JP5629073B2 - Method for producing crystallized glass - Google Patents

Method for producing crystallized glass Download PDF

Info

Publication number
JP5629073B2
JP5629073B2 JP2009201039A JP2009201039A JP5629073B2 JP 5629073 B2 JP5629073 B2 JP 5629073B2 JP 2009201039 A JP2009201039 A JP 2009201039A JP 2009201039 A JP2009201039 A JP 2009201039A JP 5629073 B2 JP5629073 B2 JP 5629073B2
Authority
JP
Japan
Prior art keywords
temperature
heat
expansion coefficient
test sample
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009201039A
Other languages
Japanese (ja)
Other versions
JP2011051816A (en
Inventor
久志 室住
久志 室住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2009201039A priority Critical patent/JP5629073B2/en
Publication of JP2011051816A publication Critical patent/JP2011051816A/en
Application granted granted Critical
Publication of JP5629073B2 publication Critical patent/JP5629073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

本発明は結晶化ガラスの熱膨張特性を精密に制御する製造方法に関する。   The present invention relates to a production method for precisely controlling the thermal expansion characteristics of crystallized glass.

結晶化ガラス(ガラスセラミックスとも言う)は、ガラスを熱処理することによってガラス相中に結晶を析出させた材料であり、ガラス相の有する特性と、結晶相の有する特性の双方を併せ持つ特性を発現させることが可能であり、様々な技術分野で使用されている。例えば、ガラス相中に析出させる結晶の種類や量を制御することにより、様々な平均線膨張係数を有する材料を得ることが可能である。     Crystallized glass (also referred to as glass ceramics) is a material in which crystals are precipitated in a glass phase by heat-treating the glass, and develops properties that combine both the properties of the glass phase and the properties of the crystal phase. It is possible and used in various technical fields. For example, it is possible to obtain materials having various average linear expansion coefficients by controlling the types and amounts of crystals precipitated in the glass phase.

特許文献1には低い熱膨張係数を有する結晶化ガラスにおいて、適用温度TAの近傍TA±10℃の温度範囲にCTE-温度曲線のゼロ交叉が調整されるガラスセラミックスの製造方法が開示されている。しかし、CTE-温度曲線の傾きをより平坦に、すなわち、より広い温度範囲でゼロ膨張が得られるようにであるとか、ゼロ交叉の温度をより高精度に調整したい場合、特許文献1に開示された技術では実現することが困難であった。
なお、T1℃からT2℃における平均線膨張係数αとは次の式によって得られる。
α=(LT2−LT1)/{L×(T2−T1)}
L:室温における試料の長さ(本発明においては室温を25℃と定義する。)
T1:T1の時の試料の長さ
T2:T2の時の試料の長さ
また、CTE-温度曲線とは上記の式において、T1とT2の温度範囲を充分に狭くした時の、ある温度Tにおける平均線膨張係数をy軸に、温度をx軸としてプロットした時に得られる曲線を言う。
特開2003−267789号公報
Patent Document 1 discloses a method for producing glass ceramics in which a zero crossing of a CTE-temperature curve is adjusted in a temperature range of TA ± 10 ° C. in the vicinity of application temperature TA in crystallized glass having a low thermal expansion coefficient. . However, when the slope of the CTE-temperature curve is made flatter, that is, zero expansion is obtained in a wider temperature range, or the temperature of zero crossing is to be adjusted with higher accuracy, it is disclosed in Patent Document 1. This technology was difficult to realize.
The average linear expansion coefficient α from T1 ° C. to T2 ° C. is obtained by the following equation.
α = (L T2 −L T1 ) / {L × (T2−T1)}
L: Length of sample at room temperature (in the present invention, room temperature is defined as 25 ° C.)
L T1 : Length of the sample at T1 L T2 : Length of the sample at T2 Also, the CTE-temperature curve is the above equation when the temperature range of T1 and T2 is sufficiently narrowed A curve obtained when the average linear expansion coefficient at temperature T is plotted on the y axis and the temperature is plotted on the x axis.
JP 2003-267789 A

本発明の課題は、上記の問題を解決し、結晶化ガラスの熱膨張特性を精密に制御する製造方法を提供することであり、詳しくは所望の温度範囲におけるCTE-温度曲線の傾き、および平均線膨張係数を精密に制御する結晶化ガラスの製造方法を提供することである。   The object of the present invention is to solve the above problems and provide a production method for precisely controlling the thermal expansion characteristics of crystallized glass. Specifically, the slope of the CTE-temperature curve in the desired temperature range, and the average The object of the present invention is to provide a method for producing crystallized glass in which the linear expansion coefficient is precisely controlled.

本発明者は上記の課題に鑑み、鋭意研究を重ねた結果、結晶化の為の熱処理をする工程において、降温速度を調整することにより結晶化ガラスの熱膨張特性を精密に制御できることを見いだし、この発明を完成したものであり、その具体的な構成は以下の通りである。   In view of the above problems, the present inventor has found that the thermal expansion characteristics of the crystallized glass can be precisely controlled by adjusting the temperature lowering rate in the process of heat treatment for crystallization as a result of intensive studies. The present invention has been completed, and its specific configuration is as follows.

(構成1)
ガラスを熱処理する工程を含む結晶化ガラスの製造方法であって、
前記ガラスを熱処理する工程は、少なくとも昇温工程及び降温工程を有し、
前記降温工程における降温速度Vrを調整することにより所望の温度範囲における平均線膨張係数を調整する、結晶化ガラスの製造方法。
(構成2)
製品と同一の組成を有する原ガラスに熱処理工程を施して結晶化ガラスの試験サンプルを少なくとも1つ作製し、前記試験サンプルの平均線膨張係数αs2を測定し、所望の平均線膨張係数αと試験サンプルの平均線膨張係数の差αs2によって実際の製品製造時の前記降温工程における降温速度Vrを決定し、その後決定された熱処理条件で製造する請求項1に記載の結晶化ガラスの製造方法。
(構成3)
前記αs2-αoの値が正であれば実際の製品製造時の降温工程の降温速度Vrを前記試験サンプル作製時の降温工程の降温速度Vsより小さくし、前記αs2の値が負であればVsよりVrを大きくする請求項1または2に記載の結晶化ガラスの製造方法。
(構成4)
前記ガラスを熱処理する工程は、少なくとも保温工程を有し、実際の製品製造時の前記保温工程における保温温度Trおよび保温時間Hrを決定した後に、前記降温速度Vrを決定する請求項1から3のいずれかに記載の結晶化ガラスの製造方法。
(構成5)
製品と同一の組成を有する原ガラスに熱処理工程を施して結晶化ガラスの試験サンプルを少なくとも1つ作製し、前記試験サンプルの平均線膨張係数αs1を測定し、所望の平均線膨張係数αと試験サンプルの平均線膨張係数の差αs1によって実際の製品製造時の前記保温工程における保温温度Trおよび保温時間Hrを決定する請求項4に記載の結晶化ガラスの製造方法。
(構成6)
前記結晶化ガラスがβ−石英及び/又はβ−石英固溶体を含む請求項1から5のいずれかに記載の結晶化ガラスの製造方法。
(Configuration 1)
A method for producing crystallized glass comprising a step of heat-treating glass,
The step of heat treating the glass has at least a temperature raising step and a temperature lowering step,
A method for producing crystallized glass, wherein an average linear expansion coefficient in a desired temperature range is adjusted by adjusting a temperature drop rate Vr in the temperature drop step.
(Configuration 2)
A raw glass having the same composition as the product is subjected to a heat treatment step to produce at least one crystallized glass test sample, the average linear expansion coefficient α s2 of the test sample is measured, and the desired average linear expansion coefficient α o 2. The crystallization according to claim 1, wherein a temperature-decreasing rate Vr in the temperature-decreasing step during actual product manufacture is determined by a difference α s2 −α o between the average linear expansion coefficient of the test sample and the test sample, and then manufactured under the determined heat treatment conditions. Glass manufacturing method.
(Configuration 3)
If the value of α s2 −αo is positive, the temperature decrease rate Vr of the temperature decrease process during actual product manufacture is made smaller than the temperature decrease rate Vs of the temperature decrease process during preparation of the test sample, and the value of α s2 −α o is The method for producing crystallized glass according to claim 1 or 2, wherein Vr is larger than Vs if negative.
(Configuration 4)
The step of heat-treating the glass includes at least a heat-retaining step, and the temperature-decreasing rate Vr is determined after determining the heat-retaining temperature Tr and the heat-retaining time Hr in the heat-retaining step during actual product manufacture. The manufacturing method of the crystallized glass in any one.
(Configuration 5)
The raw glass having the same composition as the product is subjected to a heat treatment step to produce at least one crystallized glass test sample, the average linear expansion coefficient α s1 of the test sample is measured, and the desired average linear expansion coefficient α o 5. The method for producing crystallized glass according to claim 4, wherein a heat retention temperature Tr and a heat retention time Hr in the heat retention step at the time of actual product manufacture are determined by a difference α s1 −α o between the average linear expansion coefficient of the test sample and the test sample.
(Configuration 6)
The method for producing crystallized glass according to claim 1, wherein the crystallized glass includes β-quartz and / or β-quartz solid solution.

本発明によれば結晶化ガラスの熱膨張特性を精密に制御することが可能であり、例えば20ppb・℃−1レベルの平均線膨張係数を調整することが可能となる。 According to the present invention, it is possible to precisely control the thermal expansion characteristics of crystallized glass. For example, it is possible to adjust an average linear expansion coefficient of 20 ppb · ° C. −1 level.

本発明の実施例のΔL/L−温度グラフである。It is (DELTA) L / L-temperature graph of the Example of this invention. 本発明の実施例のΔL/L−温度グラフである。It is (DELTA) L / L-temperature graph of the Example of this invention. 本発明の実施例のCTE−温度グラフであるIt is a CTE-temperature graph of the Example of this invention. 本発明の実施例のCTE−温度勾配グラフであるIt is a CTE-temperature gradient graph of the Example of this invention.

1:試験サンプル1
2:試験サンプル2
3:試験サンプル3
4:試験サンプル4
5:試験サンプル5
6:試験サンプル6
7:試験サンプル7
1: Test sample 1
2: Test sample 2
3: Test sample 3
4: Test sample 4
5: Test sample 5
6: Test sample 6
7: Test sample 7

本発明にかかる製造方法は大きくガラスを製造する工程、ガラスを熱処理する工程の2工程に分けられる。ガラスを製造する工程は結晶を析出させる前の原ガラスを製造する工程であり、所望の物性によって、公知の原料組成および溶融方法、成型方法に従って製造すれば良い。ガラスを成形後にはアニールを施して室温まで冷却しても良いし、室温まで冷却する前に後述するガラスを熱処理する工程を施してもよい。   The production method according to the present invention is roughly divided into two steps, a step of producing glass and a step of heat-treating the glass. The process for producing the glass is a process for producing the original glass before the crystals are precipitated, and may be produced according to the known raw material composition, melting method and molding method depending on the desired physical properties. After the glass is molded, it may be annealed and cooled to room temperature, or may be subjected to a step of heat-treating the glass described later before cooling to room temperature.

ガラスを熱処理する工程はガラス相中に結晶を析出させる為に行われ、少なくとも昇温工程と降温工程を有する。さらに保温工程を有していても良い。昇温工程、降温工程、保温工程はそれぞれ1つの工程であっても良いし、複数の工程を有していても良い。例えばガラスを熱処理する工程は、昇温工程、保温工程、降温工程の3つの工程であって良いし、第1の昇温工程、第1の保温工程、第2の昇温工程、第2の保温工程、第1の降温工程という5段階であって良い。第1の保温工程は核形成の為の保温工程であり、第2の保温工程は核成長の為の保温工程であることが好ましい。また、第1の保温工程の温度より第2の保温工程の温度の方が高いことが好ましい。   The step of heat-treating the glass is performed to precipitate crystals in the glass phase, and has at least a temperature raising step and a temperature lowering step. Furthermore, you may have a heat retention process. Each of the temperature raising step, the temperature lowering step, and the heat retaining step may be one step or may have a plurality of steps. For example, the step of heat-treating the glass may be three steps of a temperature raising step, a temperature keeping step, and a temperature lowering step, or a first temperature raising step, a first heat keeping step, a second temperature raising step, and a second step. There may be five stages of a heat retaining process and a first temperature lowering process. The first heat retaining step is preferably a heat retaining step for nucleation, and the second heat retaining step is preferably a heat retaining step for nucleus growth. Moreover, it is preferable that the temperature of a 2nd heat retention process is higher than the temperature of a 1st heat retention process.

本発明においては降温工程において、好ましくは最後の降温工程において降温速度Vrを調整することにより、所望の温度範囲における平均線膨張係数を調整する。降温速度Vrを調整することにより、所望の温度範囲における平均線膨張係数を厳密に調整することが可能となるのである。   In the present invention, the average linear expansion coefficient in a desired temperature range is adjusted by adjusting the temperature decrease rate Vr in the temperature decrease step, preferably in the last temperature decrease step. By adjusting the temperature drop rate Vr, the average linear expansion coefficient in a desired temperature range can be strictly adjusted.

所望の平均線膨張係数に対して、より厳密に制御された結晶化ガラスを得るためには、ガラスを熱処理する工程中に保温工程を設け、実際の製品製造時の保温工程における保温温度Trと保温時間Hrを決定した後に、実際の製品製造時における降温速度Vrを決定することが好ましい。   In order to obtain crystallized glass that is more strictly controlled with respect to a desired average linear expansion coefficient, a heat retention step is provided in the step of heat-treating the glass, and the heat retention temperature Tr in the heat retention step during actual product manufacture After determining the heat retention time Hr, it is preferable to determine the temperature drop rate Vr during actual product manufacture.

その為にはまず、目的の製品と同一の組成を有する原ガラスを作製し、初期条件で熱処理し、結晶を析出させ少なくとも1つの試験サンプルを作製する。
次に、この平均線膨張係数αs1を測定する。ここで目的とする平均線膨張係数αと試験サンプルの平均線膨張係数の差αs1−αによって実際の製品製造の保温工程における保温温度Trと保温時間Hrを決定すれば良い。
目的とする平均線膨張係数αと試験サンプルの平均線膨張係数の差αs1−αによって調整される保温温度Trと保温時間Hrは核成長工程の保温温度Trと保温時間Hrであることが好ましい。
αs1−αの絶対値が大きい場合には、初期条件から保温温度Trおよび/または保温時間Hrを変更して新たな試験サンプルを作製し、その平均線膨張係数αs1’を測定し、αs1からαs1’への変化をもとに新たな条件を設定することを繰り返し、所望の平均線膨張係数に近づく様に実際の製品製造の保温工程における保温温度Trと保温時間Hrを決定すれば良い。
For this purpose, first, an original glass having the same composition as that of the target product is prepared, and heat treatment is performed under initial conditions to precipitate crystals, thereby preparing at least one test sample.
Next, this average linear expansion coefficient α s1 is measured. Here, the heat retention temperature Tr and the heat retention time Hr in the heat retention step of actual product manufacture may be determined based on the difference α s1 −α o between the target average linear expansion coefficient α o and the average linear expansion coefficient of the test sample.
The heat retention temperature Tr and the heat retention time Hr adjusted by the difference α s1 −α o between the target average linear expansion coefficient α o and the average linear expansion coefficient of the test sample are the heat retention temperature Tr and the heat retention time Hr in the nuclear growth process. Is preferred.
When the absolute value of α s1 −α o is large, a new test sample is prepared by changing the heat retention temperature Tr and / or the heat retention time Hr from the initial condition, and the average linear expansion coefficient α s1 ′ is measured. Based on the change from α s1 to α s1 ′, a new condition is repeatedly set, and the heat retention temperature Tr and the heat retention time Hr in the heat retention process of actual product manufacture are determined so as to approach the desired average linear expansion coefficient. Just do it.

保温工程における保温温度と保温時間の操作は、平均線膨張係数の調整とともに、CTE-温度曲線の傾きを制御することができる。   The operation of the heat retention temperature and the heat retention time in the heat retention step can control the slope of the CTE-temperature curve as well as the adjustment of the average linear expansion coefficient.

次に、製品と同一の組成を有する原ガラスに決定されたTrとHrを用いて熱処理工程を施して結晶化ガラスの試験サンプルを少なくも1つ作製し、前記試験サンプルの平均線膨張係数αs2を測定する。ここで目的とする平均線膨張係数αと試験サンプルの平均線膨張係数αs2−αによって実際の製品製造時の前記降温工程における降温速度Vrを決定すれば良い。
例えば結晶相が負の平均線膨張係数を有する結晶化ガラスにおいて、αs1−αが正であり、0.2×10−7−1以下である場合、Vrを遅くすれば所望の平均線膨張係数を得ることができる。
αs2−αの絶対値が大きい場合には、前記試験サンプルを製造した条件から降温工程の降温速度を変更して新たな試験サンプルを作製し、その平均線膨張係数αs2’を測定し、αs1からαs2’への変化をもとに新たな条件を設定することを繰り返し、所望の平均線膨張係数に近づく様に実際の製品製造のVrを決定すれば良い。
Next, at least one test sample of crystallized glass is produced by performing a heat treatment process using Tr and Hr determined on the original glass having the same composition as the product, and the average linear expansion coefficient α of the test sample is prepared. s2 is measured. Here, the temperature decrease rate Vr in the temperature decreasing step at the time of actual product manufacture may be determined based on the target average linear expansion coefficient α o and the average linear expansion coefficient α s2 −α o of the test sample.
For example, in a crystallized glass whose crystal phase has a negative average linear expansion coefficient, when α s1 −α o is positive and is 0.2 × 10 −7 ° C. −1 or less, the desired average can be obtained by decreasing Vr. A linear expansion coefficient can be obtained.
When the absolute value of α s2 −α o is large, a new test sample is prepared by changing the temperature drop rate in the temperature drop process from the conditions for producing the test sample, and the average linear expansion coefficient α s2 ′ is measured. , By repeating the setting of a new condition based on the change from α s1 to α s2 ′, Vr for actual product manufacture may be determined so as to approach the desired average linear expansion coefficient.

降温工程における降温速度の操作は、所望の温度範囲におけるCTE-温度曲線の傾きを維持したまま、平均線膨張係数を制御することができる。   The operation of the temperature lowering rate in the temperature lowering process can control the average linear expansion coefficient while maintaining the slope of the CTE-temperature curve in a desired temperature range.

特にβ−石英および/またはβ−石英固溶体を含む結晶化ガラスの場合は、本発明の製造方法によって所望の低熱膨張特性を有する結晶化ガラスを得やすい。
β−石英および/またはβ−石英固溶体を含む結晶化ガラスは酸化物基準の質量%で、SiO:47〜65%、Al:17〜29%、LiO:1〜8%、P:1〜13%、MgO:0.5〜5%、ZnO:0.5〜5.5%、TiO:1〜7%、ZrO:1〜7%、NaO:0〜4%、KO:0〜4%、CaO:0〜7%、BaO:0〜7%、SrO:0〜4%、As:0〜2%、Sb:0〜2%、の範囲の各成分を含有させることにより作製することができる。
In particular, in the case of crystallized glass containing β-quartz and / or β-quartz solid solution, it is easy to obtain crystallized glass having desired low thermal expansion characteristics by the production method of the present invention.
The crystallized glass containing β-quartz and / or β-quartz solid solution is in mass% based on oxide, SiO 2 : 47 to 65%, Al 2 O 3 : 17 to 29%, Li 2 O: 1 to 8%. , P 2 O 5: 1~13% , MgO: 0.5~5%, ZnO: 0.5~5.5%, TiO 2: 1~7%, ZrO 2: 1~7%, Na 2 O : 0~4%, K 2 O: 0~4%, CaO: 0~7%, BaO: 0~7%, SrO: 0~4%, As 2 O 3: 0~2%, Sb 2 O 3 : It can produce by including each component of 0 to 2% of range.

なお、試験サンプルは実際の製品製造を行う前にラボレベルでただ一度製造され、その後は決定された条件に従って実際の製品が製造されている場合でも本発明に含まれ、また、実際の製品製造ラインから製品を抜き取り、その測定値を元に実際の製品製造ラインに製造条件をフィードバックさせる場合でも本発明に含まれる。 Note that test samples are manufactured only once at the lab level before actual product manufacture, and are included in the present invention even after the actual product is manufactured in accordance with the determined conditions. A case where a product is extracted from a line and manufacturing conditions are fed back to an actual product manufacturing line based on the measured value is also included in the present invention.

以下、本発明の実施例を説明する。実施例においては0℃から50℃における所望の平均線膨張係数αが0.01×10−7−1であり、且つ0℃から50℃の温度範囲内でのΔL/L−温度曲線の最大値−最小値が5×10−7以下であり、主結晶相がβ−石英及び/又はβ−石英固溶体を含む結晶化ガラスの作製を目的とした。 Examples of the present invention will be described below. In the examples, a desired average linear expansion coefficient α o from 0 ° C. to 50 ° C. is 0.01 × 10 −7 ° C −1 , and a ΔL / L-temperature curve within a temperature range of 0 ° C. to 50 ° C. The objective was to produce crystallized glass having a maximum value-minimum value of 5 × 10 −7 or less and a main crystal phase containing β-quartz and / or β-quartz solid solution.

酸化物基準の質量%でSiO:55.40%、P:7.60%、Al:24.50%、LiO:3.95%、MgO:0.80%、ZnO:0.70%、CaO:0.95%、BaO:1.10%、TiO:2.30%、ZrO:2.00%、As:0.70%となるように原料として酸化物、炭酸塩あるいは硝酸塩等の原料を混合し、これを通常の溶解装置を用いて約1450〜1550℃ の温度で溶解し攪拌均質化した後、成形、冷却しガラス成形体を得た。 SiO 2 : 55.40%, P 2 O 5 : 7.60%, Al 2 O 3 : 24.50%, Li 2 O: 3.95%, MgO: 0.80% by mass% based on oxide , ZnO: 0.70%, CaO: 0.95%, BaO: 1.10%, TiO 2: 2.30%, ZrO 2: 2.00%, as 2 O 3: 0.70% become so After mixing raw materials such as oxides, carbonates or nitrates as raw materials, they are melted at a temperature of about 1450 to 1550 ° C. using a normal melting apparatus, homogenized with stirring, and then molded, cooled, and molded into glass. Obtained.

得られたガラス成形体を、数種の初期条件で結晶化し、試験サンプル1〜4を作製した。具体的には室温から第1昇温速度で核形成保温温度まで昇温後に保温、第2の昇温速度で核成長保温温度まで昇温後に保温、その後第1の降温速度で室温まで降温した。この時の熱処理条件、0℃から50℃における平均線膨張係数αs1およびαs1とαとの差、0℃から50℃の温度範囲内でのΔL/L−温度曲線の最大値−最小値を表1に示す。 The obtained glass molded body was crystallized under several initial conditions to prepare test samples 1 to 4. Specifically, the temperature is maintained after raising the temperature from the room temperature to the nucleation heat retention temperature at the first temperature increase rate, the temperature is maintained after the temperature is increased to the nucleus growth heat retention temperature at the second temperature increase rate, and then the temperature is decreased to room temperature at the first temperature decrease rate. . Heat treatment conditions at this time, average linear expansion coefficient α s1 between 0 ° C. and 50 ° C., difference between α s1 and α o , maximum value of ΔL / L-temperature curve within the temperature range of 0 ° C. to 50 ° C.−minimum Values are shown in Table 1.

平均線膨張係数はフィゾー干渉式精密膨張率測定装置を用いて測定した。測定試料の形状は直径6mm、長さ約80mmの円柱状である。測定方法として、この試料の両端に光学平面板を接触させ、He−Neレーザーによる干渉縞が観察できるようにし、温度コントロール可能な炉に入れる。次に測定試料の温度を変化させ、干渉縞の変化を観察することによって、温度による測定試料長さの変化量を測定する。本発明においては、0℃から50℃の温度範囲において0.5℃・min−1で昇温あるいは降温させ、5秒毎に測定試料長さの変化量をプロットし、さらに5次の近似曲線を描いたうえで、0℃から50℃における平均線膨張係数および0℃から50℃の温度範囲内でのΔL/Lの最大値−最小値を算出した。なお、平均線膨張係数およびΔL/L−温度曲線の最大値−最小値はいずれも昇温時と降温時の平均値である。






The average linear expansion coefficient was measured using a Fizeau interferometric precise expansion coefficient measuring device. The shape of the measurement sample is a cylindrical shape having a diameter of 6 mm and a length of about 80 mm. As a measuring method, an optical flat plate is brought into contact with both ends of the sample so that interference fringes by a He—Ne laser can be observed, and the sample is placed in a temperature-controllable furnace. Next, by changing the temperature of the measurement sample and observing the change in interference fringes, the amount of change in the measurement sample length due to temperature is measured. In the present invention, the temperature is raised or lowered at 0.5 ° C./min −1 in the temperature range from 0 ° C. to 50 ° C., the amount of change in the measured sample length is plotted every 5 seconds, and a fifth order approximate curve Then, the average linear expansion coefficient from 0 ° C. to 50 ° C. and the maximum value-minimum value of ΔL / L within the temperature range of 0 ° C. to 50 ° C. were calculated. Note that the average linear expansion coefficient and the maximum value-minimum value of the ΔL / L-temperature curve are both average values during temperature rise and temperature drop.






測定の結果、0℃から50℃の温度範囲内でのΔL/L−温度曲線の最大値−最小値が最小である試験サンプル1の熱処理条件を基準とし、さらに平均線膨張係数を下げる為に熱処理条件を再考した。
β−石英及び/又はβ−石英固溶体は負の膨張係数を有するため、平均線膨張係数を下げる為には核成長保温温度を上げるか、核成長保温時間を長くして結晶化度を増加させれば良いので、試験サンプル1の熱処理条件を基準として、核形成保温時間を20時間長くして試験サンプル5を作製した。試験サンプル1から4と同様に0℃から50℃における平均線膨張係数、0℃から50℃の温度範囲内でのΔL/L−温度曲線の最大値−最小値を測定した。
As a result of measurement, in order to lower the average linear expansion coefficient based on the heat treatment conditions of the test sample 1 in which the maximum value-minimum value of the ΔL / L-temperature curve in the temperature range of 0 ° C. to 50 ° C. is the minimum. The heat treatment conditions were reconsidered.
Since β-quartz and / or β-quartz solid solution has a negative expansion coefficient, in order to lower the average linear expansion coefficient, increase the crystal growth degree by increasing the nuclear growth heat retention temperature or lengthening the nuclear growth heat retention time. Therefore, on the basis of the heat treatment conditions of the test sample 1, the nucleation heat retention time was increased by 20 hours to prepare the test sample 5. The average linear expansion coefficient from 0 ° C. to 50 ° C. and the maximum value-minimum value of the ΔL / L-temperature curve in the temperature range from 0 ° C. to 50 ° C. were measured in the same manner as in test samples 1 to 4.

試験サンプル5の平均線膨張係数は0.03×10−7・℃−1となり、試験サンプル1よりも所望の平均線膨張係数に近づけることができた為、サンプル5作製時の第1昇温速度、核形成保温温度、核形成保温時間、第2昇温速度、核成長保温温度、核成長保温時間を製品製造時の熱処理条件として決定した。 The average linear expansion coefficient of the test sample 5 was 0.03 × 10 −7 · ° C.− 1 , which was closer to the desired average linear expansion coefficient than the test sample 1, so the first temperature increase during the preparation of the sample 5 The rate, the nucleation temperature, the nucleation temperature, the second heating rate, the nucleation temperature, and the nucleation temperature were determined as the heat treatment conditions during product manufacture.

さらに、より目的の熱膨張特性に近づけるため降温速度Vrの調整を試みた。作製された試験サンプルについては、試験サンプル1から4と同様に0℃から50℃における平均線膨張係数、0℃から50℃の温度範囲内でのΔL/L−温度曲線の最大値−最小値を測定した。また、0℃から50℃まで5℃おきの平均線膨張係数をプロットし、CTE-温度曲線を描いた。
降温速度の調整による平均線膨張係数の変動について表3に示す。試験サンプル6では、試験サンプル5の第1降温速度に対し10分の1となる0.01℃・min−1にて処理を行ったところ、平均線膨張係数は−0.04×10−7・℃−1であり、αs2−αは−0.05×10−7・℃−1と負の方向へ大きくなりすぎてしまったため、次に試験サンプル7において降温速度を0.05℃・min−1にて原ガラスからの熱処理を行ったところ、平均線膨張係数が0.01×10−7・℃−1であり、ΔL/L−温度曲線の最大値−最小値が1.4となったため、試験サンプル7の第1降温速度を実際の製造条件として採用した。図3に示すように試験サンプル7のCTE-温度曲線は試験サンプル5のCTE-温度曲線と比較するとCTE−温度曲線の傾き、すなわちCTEの温度依存性を維持しつつ、CTE−温度曲線を負方向へ平行移動することで、より目的の平均線膨張係数の値に近づけることができた。
Furthermore, adjustment of the temperature drop rate Vr was attempted in order to bring it closer to the target thermal expansion characteristic. For the prepared test samples, the average linear expansion coefficient at 0 ° C. to 50 ° C., the maximum value of the ΔL / L-temperature curve within the temperature range of 0 ° C. to 50 ° C., as in Test Samples 1 to 4. Was measured. In addition, an average linear expansion coefficient every 5 ° C. from 0 ° C. to 50 ° C. was plotted, and a CTE-temperature curve was drawn.
Table 3 shows the variation of the average linear expansion coefficient by adjusting the cooling rate. In test sample 6, when the treatment was performed at 0.01 ° C./min −1 which is 1/10 of the first temperature decrease rate of test sample 5, the average linear expansion coefficient was −0.04 × 10 −7. · ° C.- 1 and α s2 −α o was too large in the negative direction to be −0.05 × 10 −7 · ° C.− 1. When heat treatment was performed from the original glass at min −1 , the average linear expansion coefficient was 0.01 × 10 −7 · ° C. −1 , and the maximum value−minimum value of the ΔL / L-temperature curve was 1. Therefore, the first temperature drop rate of the test sample 7 was adopted as an actual manufacturing condition. As shown in FIG. 3, the CTE-temperature curve of test sample 7 is negative compared to the CTE-temperature curve of test sample 5 while maintaining the slope of the CTE-temperature curve, that is, the temperature dependence of CTE. By translating in the direction, the target average linear expansion coefficient could be brought closer to the value.

また図4に示す通り、CTE値は降温勾配の対数に対してほぼ比例的に変化しており、実施例にて示した平均線膨張係数以外においても、適切な降温勾配の選択により所望の平均線膨張係数を得ることが出来る。 Further, as shown in FIG. 4, the CTE value changes almost proportionally to the logarithm of the temperature decrease gradient, and other than the average linear expansion coefficient shown in the embodiment, a desired average can be obtained by selecting an appropriate temperature decrease gradient. A linear expansion coefficient can be obtained.

本発明により、結晶化ガラスを製造するための核成長保温温度、核成長保温時間により平均線膨張係数およびΔL/L−温度曲線の最大値−最小値の調整が可能となるとともに、さらに降温勾配の速度調整によりCTEの温度依存性を維持しつつ、平均線膨張係数の精密制御が可能である。 According to the present invention, the average linear expansion coefficient and the maximum value-minimum value of the ΔL / L-temperature curve can be adjusted by the nuclear growth heat retention temperature and the nuclear growth heat retention time for producing the crystallized glass, and the temperature decrease gradient By adjusting the speed, it is possible to precisely control the average linear expansion coefficient while maintaining the temperature dependence of the CTE.

Claims (5)

ガラスを熱処理する工程を含む結晶化ガラスの製造方法であって、
前記ガラスを熱処理する工程は、少なくとも昇温工程及び室温まで降温する降温工程を有し、
前記降温工程における降温速度Vrを調整することにより0〜50℃の温度範囲内における平均線膨張係数を調整する、
主結晶相にβ−石英及び/又はβ−石英固溶体を含む結晶化ガラスの製造方法。
A method for producing crystallized glass comprising a step of heat-treating glass,
The step of heat-treating the glass has at least a temperature raising step and a temperature lowering step of lowering the temperature to room temperature ,
Adjusting the average linear expansion coefficient within the temperature range of 0 to 50 ° C. by adjusting the temperature decrease rate Vr in the temperature decrease step;
A method for producing crystallized glass containing β-quartz and / or β-quartz solid solution in a main crystal phase .
製品と同一の組成を有する原ガラスに熱処理工程を施して結晶化ガラスの試験サンプルを少なくとも1つ作製し、前記試験サンプルの平均線膨張係数αs2を測定し、所望の平均線膨張係数αと試験サンプルの平均線膨張係数の差αs2−αによって実際の製品製造時の前記降温工程における降温速度Vrを決定し、その後決定された熱処理条件で製造する請求項1に記載の結晶化ガラスの製造方法。 A raw glass having the same composition as the product is subjected to a heat treatment step to produce at least one crystallized glass test sample, the average linear expansion coefficient α s2 of the test sample is measured, and the desired average linear expansion coefficient α o 2. The crystallization according to claim 1, wherein a temperature-decreasing rate Vr in the temperature-decreasing step at the time of actual product manufacture is determined by a difference α s2 −α o between the average linear expansion coefficient of the test sample and the test sample, and then manufactured under the determined heat treatment conditions. Glass manufacturing method. 前記αs2−αの値が正であれば実際の製品製造時の降温工程の降温速度Vrを前記試験サンプル作製時の降温工程の降温速度Vsより小さくし、前記αs2−αの値が負であればVsよりVrを大きくする請求項1または2に記載の結晶化ガラスの製造方法。 If the value of α s2 −α o is positive, the temperature drop rate Vr in the temperature drop step during actual product manufacture is made smaller than the temperature drop rate Vs in the temperature drop step during preparation of the test sample, and the value of α s2 −α o The method for producing crystallized glass according to claim 1 or 2, wherein Vr is larger than Vs if is negative. 前記ガラスを熱処理する工程は、少なくとも保温工程を有し、実際の製品製造時の前記保温工程における保温温度Trおよび保温時間Hrを決定した後に、前記降温速度Vrを決定する請求項1から3のいずれかに記載の結晶化ガラスの製造方法。   The step of heat-treating the glass includes at least a heat-retaining step, and the temperature-decreasing rate Vr is determined after determining the heat-retaining temperature Tr and the heat-retaining time Hr in the heat-retaining step during actual product manufacture. The manufacturing method of the crystallized glass in any one. 製品と同一の組成を有する原ガラスに熱処理工程を施して結晶化ガラスの試験サンプルを少なくとも1つ作製し、前記試験サンプルの平均線膨張係数αs1を測定し、所望の平均線膨張係数αと試験サンプルの平均線膨張係数の差αs1−αによって実際の製品製造時の前記保温工程における保温温度Trおよび保温時間Hrを決定する請求項4に記載の結晶化ガラスの製造方法。 The raw glass having the same composition as the product is subjected to a heat treatment step to produce at least one crystallized glass test sample, the average linear expansion coefficient α s1 of the test sample is measured, and the desired average linear expansion coefficient α o 5. The method for producing crystallized glass according to claim 4, wherein the heat retention temperature Tr and the heat retention time Hr in the heat retention step at the time of actual product manufacture are determined by the difference α s1 −α o between the average linear expansion coefficient of the test sample and the test sample.
JP2009201039A 2009-08-31 2009-08-31 Method for producing crystallized glass Active JP5629073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201039A JP5629073B2 (en) 2009-08-31 2009-08-31 Method for producing crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201039A JP5629073B2 (en) 2009-08-31 2009-08-31 Method for producing crystallized glass

Publications (2)

Publication Number Publication Date
JP2011051816A JP2011051816A (en) 2011-03-17
JP5629073B2 true JP5629073B2 (en) 2014-11-19

Family

ID=43941232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201039A Active JP5629073B2 (en) 2009-08-31 2009-08-31 Method for producing crystallized glass

Country Status (1)

Country Link
JP (1) JP5629073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082434B2 (en) * 2014-06-30 2017-02-15 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081527A (en) * 1996-07-12 1998-03-31 Asahi Glass Co Ltd Heat treatment of glass substrate
JPH10242604A (en) * 1997-02-28 1998-09-11 Kyocera Corp Circuit board and its mounting structure
JP3426926B2 (en) * 1997-08-29 2003-07-14 京セラ株式会社 Wiring board and its mounting structure
JP2000086261A (en) * 1998-09-14 2000-03-28 Nippon Electric Glass Co Ltd Glass substrate, flat-panel display device using the same glass substrate and heat treatment of the same glass substrate
JP4453234B2 (en) * 2001-08-29 2010-04-21 コニカミノルタオプト株式会社 Glass substrate for hard disk and manufacturing method thereof
JP2003072520A (en) * 2001-09-05 2003-03-12 Toyota Motor Corp Vehicle operating device
JP4476529B2 (en) * 2001-12-19 2010-06-09 株式会社オハラ Glass ceramics and temperature compensation members
US20030125184A1 (en) * 2001-12-21 2003-07-03 Schott Glas Glass ceramic product with variably adjustable zero crossing of the CTE-T curve
JP5314901B2 (en) * 2008-02-13 2013-10-16 国立大学法人東北大学 Silica / titania glass, method for producing the same, and method for measuring linear expansion coefficient

Also Published As

Publication number Publication date
JP2011051816A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5375385B2 (en) Manufacturing method of glass substrate
JP6899938B2 (en) Highly uniform glass-ceramic element
US7406841B2 (en) Glass-ceramic product with variably adjustable zero crossing of the CTE-T curve
CN108640526B (en) Glass ceramics
WO2014157649A1 (en) Glass substrate manufacturing method and glass substrate manufacturing device
JP5762707B2 (en) Method for producing crystallized glass and crystallized glass article
JP5650387B2 (en) Crystallized glass
JP2010503601A (en) Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them
JP5629073B2 (en) Method for producing crystallized glass
WO2024114265A1 (en) Method for analyzing crystallization starting temperature of microcrystalline glass, method for analyzing crystallization temperature interval of microcrystalline glass, and microcrystalline glass production method
KR101760039B1 (en) Li2O-Al2O3-SiO2 transparent crystallized glass and the manufacturing method of the same
JP5762677B2 (en) Method for producing crystallized glass
JP2015020944A (en) EVALUATION METHOD OF Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND PRODUCTION METHOD OF THE CRYSTALLIZED GLASS USING THE SAME
WO2021210270A1 (en) Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article
JP2004099429A (en) Crystallized glass
JP2007161565A (en) Method for heat treating fluoride single crystal and fluoride single crystal
JP2014144915A (en) Crystallized glass
JP2005035824A (en) Fluoride crystal growth equipment
CN116609380A (en) Method for determining glass ceramic nucleation time
JP6451317B2 (en) Crystallized glass and manufacturing method thereof
JPH02111659A (en) Production of low-thermal expansion cordierite
CN116553833A (en) Low-expansion glass ceramic and preparation method thereof
CN116409916A (en) Glass product processing method and glass ceramic mold
CN116409936A (en) Glass ceramic die and preparation method thereof
JPH09110469A (en) Crystalline glass, production of crystallized glass article and crystallized glass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5629073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250