WO2021210270A1 - Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article - Google Patents

Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article Download PDF

Info

Publication number
WO2021210270A1
WO2021210270A1 PCT/JP2021/006603 JP2021006603W WO2021210270A1 WO 2021210270 A1 WO2021210270 A1 WO 2021210270A1 JP 2021006603 W JP2021006603 W JP 2021006603W WO 2021210270 A1 WO2021210270 A1 WO 2021210270A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
crystallized glass
glass
glass article
crystallized
Prior art date
Application number
PCT/JP2021/006603
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 片山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2022515229A priority Critical patent/JPWO2021210270A1/ja
Priority to DE112021002388.8T priority patent/DE112021002388T5/en
Publication of WO2021210270A1 publication Critical patent/WO2021210270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to a method for producing a crystallized glass article, a method for heat-treating the crystallized glass used in the method for producing the crystallized glass article, and a crystallized glass article.
  • crystallized glass has been used as a member for a precision scale, a structural member of a precision instrument, a base material of a precision mirror, and the like.
  • Patent Document 1 heat treatment is performed at a temperature of 300 ° C. to the glass transition point for 24 hours, and the difference ( ⁇ ) in the coefficient of thermal expansion before and after the heat treatment is within ⁇ 0.20 ⁇ 10-7 / ° C. Further, a crystallized glass having a thermal expansion coefficient of 0 ⁇ 0.3 ⁇ 10-7 / ° C. at ⁇ 40 ° C. to 80 ° C. after heat treatment is disclosed. Patent Document 1 describes that such a crystallized glass can suppress a dimensional change due to a temperature change even when exposed to an environment in which the temperature changes.
  • the crystallized glass of Patent Document 1 when crystallized glass is used as a member for a precision scale, it is required to reduce the amount of shrinkage over time.
  • the crystallized glass of Patent Document 1 also has a problem that the dimensional change occurs after a long period of time has passed after the heat treatment, and the amount of aging shrinkage cannot be sufficiently reduced.
  • An object of the present invention is a method for producing a crystallized glass article, a method for heat-treating the crystallized glass used in the method for producing the crystallized glass article, and a method for producing the crystallized glass article, which makes it possible to obtain a crystallized glass article having a small amount of shrinkage over time.
  • the purpose is to provide a glass-ceramic article.
  • the method for producing a crystallized glass article according to the present invention is a crystallization step of crystallizing a crystallized glass to obtain a crystallized glass, and a core of the crystallized glass from a temperature of 50 ° C. or lower.
  • the crystallization step of raising the temperature to a temperature of -80 ° C or higher and lower than the nucleation temperature, and the raising step the temperature is lowered to a temperature of 300 ° C or lower at an average temperature lowering rate of 0.03 ° C / min or lower. It is characterized by having a temperature lowering process.
  • the crystalline glass has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2. 0% to 6.0%, MgO 0% to 2.0%, ZnO 0% to 2.0%, TiO 20 % to 4.0%, ZrO 20 % to 4.0%, P 2 O 5 0% ⁇ 4.0%, BaO 0 % ⁇ 2.0%, Na 2 O 0% ⁇ 4.0%, and K 2 O 0% ⁇ preferably made of glass containing 4.0%.
  • the heat treatment method for crystallized glass according to the present invention is a temperature raising step of raising the temperature of the crystallized glass from a temperature of 50 ° C. or lower to a temperature of ⁇ 80 ° C. or higher and lower than the nuclear formation temperature of the crystallized glass. It is characterized by including a temperature lowering step of lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less after the temperature raising step.
  • a wide aspect of the crystallized glass article according to the present invention is characterized in that the dimensional shrinkage rate over time before and after 8000 hours at an atmospheric temperature of 20 ° C. is ⁇ 0.1 ppm or more and 0.1 ppm or less. ..
  • the dimensional shrinkage rate over time before and after 4800 hours at an atmospheric temperature of 20 ° C. is ⁇ 0.13 ppm or more and 0.1 ppm or less. It is said.
  • the crystallized glass article has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2 in mass%. 0.0% to 6.0%, MgO 0% to 2.0%, ZnO 0% to 2.0%, TiO 20 % to 4.0%, ZrO 20 % to 4.0%, P 2 O 5 0% ⁇ 4.0%, BaO 0% ⁇ 2.0%, Na 2 O 0% ⁇ 4.0%, and K 2 O 0% ⁇ preferably made of glass containing 4.0%.
  • the crystallized glass article according to the present invention is preferably used as a member for a precision scale.
  • a method for producing a crystallized glass article a method for heat-treating the crystallized glass used in the method for producing the crystallized glass article, and a method for producing the crystallized glass article, which makes it possible to obtain a crystallized glass article having a small amount of shrinkage over time.
  • Crystallized glass articles can be provided.
  • FIG. 1 is a schematic perspective view showing a crystallized glass article according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the number of days elapsed from the first measurement date and the dimensional shrinkage rate of the samples prepared in Example 1 and Comparative Example 1.
  • the method for producing a crystallized glass article of the present invention is a crystallization step of crystallizing a crystallized glass to obtain a crystallized glass, and a temperature at which the crystallized glass is 50 ° C. or less, and a nucleation temperature of the crystallized glass.
  • a temperature raising step of raising the temperature to a temperature of 80 ° C. or higher and lower than the nucleation temperature and a temperature lowering step of lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less after the raising step.
  • the heat treatment method for the crystallized glass of the present invention is a temperature raising step of raising the temperature of the crystallized glass from a temperature of 50 ° C. or lower to a temperature of -80 ° C. or higher and lower than the nuclear formation temperature of the crystallized glass.
  • the temperature lowering step is provided in which the temperature is lowered to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less.
  • the temperature raising step and the temperature lowering step may be collectively referred to as a heat treatment step.
  • the crystallized glass prepared by crystallizing the crystallized glass is heat-treated using the heat treatment method for the crystallized glass of the present invention to obtain the present invention.
  • Such crystallized glass articles can be obtained.
  • the crystallized glass prepared by crystallizing the crystalline glass is heat-treated using the heat treatment method for the crystallized glass of the present invention, so that a long period of time has passed.
  • the heat treatment method for the crystallized glass of the present invention so that a long period of time has passed.
  • the average temperature lowering rate is 0.03 ° C./min or less and 300 ° C. or lower.
  • the virtual temperature can be sufficiently lowered.
  • the temperature is preferably raised to a nucleation temperature of ⁇ 70 ° C. or higher, more preferably a nucleation temperature of ⁇ 60 ° C. or higher, further preferably a nucleation temperature of ⁇ 50 ° C. or higher, and lower than the nucleation temperature. Is preferable.
  • the proportion of the residual glass phase that causes a structural change over a long period of time can be reduced by heat treatment by the heat treatment method of the present invention, and the obtained crystallized glass article can be obtained. It is considered that the amount of shrinkage over time can be reduced.
  • the coefficient of thermal expansion is slightly reduced when heat-treated by the heat treatment method of the present invention. Therefore, in order to bring the coefficient of thermal expansion close to 0 after heat treatment by the heat treatment method of the present invention, it is necessary to adjust the coefficient of thermal expansion of the crystallized glass before the heat treatment according to the present invention so as to increase by the difference. desirable.
  • the coefficient of thermal expansion of the crystallized glass before the heat treatment can be adjusted according to the crystallization conditions of the crystalline glass shown below.
  • Crystallization process In the crystallization step, first, crystalline glass is prepared.
  • Crystalline glass has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, and Li 2 O 2.0% to 6.0 in mass%. %, MgO 0% ⁇ 2.0% , ZnO 0% ⁇ 2.0%, TiO 2 0% ⁇ 4.0%, ZrO 2 0% ⁇ 4.0%, P 2 O 5 0% ⁇ 4.0 %, BaO 0% ⁇ 2.0% , Na 2 O 0% ⁇ 4.0%, and K is preferably 2 O 0% ⁇ glasses containing 4.0%.
  • the coefficient of thermal expansion of the obtained crystallized glass article can be further brought closer to 0 even after the above-mentioned heat treatment. The reason why the above glass composition is preferable will be described below.
  • SiO 2 is a component that forms a skeleton of glass and constitutes a crystal.
  • the content of SiO 2 is mass%, preferably 55.0% to 70.0%, and more preferably 60.0% to 70.0%.
  • the content of SiO 2 is at least the above lower limit value, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced.
  • the content of SiO 2 is not more than the above upper limit value, the meltability of the glass can be further improved, and a more uniform glass can be obtained.
  • Al 2 O 3 is a component that forms the skeleton of glass and is a component that constitutes crystals.
  • the content of Al 2 O 3 is mass%, preferably 15.0% to 30.0%, and more preferably 17.0% to 28.0%.
  • the content of Al 2 O 3 is at least the above lower limit value, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced.
  • the content of Al 2 O 3 is not more than the above upper limit value, the meltability of the glass can be further improved, and a more uniform glass can be obtained.
  • Li 2 O is a component constituting the crystal and a modifying component of glass.
  • the content of Li 2 O is mass%, preferably 2.0% to 6.0%, and more preferably 2.0% to 5.5%.
  • the Li 2 O content is at least the above lower limit, desired crystals can be precipitated more easily.
  • the Li 2 O content is not more than the above upper limit value, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced.
  • MgO and ZnO are components that dissolve in crystals.
  • the contents of MgO and ZnO are, respectively, in mass%, preferably 0% to 2.0%, and more preferably 0% to 1.5%.
  • the contents of MgO and ZnO are not more than the above upper limit values, it is possible to further suppress the precipitation of heterogeneous crystals such as spinel and garnite in addition to the ⁇ -quartz solid solution or ⁇ -eucryptite solid solution. Damage due to temperature changes during use can be further suppressed.
  • TiO 2 and ZrO 2 are nucleation components for precipitating crystals.
  • the contents of TiO 2 and ZrO 2 are, respectively, in mass%, preferably 0% to 4.0%, and more preferably 0% to 3.5%.
  • the contents of TiO 2 and ZrO 2 are not more than the above upper limit values, it is possible to make the glass more difficult to devitrify when melting and molding the glass, and it is possible to obtain a more homogeneous glass.
  • the total amount of TiO 2 and ZrO 2 is mass%, preferably 1.5% to 6.0%.
  • the total amount of TiO 2 and ZrO 2 is not more than the above lower limit value, the desired crystallinity can be obtained more easily, and the nucleation action can be made more sufficient.
  • the total amount of TiO 2 and ZrO 2 is not more than the above upper limit value, it is possible to make the glass more difficult to devitrify when melting and molding the glass, and it is possible to obtain a more homogeneous glass.
  • P 2 O 5 is a component that facilitates the nucleation of glass.
  • the content of P 2 O 5 is mass%, preferably 0% to 4.0%, and more preferably 0% to 3.0%.
  • the content of P 2 O 5 is not more than the above upper limit value, it is possible to make the glass difficult to separate, and it is possible to obtain a more homogeneous glass.
  • BaO is a component that lowers the viscosity of glass and improves glass meltability and moldability.
  • the content of BaO is mass%, preferably 0% to 2.0%, and more preferably 0% to 1.8%. When the content of BaO is not more than the above upper limit value, it is possible to make the glass more difficult to devitrify when melting and molding the glass, and it is possible to obtain a more homogeneous glass.
  • Na 2 O and K 2 O are components that reduce the viscosity of glass and improve glass meltability and moldability.
  • the contents of Na 2 O and K 2 O are mass%, preferably 0% to 4.0%, and more preferably 0% to 2.0%. When the contents of Na 2 O and K 2 O are not more than the above upper limit values, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced.
  • the viscosity of glass by lowering the viscosity of glass and is a component for improving the glass meltability and formability SrO, CaO, or the like and B 2 O 3, SnO 2, Cl is fining agent , Sb 2 O 3 , As 2 O 3, and the like may be included.
  • the total amount of these is preferably 10% or less in terms of mass%. When the total amount is not more than the above upper limit value, the coefficient of thermal expansion can be further reduced, and the desired crystals can be more easily precipitated.
  • Crystalline glass can be obtained, for example, by blending a glass raw material so as to have the above glass composition, melting it at a temperature of 1550 ° C to 1750 ° C, and then molding it.
  • the molding method is not particularly limited, but for example, a float method, a press method, a rollout method, or the like can be used.
  • the molded crystalline glass is heat-treated at 600 ° C. to 800 ° C. for 0.1 hour to 10 hours to form crystal nuclei, and then further heated at 800 ° C. to 1000 ° C. for 0.1 hour to 5 hours.
  • Crystallized glass can be obtained by performing heat treatment to crystallize.
  • the crystalline glass has the above glass composition, Li 2 O, Al 2 O 3 , nSiO 2 system crystals can be precipitated as the main crystals.
  • the nucleation temperature is within the above range, or when the nucleation time is at least the above lower limit value, the nucleation action can be made more sufficient, and crystals having a desired particle size can be more easily obtained. Can be precipitated.
  • the nucleation time is not more than the above upper limit value, the manufacturing cost can be reduced.
  • the crystallization temperature and the crystallization time are each equal to or more than the above lower limit values, the crystallinity can be further increased, and the coefficient of thermal expansion of the obtained crystallized glass can be further increased.
  • the crystallization temperature is not more than the above upper limit value, the precipitated ⁇ -quartz solid solution or ⁇ -eucryptite solid solution can be made difficult to transfer by the ⁇ -spodium solid solution.
  • the crystallization time is not more than the above upper limit value, the manufacturing cost can be reduced.
  • Heat treatment process In the heat treatment step, first, the temperature of the crystallized glass is raised from 50 ° C. or lower to a temperature of ⁇ 80 ° C. or higher and lower than the nucleation temperature of the crystallized glass.
  • the amount of aging shrinkage of the obtained crystallized glass article is increased. It can be made even smaller. Further, when the temperature after the temperature rise is lower than the nucleation temperature of the crystallized glass, it is possible to suppress the change in the structure of the crystal phase.
  • the temperature rise start temperature of the crystallized glass is preferably 10 ° C. or higher and 30 ° C. or lower.
  • the temperature after the temperature rise is preferably ⁇ 70 ° C. or higher for the crystallized glass, ⁇ 10 ° C. or lower for the crystallized glass nucleation temperature, and ⁇ 60 ° C. or higher for the crystallized glass nucleation temperature.
  • the nucleation temperature of the crystallized glass is more preferably ⁇ 30 ° C. or lower, and the nucleation temperature of the crystallized glass is more preferably ⁇ 40 ° C. or lower.
  • the rate of temperature rise in the temperature raising step is not particularly limited, and can be, for example, 0.01 ° C./min or more and 400 ° C./min or less.
  • the temperature is raised in the above-mentioned temperature raising step, it is desirable to keep the temperature at that temperature for a certain period of time until the temperature becomes uniform.
  • the holding time at the temperature after the temperature rise varies depending on the size of the crystallized glass, but for example, when the volume of the crystallized glass is 10 cm 3 to 100 cm 3 , it can be 10 minutes to 120 minutes.
  • the temperature of the crystallized glass is lowered to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less.
  • the average temperature lowering rate is too fast, or if the temperature after lowering the temperature is too high, the crystallized glass cannot be slowly cooled sufficiently, and the virtual temperature of the crystallized glass may not be sufficiently lowered. In addition, if the average temperature lowering rate is too slow, or if the temperature after lowering the temperature is too low, productivity may decrease.
  • the average temperature lowering rate of the crystallized glass after the temperature raising step is preferably 0.001 ° C./min or more, preferably 0.03 ° C./min or less, and more preferably 0.025. It is °C / min or less, more preferably 0.02 °C / min or less, and particularly preferably 0.015 °C / min or less.
  • the temperature after lowering the temperature is preferably 10 ° C. or higher, preferably 30 ° C. or lower.
  • the crystallized glass article of the present invention can be obtained.
  • FIG. 1 is a schematic perspective view showing a crystallized glass article according to an embodiment of the present invention.
  • the crystallized glass article 1 has a rectangular plate shape.
  • the dimensions of the crystallized glass article 1 are not particularly limited, but may be, for example, a length of 1500 mm to 2000 mm, a width of 1000 mm to 1500 mm, and a height of 1 mm to 10 mm.
  • such a plate-shaped crystallized glass article 1 can be obtained, for example, by subjecting the crystalline glass formed by molding molten glass into a plate shape to the crystallization step and the heat treatment step of the present invention. Alternatively, it may be obtained by subjecting the crystalline glass formed by molding the molten glass into a lump to the crystallization step and the heat treatment step of the present invention, and then cutting and polishing the molten glass into a plate shape.
  • the shape of the crystallized glass article does not have to be plate-shaped and is not particularly limited.
  • the dimensional shrinkage rate over time before and after 8000 hours at an atmospheric temperature of 20 ° C. is ⁇ 0.1 ppm or more and 0.1 ppm or less.
  • the dimensional shrinkage rate of the crystallized glass article before and after 8000 hours at an atmospheric temperature of 20 ° C. is preferably ⁇ 0.05 ppm or more, preferably 0.05 ppm or less.
  • the dimensional shrinkage rate over time before and after 4800 hours at an atmospheric temperature of 20 ° C. is ⁇ 0.13 ppm or more and 0.10 ppm or less.
  • the dimensional shrinkage rate may be measured by measuring the dimension of any one side of the crystallized glass article, for example.
  • the crystallized glass article 1 has a rectangular plate-like shape
  • the dimensions of the long side may be measured, for example.
  • the crystallized glass article is preferably one in which at least one of a ⁇ -quartz solid solution and a ⁇ -eucryptite solid solution is precipitated as a main crystal.
  • the crystallized glass article has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2 in mass%. 0.0% to 6.0%, MgO 0% to 2.0%, ZnO 0% to 2.0%, TiO 20 % to 4.0%, ZrO 20 % to 4.0%, P 2 O 5 0% ⁇ 4.0%, BaO 0% ⁇ 2.0%, Na 2 O 0% ⁇ 4.0%, and K is preferably 2 O 0% ⁇ glasses containing 4.0%.
  • the coefficient of thermal expansion of the crystallized glass article can be further approached to 0.
  • the glass composition of the crystallized glass article the same preferable range as that of the above-mentioned crystalline glass can be adopted.
  • the average coefficient of thermal expansion of the crystallized glass article at ⁇ 40 ° C. or higher and 80 ° C. or lower is preferably 1.0 ⁇ 10-7 / ° C. or lower, more preferably 0.5 ⁇ 10-7 / ° C. or lower. , More preferably 0.2 ⁇ 10 -7 / ° C. or lower, and particularly preferably 0.1 ⁇ 10 -7 / ° C. or lower. In this case, it can be more preferably used as a lens of a smart glass or a head-mounted display used in an environment where the temperature changes greatly.
  • the crystallized glass article of the present invention may be a member for a precision scale, a structural member for a precision instrument, a base material for a precision mirror, a substrate for calibration of an imaging device such as a camera, a mask for a semiconductor, or a mask for a semiconductor. It can be suitably used as a mask or the like of an apparatus for processing in a high temperature environment.
  • Example 1 The composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, MgO 0.7%, ZnO 0%, TiO 2 2.0%, ZrO 2 by mass%.
  • the raw materials are mixed so as to have 2.2%, P 2 O 5 1.4%, BaO 1.2%, Na 2 O 0.4%, and K 2 O 0.3% SnO 2 0.3%.
  • a raw material batch was obtained by mixing. The raw material batch was melted at 1650 ° C. for 16 hours and then rolled to obtain crystalline glass.
  • the obtained crystalline glass was subjected to a nucleation treatment at 790 ° C. for 10 hours, then crystallized at a crystallization temperature of 900 ° C. for 6 hours, cooled to 20 ° C., and crystallized.
  • a glass-ceramic (nucleation temperature: 750 ° C.) was obtained.
  • the nucleation temperature is determined according to the composition of the crystalline glass as the temperature at which the crystal nuclei are formed in the crystalline glass.
  • the average coefficient of thermal expansion of the obtained crystallized glass at ⁇ 40 ° C. or higher and 80 ° C. or lower was 0.4 ⁇ 10 -7 / ° C.
  • the dimensions of the obtained crystallized glass were 100 mm in length, 500 mm in width, and 10 mm in height.
  • the crystallized glass obtained by cooling to 20 ° C. was heated to 700 ° C. at a heating rate of 10 ° C./min and held at 700 ° C. for 30 minutes.
  • a crystallized glass article was obtained by lowering the temperature from 700 ° C. to 20 ° C. at an average temperature lowering rate of 0.01 ° C./min.
  • the average coefficient of thermal expansion of the obtained crystallized glass article at ⁇ 40 ° C. or higher and 80 ° C. or lower was 0.1 ⁇ 10 -7 / ° C.
  • Example 1 The crystallized glass produced by the same method as in Example 1 was used as it was without heat treatment.
  • a block gauge is produced from the crystallized glass article of Example 1 and the crystallized glass of Comparative Example 1, and is brought into close contact with a flat substrate.
  • the measurement was performed using a light wave interferometer for measurement.
  • a sample was prepared so that the initial measurement value of the dimension was 400 mm, and the sample was stored at 20 ° C. for a predetermined period.
  • the amount of change with respect to the number of days elapsed from the first measurement date at 20 ° C. was measured, and the dimensional shrinkage rate with respect to the number of days elapsed from the first measurement date was determined.
  • the expansion change was positive and the contraction change was negative.
  • Table 1 and FIG. 2 The results are shown in Table 1 and FIG. 2 below.
  • the dimensional shrinkage rate before and after 357 days (8000 hours) at an atmospheric temperature of 20 ° C. in Example 1 was ⁇ 0.0995 ppm.
  • the dimensional shrinkage rate before and after 206 days (4800 hours) at an atmospheric temperature of 20 ° C. in Example 1 was ⁇ 0.1023 ppm.
  • the aged shrinkage amount of the crystallized glass article of Example 1 subjected to the heat treatment by the heat treatment method of the present invention is smaller than that of the crystallized glass of Comparative Example 1 not subjected to the heat treatment. You can confirm that it is.
  • the composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, MgO 0.7%, ZnO 0%, TiO 2 2.0%, ZrO 2 by mass%.
  • the raw materials are mixed so as to have 2.2%, P 2 O 5 1.4%, BaO 1.2%, Na 2 O 0.4%, and K 2 O 0.3% SnO 2 0.3%.
  • a raw material batch was obtained by mixing. The raw material batch was melted at 1650 ° C. for 16 hours and then rolled to obtain crystalline glass.
  • the obtained crystalline glass was subjected to a nucleation treatment at 790 ° C. for 10 hours, then crystallized at a crystallization temperature of 900 ° C. for 6 hours, cooled to 20 ° C., and crystallized. Glass (nucleation temperature: 750 ° C.) was obtained.
  • the average coefficient of thermal expansion of the obtained unheated crystallized glass at ⁇ 40 ° C. or higher and 80 ° C. or lower was 0.4 ⁇ 10 -7 / ° C.
  • a crystallized glass article was prepared by performing heat treatment in the same manner as in Example 1 except that the crystallized glass thus produced was used.
  • Reference Examples 2 to 7 crystallized glass articles were produced in the same manner as in Reference Example 1 except that the average temperature lowering rate during heat treatment was changed from 0.01 ° C./min as shown in Table 2 below.
  • the average temperature lowering rate is larger than 0.03 ° C./min, it is considered that the amount of aging shrinkage of the obtained crystallized glass article cannot be sufficiently reduced.
  • the average temperature lowering rate is 0.03 ° C./min or less and the temperature is lowered to 300 ° C. or less, the same difference in thermal expansion coefficient as in Reference Example 1 can be obtained. Recognize. Thereby, it is confirmed that the aged shrinkage amount of the obtained crystallized glass article can be sufficiently reduced by lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less after the temperature raising step. Can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a method for manufacturing a crystallized glass article with which it is possible to obtain a crystallized glass article that undergoes only a small amount of shrinkage over time. This method for manufacturing a crystallized glass article 1 comprises: a crystallization step of crystallizing crystallizable glass to obtain crystallized glass; a temperature raising step of raising the temperature of the crystallized glass from a temperature of 50°C or lower to a temperature higher than or equal to [the nucleation temperature of the crystallized glass - 80°C] and less than the nucleation temperature; and a temperature lowering step of lowering the temperature to 300°C or lower at an average temperature lowering rate of 0.03°C/min or less, after the temperature raising step.

Description

結晶化ガラス物品の製造方法、結晶化ガラスの熱処理方法、及び結晶化ガラス物品Manufacturing method of crystallized glass article, heat treatment method of crystallized glass, and crystallized glass article
 本発明は、結晶化ガラス物品の製造方法、該結晶化ガラス物品の製造方法に用いられる結晶化ガラスの熱処理方法、及び結晶化ガラス物品に関する。 The present invention relates to a method for producing a crystallized glass article, a method for heat-treating the crystallized glass used in the method for producing the crystallized glass article, and a crystallized glass article.
 従来、精密スケール用の部材、精密機器の構造部材、あるいは精密ミラーの基材等に結晶化ガラスが用いられている。 Conventionally, crystallized glass has been used as a member for a precision scale, a structural member of a precision instrument, a base material of a precision mirror, and the like.
 下記の特許文献1には、300℃~ガラス転移点の温度で24時間熱処理を行い、熱処理前後での熱膨張係数の差(Δα)が±0.20×10-7/℃以内であり、且つ、熱処理後の-40℃~80℃における熱膨張係数が0±0.3×10-7/℃以内である結晶化ガラスが開示されている。特許文献1では、このような結晶化ガラスは、温度が変化するような環境に曝されたとしても、温度変化による寸法変化を抑えることができる旨が記載されている。 According to Patent Document 1 below, heat treatment is performed at a temperature of 300 ° C. to the glass transition point for 24 hours, and the difference (Δα) in the coefficient of thermal expansion before and after the heat treatment is within ± 0.20 × 10-7 / ° C. Further, a crystallized glass having a thermal expansion coefficient of 0 ± 0.3 × 10-7 / ° C. at −40 ° C. to 80 ° C. after heat treatment is disclosed. Patent Document 1 describes that such a crystallized glass can suppress a dimensional change due to a temperature change even when exposed to an environment in which the temperature changes.
国際公開第2016/017435号International Publication No. 2016/017435
 ところで、精密スケール用の部材などに結晶化ガラスを用いる場合、経年収縮量を小さくすることが求められている。しかしながら、特許文献1の結晶化ガラスにおいても、熱処理をした後、長期間経過すると寸法変化が生じ、経年収縮量を十分に小さくすることができないという問題がある。 By the way, when crystallized glass is used as a member for a precision scale, it is required to reduce the amount of shrinkage over time. However, the crystallized glass of Patent Document 1 also has a problem that the dimensional change occurs after a long period of time has passed after the heat treatment, and the amount of aging shrinkage cannot be sufficiently reduced.
 本発明の目的は、経年収縮量の小さい結晶化ガラス物品を得ることを可能とする、結晶化ガラス物品の製造方法、該結晶化ガラス物品の製造方法に用いられる結晶化ガラスの熱処理方法、及び結晶化ガラス物品を提供することにある。 An object of the present invention is a method for producing a crystallized glass article, a method for heat-treating the crystallized glass used in the method for producing the crystallized glass article, and a method for producing the crystallized glass article, which makes it possible to obtain a crystallized glass article having a small amount of shrinkage over time. The purpose is to provide a glass-ceramic article.
 本発明に係る結晶化ガラス物品の製造方法は、結晶性ガラスを結晶化させ、結晶化ガラスを得る、結晶化工程と、前記結晶化ガラスを50℃以下の温度から、前記結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する、昇温工程と、前記昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する、降温工程と、を備えることを特徴としている。 The method for producing a crystallized glass article according to the present invention is a crystallization step of crystallizing a crystallized glass to obtain a crystallized glass, and a core of the crystallized glass from a temperature of 50 ° C. or lower. After the crystallization step of raising the temperature to a temperature of -80 ° C or higher and lower than the nucleation temperature, and the raising step, the temperature is lowered to a temperature of 300 ° C or lower at an average temperature lowering rate of 0.03 ° C / min or lower. It is characterized by having a temperature lowering process.
 本発明においては、前記結晶性ガラスが、ガラス組成として、質量%で、SiO 55.0%~70.0%、Al 15.0%~30.0%、LiO 2.0%~6.0%、MgO 0%~2.0%、ZnO 0%~2.0%、TiO 0%~4.0%、ZrO 0%~4.0%、P 0%~4.0%、BaO 0%~2.0%、NaO 0%~4.0%、及びKO 0%~4.0%を含有するガラスからなることが好ましい。 In the present invention, the crystalline glass has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2. 0% to 6.0%, MgO 0% to 2.0%, ZnO 0% to 2.0%, TiO 20 % to 4.0%, ZrO 20 % to 4.0%, P 2 O 5 0% ~ 4.0%, BaO 0 % ~ 2.0%, Na 2 O 0% ~ 4.0%, and K 2 O 0% ~ preferably made of glass containing 4.0%.
 本発明に係る結晶化ガラスの熱処理方法は、結晶化ガラスを50℃以下の温度から、前記結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する、昇温工程と、前記昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する、降温工程と、を備えることを特徴としている。 The heat treatment method for crystallized glass according to the present invention is a temperature raising step of raising the temperature of the crystallized glass from a temperature of 50 ° C. or lower to a temperature of −80 ° C. or higher and lower than the nuclear formation temperature of the crystallized glass. It is characterized by including a temperature lowering step of lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less after the temperature raising step.
 本発明に係る結晶化ガラス物品の広い局面では、20℃の雰囲気温度で8000時間経過した前後における経時での寸法収縮率が、-0.1ppm以上、0.1ppm以下であることを特徴としている。 A wide aspect of the crystallized glass article according to the present invention is characterized in that the dimensional shrinkage rate over time before and after 8000 hours at an atmospheric temperature of 20 ° C. is −0.1 ppm or more and 0.1 ppm or less. ..
 本発明に係る結晶化ガラス物品の他の広い局面では、20℃の雰囲気温度で4800時間経過した前後における経時での寸法収縮率が、-0.13ppm以上、0.1ppm以下であることを特徴としている。 In another wide aspect of the crystallized glass article according to the present invention, the dimensional shrinkage rate over time before and after 4800 hours at an atmospheric temperature of 20 ° C. is −0.13 ppm or more and 0.1 ppm or less. It is said.
 本発明においては、前記結晶化ガラス物品が、ガラス組成として、質量%で、SiO 55.0%~70.0%、Al 15.0%~30.0%、LiO 2.0%~6.0%、MgO 0%~2.0%、ZnO 0%~2.0%、TiO 0%~4.0%、ZrO 0%~4.0%、P 0%~4.0%、BaO 0%~2.0%、NaO 0%~4.0%、及びKO 0%~4.0%を含有するガラスからなることが好ましい。 In the present invention, the crystallized glass article has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2 in mass%. 0.0% to 6.0%, MgO 0% to 2.0%, ZnO 0% to 2.0%, TiO 20 % to 4.0%, ZrO 20 % to 4.0%, P 2 O 5 0% ~ 4.0%, BaO 0% ~ 2.0%, Na 2 O 0% ~ 4.0%, and K 2 O 0% ~ preferably made of glass containing 4.0%.
 本発明に係る結晶化ガラス物品は、精密スケール用の部材に用いられることが好ましい。 The crystallized glass article according to the present invention is preferably used as a member for a precision scale.
 本発明によれば、経年収縮量の小さい結晶化ガラス物品を得ることを可能とする、結晶化ガラス物品の製造方法、該結晶化ガラス物品の製造方法に用いられる結晶化ガラスの熱処理方法、及び結晶化ガラス物品を提供することができる。 According to the present invention, a method for producing a crystallized glass article, a method for heat-treating the crystallized glass used in the method for producing the crystallized glass article, and a method for producing the crystallized glass article, which makes it possible to obtain a crystallized glass article having a small amount of shrinkage over time. Crystallized glass articles can be provided.
図1は、本発明の一実施形態に係る結晶化ガラス物品を示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a crystallized glass article according to an embodiment of the present invention. 図2は、実施例1及び比較例1で作製したサンプルの初回測定日からの経過日数と寸法収縮率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the number of days elapsed from the first measurement date and the dimensional shrinkage rate of the samples prepared in Example 1 and Comparative Example 1.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
 [結晶化ガラス物品の製造方法及び結晶化ガラスの熱処理方法]
 本発明の結晶化ガラス物品の製造方法は、結晶性ガラスを結晶化させ、結晶化ガラスを得る、結晶化工程と、結晶化ガラスを50℃以下の温度から、結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する、昇温工程と、昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する、降温工程とを備える。
[Manufacturing method of crystallized glass article and heat treatment method of crystallized glass]
The method for producing a crystallized glass article of the present invention is a crystallization step of crystallizing a crystallized glass to obtain a crystallized glass, and a temperature at which the crystallized glass is 50 ° C. or less, and a nucleation temperature of the crystallized glass. A temperature raising step of raising the temperature to a temperature of 80 ° C. or higher and lower than the nucleation temperature, and a temperature lowering step of lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less after the raising step. To be equipped.
 また、本発明の結晶化ガラスの熱処理方法は、結晶化ガラスを50℃以下の温度から、結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する、昇温工程と、昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する、降温工程とを備える。以下、昇温工程及び降温工程を総称して、熱処理工程と称する場合があるものとする。 Further, the heat treatment method for the crystallized glass of the present invention is a temperature raising step of raising the temperature of the crystallized glass from a temperature of 50 ° C. or lower to a temperature of -80 ° C. or higher and lower than the nuclear formation temperature of the crystallized glass. After the temperature raising step, the temperature lowering step is provided in which the temperature is lowered to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less. Hereinafter, the temperature raising step and the temperature lowering step may be collectively referred to as a heat treatment step.
 従って、本発明の結晶化ガラス物品の製造方法では、結晶性ガラスを結晶化させることにより用意した結晶化ガラスを、本発明の結晶化ガラスの熱処理方法を用いて熱処理することにより、本発明に係る結晶化ガラス物品を得ることができる。 Therefore, in the method for producing a crystallized glass article of the present invention, the crystallized glass prepared by crystallizing the crystallized glass is heat-treated using the heat treatment method for the crystallized glass of the present invention to obtain the present invention. Such crystallized glass articles can be obtained.
 また、本発明の結晶化ガラス物品の製造方法では、結晶性ガラスを結晶化させることにより用意した結晶化ガラスを、本発明の結晶化ガラスの熱処理方法を用いて熱処理するので、長期間経過しても寸法変化が少なく、経年収縮量が小さい結晶化ガラス物品を得ることができる。なお、この点については、以下のように説明することができる。 Further, in the method for producing a crystallized glass article of the present invention, the crystallized glass prepared by crystallizing the crystalline glass is heat-treated using the heat treatment method for the crystallized glass of the present invention, so that a long period of time has passed. However, it is possible to obtain a crystallized glass article having little dimensional change and a small amount of shrinkage over time. This point can be explained as follows.
 結晶化ガラスの残存ガラス相は、降温スピードを考慮せず単に熱処理により焼成するだけでは、完全に締まりきった構造とすることが難しい。この原因については、残存ガラス相の仮想温度が高いため、構造が未だ変化できる状態にあるためであると考えられる。 It is difficult for the residual glass phase of the crystallized glass to have a completely compact structure by simply firing it by heat treatment without considering the temperature lowering speed. It is considered that this is because the structure is still in a state where it can be changed because the virtual temperature of the residual glass phase is high.
 これに対して、本発明のように、結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温した後、0.03℃/分以下の平均降温速度で300℃以下の温度まで徐冷した場合、仮想温度を十分に低下させることができる。なお、上述の熱処理では、好ましくは核形成温度-70℃以上、より好ましくは核形成温度-60℃以上、さらに好ましくは核形成温度-50℃以上、且つ核形成温度未満の温度まで昇温することが好ましい。仮想温度を十分に低下させることができるため、本発明の熱処理方法で熱処理することによって、長期間の経過により構造変化を引き起こす残存ガラス相の割合を少なくすることができ、得られる結晶化ガラス物品の経年収縮量を小さくできるものと考えられる。 On the other hand, as in the present invention, after raising the temperature to a temperature of −80 ° C. or higher and lower than the nucleation temperature of the crystallized glass, the average temperature lowering rate is 0.03 ° C./min or less and 300 ° C. or lower. When slowly cooled to the temperature of, the virtual temperature can be sufficiently lowered. In the above heat treatment, the temperature is preferably raised to a nucleation temperature of −70 ° C. or higher, more preferably a nucleation temperature of −60 ° C. or higher, further preferably a nucleation temperature of −50 ° C. or higher, and lower than the nucleation temperature. Is preferable. Since the virtual temperature can be sufficiently lowered, the proportion of the residual glass phase that causes a structural change over a long period of time can be reduced by heat treatment by the heat treatment method of the present invention, and the obtained crystallized glass article can be obtained. It is considered that the amount of shrinkage over time can be reduced.
 なお、本発明の熱処理方法により熱処理すると、熱膨張係数が若干小さくなることが確認されている。従って、本発明の熱処理方法により熱処理した後に、熱膨張係数を0に近づけるためには、本発明による熱処理前の結晶化ガラスの熱膨張係数をその差分だけ大きくなるように調整しておくことが望ましい。なお、熱処理前の結晶化ガラスの熱膨張係数は、以下に示す結晶性ガラスの結晶化条件により調整することができる。 It has been confirmed that the coefficient of thermal expansion is slightly reduced when heat-treated by the heat treatment method of the present invention. Therefore, in order to bring the coefficient of thermal expansion close to 0 after heat treatment by the heat treatment method of the present invention, it is necessary to adjust the coefficient of thermal expansion of the crystallized glass before the heat treatment according to the present invention so as to increase by the difference. desirable. The coefficient of thermal expansion of the crystallized glass before the heat treatment can be adjusted according to the crystallization conditions of the crystalline glass shown below.
 以下、各工程の詳細について説明する。 The details of each process will be described below.
 (結晶化工程)
 結晶化工程では、まず、結晶性ガラスを用意する。
(Crystallization process)
In the crystallization step, first, crystalline glass is prepared.
 結晶性ガラスは、ガラス組成として、質量%で、SiO 55.0%~70.0%、Al 15.0%~30.0%、LiO 2.0%~6.0%、MgO 0%~2.0%、ZnO 0%~2.0%、TiO 0%~4.0%、ZrO 0%~4.0%、P 0%~4.0%、BaO 0%~2.0%、NaO 0%~4.0%、及びKO 0%~4.0%を含有するガラスであることが好ましい。結晶性ガラスがこのような組成を有する場合、上述した熱処理をした後においても、得られる結晶化ガラス物品の熱膨張係数をより一層0に近づけることができる。以下、上記のガラス組成が好ましい理由について説明する。 Crystalline glass has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, and Li 2 O 2.0% to 6.0 in mass%. %, MgO 0% ~ 2.0% , ZnO 0% ~ 2.0%, TiO 2 0% ~ 4.0%, ZrO 2 0% ~ 4.0%, P 2 O 5 0% ~ 4.0 %, BaO 0% ~ 2.0% , Na 2 O 0% ~ 4.0%, and K is preferably 2 O 0% ~ glasses containing 4.0%. When the crystalline glass has such a composition, the coefficient of thermal expansion of the obtained crystallized glass article can be further brought closer to 0 even after the above-mentioned heat treatment. The reason why the above glass composition is preferable will be described below.
 SiOはガラスの骨格を形成するとともに、結晶を構成する成分である。SiOの含有量は、質量%で、好ましくは55.0%~70.0%、より好ましくは60.0%~70.0%である。SiOの含有量が上記下限値以上である場合、得られる結晶化ガラスの熱膨張係数をより一層小さくすることができる。一方、SiOの含有量が上記上限値以下である場合、ガラスの溶融性をより一層向上させることができ、より一層均一なガラスを得ることができる。 SiO 2 is a component that forms a skeleton of glass and constitutes a crystal. The content of SiO 2 is mass%, preferably 55.0% to 70.0%, and more preferably 60.0% to 70.0%. When the content of SiO 2 is at least the above lower limit value, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced. On the other hand, when the content of SiO 2 is not more than the above upper limit value, the meltability of the glass can be further improved, and a more uniform glass can be obtained.
 Alは、SiOと同様にガラスの骨格を形成する成分であるとともに、結晶を構成する成分である。Alの含有量は、質量%で、好ましくは15.0%~30.0%、より好ましくは17.0%~28.0%である。Alの含有量が上記下限値以上である場合、得られる結晶化ガラスの熱膨張係数をより一層小さくすることができる。一方、Alの含有量が上記上限値以下である場合、ガラスの溶融性をより一層向上させることができ、より一層均一なガラスを得ることができる。 Like SiO 2 , Al 2 O 3 is a component that forms the skeleton of glass and is a component that constitutes crystals. The content of Al 2 O 3 is mass%, preferably 15.0% to 30.0%, and more preferably 17.0% to 28.0%. When the content of Al 2 O 3 is at least the above lower limit value, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced. On the other hand, when the content of Al 2 O 3 is not more than the above upper limit value, the meltability of the glass can be further improved, and a more uniform glass can be obtained.
 LiOは、結晶を構成する成分であるとともに、ガラスの修飾成分である。LiOの含有量は、質量%で、好ましくは2.0%~6.0%、より好ましくは2.0%~5.5%である。LiOの含有量が上記下限値以上である場合、より一層容易に所望の結晶を析出させることができる。一方、LiOの含有量が上記上限値以下である場合、得られる結晶化ガラスの熱膨張係数をより一層小さくすることができる。 Li 2 O is a component constituting the crystal and a modifying component of glass. The content of Li 2 O is mass%, preferably 2.0% to 6.0%, and more preferably 2.0% to 5.5%. When the Li 2 O content is at least the above lower limit, desired crystals can be precipitated more easily. On the other hand, when the Li 2 O content is not more than the above upper limit value, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced.
 MgO及びZnOは、結晶に固溶する成分である。MgO及びZnOの含有量は、それぞれ、質量%で、好ましくは0%~2.0%、より好ましくは0%~1.5%である。MgO及びZnOの含有量が上記上限値以下である場合、β-石英固溶体又はβ-ユークリプタイト固溶体の他に、スピネルやガーナイト等の異種結晶が析出することをより一層抑制することができ、使用時の温度変化による破損をより一層抑制することができる。 MgO and ZnO are components that dissolve in crystals. The contents of MgO and ZnO are, respectively, in mass%, preferably 0% to 2.0%, and more preferably 0% to 1.5%. When the contents of MgO and ZnO are not more than the above upper limit values, it is possible to further suppress the precipitation of heterogeneous crystals such as spinel and garnite in addition to the β-quartz solid solution or β-eucryptite solid solution. Damage due to temperature changes during use can be further suppressed.
 TiO及びZrOは、結晶を析出させるための核形成成分である。TiO及びZrOの含有量は、それぞれ、質量%で、好ましくは0%~4.0%、より好ましくは0%~3.5%である。TiO及びZrOの含有量が上記上限値以下である場合、ガラスを溶融、成形する際に、より一層失透し難くすることができ、より一層均質なガラスを得ることができる。 TiO 2 and ZrO 2 are nucleation components for precipitating crystals. The contents of TiO 2 and ZrO 2 are, respectively, in mass%, preferably 0% to 4.0%, and more preferably 0% to 3.5%. When the contents of TiO 2 and ZrO 2 are not more than the above upper limit values, it is possible to make the glass more difficult to devitrify when melting and molding the glass, and it is possible to obtain a more homogeneous glass.
 また、TiO及びZrOの合計量は、質量%で、好ましくは1.5%~6.0%である。TiO及びZrOの合計量が上記下限値以上である場合、より一層容易に所望の結晶化度を得ることができ、核形成作用をより十分なものとすることができる。一方、TiO及びZrOの合計量が上記上限値以下である場合、ガラスを溶融、成形する際に、より一層失透し難くすることができ、より一層均質なガラスを得ることができる。 The total amount of TiO 2 and ZrO 2 is mass%, preferably 1.5% to 6.0%. When the total amount of TiO 2 and ZrO 2 is not more than the above lower limit value, the desired crystallinity can be obtained more easily, and the nucleation action can be made more sufficient. On the other hand, when the total amount of TiO 2 and ZrO 2 is not more than the above upper limit value, it is possible to make the glass more difficult to devitrify when melting and molding the glass, and it is possible to obtain a more homogeneous glass.
 Pは、ガラスの核形成を容易にする成分である。Pの含有量は、質量%で、好ましくは0%~4.0%、より好ましくは0%~3.0%である。Pの含有量が上記上限値以下である場合、ガラスを分相し難くすることができ、より一層均質なガラスを得ることができる。 P 2 O 5 is a component that facilitates the nucleation of glass. The content of P 2 O 5 is mass%, preferably 0% to 4.0%, and more preferably 0% to 3.0%. When the content of P 2 O 5 is not more than the above upper limit value, it is possible to make the glass difficult to separate, and it is possible to obtain a more homogeneous glass.
 BaOは、ガラスの粘性を低下させて、ガラス溶融性及び成形性を向上させる成分である。BaOの含有量は、質量%で、好ましくは0%~2.0%、より好ましくは0%~1.8%である。BaOの含有量が上記上限値以下である場合、ガラスを溶融、成形する際に、より一層失透し難くすることができ、より一層均質なガラスを得ることができる。 BaO is a component that lowers the viscosity of glass and improves glass meltability and moldability. The content of BaO is mass%, preferably 0% to 2.0%, and more preferably 0% to 1.8%. When the content of BaO is not more than the above upper limit value, it is possible to make the glass more difficult to devitrify when melting and molding the glass, and it is possible to obtain a more homogeneous glass.
 NaO及びKOは、ガラスの粘性を低下させて、ガラス溶融性及び成形性を向上させる成分である。NaO及びKOの含有量は、質量%で、好ましくは0%~4.0%、より好ましくは0%~2.0%である。NaO及びKOの含有量が上記上限値以下である場合、得られる結晶化ガラスの熱膨張係数をより一層小さくすることができる。 Na 2 O and K 2 O are components that reduce the viscosity of glass and improve glass meltability and moldability. The contents of Na 2 O and K 2 O are mass%, preferably 0% to 4.0%, and more preferably 0% to 2.0%. When the contents of Na 2 O and K 2 O are not more than the above upper limit values, the coefficient of thermal expansion of the obtained crystallized glass can be further reduced.
 また、所定の特性を損なわない範囲で、ガラスの粘性を低下させて、ガラス溶融性及び成形性を向上させる成分であるSrO、CaO、B等や、清澄剤であるSnO、Cl、Sb、As等を含んでいてもよい。これらの合計量は、質量%で10%以下であることが好ましい。合計量が上記上限値以下である場合、熱膨張係数をより一層小さくすることができ、しかも所望の結晶をより一層析出し易くすることができる。 Further, within a range that does not impair the predetermined characteristics, by lowering the viscosity of glass and is a component for improving the glass meltability and formability SrO, CaO, or the like and B 2 O 3, SnO 2, Cl is fining agent , Sb 2 O 3 , As 2 O 3, and the like may be included. The total amount of these is preferably 10% or less in terms of mass%. When the total amount is not more than the above upper limit value, the coefficient of thermal expansion can be further reduced, and the desired crystals can be more easily precipitated.
 結晶性ガラスは、例えば、上記のガラス組成を有するようにガラス原料を調合し、1550℃~1750℃の温度で溶融した後、成形することにより得ることができる。成形方法としては、特に限定されないが、例えば、フロート法、プレス法、ロールアウト法等を用いることができる。 Crystalline glass can be obtained, for example, by blending a glass raw material so as to have the above glass composition, melting it at a temperature of 1550 ° C to 1750 ° C, and then molding it. The molding method is not particularly limited, but for example, a float method, a press method, a rollout method, or the like can be used.
 次に、成形した結晶性ガラスを、例えば、600℃~800℃で0.1時間~10時間熱処理して結晶核を形成させた後、さらに800℃~1000℃で0.1時間~5時間熱処理を行って結晶化させ、結晶化ガラスを得ることができる。なお、結晶性ガラスが上記のガラス組成を有する場合、主結晶としてLiO・Al・nSiO系の結晶を析出させることができる。 Next, the molded crystalline glass is heat-treated at 600 ° C. to 800 ° C. for 0.1 hour to 10 hours to form crystal nuclei, and then further heated at 800 ° C. to 1000 ° C. for 0.1 hour to 5 hours. Crystallized glass can be obtained by performing heat treatment to crystallize. When the crystalline glass has the above glass composition, Li 2 O, Al 2 O 3 , nSiO 2 system crystals can be precipitated as the main crystals.
 なお、核形成温度が上記範囲内にある場合、あるいは核形成時間が上記下限値以上である場合、核形成作用をより十分なものとすることができ、より一層容易に所望の粒径の結晶を析出させることができる。他方、核形成時間が上記上限値以下である場合、製造コストを低減することができる。 When the nucleation temperature is within the above range, or when the nucleation time is at least the above lower limit value, the nucleation action can be made more sufficient, and crystals having a desired particle size can be more easily obtained. Can be precipitated. On the other hand, when the nucleation time is not more than the above upper limit value, the manufacturing cost can be reduced.
 また、結晶化温度及び結晶化時間がそれぞれ上記下限値以上である場合、結晶化度をより一層高めることができ、得られる結晶化ガラスの熱膨張係数をより一層大きくすることができる。また、結晶化温度が上記上限値以下である場合、析出したβ-石英固溶体又はβ-ユークリプタイト固溶体を、β-スポジュメン固溶体により転移し難くすることができる。また、結晶化時間が上記上限値以下である場合、製造コストを低減することができる。 Further, when the crystallization temperature and the crystallization time are each equal to or more than the above lower limit values, the crystallinity can be further increased, and the coefficient of thermal expansion of the obtained crystallized glass can be further increased. Further, when the crystallization temperature is not more than the above upper limit value, the precipitated β-quartz solid solution or β-eucryptite solid solution can be made difficult to transfer by the β-spodium solid solution. Further, when the crystallization time is not more than the above upper limit value, the manufacturing cost can be reduced.
 (熱処理工程)
 熱処理工程では、まず、結晶化ガラスを50℃以下の温度から、結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する。
(Heat treatment process)
In the heat treatment step, first, the temperature of the crystallized glass is raised from 50 ° C. or lower to a temperature of −80 ° C. or higher and lower than the nucleation temperature of the crystallized glass.
 結晶化ガラスの昇温開始温度が50℃以下である場合、あるいは昇温後の温度が結晶化ガラスの核形成温度-80℃以上である場合、得られる結晶化ガラス物品の経年収縮量をより一層小さくすることができる。また、昇温後の温度が結晶化ガラスの核形成温度未満である場合、結晶相の構造が変化することを抑制できる。 When the temperature rise start temperature of the crystallized glass is 50 ° C. or lower, or when the temperature after the temperature rise is -80 ° C. or higher, the amount of aging shrinkage of the obtained crystallized glass article is increased. It can be made even smaller. Further, when the temperature after the temperature rise is lower than the nucleation temperature of the crystallized glass, it is possible to suppress the change in the structure of the crystal phase.
 このような観点から、結晶化ガラスの昇温開始温度は、好ましくは10℃以上、30℃以下である。また、昇温後の温度は、結晶化ガラスの核形成温度-70℃以上、結晶化ガラスの核形成温度-10℃以下であることが好ましく、結晶化ガラスの核形成温度-60℃以上、結晶化ガラスの核形成温度-30℃以下であることがより好ましく、結晶化ガラスの核形成温度-40℃以下であることがさらに好ましい。 From this point of view, the temperature rise start temperature of the crystallized glass is preferably 10 ° C. or higher and 30 ° C. or lower. The temperature after the temperature rise is preferably −70 ° C. or higher for the crystallized glass, −10 ° C. or lower for the crystallized glass nucleation temperature, and −60 ° C. or higher for the crystallized glass nucleation temperature. The nucleation temperature of the crystallized glass is more preferably −30 ° C. or lower, and the nucleation temperature of the crystallized glass is more preferably −40 ° C. or lower.
 昇温工程における昇温速度は、特に限定されず、例えば、0.01℃/分以上、400℃/分以下とすることができる。 The rate of temperature rise in the temperature raising step is not particularly limited, and can be, for example, 0.01 ° C./min or more and 400 ° C./min or less.
 また、上記昇温工程において昇温した後、温度が均一になるまで一定時間その温度で保持することが望ましい。昇温後の温度における保持時間は、結晶化ガラスの寸法によって異なるが、例えば、結晶化ガラスの体積が10cm~100cmの場合は、10分~120分とすることができる。 Further, after the temperature is raised in the above-mentioned temperature raising step, it is desirable to keep the temperature at that temperature for a certain period of time until the temperature becomes uniform. The holding time at the temperature after the temperature rise varies depending on the size of the crystallized glass, but for example, when the volume of the crystallized glass is 10 cm 3 to 100 cm 3 , it can be 10 minutes to 120 minutes.
 次に、上記昇温工程において昇温させた後、結晶化ガラスを0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する。 Next, after raising the temperature in the above heating step, the temperature of the crystallized glass is lowered to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less.
 平均降温速度が速すぎる場合、あるいは降温後の温度が高すぎる場合、結晶化ガラスを十分に徐冷することができず、結晶化ガラスの仮想温度を十分に低めることができないことある。また、平均降温速度が遅すぎる場合、あるいは降温後の温度が低すぎる場合、生産性が低下することがある。 If the average temperature lowering rate is too fast, or if the temperature after lowering the temperature is too high, the crystallized glass cannot be slowly cooled sufficiently, and the virtual temperature of the crystallized glass may not be sufficiently lowered. In addition, if the average temperature lowering rate is too slow, or if the temperature after lowering the temperature is too low, productivity may decrease.
 このような観点から、昇温工程後の結晶化ガラスの平均降温速度は、好ましくは0.001℃/分以上であり、好ましくは0.03℃/分以下であり、より好ましくは0.025℃/分以下であり、さらに好ましくは0.02℃/分以下であり、特に好ましくは0.015℃/分以下である。また、降温後の温度は、好ましくは10℃以上、好ましくは30℃以下である。 From this point of view, the average temperature lowering rate of the crystallized glass after the temperature raising step is preferably 0.001 ° C./min or more, preferably 0.03 ° C./min or less, and more preferably 0.025. It is ℃ / min or less, more preferably 0.02 ℃ / min or less, and particularly preferably 0.015 ℃ / min or less. The temperature after lowering the temperature is preferably 10 ° C. or higher, preferably 30 ° C. or lower.
 このようにして結晶化ガラスに熱処理を施すことにより、本発明の結晶化ガラス物品を得ることができる。 By heat-treating the crystallized glass in this way, the crystallized glass article of the present invention can be obtained.
 [結晶化ガラス物品]
 図1は、本発明の一実施形態に係る結晶化ガラス物品を示す模式的斜視図である。
[Crystallized glass article]
FIG. 1 is a schematic perspective view showing a crystallized glass article according to an embodiment of the present invention.
 図1に示すように、本実施形態において、結晶化ガラス物品1は、矩形板状である。結晶化ガラス物品1の寸法は、特に限定されないが、例えば、長さ1500mm~2000mm、幅1000mm~1500mm、高さ1mm~10mmとすることができる。 As shown in FIG. 1, in the present embodiment, the crystallized glass article 1 has a rectangular plate shape. The dimensions of the crystallized glass article 1 are not particularly limited, but may be, for example, a length of 1500 mm to 2000 mm, a width of 1000 mm to 1500 mm, and a height of 1 mm to 10 mm.
 また、このような板状の結晶化ガラス物品1は、例えば、溶融ガラスを板状に成形して形成した結晶性ガラスに本発明の結晶化工程及び熱処理工程を施すことにより得ることができる。あるいは、溶融ガラスを塊状に成形して形成した結晶性ガラスに本発明の結晶化工程及び熱処理工程を施した後、板状に切断し研磨することにより得てもよい。もっとも、本発明において、結晶化ガラス物品の形状は、板状でなくともよく、特に限定されない。 Further, such a plate-shaped crystallized glass article 1 can be obtained, for example, by subjecting the crystalline glass formed by molding molten glass into a plate shape to the crystallization step and the heat treatment step of the present invention. Alternatively, it may be obtained by subjecting the crystalline glass formed by molding the molten glass into a lump to the crystallization step and the heat treatment step of the present invention, and then cutting and polishing the molten glass into a plate shape. However, in the present invention, the shape of the crystallized glass article does not have to be plate-shaped and is not particularly limited.
 本発明に係る結晶化ガラス物品の広い局面では、20℃の雰囲気温度で8000時間経過した前後における経時での寸法収縮率が、-0.1ppm以上、0.1ppm以下である。20℃の雰囲気温度で8000時間経過した前後における経時での寸法収縮率を上記範囲内とすることにより、結晶化ガラス物品の経年収縮量を小さくすることができる。 In a wide range of crystallized glass articles according to the present invention, the dimensional shrinkage rate over time before and after 8000 hours at an atmospheric temperature of 20 ° C. is −0.1 ppm or more and 0.1 ppm or less. By setting the dimensional shrinkage rate over time before and after 8000 hours at an atmospheric temperature of 20 ° C. within the above range, the amount of aging shrinkage of the crystallized glass article can be reduced.
 また、結晶化ガラス物品における20℃の雰囲気温度で8000時間経過した前後における経時での寸法収縮率は、好ましくは-0.05ppm以上、好ましくは0.05ppm以下である。 Further, the dimensional shrinkage rate of the crystallized glass article before and after 8000 hours at an atmospheric temperature of 20 ° C. is preferably −0.05 ppm or more, preferably 0.05 ppm or less.
 本発明に係る結晶化ガラス物品の他の広い局面では、20℃の雰囲気温度で4800時間経過した前後における経時での寸法収縮率が、-0.13ppm以上、0.10ppm以下である。20℃の雰囲気温度で4800時間経過した前後における経時での寸法収縮率を上記範囲内とすることにより、結晶化ガラス物品の経年収縮量を小さくすることができる。 In another broad aspect of the crystallized glass article according to the present invention, the dimensional shrinkage rate over time before and after 4800 hours at an atmospheric temperature of 20 ° C. is −0.13 ppm or more and 0.10 ppm or less. By setting the dimensional shrinkage rate over time before and after 4800 hours at an atmospheric temperature of 20 ° C. within the above range, the amount of aging shrinkage of the crystallized glass article can be reduced.
 なお、寸法収縮率は、例えば、結晶化ガラス物品において、任意の一辺の寸法を測定すればよい。結晶化ガラス物品1のように矩形板状の形状を有する場合は、例えば、長辺の寸法を測定すればよい。 The dimensional shrinkage rate may be measured by measuring the dimension of any one side of the crystallized glass article, for example. When the crystallized glass article 1 has a rectangular plate-like shape, the dimensions of the long side may be measured, for example.
 本発明において、結晶化ガラス物品は、主結晶としてβ-石英固溶体及びβ-ユークリプタイト固溶体のうち少なくとも一方を析出させたものであることが好ましい。 In the present invention, the crystallized glass article is preferably one in which at least one of a β-quartz solid solution and a β-eucryptite solid solution is precipitated as a main crystal.
 より具体的には、結晶化ガラス物品は、ガラス組成として、質量%で、SiO 55.0%~70.0%、Al 15.0%~30.0%、LiO 2.0%~6.0%、MgO 0%~2.0%、ZnO 0%~2.0%、TiO 0%~4.0%、ZrO 0%~4.0%、P 0%~4.0%、BaO 0%~2.0%、NaO 0%~4.0%、及びKO 0%~4.0%を含有するガラスであることが好ましい。 More specifically, the crystallized glass article has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2 in mass%. 0.0% to 6.0%, MgO 0% to 2.0%, ZnO 0% to 2.0%, TiO 20 % to 4.0%, ZrO 20 % to 4.0%, P 2 O 5 0% ~ 4.0%, BaO 0% ~ 2.0%, Na 2 O 0% ~ 4.0%, and K is preferably 2 O 0% ~ glasses containing 4.0%.
 この場合、結晶化ガラス物品の熱膨張係数をより一層0に近づけることができる。なお、結晶化ガラス物品のガラス組成は、上述した結晶性ガラスと同様の好ましい範囲を採用することができる。 In this case, the coefficient of thermal expansion of the crystallized glass article can be further approached to 0. As the glass composition of the crystallized glass article, the same preferable range as that of the above-mentioned crystalline glass can be adopted.
 本発明において、結晶化ガラス物品の-40℃以上、80℃以下における平均熱膨張係数は、好ましくは1.0×10-7/℃以下、より好ましくは0.5×10-7/℃以下、さらに好ましくは0.2×10-7/℃以下、特に好ましくは0.1×10-7/℃以下である。この場合、温度変化の大きい環境下で使用するスマートグラスやヘッドマウントディスプレイのレンズにより好適に用いることができる。 In the present invention, the average coefficient of thermal expansion of the crystallized glass article at −40 ° C. or higher and 80 ° C. or lower is preferably 1.0 × 10-7 / ° C. or lower, more preferably 0.5 × 10-7 / ° C. or lower. , More preferably 0.2 × 10 -7 / ° C. or lower, and particularly preferably 0.1 × 10 -7 / ° C. or lower. In this case, it can be more preferably used as a lens of a smart glass or a head-mounted display used in an environment where the temperature changes greatly.
 本発明の結晶化ガラス物品は、経年収縮量が小さいので、精密スケール用の部材、精密機器の構造部材、精密ミラーの基材、カメラなど撮像装置のキャリブレーション用基板、半導体用のマスク、あるいは高温環境下で加工を行う装置のマスク等に好適に用いることができる。 Since the crystallized glass article of the present invention has a small amount of shrinkage over time, it may be a member for a precision scale, a structural member for a precision instrument, a base material for a precision mirror, a substrate for calibration of an imaging device such as a camera, a mask for a semiconductor, or a mask for a semiconductor. It can be suitably used as a mask or the like of an apparatus for processing in a high temperature environment.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented without changing the gist thereof.
 (実施例1)
 組成が、質量%で、SiO 65.6%、Al 22.2%、LiO 3.7%、MgO 0.7%、ZnO 0%、TiO 2.0%、ZrO 2.2%、P 1.4%、BaO 1.2%、NaO 0.4%、及びKO 0.3% SnO 0.3%となるように原料を調合し、混合することにより原料バッチを得た。その原料バッチを1650℃で16時間溶融した後に、ロール製板することにより、結晶性ガラスを得た。
(Example 1)
The composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, MgO 0.7%, ZnO 0%, TiO 2 2.0%, ZrO 2 by mass%. The raw materials are mixed so as to have 2.2%, P 2 O 5 1.4%, BaO 1.2%, Na 2 O 0.4%, and K 2 O 0.3% SnO 2 0.3%. , A raw material batch was obtained by mixing. The raw material batch was melted at 1650 ° C. for 16 hours and then rolled to obtain crystalline glass.
 次に、得られた結晶性ガラスに対し、790℃、10時間の核形成処理を施した後、900℃の結晶化温度で6時間の結晶化処理をし、20℃まで冷却して、結晶化ガラス(核形成温度:750℃)を得た。なお、核形成温度は、結晶性ガラス中に結晶核が生成される温度として、結晶性ガラスの組成に応じて決定される。 Next, the obtained crystalline glass was subjected to a nucleation treatment at 790 ° C. for 10 hours, then crystallized at a crystallization temperature of 900 ° C. for 6 hours, cooled to 20 ° C., and crystallized. A glass-ceramic (nucleation temperature: 750 ° C.) was obtained. The nucleation temperature is determined according to the composition of the crystalline glass as the temperature at which the crystal nuclei are formed in the crystalline glass.
 得られた結晶化ガラスの-40℃以上、80℃以下における平均熱膨張係数は0.4×10-7/℃であった。また、得られた結晶化ガラスの寸法は、長さ100mm、幅500mm、高さ10mmであった。 The average coefficient of thermal expansion of the obtained crystallized glass at −40 ° C. or higher and 80 ° C. or lower was 0.4 × 10 -7 / ° C. The dimensions of the obtained crystallized glass were 100 mm in length, 500 mm in width, and 10 mm in height.
 次に、20℃まで冷却して得られた結晶化ガラスを、10℃/分の昇温速度で、700℃まで昇温させ、700℃で30分保持した。次に、0.01℃/分の平均降温速度で、700℃から20℃まで降温させることにより、結晶化ガラス物品を得た。得られた結晶化ガラス物品の-40℃以上、80℃以下における平均熱膨張係数は0.1×10-7/℃であった。 Next, the crystallized glass obtained by cooling to 20 ° C. was heated to 700 ° C. at a heating rate of 10 ° C./min and held at 700 ° C. for 30 minutes. Next, a crystallized glass article was obtained by lowering the temperature from 700 ° C. to 20 ° C. at an average temperature lowering rate of 0.01 ° C./min. The average coefficient of thermal expansion of the obtained crystallized glass article at −40 ° C. or higher and 80 ° C. or lower was 0.1 × 10 -7 / ° C.
 (比較例1)
 実施例1と同様の方法で作製した結晶化ガラスに熱処理を施さずにそのまま用いた。
(Comparative Example 1)
The crystallized glass produced by the same method as in Example 1 was used as it was without heat treatment.
 (評価)
 実施例1の結晶化ガラス物品及び比較例1の結晶化ガラスでブロックゲージを1本作製し、平面基板に密着させて、その寸法を、国立研究開発法人産業技術総合研究所が所有するブロックゲージ測定用光波干渉計を用いて測定した。なお、寸法の初回測定値が400mmとなるようにサンプルを作製して、所定期間20℃で保管した。保管したサンプルにつき、20℃における初回測定日からの経過日数に対する変化量を測定し、初回測定日からの経過日数に対する寸法収縮率を求めた。なお、寸法変化は膨張変化を正とし、収縮変化を負とした。結果を下記の表1及び図2に示す。なお、実施例1における20℃の雰囲気温度で357日(8000時間)経過した前後の寸法収縮率は、-0.0995ppmであった。また、実施例1における20℃の雰囲気温度で206日(4800時間)経過した前後の寸法収縮率は、-0.1023ppmであった。
(evaluation)
A block gauge is produced from the crystallized glass article of Example 1 and the crystallized glass of Comparative Example 1, and is brought into close contact with a flat substrate. The measurement was performed using a light wave interferometer for measurement. A sample was prepared so that the initial measurement value of the dimension was 400 mm, and the sample was stored at 20 ° C. for a predetermined period. For the stored sample, the amount of change with respect to the number of days elapsed from the first measurement date at 20 ° C. was measured, and the dimensional shrinkage rate with respect to the number of days elapsed from the first measurement date was determined. As for the dimensional change, the expansion change was positive and the contraction change was negative. The results are shown in Table 1 and FIG. 2 below. The dimensional shrinkage rate before and after 357 days (8000 hours) at an atmospheric temperature of 20 ° C. in Example 1 was −0.0995 ppm. The dimensional shrinkage rate before and after 206 days (4800 hours) at an atmospheric temperature of 20 ° C. in Example 1 was −0.1023 ppm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図2より、本発明の熱処理方法による熱処理を施した実施例1の結晶化ガラス物品では、熱処理を施していない比較例1の結晶化ガラスと比較して、経年収縮量が小さくなっていることを確認することができる。 From Table 1 and FIG. 2, the aged shrinkage amount of the crystallized glass article of Example 1 subjected to the heat treatment by the heat treatment method of the present invention is smaller than that of the crystallized glass of Comparative Example 1 not subjected to the heat treatment. You can confirm that it is.
 (参考例1)
 組成が、質量%で、SiO 65.6%、Al 22.2%、LiO 3.7%、MgO 0.7%、ZnO 0%、TiO 2.0%、ZrO 2.2%、P 1.4%、BaO 1.2%、NaO 0.4%、及びKO 0.3% SnO 0.3%となるように原料を調合し、混合することにより原料バッチを得た。その原料バッチを1650℃で16時間溶融した後に、ロール製板することにより、結晶性ガラスを得た。
(Reference example 1)
The composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, MgO 0.7%, ZnO 0%, TiO 2 2.0%, ZrO 2 by mass%. The raw materials are mixed so as to have 2.2%, P 2 O 5 1.4%, BaO 1.2%, Na 2 O 0.4%, and K 2 O 0.3% SnO 2 0.3%. , A raw material batch was obtained by mixing. The raw material batch was melted at 1650 ° C. for 16 hours and then rolled to obtain crystalline glass.
 次に、得られた結晶性ガラスに対し、790℃、10時間の核形成処理を施した後、900℃の結晶化温度で6時間の結晶化処理し、20℃まで冷却して、結晶化ガラス(核形成温度:750℃)を得た。得られた未熱処理の結晶化ガラスの-40℃以上、80℃以下における平均熱膨張係数は0.4×10-7/℃であった。 Next, the obtained crystalline glass was subjected to a nucleation treatment at 790 ° C. for 10 hours, then crystallized at a crystallization temperature of 900 ° C. for 6 hours, cooled to 20 ° C., and crystallized. Glass (nucleation temperature: 750 ° C.) was obtained. The average coefficient of thermal expansion of the obtained unheated crystallized glass at −40 ° C. or higher and 80 ° C. or lower was 0.4 × 10 -7 / ° C.
 このようにして作製した結晶化ガラスを用いたこと以外は、実施例1と同様にして熱処理を施し、結晶化ガラス物品を作製した。 A crystallized glass article was prepared by performing heat treatment in the same manner as in Example 1 except that the crystallized glass thus produced was used.
 (参考例2~7)
 参考例2~7では、熱処理時における平均降温速度を0.01℃/分から下記の表2のように変更したこと以外は、参考例1と同様にして結晶化ガラス物品を作製した。
(Reference Examples 2 to 7)
In Reference Examples 2 to 7, crystallized glass articles were produced in the same manner as in Reference Example 1 except that the average temperature lowering rate during heat treatment was changed from 0.01 ° C./min as shown in Table 2 below.
 参考例1~7における-40℃以上、80℃以下における熱膨張係数を測定し、熱処理を施していない結晶化ガラスとの熱膨張係数の差を求めた。結果を下記の表2に示す。 The coefficient of thermal expansion at −40 ° C. or higher and 80 ° C. or lower in Reference Examples 1 to 7 was measured, and the difference in the coefficient of thermal expansion from that of the crystallized glass not subjected to heat treatment was determined. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、平均降温速度が0.03℃/分以下の参考例1における結晶化ガラス物品では、熱処理を施していない結晶化ガラスに対して熱膨張係数が小さくなっていた(未熱処理品の熱膨張係数との差が大きい)のに対し、平均降温速度が0.03℃/分より大きい参考例2~4における結晶化ガラス物品では、熱処理を施していない結晶化ガラスと熱膨張係数がほぼ変わっていないことがわかる。これにより、平均降温速度が0.03℃/分より大きい場合、結晶化ガラス物品の仮想温度を十分に低めることができずに、長期間の経過により構造変化を引き起こす残存ガラス相の割合を十分に少なくできないものと考えられる。従って、平均降温速度が0.03℃/分より大きい場合、得られる結晶化ガラス物品の経年収縮量を十分に小さくできないものと考えられる。また、参考例5~7より、平均降温速度が0.03℃/分以下で300℃以下の温度まで降温させれば、参考例1と同様の熱膨張係数の差が得られていることがわかる。これにより、昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温すれば、得られる結晶化ガラス物品の経年収縮量を十分に小さくできることを確認することができる。 From Table 2, in the crystallized glass article in Reference Example 1 having an average temperature lowering rate of 0.03 ° C./min or less, the coefficient of thermal expansion was smaller than that of the crystallized glass that had not been heat-treated (the unheated product). On the other hand, in the crystallized glass articles in Reference Examples 2 to 4 in which the average temperature lowering rate is larger than 0.03 ° C./min, the coefficient of thermal expansion is higher than that of the untreated crystallized glass. It can be seen that it has hardly changed. As a result, when the average temperature drop rate is greater than 0.03 ° C./min, the virtual temperature of the crystallized glass article cannot be sufficiently lowered, and the proportion of the residual glass phase that causes a structural change over a long period of time is sufficient. It is thought that it cannot be reduced. Therefore, when the average temperature lowering rate is larger than 0.03 ° C./min, it is considered that the amount of aging shrinkage of the obtained crystallized glass article cannot be sufficiently reduced. Further, from Reference Examples 5 to 7, if the average temperature lowering rate is 0.03 ° C./min or less and the temperature is lowered to 300 ° C. or less, the same difference in thermal expansion coefficient as in Reference Example 1 can be obtained. Recognize. Thereby, it is confirmed that the aged shrinkage amount of the obtained crystallized glass article can be sufficiently reduced by lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less after the temperature raising step. Can be done.
 1…結晶化ガラス物品 1 ... Crystallized glass article

Claims (7)

  1.  結晶性ガラスを結晶化させ、結晶化ガラスを得る、結晶化工程と、
     前記結晶化ガラスを50℃以下の温度から、前記結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する、昇温工程と、
     前記昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する、降温工程と、
    を備える、結晶化ガラス物品の製造方法。
    A crystallization process that crystallizes crystalline glass to obtain crystallized glass,
    A temperature raising step of raising the temperature of the crystallized glass from a temperature of 50 ° C. or lower to a temperature of the nucleation temperature of the crystallized glass of −80 ° C. or higher and lower than the nucleation temperature.
    After the temperature raising step, a temperature lowering step of lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less is used.
    A method for producing a crystallized glass article.
  2.  前記結晶性ガラスが、ガラス組成として、質量%で、SiO 55.0%~70.0%、Al 15.0%~30.0%、LiO 2.0%~6.0%、MgO 0%~2.0%、ZnO 0%~2.0%、TiO 0%~4.0%、ZrO 0%~4.0%、P 0%~4.0%、BaO 0%~2.0%、NaO 0%~4.0%、及びKO 0%~4.0%を含有するガラスからなる、請求項1に記載の結晶化ガラス物品の製造方法。 The crystalline glass has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, Li 2 O 2.0% to 6. 0%, MgO 0% ~ 2.0 %, ZnO 0% ~ 2.0%, TiO 2 0% ~ 4.0%, ZrO 2 0% ~ 4.0%, P 2 O 5 0% ~ 4. 0%, BaO 0% ~ 2.0 %, consisting of glass containing Na 2 O 0% ~ 4.0% , and K 2 O 0% ~ 4.0% , the crystallized glass according to claim 1 How to make an article.
  3.  結晶化ガラスを50℃以下の温度から、前記結晶化ガラスの核形成温度-80℃以上、核形成温度未満の温度まで昇温する、昇温工程と、
     前記昇温工程の後に、0.03℃/分以下の平均降温速度で300℃以下の温度まで降温する、降温工程と、
    を備える、結晶化ガラスの熱処理方法。
    A temperature raising step of raising the temperature of the crystallized glass from a temperature of 50 ° C. or lower to a temperature of the nucleation temperature of the crystallized glass of -80 ° C. or higher and lower than the nucleation temperature.
    After the temperature raising step, a temperature lowering step of lowering the temperature to a temperature of 300 ° C. or lower at an average temperature lowering rate of 0.03 ° C./min or less is used.
    A method for heat-treating crystallized glass.
  4.  20℃の雰囲気温度で8000時間経過した前後における経時での寸法収縮率が、-0.1ppm以上、0.1ppm以下である、結晶化ガラス物品。 A crystallized glass article having a dimensional shrinkage rate of -0.1 ppm or more and 0.1 ppm or less over time before and after 8000 hours at an atmospheric temperature of 20 ° C.
  5.  20℃の雰囲気温度で4800時間経過した前後における経時での寸法収縮率が、-0.13ppm以上、0.1ppm以下である、結晶化ガラス物品。 A crystallized glass article having a dimensional shrinkage rate of −0.13 ppm or more and 0.1 ppm or less over time before and after 4800 hours have passed at an atmospheric temperature of 20 ° C.
  6.  前記結晶化ガラス物品が、ガラス組成として、質量%で、SiO 55.0%~70.0%、Al 15.0%~30.0%、LiO 2.0%~6.0%、MgO 0%~2.0%、ZnO 0%~2.0%、TiO 0%~4.0%、ZrO 0%~4.0%、P 0%~4.0%、BaO 0%~2.0%、NaO 0%~4.0%、及びKO 0%~4.0%を含有するガラスからなる、請求項4又は5に記載の結晶化ガラス物品。 The crystallized glass article has a glass composition of SiO 2 55.0% to 70.0%, Al 2 O 3 15.0% to 30.0%, and Li 2 O 2.0% to 6 in terms of glass composition. .0%, MgO 0% ~ 2.0 %, ZnO 0% ~ 2.0%, TiO 2 0% ~ 4.0%, ZrO 2 0% ~ 4.0%, P 2 O 5 0% ~ 4 .0%, BaO 0% ~ 2.0 %, consisting of glass containing Na 2 O 0% ~ 4.0% , and K 2 O 0% ~ 4.0% , according to claim 4 or 5 Crystallized glass article.
  7.  精密スケール用の部材に用いられる、請求項4~6のいずれか1項に記載の結晶化ガラス物品。 The crystallized glass article according to any one of claims 4 to 6, which is used for a member for a precision scale.
PCT/JP2021/006603 2020-04-17 2021-02-22 Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article WO2021210270A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022515229A JPWO2021210270A1 (en) 2020-04-17 2021-02-22
DE112021002388.8T DE112021002388T5 (en) 2020-04-17 2021-02-22 METHOD OF MAKING A CRYSTAL GLASS ARTICLE, METHOD OF HEAT TREATMENT OF CRYSTAL GLASS AND CRYSTAL GLASS ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-074115 2020-04-17
JP2020074115 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021210270A1 true WO2021210270A1 (en) 2021-10-21

Family

ID=78084178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006603 WO2021210270A1 (en) 2020-04-17 2021-02-22 Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article

Country Status (4)

Country Link
JP (1) JPWO2021210270A1 (en)
DE (1) DE112021002388T5 (en)
TW (1) TW202146344A (en)
WO (1) WO2021210270A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104747A (en) * 1980-01-26 1981-08-20 Nippon Electric Glass Co Ltd Preparation of crystallized glass
JPH05213629A (en) * 1991-10-09 1993-08-24 Corning Inc Opaque variable glass ceramic product and manufacture thereof
JPH11335139A (en) * 1998-02-26 1999-12-07 Corning Inc Production of transparent glass ceramic having dimensional stability at high temperature
JP2002104841A (en) * 2000-09-28 2002-04-10 Ohara Inc Glass ceramics and temperature compensating parts
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2006056745A (en) * 2004-08-20 2006-03-02 Nippon Electric Glass Co Ltd Crystallized glass and its production method
JP2011073936A (en) * 2009-09-30 2011-04-14 Ohara Inc Method for manufacturing crystallized glass
JP2015020944A (en) * 2013-07-24 2015-02-02 日本電気硝子株式会社 EVALUATION METHOD OF Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND PRODUCTION METHOD OF THE CRYSTALLIZED GLASS USING THE SAME
CN106365456A (en) * 2016-08-31 2017-02-01 东北大学 Lithium disilicate glass ceramic, preparation method thereof and application in dental material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104747A (en) * 1980-01-26 1981-08-20 Nippon Electric Glass Co Ltd Preparation of crystallized glass
JPH05213629A (en) * 1991-10-09 1993-08-24 Corning Inc Opaque variable glass ceramic product and manufacture thereof
JPH11335139A (en) * 1998-02-26 1999-12-07 Corning Inc Production of transparent glass ceramic having dimensional stability at high temperature
JP2002104841A (en) * 2000-09-28 2002-04-10 Ohara Inc Glass ceramics and temperature compensating parts
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2006056745A (en) * 2004-08-20 2006-03-02 Nippon Electric Glass Co Ltd Crystallized glass and its production method
JP2011073936A (en) * 2009-09-30 2011-04-14 Ohara Inc Method for manufacturing crystallized glass
JP2015020944A (en) * 2013-07-24 2015-02-02 日本電気硝子株式会社 EVALUATION METHOD OF Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND PRODUCTION METHOD OF THE CRYSTALLIZED GLASS USING THE SAME
CN106365456A (en) * 2016-08-31 2017-02-01 东北大学 Lithium disilicate glass ceramic, preparation method thereof and application in dental material

Also Published As

Publication number Publication date
TW202146344A (en) 2021-12-16
JPWO2021210270A1 (en) 2021-10-21
DE112021002388T5 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP2516537B2 (en) Low expansion transparent crystallized glass
US7645714B2 (en) Crystallized glass, and method for producing crystallized glass
KR100915286B1 (en) Glass ceramic and method of producing the same
KR100590346B1 (en) Low expansion glass-ceramics
JP6899938B2 (en) Highly uniform glass-ceramic element
US20070293386A1 (en) Crystallized glass, and method for producing crystallized glass
JP2691263B2 (en) Transparent crystallized glass
KR100563362B1 (en) Method of making transparent glass-ceramics with high temperature dimensional stability
EP0222478B1 (en) Glass-ceramics containing cristobalite and potassium fluorrichterite
JP3421284B2 (en) Negatively heat-expandable glass ceramics and method for producing the same
CN108640526B (en) Glass ceramics
USRE39437E1 (en) Negative thermal expansion glass ceramic
JP2004075441A (en) Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2003267789A (en) Glass ceramic product with variably adjustable zero crossing of cte-t curve
JPS6159257B2 (en)
JP5650387B2 (en) Crystallized glass
JPS61286237A (en) Glass ceramic body suitable for ring laser gyroscope and manufacture
WO2024109495A1 (en) 3d microcrystalline glass, preparation method therefor, and pre-crystallized microcrystalline glass
WO2024109498A1 (en) Glass ceramics, preparation method therefor, and glass ceramics article
EP0202751B1 (en) B2o3-p2o5-sio2 glass-ceramics
US3573939A (en) Ta205 nucleated glass-ceramic articles
US4000998A (en) Spontaneously-formed nepheline-carnegieite glass-ceramics
WO2021210270A1 (en) Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article
JP2001316132A (en) Li2O-Al2O3-SiO2 BASE TRANSPARENT CRYSTALLIZED GLASS ARTICLE AND OPTICAL COMMUNICATION DEVICE USING SAME
JP5762677B2 (en) Method for producing crystallized glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515229

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21787777

Country of ref document: EP

Kind code of ref document: A1