱履歴が不均一である場合、従来の結晶を析出させる為の熱処理を行うと、結晶化状態の不均一が顕著に現れることを本発明者は見いだしたのである。
しかし、結晶を析出させる為の熱処理以前の原ガラスが受けている熱履歴を均一化することは製造設備のコストやその他の観点から非常に困難である。
そこで、本発明者は結晶を析出させる為の熱処理以前に受けている熱履歴が、結晶化状態を不均一とするような熱履歴であっても、均質な結晶化ガラスを得る製造方法を見いだし、この発明を完成したのであり、その具体的な構成は以下の通りである。
In this way, when the heat history that the original glass is subjected to before the heat treatment for precipitating the crystal is non-uniform, the non-uniformity of the crystallization state becomes noticeable when the conventional heat treatment for precipitating the crystal is performed. The inventor has found that it appears.
However, it is very difficult to make the thermal history received by the original glass before heat treatment for precipitating crystals from the cost of manufacturing equipment and other viewpoints.
Therefore, the present inventor has found a production method for obtaining a homogeneous crystallized glass even if the heat history before the heat treatment for precipitating the crystals is a heat history that makes the crystallization state non-uniform. The present invention has been completed, and its specific configuration is as follows.

(構成1)
結晶化ガラスの製造方法であって、原ガラスの屈伏点をAt(℃)とする時、原ガラスをAt(℃)から(At+120)℃の温度範囲で熱処理する結晶化前工程と、結晶化前工程の後、前記結晶化前工程より高い温度で熱処理する結晶化工程と、を少なくとも含む結晶化ガラスの製造方法。
(構成2)
結晶化前工程よりも低い温度で熱処理する核形成工程を結晶化前工程の前に有する構成1に記載の結晶化ガラスの製造方法。
(構成3)
前記結晶化前工程の熱処理時間が1h〜20hであり、前記結晶化工程の熱処理時間が1h〜20hである 構成1または2記載の結晶化ガラスの製造方法。
(構成4)
前記核形成工程の熱処理時間が1h〜20hである構成1から3のいずれか記載の結晶化ガラスの製造方法。
(構成5)
前記結晶化前工程において第1の結晶相を析出させ、前記結晶化工程において前記第1の結晶相を第2の結晶相へ相変態させる、構成1から4のいずれかに記載の結晶化ガラスの製造方法。
(構成6)
前記結晶化ガラスは、結晶相として二珪酸リチウム、及びα−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体の中から選ばれる少なくとも1種以上を含むことを特徴とする構成1から5のいずれかに記載の結晶化ガラスの製造方法。
(構成7)
前記第1の結晶相はモノ珪酸リチウムを含むことを特徴とする構成5に記載の結晶化ガラスの製造方法。
(構成8)
原ガラスの組成は酸化物基準の質量百分率で、
SiO 60〜80%、
LiO 5〜15%、
O 0〜5%、
MgO+ZnO+SrO+BaO 1〜10%、
0.5〜5%、
ZrO 0〜7%、
Al 1〜15%、
の各成分を含有する構成1〜7に記載の結晶化ガラスの製造方法。
(構成9)
原ガラスの組成は酸化物基準の質量百分率で、
CeO 0〜2%、
SnO 0〜2%、
Sb 0〜2%、
の各成分を含有する構成1から8のいずれかに記載の結晶化ガラスの製造方法。
(構成10)
主結晶相の結晶粒径分布0.05μm以内の範囲であり、最大面積を有する面において、当該面の平均線膨張係数の分布幅が0×10−7−1〜3×10−7−1である結晶化ガラス物品。
(構成11)
結晶相として二珪酸リチウム、及びα−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体の中から選ばれる少なくとも1種以上を含む構成10に記載の結晶化ガラス物品。
(構成12)
酸化物基準の質量百分率で、
SiO 60〜80%、
LiO 5〜15%、
O 0〜5%、
MgO+ZnO+SrO+BaO 1〜10%、
0.5〜3%、
Al 1〜15%、
の各成分を含有する構成10または11に記載の結晶化ガラス物品。
(Configuration 1)
A method for producing crystallized glass, wherein when the yield point of the original glass is At (° C.), the pre-crystallization step of heat-treating the original glass in a temperature range of At (° C.) to (At + 120) ° C., and crystallization A method for producing crystallized glass comprising at least a crystallization step of performing a heat treatment at a temperature higher than that of the pre-crystallization step after the pre-step.
(Configuration 2)
The manufacturing method of the crystallized glass of the structure 1 which has the nucleus formation process heat-processed at temperature lower than the pre-crystallization process before the pre-crystallization process.
(Configuration 3)
The method for producing crystallized glass according to Configuration 1 or 2, wherein the heat treatment time in the pre-crystallization step is 1 h to 20 h, and the heat treatment time in the crystallization step is 1 h to 20 h.
(Configuration 4)
The manufacturing method of the crystallized glass in any one of the structures 1 to 3 whose heat processing time of the said nucleation process is 1h-20h.
(Configuration 5)
The crystallized glass according to any one of the constitutions 1 to 4, wherein the first crystal phase is precipitated in the pre-crystallization step and the first crystal phase is transformed into the second crystal phase in the crystallization step. Manufacturing method.
(Configuration 6)
The crystallized glass contains lithium disilicate and at least one selected from α-quartz, α-quartz solid solution, α-cristobalite, and α-cristobalite solid solution as a crystal phase. 6. The method for producing a crystallized glass according to any one of 5 above.
(Configuration 7)
6. The method for producing crystallized glass according to Structure 5, wherein the first crystal phase contains lithium monosilicate.
(Configuration 8)
The composition of the raw glass is a mass percentage based on oxide,
SiO 2 60~80%,
Li 2 O 5-15%,
K 2 O 0-5%,
MgO + ZnO + SrO + BaO 1-10%,
P 2 O 5 0.5~5%,
ZrO 2 0-7%,
Al 2 O 3 1-15%,
The manufacturing method of the crystallized glass of the structures 1-7 containing each component of these.
(Configuration 9)
The composition of the raw glass is a mass percentage based on oxide,
CeO 2 0-2%,
SnO 2 0-2%,
Sb 2 O 3 0-2%,
The manufacturing method of the crystallized glass in any one of the structures 1-8 containing each component of these.
(Configuration 10)
The crystal grain size distribution of the main crystal phase is within a range of 0.05 μm, and in the plane having the maximum area, the distribution width of the average linear expansion coefficient of the plane is 0 × 10 −7 ° C. −1 to 3 × 10 −7 ° C. A crystallized glass article that is -1 .
(Configuration 11)
The crystallized glass article according to Configuration 10, comprising lithium disilicate as a crystal phase and at least one selected from α-quartz, α-quartz solid solution, α-cristobalite, and α-cristobalite solid solution.
(Configuration 12)
Oxide-based mass percentage
SiO 2 60~80%,
Li 2 O 5-15%,
K 2 O 0-5%,
MgO + ZnO + SrO + BaO 1-10%,
P 2 O 5 0.5~3%,
Al 2 O 3 1-15%,
The crystallized glass article according to the constitution 10 or 11 containing each of the components.

本発明は、材料内部における物性の均一性や、異なる製造ロット間での物性の再現性に優れた結晶化ガラス、および、そのような結晶化ガラスを高い歩留まりで、容易に、かつ低コストで製造する方法を提供することができる。   The present invention provides a crystallized glass excellent in uniformity of physical properties inside a material and reproducibility of physical properties between different production lots, and such crystallized glass with high yield, easily and at low cost. A method of manufacturing can be provided.

本発明の製造方法によって得られた本発明の結晶化ガラス物品は主結晶相の結晶粒径分布の値が0.05μm以内の範囲である。
「結晶粒径分布」とは、以下の手順により測定される値をいう。すなわち、TEM(透過型電子顕微鏡)により倍率100,000〜500,000倍での任意の部位の画像を取得し、得られた画像に現われた結晶を平行な2直線で挟んだ時の最長距離を結晶の粒径とする。これを無作為に選択した100個の結晶について測定し、個数基準で95パーセンタイルと5パーセンタイルの結晶粒径の値の差の絶対値を結晶粒径分布の値とする。
The crystallized glass article of the present invention obtained by the production method of the present invention has a crystal grain size distribution value of the main crystal phase within a range of 0.05 μm or less.
“Crystal grain size distribution” refers to a value measured by the following procedure. That is, the longest distance when an image of an arbitrary part at a magnification of 100,000 to 500,000 is obtained by a TEM (transmission electron microscope) and the crystal appearing in the obtained image is sandwiched between two parallel straight lines. Is the grain size of the crystal. This is measured for 100 randomly selected crystals, and the absolute value of the difference between the 95th and 5th percentile crystal grain size values is taken as the value of the crystal grain size distribution.

また、本発明の製造方法によって得られた本発明の結晶化ガラス物品は、最大面積を有する面において、当該面の平均線膨張係数の分布幅が0×10−7−1〜3×10−7−1である。「当該面の平均線膨張係数の分布幅」とは、当該面上の1方向について、1cm間隔で膨張係数を測定し、これらの膨張係数の最大値と最小値の差をいう。ここで膨張係数に関しては、結晶化ガラスの場合その析出結晶量により決まるため、JOGIS(日本光学硝子工業会規格)16−2003「光学ガラスの常温付近の平均線膨張係数の測定方法」に則り、片押し式膨張計を用い(温度範囲−30℃〜70℃)測定した膨張係数を実測し、これとX線回折装置(XRD)による結晶ピークの積分強度値との相関を取る事により、XRDの値を換算して膨張係数として使用した。 Further, in the crystallized glass article of the present invention obtained by the production method of the present invention, the distribution width of the average linear expansion coefficient of the surface is 0 × 10 −7 ° C. −1 to 3 × 10 10 on the surface having the maximum area. -7 ° C -1 . The “distribution width of the average linear expansion coefficient of the surface” refers to the difference between the maximum value and the minimum value of the expansion coefficients measured at intervals of 1 cm in one direction on the surface. Here, since the expansion coefficient is determined by the amount of precipitated crystals in the case of crystallized glass, in accordance with JOGIS (Japan Optical Glass Industry Association Standard) 16-2003 “Measurement Method of Average Linear Expansion Coefficient of Optical Glass Near Room Temperature” By measuring the expansion coefficient measured using a single-press type dilatometer (temperature range -30 ° C to 70 ° C) and correlating this with the integrated intensity value of the crystal peak by an X-ray diffractometer (XRD), XRD The value of was converted and used as an expansion coefficient.

また、本発明の製造方法によって得られた本発明の結晶化ガラス物品は、最大面積を有する面と直交する方向における平均線膨張係数の分布幅が0×10−7−1〜3×10−7−1である。「最大面積を有する面と直交する方向における平均線膨張係数の分布幅」とは、最大面積を有する面と直交する任意の面において、最大面積を有する面と直交する方向の平均線膨張係数の分布幅であり、当該方向において測定サンプルの研削を施し1mm間隔で試験片を作製し、同様にXRDの値を換算して膨張係数としたものの最大値と最小値の差をいう。 The crystallized glass article of the present invention obtained by the production method of the present invention has a distribution width of an average linear expansion coefficient in the direction orthogonal to the plane having the maximum area of 0 × 10 −7 ° C. −1 to 3 × 10. -7 ° C -1 . "The distribution width of the average linear expansion coefficient in the direction orthogonal to the surface having the largest area" means the average linear expansion coefficient in the direction orthogonal to the surface having the largest area in any surface orthogonal to the surface having the largest area. This is the distribution width, which is the difference between the maximum value and the minimum value of the specimens that are ground in the direction and sample pieces are produced at 1 mm intervals, and the value of XRD is similarly converted into the expansion coefficient.

従来における結晶化ガラス製造の加熱スケジュールである。It is the heating schedule of crystallized glass manufacture in the past. 核形成温度試験の結果を表す図であり、各熱処理温度に対する、発熱ピーク温度TPと熱処理を行なっていない試料での発熱ピーク温度T のそれぞれの逆数の差(1/T−1/T )をプロットした図である。Is a diagram illustrating a result of nucleation temperature test, for each heat treatment temperature, the exothermic peak temperature TP and the exothermic peak temperature of the samples not subjected to heat treatment T P respective differences of the reciprocal of 0 (1 / T P -1 / T P 0) is a plot of. 実施例1、比較例1、比較例2における面内のCTE分布グラフである。6 is an in-plane CTE distribution graph in Example 1, Comparative Example 1, and Comparative Example 2. 実施例2、比較例2における板厚方向の平均線膨張係数(CTE)分布グラフである。It is an average linear expansion coefficient (CTE) distribution graph of the thickness direction in Example 2 and Comparative Example 2.

一般的にガラスは結晶に比べて熱力学的に不安定な状態であり、結晶への変化が起こる可能性を持っている。しかし、酸化物ガラスでは、普通、ガラス転移温度Tgより、はるかに低い温度では原子の移動が起こりにくいので結晶化は起こらない。
結晶化が起こるのはTg領域か、それ以上の温度の熱力学的に過冷却液体状態にある場合となる。ガラスの結晶化(原ガラスのガラス相に結晶が析出すること)には結晶核の生成とその後の核の成長(結晶成長)が必要であり、結晶核が生じなければ結晶は生成せず、また結晶成長が起こらなければ結晶化が起こったとはいえない。
Generally, glass is in a thermodynamically unstable state as compared with crystals, and there is a possibility that changes to crystals occur. However, in an oxide glass, crystallization usually does not occur because migration of atoms hardly occurs at a temperature much lower than the glass transition temperature Tg.
Crystallization occurs in the Tg region or in a thermodynamically supercooled liquid state at temperatures above that. Crystallization of glass (crystals are deposited in the glass phase of the original glass) requires the generation of crystal nuclei and subsequent growth of the nuclei (crystal growth). If no crystal growth occurs, it cannot be said that crystallization has occurred.

核形成が起こる温度は一般的に結晶成長が起こる温度よりも低くなるため、結晶化は上記二つの過程に従来は分けて考えられており、これに対応するように二つの温度で保持することによって熱処理を行っていた。
すなわち、従来においては図1で示すような加熱スケジュールに従い、核生成速度が最大となるTの近傍であらかじめ処理を行い、充分多数の結晶核を発生させた後、結晶成長速度が最大となるT近傍で成長を促すのが一般的である。
Since the temperature at which nucleation occurs is generally lower than the temperature at which crystal growth occurs, crystallization has traditionally been considered separately in the above two processes and should be held at two temperatures to accommodate this. Heat treatment.
That is, according to the heating schedule shown in Figure 1 in the conventional performs pretreated in the vicinity of T I where nucleation rate becomes maximum, after generating a sufficiently large number of crystal nuclei, the crystal growth rate is maximized it is common to drive growth in T U vicinity.

ここでTはDTA(示差熱分析)を利用して求めることができる。
すなわち原ガラスのDTA曲線には、結晶析出や核生成に伴う発熱ピークが現れる。そこでまずTgからTx(結晶化開始温度)までの種々の温度において、所定時間(たとえば2時間)熱処理を行なって核を発生させた試料を作る。これらの試料について加熱速度を一定にしてDTAを行うと、熱処理による核発生数の多い試料ほど、結晶化による発熱ピークの温度TPが低い。この発熱ピーク温度Tと熱処理を行なっていない試料での発熱ピーク温度TP0のそれぞれの逆数の差、(1/T−1/T )を各熱処理温度に対してプロットすると、図2に示すような曲線が得られる。この曲線のピークを与える温度はほぼTに等しい。
また、TはDTA発熱ピークにより求めることができ、最終的に必要な特性を得る結晶析出量が得られる温度に決められる。
Where T I may be obtained by using a DTA (differential thermal analysis).
That is, an exothermic peak accompanying crystal precipitation or nucleation appears in the DTA curve of the original glass. Therefore, first, samples having nuclei generated by heat treatment at various temperatures from Tg to Tx (crystallization start temperature) for a predetermined time (for example, 2 hours) are prepared. When DTA is performed with the heating rate kept constant for these samples, the temperature TP of the exothermic peak due to crystallization is lower in the sample having a larger number of nuclei generated by heat treatment. The difference in the respective reciprocals of the exothermic peak temperature TP0 in this exothermic peak temperature T P and no heat treatment is performed samples, when plotted against each heat treatment temperature (1 / T P -1 / T P 0), FIG. 2 A curve as shown in FIG. Temperature giving a peak of the curve is approximately equal to T I.
Further, T U it can be determined by DTA exothermic peak, crystal deposition amount to obtain a final required characteristics are determined in the obtained temperature.

一方、本発明においては、原ガラスから結晶を析出するための熱処理は、3つの工程が定義される。この3つの工程は工程順に「核形成工程」、「結晶化前工程」、「結晶化工程」と定義され、それぞれの工程で特定の温度範囲に保持し、原ガラスを熱処理することを特徴とする。結晶化工程は結晶化前工程よりも熱処理温度が高く、核形成工程は結晶化前工程よりも熱処理温度が低い。核形成工程は必須ではなく、省略されても良い。   On the other hand, in the present invention, three steps are defined for the heat treatment for precipitating crystals from the original glass. These three steps are defined as “nucleation step”, “pre-crystallization step”, and “crystallization step” in the order of steps, and are characterized in that each step is maintained in a specific temperature range and the original glass is heat-treated. To do. The crystallization process has a higher heat treatment temperature than the pre-crystallization process, and the nucleation process has a lower heat treatment temperature than the pre-crystallization process. The nucleation step is not essential and may be omitted.

結晶を析出させる工程以前の工程は次の通りである。まず、通常の方法に従って、原料を調合、溶融し溶融ガラスを得て、溶融ガラスを冷却することにより原ガラスを成形する。これを必要であればアニール処理し、ガラスの歪を除去する。   The steps before the step of precipitating crystals are as follows. First, in accordance with a normal method, raw materials are prepared and melted to obtain molten glass, and the molten glass is cooled to form an original glass. If necessary, this is annealed to remove the distortion of the glass.

このようにして製造された原ガラスに対し、結晶析出の為の熱処理を施す。通常、原ガラスは室温まで冷却されている。この原ガラスを熱処理炉に入れ、熱処理を開始する。最初に核形成工程を施す。この工程では所定の温度となるまで所定の速度で熱処理炉を昇温し、所定温度域に達した時点から一定時間、この温度域を保持する。これにより原ガラス内に多数の幼核を生成させる。この工程により後述の結晶化前工程を施した場合と比較し、核形成工程を実施する場合は、室温からの昇温速度を大きくする事が可能である。核形成工程での所定温度域とは、後述する結晶化前工程での熱処理温度域よりも低温の範囲である。より具体的には、核形成工程での所定温度域とは、500℃から560℃の範囲であることが好ましく、520℃から540℃の範囲であることがより好ましい。保持時間としては1h〜20hの範囲が好ましく、2h〜10hの範囲がより好ましい。また、昇温速度は30℃/h〜300℃/hの範囲が好ましく、80℃/h〜200℃/hの範囲がより好ましい。なお、上述したように、核形成工程は省略されて良く、原ガラスを熱処理炉に入れた後、後述する結晶化前工程での熱処理温度域まで昇温しても良い。   The raw glass thus manufactured is subjected to heat treatment for crystal precipitation. Usually, the original glass is cooled to room temperature. This raw glass is put into a heat treatment furnace and heat treatment is started. First, a nucleation process is performed. In this step, the temperature of the heat treatment furnace is increased at a predetermined rate until the temperature reaches a predetermined temperature, and this temperature range is maintained for a certain period of time after reaching the predetermined temperature range. This generates a large number of nuclei in the original glass. Compared with the case where the pre-crystallization step described later is performed by this step, it is possible to increase the rate of temperature rise from room temperature when the nucleation step is performed. The predetermined temperature range in the nucleation step is a range lower than the heat treatment temperature range in the pre-crystallization step described later. More specifically, the predetermined temperature range in the nucleation step is preferably in the range of 500 ° C. to 560 ° C., and more preferably in the range of 520 ° C. to 540 ° C. The holding time is preferably in the range of 1h to 20h, and more preferably in the range of 2h to 10h. Moreover, the temperature rising rate is preferably in the range of 30 ° C./h to 300 ° C./h, more preferably in the range of 80 ° C./h to 200 ° C./h. As described above, the nucleation step may be omitted, and after the raw glass is placed in a heat treatment furnace, the temperature may be raised to a heat treatment temperature range in a pre-crystallization step described later.

次に結晶化前工程を施す。結晶化工程は発生した幼核から第1の結晶相を析出させる工程である。核形成工程を終えた後、または、熱処理の開始時から所定の温度となるまで所定の速度で熱処理炉を昇温し、所定温度域に達した時点から一定時間、この温度域を保持する。結晶化前工程での所定温度域は原ガラスの屈服点をAt℃とする時、原ガラスをAt℃から[At+120]℃の範囲である。
このように原ガラスをAt℃から[At+120]℃の温度範囲で保持し、熱処理することによって、不均一な熱履歴を受けた原ガラスであっても、結晶化状態の均一性を高くすることが可能となる。すなわち、析出する結晶の粒子径を一定の範囲に揃えることができ、かつ一定の範囲で均一に分散して結晶を析出させることが可能となる。
これは、上記温度範囲で熱処理することにより、ガラス中の幼核の状態によらず第1結晶相が安定均一に析出しきれる為と考えられる。
この効果を得るための、結晶化前工程の所定温度域のより好ましい範囲は[At+10]℃以上[At+100]℃以下であり、最も好ましくは[At+20]℃以上[At+80]以下である。保持時間としては1h〜20hの範囲が好ましく、2h〜10hの範囲がより好ましい。また、昇温速度は10℃/h〜100℃/hの範囲が好ましく、20℃/h〜80℃/hの範囲がより好ましい。
本発明においては、結晶成長の為の熱処理の前に上記温度範囲で熱処理を行うことが重要であり、「結晶化前工程」という当該熱処理工程の称呼は便宜上のもので、当該熱処理工程にどのような称呼を用いようとも本発明の技術的範囲には無関係である。
Next, a pre-crystallization process is performed. The crystallization step is a step of precipitating the first crystal phase from the generated nuclei. After finishing the nucleation step or until the temperature reaches a predetermined temperature from the start of the heat treatment, the temperature of the heat treatment furnace is increased, and this temperature range is maintained for a certain period of time after reaching the predetermined temperature range. The predetermined temperature range in the pre-crystallization step is in the range of At ° C. to [At + 120] ° C. when the deformation point of the original glass is At ° C.
By maintaining the original glass in the temperature range from At ° C. to [At + 120] ° C. and heat-treating it in this way, the uniformity of the crystallization state is increased even for the original glass that has received a non-uniform thermal history. Is possible. That is, the particle diameter of the crystals to be precipitated can be made uniform within a certain range, and the crystals can be uniformly dispersed within the certain range to precipitate the crystals.
This is presumably because the first crystal phase can be stably and uniformly precipitated by heat treatment in the above temperature range regardless of the state of the nuclei in the glass.
In order to obtain this effect, a more preferable range of the predetermined temperature range in the pre-crystallization step is [At + 10] ° C. or more and [At + 100] ° C. or less, and most preferably [At + 20] ° C. or more and [At + 80] or less. The holding time is preferably in the range of 1h to 20h, and more preferably in the range of 2h to 10h. Further, the rate of temperature rise is preferably in the range of 10 ° C / h to 100 ° C / h, and more preferably in the range of 20 ° C / h to 80 ° C / h.
In the present invention, it is important to perform the heat treatment in the above temperature range before the heat treatment for crystal growth, and the name of the heat treatment step called “pre-crystallization step” is for convenience. The use of such designations is irrelevant to the technical scope of the present invention.

また、原ガラスのAtは以下の方法で測定をすることができる。棒状に加工されたガラスを用い、片押し式の膨張計により加熱時のガラスの伸びが止まり、ガラスへの測定加重により変形が始まる温度をAt(屈伏点)とする。   Moreover, At of original glass can be measured with the following method. A glass processed into a rod-like shape is used, and the temperature at which the glass stretches during heating is stopped by a one-push type dilatometer and the deformation starts due to a measurement load on the glass is defined as At (bending point).

結晶化前工程の後、結晶化工程を施す。結晶化前工程を終えた後から所定の温度となるまで所定の速度で熱処理炉を昇温し、所定温度域に達した時点から一定時間、この温度域を保持する。これにより、結晶化前工程で析出させた第1の結晶相を成長させ、または、第1の結晶相を第2の結晶相へ相変態させることにより、最終的に、結晶化ガラスが所望の結晶相を備えるものとする。結晶化前工程を施すことにより、当該結晶化工程後の最終的な結晶化状態が均一性の高いものとなり、製造ロット毎の結晶化状態のばらつきも少ないものとなるのである。
結晶化工程での所定温度域とは、結晶化前工程での熱処理温度域よりも高温の範囲である。より具体的には、結晶化工程での所定温度域とは、680℃から800℃の範囲であることが好ましく、700℃から780℃の範囲であることがより好ましい。保持時間としては1h〜20hの範囲が好ましく、2h〜10hの範囲がより好ましい。また、昇温速度は10℃/h〜100℃/hの範囲が好ましく、20℃/h〜80℃/hの範囲がより好ましい。
After the pre-crystallization process, a crystallization process is performed. After finishing the pre-crystallization step, the temperature of the heat treatment furnace is increased at a predetermined speed until the temperature reaches a predetermined temperature, and this temperature range is maintained for a certain period of time after reaching the predetermined temperature range. As a result, the first crystal phase precipitated in the pre-crystallization step is grown, or the first crystal phase is transformed into the second crystal phase, so that the crystallized glass is finally obtained as desired. It shall have a crystal phase. By performing the pre-crystallization step, the final crystallization state after the crystallization step becomes highly uniform, and the variation in the crystallization state for each production lot becomes small.
The predetermined temperature range in the crystallization step is a range higher than the heat treatment temperature range in the pre-crystallization step. More specifically, the predetermined temperature range in the crystallization step is preferably in the range of 680 ° C. to 800 ° C., and more preferably in the range of 700 ° C. to 780 ° C. The holding time is preferably in the range of 1h to 20h, and more preferably in the range of 2h to 10h. Further, the rate of temperature rise is preferably in the range of 10 ° C / h to 100 ° C / h, and more preferably in the range of 20 ° C / h to 80 ° C / h.

本発明の結晶化ガラスの製造方法は、結晶相が二珪酸リチウム、及びα−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体の中から選ばれる少なくとも1種以上を最終的に含む結晶化ガラスを製造する際に、特に有効である。
なかでも、WDM光通信システム用の光フィルター基板材用に用いる場合には、結晶相が二珪酸リチウムを含むものであると、機械的特性、熱膨張係数、光透過率などが所望のものとなりやすく、好ましい。
The method for producing crystallized glass of the present invention finally includes at least one selected from the group consisting of lithium disilicate and α-quartz, α-quartz solid solution, α-cristobalite, α-cristobalite solid solution. This is particularly effective when producing crystallized glass.
Among them, when used for an optical filter substrate material for a WDM optical communication system, if the crystal phase contains lithium disilicate, mechanical characteristics, thermal expansion coefficient, light transmittance, etc. are likely to be desired, preferable.

また、上記の最終的に結晶相を含ませる場合には、結晶化前工程で析出させる第1の結晶相として、モノ珪酸リチウムを析出させることが好ましい。
すなわち、結晶化前工程によって第1の結晶相としてモノ珪酸リチウムを析出させ、結晶化工程で二珪酸リチウム、及びα−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体の中から選ばれる少なくとも1種以上に相変態させること、特に、二珪酸リチウムに相変態させることにより、最終的な結晶化状態が均一性の高いものとなる。
In addition, when the crystal phase is finally included, it is preferable to deposit lithium monosilicate as the first crystal phase to be precipitated in the pre-crystallization step.
That is, lithium monosilicate is precipitated as the first crystal phase in the pre-crystallization step, and selected from lithium disilicate and α-quartz, α-quartz solid solution, α-cristobalite, α-cristobalite solid solution in the crystallization step. By performing phase transformation to at least one selected from the above, in particular by phase transformation to lithium disilicate, the final crystallization state becomes highly uniform.

上記の結晶相を含む結晶化ガラスを得るためには、原ガラスの組成範囲を以下のようにすることが好ましい。なお、各成分の含有量は酸化物基準の質量%で示す。ここで、「酸化物基準」とは、ガラスまたは結晶化ガラスの構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定して、ガラスまたは結晶化ガラス中に含有される各成分の組成を表記する方法であり、この生成酸化物の質量の総和を100質量%として、ガラスまたは結晶化ガラス中に含有される各成分の量を表記する。   In order to obtain crystallized glass containing the above crystal phase, the composition range of the original glass is preferably set as follows. In addition, content of each component is shown by the mass% of an oxide basis. Here, “oxide standard” means that glass or crystallized glass is assumed on the assumption that oxides, nitrates, and the like used as raw materials for constituent components of glass or crystallized glass are all decomposed and changed into oxides when melted. In this method, the composition of each component contained therein is represented, and the amount of each component contained in the glass or crystallized glass is represented, with the total mass of the generated oxides being 100 mass%.

SiO成分は、原ガラスの熱処理により、主結晶相として析出する二珪酸リチウム、α−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体を生成するきわめて重要な成分であるが、その量が60%未満では、得られたガラスセラミックスの析出結晶が不安定で組織が粗大化しやすく、また80%を超えると原ガラスの溶融・成形性が困難になる。従って、含有量は60%〜80%が好ましく、65%〜78%がより好ましい。 The SiO 2 component is a very important component that forms lithium disilicate, α-quartz, α-quartz solid solution, α-cristobalite, α-cristobalite solid solution precipitated as the main crystal phase by heat treatment of the raw glass. If the amount is less than 60%, the precipitated crystals of the obtained glass ceramic are unstable and the structure tends to be coarsened. If it exceeds 80%, it becomes difficult to melt and form the original glass. Therefore, the content is preferably 60% to 80%, and more preferably 65% to 78%.

LiO成分は、原ガラスの熱処理により、主結晶相として析出する二珪酸リチウムを生成するきわめて重要な成分であるが、その量が5%未満では、上記結晶の析出が困難となると同時に、原ガラスの溶融が困難となる。また15%を超えると、得られる結晶が不安定で組織が粗大化しやすいうえ、化学的耐久性が悪化する。従って、含有量は5%〜15%が好ましく、7%〜11%がより好ましい。 The Li 2 O component is a very important component that generates lithium disilicate that precipitates as the main crystal phase by heat treatment of the raw glass. However, if its amount is less than 5%, it becomes difficult to precipitate the crystal, It becomes difficult to melt the original glass. On the other hand, if it exceeds 15%, the resulting crystals are unstable and the structure tends to be coarsened, and the chemical durability deteriorates. Therefore, the content is preferably 5% to 15%, more preferably 7% to 11%.

O成分は、ガラスの溶融性を向上させると同時に析出結晶の粗大化を防止する成分であり任意で含有させることができる。但し、過剰に含まれると析出結晶の粗大化、結晶相変化および化学的耐久性が悪化する為、その量は5%以下が好ましい。より好ましくは0.5%〜3%である。 The K 2 O component is a component that improves the meltability of the glass and at the same time prevents coarsening of the precipitated crystals, and can be optionally contained. However, if it is contained excessively, coarsening of the precipitated crystals, crystal phase change and chemical durability are deteriorated, so the amount is preferably 5% or less. More preferably, it is 0.5% to 3%.

MgO、ZnO、SrO、BaO成分は、ガラスの溶融性を向上させると同時に析出結晶の粗大化を防止し、且つマトリックスであるガラス相の屈折率を調整することで、光線透過率を調整する事を可能とする成分であるが、それぞれの合計量が1%未満ではこれらの効果が得られず、10%を超えると得られる結晶が不安定で組織が粗大化しやすくなる。従って、これらの成分の合計の含有量は1%〜10%が好ましく、1%〜7%がより好ましい。   The MgO, ZnO, SrO, and BaO components improve the meltability of the glass and at the same time prevent the coarsening of the precipitated crystals and adjust the light transmittance by adjusting the refractive index of the glass phase that is the matrix. However, if the total amount of each component is less than 1%, these effects cannot be obtained, and if it exceeds 10%, the resulting crystals are unstable and the structure tends to become coarse. Therefore, the total content of these components is preferably 1% to 10%, more preferably 1% to 7%.

成分は本発明において、析出結晶の核形成剤として不可欠であるが、その効果を得るには0.5%以上が好ましい。また、原ガラスの失透を防ぎ、量産安定性を保つために5%以下が好ましい。より好ましくは1%〜3%である。 In the present invention, the P 2 O 5 component is indispensable as a nucleating agent for precipitated crystals, but 0.5% or more is preferable for obtaining the effect. Moreover, 5% or less is preferable in order to prevent devitrification of the original glass and maintain mass production stability. More preferably, it is 1% to 3%.

ZrO成分はP成分と同様に、析出結晶の核形成剤として機能する上に、析出結晶の微細化と材料の機械的強度向上および化学的耐久性の向上に顕著な効果を有することが見出された成分であり、任意で含有することができる。これらの効果を得るためにはZrOは2%以上がより好ましい。但し、過剰に加えると原ガラスの溶融が困難となると同時にZrSiO等の溶け残りが発生してしまうため、7%以下が好ましい。 The ZrO 2 component, like the P 2 O 5 component, functions as a nucleating agent for precipitated crystals, and has a remarkable effect on refining the precipitated crystals, improving the mechanical strength of the material, and improving chemical durability. It has been found that it can be optionally contained. In order to obtain these effects, ZrO 2 is more preferably 2% or more. However, if it is added excessively, melting of the original glass becomes difficult and at the same time unmelted ZrSiO 4 or the like is generated, so 7% or less is preferable.

Al成分は、ガラスセラミックスの化学的耐久性および機械的強度、特に曲げ強度を向上させる成分であり、この効果をえるために、その量は1%以上であることが必要であり、4%以上であることがより好ましい。またAl成分が過剰であると、溶融性、耐失透性が悪化し、更に析出結晶相としてβ−スポジューメン、β−クリストバライトを析出するようになってしまう。したがって、Al成分は15%以下であることが好ましく、8%以下であることがより好ましい。 The Al 2 O 3 component is a component that improves the chemical durability and mechanical strength of the glass ceramic, particularly the bending strength, and in order to obtain this effect, its amount needs to be 1% or more, More preferably, it is 4% or more. On the other hand, if the Al 2 O 3 component is excessive, meltability and devitrification resistance deteriorate, and β-spodumene and β-cristobalite are precipitated as a precipitated crystal phase. Therefore, the Al 2 O 3 component is preferably 15% or less, and more preferably 8% or less.

CeO、SnO、およびSbおよび成分はガラス溶融の際の清澄剤として添加しうるが、それらの成分はそれぞれ2%以下で十分であり、より好ましくは1%以下である。しかし、Sb成分については人体や環境への影響を配慮して実質的に含ませないことも可能である。 CeO 2 , SnO 2 , and Sb 2 O 3 and components can be added as fining agents during glass melting, but these components are sufficient to be 2% or less, more preferably 1% or less. However, the Sb 2 O 3 component can be substantially not included in consideration of the influence on the human body and the environment.

同様にAs、PbOについては、環境上好ましくない成分であるので、使用は極力避けるべきである。 Similarly, As 2 O 3 and PbO are environmentally undesirable components and should be avoided as much as possible.

以下、本発明に係る物品について、具体的な実施例を挙げて説明する。
SiO 75%、LiO 10%、KO 1%、MgO 1%、ZnO 0.5%、P 2%、ZrO 3%、Al 7%、Sb 0.5%からなる組成ガラスを溶解し、鋳型(成形型)上に流出し、連続成形により板状のガラスを作製した。
成形型はガラス流出時の焼き付き防止のため、水冷を行い、ガラスを板状に圧延するため上部にローラーを配置し、ガラス厚が20mmとなるようにガラス成形を行なった。
このとき、ガラスlot.Aでは成形時に板状ガラスの端部をバーナーで加熱せず、ガラスlot.Bでは成形時に板状ガラスの端部をバーナーで加熱した。
成形後のガラスはラフアニールを施し冷却後、約20cm×20cm×20mmの平板の原ガラスを取得し結晶析出のための熱処理を行った。熱処理の条件は実施例、比較例ごとに以下のスケジュールにて実施した。実施例、比較例ごとに昇温速度、保持温度、保持時間の順で記載する。
また、ガラスのAtを測定したところ、570℃であった。
Hereinafter, the article according to the present invention will be described with reference to specific examples.
SiO 2 75%, Li 2 O 10%, K 2 O 1%, MgO 1%, ZnO 0.5%, P 2 O 5 2%, ZrO 2 3%, Al 2 O 3 7%, Sb 2 O 3 A composition glass composed of 0.5% was melted and flowed out onto a mold (molding die), and a plate-like glass was produced by continuous molding.
The mold was water-cooled to prevent seizure at the time of glass outflow, a roller was placed on the top to roll the glass into a plate shape, and the glass was molded so that the glass thickness was 20 mm.
At this time, the glass lot. In A, the edge of the sheet glass was not heated by a burner during molding, and the glass lot. In B, the edge part of the sheet glass was heated with the burner at the time of shaping | molding.
The glass after molding was subjected to rough annealing and cooling, and then a flat original glass of about 20 cm × 20 cm × 20 mm was obtained and subjected to heat treatment for crystal precipitation. The heat treatment conditions were carried out according to the following schedule for each example and comparative example. Each example and comparative example are described in the order of the heating rate, the holding temperature, and the holding time.
Moreover, it was 570 degreeC when At of glass was measured.

[実施例1]
核形成工程 :100℃/h、540℃、5hr
結晶化前工程:30℃/h、620℃ 2hr
結晶化工程 :30℃/h、760℃ 2hr
原ガラス :ガラスlot.A
[Example 1]
Nucleation process: 100 ° C./h, 540 ° C., 5 hr
Pre-crystallization process: 30 ° C./h, 620 ° C. 2 hr
Crystallization step: 30 ° C./h, 760 ° C. 2 hr
Raw glass: Glass lot. A

[実施例2]
核形成工程 :なし
結晶化前工程:80℃/h、620℃ 5hr
結晶化工程 :30℃/h、760℃ 2hr
原ガラス :ガラスlot.A
[Example 2]
Nucleation step: None Pre-crystallization step: 80 ° C./h, 620 ° C. 5 hr
Crystallization step: 30 ° C./h, 760 ° C. 2 hr
Raw glass: Glass lot. A

[実施例3]
核形成工程 :100℃/h、540℃ 5hr
結晶化前工程:30℃/h、620℃ 2hr
結晶化工程 :30℃/h、760℃ 2hr
原ガラス :ガラスlot.B
[Example 3]
Nucleation process: 100 ° C./h, 540 ° C., 5 hr
Pre-crystallization process: 30 ° C./h, 620 ° C. 2 hr
Crystallization step: 30 ° C./h, 760 ° C. 2 hr
Raw glass: Glass lot. B

[実施例4]
核形成工程 :なし
結晶化前工程:80℃/h、620℃ 5hr、
結晶化工程 :30℃/h、760℃ 2hr
原ガラス :ガラスlot.B
[Example 4]
Nucleation step: None Pre-crystallization step: 80 ° C./h, 620 ° C. 5 hr,
Crystallization step: 30 ° C./h, 760 ° C. 2 hr
Raw glass: Glass lot. B

[比較例1]
核形成工程 :100℃/h、540℃ 5hr、
結晶化工程 :30℃/h、770℃ 2hr
原ガラス :ガラスlot.A
[Comparative Example 1]
Nucleation step: 100 ° C./h, 540 ° C. 5 hr,
Crystallization step: 30 ° C./h, 770 ° C. 2 hr
Raw glass: Glass lot. A

[比較例2]
核形成工程 :100℃/h、540℃ 5hr
結晶化工程 :30℃/h、770℃ 2hr
原ガラス :ガラスlot.B
[Comparative Example 2]
Nucleation process: 100 ° C./h, 540 ° C., 5 hr
Crystallization step: 30 ° C./h, 770 ° C. 2 hr
Raw glass: Glass lot. B

比較例は前述のDTAによる核形成温度決定手段にて決定した核形成温度である。
上記熱処理スケジュールにて、結晶析出の為の熱処理を実施し作製した結晶化ガラスの各サンプルに関して、平均線膨張係数の測定を行なった。
平均線膨張係数の測定は、最大面積を有する面において当該面の平均線膨張係数の分布(面内方向分布)と、最大面積を有する面と直交する方向における平均線膨張係数の分布(板厚方向分布)を測定した。
結果を表1に示す。これから分かるように本発明の製造方法において結晶化ガラスバルク体での熱膨張係数均一性の向上が見られた。
The comparative example is the nucleation temperature determined by the nucleation temperature determination means by DTA described above.
The average coefficient of linear expansion was measured for each sample of crystallized glass produced by performing heat treatment for crystal precipitation on the above heat treatment schedule.
The average linear expansion coefficient is measured by measuring the distribution of the average linear expansion coefficient on the surface having the maximum area (in-plane direction distribution) and the distribution of the average linear expansion coefficient in the direction perpendicular to the surface having the maximum area (plate thickness). Direction distribution).
The results are shown in Table 1. As can be seen from the above, the thermal expansion coefficient uniformity of the crystallized glass bulk was improved in the production method of the present invention.

また実施例1、比較例1、比較例2における面内方向の平均線膨張係数(CTE)分布グラフを図3に、実施例2、比較例2における板厚方向のCTE分布グラフを図4に示す。
図3については面内方向分布であり、ガラス成形時の引き出し方向と垂直な方向(ストリップ成形されたガラス材の幅方向)に面内CTEの分布を見た時のグラフである。
図4に関しては、ストリップ成形されたガラス材の板厚方向、すなわちガラス成型時の成形板中央部を上面から下面に向けCTEの分布を表したグラフである。
In addition, the in-plane average linear expansion coefficient (CTE) distribution graph in Example 1, Comparative Example 1 and Comparative Example 2 is shown in FIG. 3, and the CTE distribution graph in the plate thickness direction in Example 2 and Comparative Example 2 is shown in FIG. Show.
FIG. 3 is an in-plane direction distribution, and is a graph when the in-plane CTE distribution is seen in a direction perpendicular to the drawing direction at the time of glass forming (the width direction of the strip-formed glass material).
FIG. 4 is a graph showing the CTE distribution in the plate thickness direction of the glass material formed into a strip, that is, the central portion of the forming plate at the time of glass forming from the upper surface to the lower surface.

図3において、従来の熱処理スケジュールとしての比較例1のCTEの面内分布のパターンを見ると、両端分のCTEは低く、中央部CTEは高くなっており、大きなばらつきとなっている。これは中央部においてはそのガラス成形時の流出ガラスの熱が保持された影響が残っており、端部においては急速に冷却された事によるためである。そのため、幼核の状態も必然的に異なり、このような差異が生じたものである。
また比較例2においては、両端部の成形性向上のため、端部をバーナー加熱し成形を行なったガラスについて結晶化した例である。加熱による影響により端部のCTEの上昇が確認され、比較例1と同様に大きなばらつきとなっている。
一方、本発明による実施例1のCTEは、ほぼ一直線で同じ値となっており、面内方向における熱膨張係数が非常に安定している事がわかる。
In FIG. 3, when the pattern of the in-plane distribution of the CTE of Comparative Example 1 as a conventional heat treatment schedule is seen, the CTE for both ends is low and the center CTE is high, which is a large variation. This is because the effect of retaining the heat of the spilled glass at the time of glass forming remains in the central part, and the end part is due to the rapid cooling. For this reason, the state of the nuclei is inevitably different, and this is the difference.
Moreover, in the comparative example 2, it is the example which crystallized about the glass which performed the end part burner heating for the moldability improvement of the both ends. An increase in CTE at the end is confirmed due to the influence of heating, and as in Comparative Example 1, there is a large variation.
On the other hand, the CTE of Example 1 according to the present invention is almost the same value in a straight line, and it can be seen that the thermal expansion coefficient in the in-plane direction is very stable.

図4では実施例2と比較例2の板厚方向のCTE分布を示した。比較例においては成形型との接触による急激な熱交換現象及び内部蓄熱の影響による幼核生成の影響等が上下部に見受けられ、厚さ方向でもCTEの分布が大きく変化している。一方、実施例2では、このようなCTE値の変動は一切見られず、非常に均一な値をとる結果となった。   FIG. 4 shows the CTE distribution in the thickness direction of Example 2 and Comparative Example 2. In the comparative example, an abrupt heat exchange phenomenon due to contact with the mold and an influence of nucleation generation due to the effect of internal heat storage are seen in the upper and lower parts, and the distribution of CTE greatly changes in the thickness direction. On the other hand, in Example 2, such a change in the CTE value was not observed at all, and a very uniform value was obtained.

次に実施例1と比較例1について、主結晶相の結晶粒径を測定し、結晶粒径分布を算出したところ、実施例1では0.02μmであり、比較例1では3μmであった。このように析出結晶の粒径についても、本発明の製造方法により製造された結晶化ガラスは均一性が高いことがわかる。   Next, for Example 1 and Comparative Example 1, when the crystal grain size of the main crystal phase was measured and the crystal grain size distribution was calculated, it was 0.02 μm in Example 1 and 3 μm in Comparative Example 1. Thus, also about the particle size of a precipitation crystal | crystallization, it turns out that the crystallized glass manufactured by the manufacturing method of this invention has high uniformity.

このように、本発明の製造方法によれば母材ガラスの状態の差(幼核の差等)によらず、第一相の安定析出により結晶化ガラスバルク体内の最終的CTEの安定化が図れる。したがってこれによりバルク体内での諸物性の均一性が非常に高い結晶化ガラスを歩留まり良く、生産する事が可能となる。   As described above, according to the manufacturing method of the present invention, the final CTE in the crystallized glass bulk can be stabilized by the stable precipitation of the first phase regardless of the difference in the state of the base glass (difference in nuclei, etc.). I can plan. Accordingly, this makes it possible to produce a crystallized glass having a very high uniformity of physical properties in the bulk body with a high yield.

Claims (12)

結晶化ガラスの製造方法であって、原ガラスの屈伏点をAt(℃)とする時、原ガラスをAt(℃)から(At+120)℃の温度範囲で熱処理する結晶化前工程と、結晶化前工程の後、前記結晶化前工程より高い温度で熱処理する結晶化工程と、を少なくとも含む結晶化ガラスの製造方法。   A method for producing crystallized glass, wherein when the yield point of the original glass is At (° C.), the pre-crystallization step of heat-treating the original glass in a temperature range of At (° C.) to (At + 120) ° C., and crystallization A method for producing crystallized glass comprising at least a crystallization step of performing a heat treatment at a temperature higher than that of the pre-crystallization step after the pre-step. 結晶化前工程よりも低い温度で熱処理する核形成工程を結晶化前工程の前に有する請求項1に記載の結晶化ガラスの製造方法。   The manufacturing method of the crystallized glass of Claim 1 which has the nucleation process heat-processed at temperature lower than the pre-crystallization process before the pre-crystallization process. 前記結晶化前工程の熱処理時間が1h〜20hであり、前記結晶化工程の熱処理時間が1h〜20hである 請求項1または2記載の結晶化ガラスの製造方法。   The method for producing crystallized glass according to claim 1 or 2, wherein a heat treatment time in the pre-crystallization step is 1h to 20h, and a heat treatment time in the crystallization step is 1h to 20h. 前記核形成工程の熱処理時間が1h〜20hである請求項1から3のいずれか記載の結晶化ガラスの製造方法。   The method for producing crystallized glass according to any one of claims 1 to 3, wherein a heat treatment time in the nucleation step is 1h to 20h. 前記結晶化前工程において第1の結晶相を析出させ、前記結晶化工程において前記第1の結晶相を第2の結晶相へ相変態させる、請求項1から4のいずれかに記載の結晶化ガラスの製造方法。   The crystallization according to any one of claims 1 to 4, wherein a first crystal phase is precipitated in the pre-crystallization step, and the first crystal phase is transformed into a second crystal phase in the crystallization step. Glass manufacturing method. 前記結晶化ガラスは、結晶相として二珪酸リチウム、及びα−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体の中から選ばれる少なくとも1種以上を含むことを特徴とする請求項1から5のいずれかに記載の結晶化ガラスの製造方法。   The crystallized glass contains lithium disilicate as a crystal phase and at least one selected from α-quartz, α-quartz solid solution, α-cristobalite, and α-cristobalite solid solution. To 5. The method for producing a crystallized glass according to any one of 5 to 5. 前記第1の結晶相はモノ珪酸リチウムを含むことを特徴とする請求項5に記載の結晶化ガラスの製造方法。   The method for producing crystallized glass according to claim 5, wherein the first crystal phase contains lithium monosilicate. 原ガラスの組成は酸化物基準の質量百分率で、
SiO 60〜80%、
LiO 5〜15%、
O 0〜5%、
MgO+ZnO+SrO+BaO 1〜10%、
0.5〜5%、
ZrO 0〜7%、
Al 1〜15%、
の各成分を含有する請求項1〜7に記載の結晶化ガラスの製造方法。
The composition of the raw glass is a mass percentage based on oxide,
SiO 2 60~80%,
Li 2 O 5-15%,
K 2 O 0-5%,
MgO + ZnO + SrO + BaO 1-10%,
P 2 O 5 0.5~5%,
ZrO 2 0-7%,
Al 2 O 3 1-15%,
The manufacturing method of the crystallized glass of Claims 1-7 containing each component of these.
原ガラスの組成は酸化物基準の質量百分率で、
CeO 0〜2%、
SnO 0〜2%、
Sb 0〜2%、
の各成分を含有する請求項1から8のいずれかに記載の結晶化ガラスの製造方法。
The composition of the raw glass is a mass percentage based on oxide,
CeO 2 0-2%,
SnO 2 0-2%,
Sb 2 O 3 0-2%,
The manufacturing method of the crystallized glass in any one of Claim 1 to 8 containing each component of these.
主結晶相の結晶粒径分布が0.05μm以内の範囲であり、最大面積を有する面において、当該面の平均線膨張係数の分布幅が0×10−7−1〜3×10−7−1である結晶化ガラス物品。 The crystal grain size distribution of the main crystal phase is in the range of 0.05 μm or less, and in the plane having the maximum area, the distribution width of the average linear expansion coefficient of the plane is 0 × 10 −7 ° C. −1 to 3 × 10 −7. A crystallized glass article having a temperature of −1 . 結晶相として二珪酸リチウム、及びα−クォーツ、α−クォーツ固溶体、α−クリストバライト、α−クリストバライト固溶体の中から選ばれる少なくとも1種以上を含む請求項10に記載の結晶化ガラス物品。   The crystallized glass article according to claim 10, comprising at least one selected from lithium disilicate and α-quartz, α-quartz solid solution, α-cristobalite, α-cristobalite solid solution as a crystal phase. 酸化物基準の質量百分率で、
SiO 60〜80%、
LiO 5〜15%、
O 0〜5%、
MgO+ZnO+SrO+BaO 1〜10%、
0.5〜3%、
ZrO 0〜7%、
Al 1〜15%、
の各成分を含有する請求項10または11に記載の結晶化ガラス物品。
Oxide-based mass percentage
SiO 2 60~80%,
Li 2 O 5-15%,
K 2 O 0-5%,
MgO + ZnO + SrO + BaO 1-10%,
P 2 O 5 0.5~3%,
ZrO 2 0-7%,
Al 2 O 3 1-15%,
The crystallized glass article of Claim 10 or 11 containing each component of these.
JP2010200563A 2010-09-08 2010-09-08 Method for producing crystallized glass and crystallized glass article Expired - Fee Related JP5762707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200563A JP5762707B2 (en) 2010-09-08 2010-09-08 Method for producing crystallized glass and crystallized glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200563A JP5762707B2 (en) 2010-09-08 2010-09-08 Method for producing crystallized glass and crystallized glass article

Publications (2)

Publication Number Publication Date
JP2012056786A true JP2012056786A (en) 2012-03-22
JP5762707B2 JP5762707B2 (en) 2015-08-12

Family

ID=46054329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200563A Expired - Fee Related JP5762707B2 (en) 2010-09-08 2010-09-08 Method for producing crystallized glass and crystallized glass article

Country Status (1)

Country Link
JP (1) JP5762707B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099828A (en) * 2018-10-26 2020-05-05 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN111099829A (en) * 2018-10-26 2020-05-05 成都光明光电股份有限公司 Transparent microcrystalline glass, microcrystalline glass product and preparation method thereof
CN111348833A (en) * 2017-12-01 2020-06-30 成都光明光电股份有限公司 Glass ceramics and substrate thereof
WO2020179872A1 (en) * 2019-03-06 2020-09-10 株式会社 オハラ Inorganic composition article and crystallized glass
CN111727176A (en) * 2018-10-26 2020-09-29 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202334051A (en) 2014-10-08 2023-09-01 美商康寧公司 High strength glass-ceramics having petalite and lithium silicate structures

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210039A (en) * 1987-02-26 1988-08-31 Ohara Inc Production of crystallized glass for substrate
JPH10203847A (en) * 1996-09-05 1998-08-04 Ohara Inc Crystalline glass substrate for magnetic head and its production
JPH1116142A (en) * 1997-04-28 1999-01-22 Ohara Inc Glass ceramic substrate for magnetic information recording medium
JP2000143290A (en) * 1998-11-09 2000-05-23 Ngk Insulators Ltd Crystallized glass, substrate for magnetic disk, and production of magnetic disk and crystallized glass
JP2000233941A (en) * 1998-03-23 2000-08-29 Ohara Inc Glass ceramic substrate for information storage medium
JP2000298827A (en) * 1997-04-28 2000-10-24 Ohara Inc Glass ceramic substrate for magnetic information storage medium
JP2000302481A (en) * 1998-03-23 2000-10-31 Ohara Inc Glass ceramic substrate for information recording medium
JP2000313638A (en) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd Crystallized glass and method for producing the same, substrate using the same and used for information recording medium, information recording medium and information recording device
JP2000313639A (en) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd Crystallized glass and method for producing the same, and substrate using the same and used for information recording medium, information recording medium and information recording device
JP2001035417A (en) * 1999-07-21 2001-02-09 Ohara Inc Glass ceramics for cathode-ray tube(crt)
JP2001048584A (en) * 1999-08-10 2001-02-20 Ohara Inc Glass ceramic for optical filter and optical glass
JP2002097037A (en) * 2000-02-01 2002-04-02 Ohara Inc Glass ceramic
JP2003165745A (en) * 2001-09-28 2003-06-10 Eurokera Snc Glass ceramics and method for manufacturing the same
JP2005053776A (en) * 2003-08-07 2005-03-03 Ivoclar Vivadent Ag Lithium silicate material
JP2006219367A (en) * 2005-02-08 2006-08-24 Ivoclar Vivadent Ag Lithium silicate glass ceramic
JP2007145691A (en) * 2005-10-25 2007-06-14 Ohara Inc Crystallized glass and method of manufacturing crystallized glass
JP2008254984A (en) * 2007-04-06 2008-10-23 Ohara Inc Inorganic composition article
JP2009073726A (en) * 2007-08-28 2009-04-09 Nippon Electric Glass Co Ltd Natural marble-like crystallized glass, natural marble-like crystallized glass articles, and its manufacturing method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210039A (en) * 1987-02-26 1988-08-31 Ohara Inc Production of crystallized glass for substrate
JPH10203847A (en) * 1996-09-05 1998-08-04 Ohara Inc Crystalline glass substrate for magnetic head and its production
JPH1116142A (en) * 1997-04-28 1999-01-22 Ohara Inc Glass ceramic substrate for magnetic information recording medium
JP2000298827A (en) * 1997-04-28 2000-10-24 Ohara Inc Glass ceramic substrate for magnetic information storage medium
JP2001039736A (en) * 1997-04-28 2001-02-13 Ohara Inc Glass ceramics
JP2000233941A (en) * 1998-03-23 2000-08-29 Ohara Inc Glass ceramic substrate for information storage medium
JP2000302481A (en) * 1998-03-23 2000-10-31 Ohara Inc Glass ceramic substrate for information recording medium
JP2000143290A (en) * 1998-11-09 2000-05-23 Ngk Insulators Ltd Crystallized glass, substrate for magnetic disk, and production of magnetic disk and crystallized glass
JP2000313639A (en) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd Crystallized glass and method for producing the same, and substrate using the same and used for information recording medium, information recording medium and information recording device
JP2000313638A (en) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd Crystallized glass and method for producing the same, substrate using the same and used for information recording medium, information recording medium and information recording device
JP2001035417A (en) * 1999-07-21 2001-02-09 Ohara Inc Glass ceramics for cathode-ray tube(crt)
JP2001048584A (en) * 1999-08-10 2001-02-20 Ohara Inc Glass ceramic for optical filter and optical glass
JP2002097037A (en) * 2000-02-01 2002-04-02 Ohara Inc Glass ceramic
JP2003165745A (en) * 2001-09-28 2003-06-10 Eurokera Snc Glass ceramics and method for manufacturing the same
JP2005053776A (en) * 2003-08-07 2005-03-03 Ivoclar Vivadent Ag Lithium silicate material
JP2006219367A (en) * 2005-02-08 2006-08-24 Ivoclar Vivadent Ag Lithium silicate glass ceramic
JP2007145691A (en) * 2005-10-25 2007-06-14 Ohara Inc Crystallized glass and method of manufacturing crystallized glass
JP2008254984A (en) * 2007-04-06 2008-10-23 Ohara Inc Inorganic composition article
JP2009073726A (en) * 2007-08-28 2009-04-09 Nippon Electric Glass Co Ltd Natural marble-like crystallized glass, natural marble-like crystallized glass articles, and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348833A (en) * 2017-12-01 2020-06-30 成都光明光电股份有限公司 Glass ceramics and substrate thereof
CN114409260A (en) * 2018-10-26 2022-04-29 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN111099829A (en) * 2018-10-26 2020-05-05 成都光明光电股份有限公司 Transparent microcrystalline glass, microcrystalline glass product and preparation method thereof
CN111099828A (en) * 2018-10-26 2020-05-05 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN111727176A (en) * 2018-10-26 2020-09-29 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN111099829B (en) * 2018-10-26 2021-03-09 成都光明光电股份有限公司 Transparent microcrystalline glass, microcrystalline glass product and preparation method thereof
CN112456806A (en) * 2018-10-26 2021-03-09 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN112608032A (en) * 2018-10-26 2021-04-06 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN112794646A (en) * 2018-10-26 2021-05-14 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and manufacturing method thereof
CN114409260B (en) * 2018-10-26 2023-08-01 成都光明光电股份有限公司 Glass ceramics, glass ceramics product and method for producing the same
WO2020179872A1 (en) * 2019-03-06 2020-09-10 株式会社 オハラ Inorganic composition article and crystallized glass
JPWO2020179872A1 (en) * 2019-03-06 2021-11-04 株式会社オハラ Inorganic composition articles and crystallized glass
US11807568B2 (en) 2019-03-06 2023-11-07 Ohara Inc. Inorganic composition article

Also Published As

Publication number Publication date
JP5762707B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5762707B2 (en) Method for producing crystallized glass and crystallized glass article
JP5673909B2 (en) Crystalline glass and crystallized glass obtained by crystallizing the same
JP5375385B2 (en) Manufacturing method of glass substrate
JP5733639B2 (en) Glass substrate
JP5233998B2 (en) Glass plate, method for producing the same, and method for producing TFT panel
TWI583650B (en) Glass substrate and method of manufacturing the same
KR102276623B1 (en) Non-alkali glass substrate and method for production of non-alkali glass substrate
TWI686360B (en) Method for producing a ceramizable green glass component, and ceramizable green glass component, and glass ceramic article
KR101831480B1 (en) Non-alkali glass for substrates and process for manufacturing non-alkali glass for substrates
JP2691263B2 (en) Transparent crystallized glass
CN113698082B (en) Method for producing glass-ceramic molded body
KR20070089621A (en) A float glass, a method for producing the float glass and a display panel using the float glass
JP2004075441A (en) Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2013119517A (en) Phosphate optical glass
CN102786203A (en) Consecutive molding method for crystallized glass and device thereof
CN110577364A (en) Lithium-aluminum silicate nanocrystalline glass ceramic and preparation method thereof
CN112384485B (en) Substrate for display and method for manufacturing the same
JPH06329439A (en) Li2o-al2o3-sio2 crystallized glass
JP5629073B2 (en) Method for producing crystallized glass
WO2022257509A1 (en) Curved glass and preparation method therefor, and electronic device
WO2023090177A1 (en) Crystallised glass
CN111732336B (en) Composition for glass, aluminosilicate glass, and preparation method and application thereof
WO2021210270A1 (en) Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article
JP2001150452A (en) Mold for molding resin and method of manufacturing the same
JP4702696B2 (en) Method for using crystallized glass and method for producing crystallized glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5762707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees