JP2012052075A - ポリマー溶液の脱溶媒方法、及び装置 - Google Patents

ポリマー溶液の脱溶媒方法、及び装置 Download PDF

Info

Publication number
JP2012052075A
JP2012052075A JP2010198096A JP2010198096A JP2012052075A JP 2012052075 A JP2012052075 A JP 2012052075A JP 2010198096 A JP2010198096 A JP 2010198096A JP 2010198096 A JP2010198096 A JP 2010198096A JP 2012052075 A JP2012052075 A JP 2012052075A
Authority
JP
Japan
Prior art keywords
polymer solution
solvent
gas
waste liquid
dope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010198096A
Other languages
English (en)
Inventor
Yoshifumi Okano
圭央 岡野
Yukihiro Maeda
幸広 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010198096A priority Critical patent/JP2012052075A/ja
Publication of JP2012052075A publication Critical patent/JP2012052075A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

【課題】ポリマー溶液から溶媒をより確実に除去できるポリマー溶液の脱溶媒方法、及び装置を提供する。
【解決手段】
少なくとも第1溶媒、及びポリマーを含む廃液320(ポリマー溶液)を準備し、湿潤加熱室52内に温度及び/又は湿度が制御された湿潤気体410を供給し、廃液320を攪拌翼74により流動し、廃液320から溶媒を除去する。
【選択図】図2

Description

本発明はポリマー溶液の脱溶媒方法、及び装置に関して、ドープ製造設備や溶液製膜設備等から排出される廃棄物から溶媒を取り除くポリマー溶液の脱溶媒方法及び装置に関する。
液晶ディスプレイ等の各種表示装置には、偏光板の保護フィルムや視野角拡大フィルムをはじめとする様々なポリマーフィルムが使用されている。特に、光学的等方性に優れていることからポリマーフィルムとして、セルロースアシレートフィルム、特にセルローストリアセテートフィルム(TACフィルム)が使用される。
このような光学用途のポリマーフィルムの製法としては、溶融押出法、溶液流延法などがある。溶液流延法では、ポリマーと溶媒とを含むポリマー溶液(以下、ドープと称する)を、走行する支持体上に流延して流延膜を形成した後、流延膜を支持体から剥ぎ取り、乾燥してポリマーフィルムを製造する。溶液流延法は、熱ダメージの問題が少ないので透明度の高さや光学特性が求められるポリマーフィルムの製造方法としては適している。
溶液流延法を実施する場合、ドープ製造設備や溶液製膜設備に用いられる各装置は定期的に洗浄する必要がある。例えば、濾過装置でいえば、濾過部材を交換する際には、濾過装置内に残留付着したドープや異物を除去するために、洗浄液を用いて、濾過装置内を洗浄する。また、濾過装置等の洗浄剤として、ドープに含まれる溶媒が用いられる。したがって、ドープ製造設備や溶液製膜設備に用いられる各装置の洗浄時には、溶媒、残留付着したドープや異物等を含む廃棄物が生成される。
また、溶液製膜設備に設けられる流延室や乾燥室では、流延膜や湿潤フィルムを乾燥し、流延膜や湿潤フィルムから溶媒を蒸発させる。この乾燥工程により、溶媒を含有する気体が生成される。流延室や乾燥室に設けられた回収装置が、この気体を回収し、冷却すると、この気体から溶媒を含むポリマー溶液が廃棄物として生成される。
溶液流延法で用いられる溶媒は、ジクロロメタン等、そのまま自然界に廃棄できない化合物が含まれることが多い。この溶媒を含む廃棄物は、濾過装置等の洗浄過程や溶液製流延方法の乾燥工程等にて大量に生成する。一方、溶液流延法では多量の溶媒が必要である。そこで、洗浄過程や乾燥工程等で生成した廃棄物から溶媒を抽出し、抽出された溶媒を溶液製膜方法等に再利用することにより、大気汚染などの環境汚染の抑制と、溶液流延方法におけるコスト低減とを同時に実現している。
上述の問題に対応するため、特許文献1は、第1溶媒を含むポリマー溶液を、第1溶媒をなす溶媒化合物よりもモル体積が小さい小体積物質中に配することにより、第1溶媒の蒸発を促進することを開示する。
特開2009−83219号公報
しかしながら、特許文献1の方法において、ポリマー溶液を小体積物質中に配するときに、ポリマー溶液の表面に皮膜が形成される場合がある。皮膜が形成されると小体積物質がポリマー溶液に十分に吸収されない。そのため、第1溶媒がポリマー溶液から効率よく蒸発しない問題があった。
本発明はこのような事情に鑑みてなされたもので、ポリマー溶液から溶媒をより確実に除去できるポリマー溶液の脱溶媒方法、及び装置を提供することを目的とする。
本発明の一態様によると、ポリマー溶液の脱溶媒方法は、少なくとも第1溶媒、及びポリマーを含むポリマー溶液を準備する工程と、前記第1溶媒と異なる第2溶媒を含み、温度及び/又は湿度が制御された気体中に前記ポリマー溶液を配し、かつ前記ポリマー溶液を流動する工程と、を備える。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記ポリマー溶液の内部に機械的にせん断力を加えることにより前記ポリマー溶液を流動する。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記ポリマー溶液を流動するために加えられるせん断力が、せん断速度100(1/s)〜1000(1/s)のせん断力である。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記ポリマー溶液に前記気体を吹き込むことにより前記ポリマー溶液を流動する。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記気体を吹き込む速度が0.5(m/s)〜10(m/s)である。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記気体の温度が80℃〜250℃の範囲にある。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記気体中の前記第2溶媒の蒸気量は、前記ポリマー溶液の表面近傍温度における第2溶媒の飽和蒸気量をMSとすると、0.5MS〜1MSである。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記第1溶媒がメチレンクロライド、メタノール、ブタノールのうち少なくとも1つを含み、前記第2溶媒が水、メタノール、アセトン、メチルケトンのうち少なくとも1つを含む。
本発明の他の態様によると、ポリマー溶液の脱溶媒方法は、好ましくは、前記ポリマー溶液を準備する工程において、廃棄物中に含ませて前記ポリマー溶液を準備する。
本発明の別の態様によると、ポリマー溶液の脱溶媒装置は、少なくとも第1溶媒及びポリマーを含むポリマー溶液を保持し、前記ポリマー溶液の温度を制御する手段と、前記第1溶媒と異なる第2溶媒を含む気体を供給する手段と、前記気体中の前記第2溶媒蒸気圧及び温度、前記ポリマー溶液表面温度を検出する手段と、前記検出手段の検出結果に基づいて前記気体の供給量及び温度を制御する手段と、前記ポリマー溶液を流動する手段と、を有する。
本発明によれば、第1溶媒を含むポリマー溶液を流動させながら、第2溶媒を含む気体と接触させるので、皮張り現象に起因する乾燥速度の低下を防止できる。また、比表面積向上によって効率的な乾燥を行える。さらに、第2溶媒へ配する際に、より効率よく第2溶媒をポリマー溶液に吸収させて内部拡散を促進させることができるので、ポリマー溶液の乾燥速度を向上させることができる。
廃液から精製溶媒を抽出する廃液処理設備、ドープ製造設備、及び溶液製膜設備等の概要を示す説明図である。 湿潤加熱室の態様の概略構成図を示す。 湿潤加熱室の別の態様の概略構成図を示す。
以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。また、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を含む範囲を意味する。
図1のように、ドープ製造設備10は、ドープ製造配管11を介して、ストックタンク12と接続される。また、ストックタンク12は、製膜配管13を介して、溶液製膜設備14と接続される。
ドープ製造設備10は、溶解タンク20と、ポンプ21と、加熱装置22と、温調機23と、濾過装置24などを備える。これらはドープ製造配管11に、上流側から下流側に向けて設けられる。溶解タンク20には、溶媒タンク26と、ホッパ27と、添加剤タンク28とが、それぞれ配管により接続される。溶媒タンク26と溶解タンク20とを接続する配管、及び、添加剤タンク28と溶解タンク20とを接続する配管には、弁26a、28aが設けられる。弁26a、28aは、制御部29の制御の下、開位置と閉位置とのいずれかの位置に変位する。
ホッパ27は、制御部29の制御の下、TAC300を溶解タンク20に供給する。溶媒タンク26には溶媒301が貯留される。添加剤タンク28には添加剤302が貯留される。弁26aが開位置になると、溶媒タンク26から溶解タンク20への溶媒301の供給が開始する。弁26aが閉位置になると、溶媒タンク26から溶解タンク20への溶媒301の供給が停止する。同様にして、弁28aが開位置になると、添加剤タンク28から溶解タンク20への添加剤302の供給が開始する。弁26aが閉位置になると、添加剤タンク28から溶解タンク20への添加剤302の供給が停止する。
溶解タンク20は、その外面を包み込むジャケット20aと、モータ20bにより回転する第1攪拌翼20cとを備える。好ましくは、溶解タンク20には、モータ20dにより回転する第2攪拌翼20eが取り付けられる。なお、第1攪拌翼20cは、アンカー翼であることが好ましく、第2攪拌翼20eは、ディゾルバータイプのものを用いることが好ましい。ジャケット20aに伝熱媒体を流して溶解タンク20内を所定の範囲の温度に調整することが好ましい。溶解タンク20内で、TAC300、溶媒301及び添加剤302を含む液が所定の温度範囲で加熱される。第1攪拌翼20c,第2攪拌翼20eを適宜選択して回転させることで、TAC300が溶媒301中で膨潤した膨潤液305を得ることができる。
ポンプ21は、溶解タンク20内の膨潤液305を、加熱装置22に送る。加熱装置22は、ジャケット付き配管を用いることが好ましく、さらに膨潤液305を加圧できる構成であることが好ましい。加熱装置22は膨潤液305を加熱する。これによりTAC300が溶媒301に溶解したドープ306が調製される。温調機23は、調製されたドープ306の温度を所定の範囲内で略一定に保持する。その後、濾過装置24によりドープ306が濾過され、ドープ306中の不純物が取り除かれる。濾過装置24の濾過フィルタの平均孔径が100μm以下であることが好ましい。また、濾過流量は、50L/時以上であることが好ましい。
ストックタンク12は、ドープ製造設備10で調製されたドープ306を貯留し、ドープ306の温度を所定の範囲内で略一定に保持する。製膜配管13には、ストックタンク12に貯留するドープ306を送り出すポンプ31と、濾過装置34とが設けられる。ポンプ31によって送られ、濾過装置34を通過したドープ306が溶液製膜設備14の流延ダイに送られる。溶液製膜設備14では、流延室内で流延ダイがドープ306を支持体上に流延する。これにより支持体上に流延膜が形成され、次いで流延膜が乾燥される。流延膜に自己支持性が発現すると、流延膜は支持体から剥ぎ取られる。流延膜は湿潤フィルムとして乾燥室に送られる。湿潤フィルムは、乾燥室での乾燥処理を経て、フィルムとなる。
洗浄装置37と制御部29とが電気的に接続される。洗浄装置37は、制御部29の制御により、ドープ製造設備10、配管11、ストックタンク12、配管13、溶液製膜設備14、濾過装置24へ洗浄液310を供給する。以下、ドープ製造設備10及び溶液製膜設備14を構成する各装置、並びに、ストックタンク12、濾過装置24及び配管11、13等の装置の総称として、ドープ調製通過装置と称する。制御部29は、図示しない信号出力手段からのドープ切り替え信号を検出すると、弁26a、28aを閉位置にする。これにより、ホッパ27によるTAC300の供給を停止し、ポンプ21、31を停止する。その後、洗浄装置37は、洗浄液310をドープ調製通過装置へ供給する。
廃液処理設備40は、廃液タンク42と、脱溶媒装置43と、蒸留塔44とを備える。廃液タンク42は、ドープ調製通過装置から、洗浄液310とドープ調製通過装置に残留していたドープ306とを含む廃液320を回収する。脱溶媒装置43は、廃液320に所定の処理を施すことにより、廃液320から、TAC300や添加剤302などを含む残留物321と、溶媒301を含む混合液322と、に分離する。蒸留塔44は、混合液322を蒸留し、混合液322から、新たなドープの調製に利用可能な精製溶媒330を分留する分留処理を行う。なお、残留物321は、そのまま廃棄するほか、所定の処理を経た後、セメントの材料、助燃剤や活性炭の原料、或いは、TAC300を分離した後、ドープの調製材料として用いることができる。
図2は、脱溶媒装置に配される、湿潤加熱室の概略構成図を示す。湿潤加熱室52には、廃液容器60が設置される。廃液タンク42に貯留する廃液320が廃液容器60に供給される。湿潤加熱室52の内部は、湿潤気体410で満たされている。図2に示すように、湿潤気体410を湿潤加熱室52に供給するため、軟水420を加熱して水蒸気421をつくるボイラ61と、空気422を送風するブロア62と、ブロア62によって送られた空気422を加熱する熱交換器63と、水蒸気421と熱交換器63を経た空気422とから湿潤気体410をつくる混合器64と、湿潤気体410を加熱して、湿潤加熱室52へ送る再加熱装置65が、設置される。
ボイラ61と混合器64とを接続する配管には、水蒸気421の圧力を所定の値まで減圧する減圧弁(不図示)及び水蒸気421の流量の調節を行う流量調節弁(不図示)が設けられる。湿潤加熱室52に温湿度センサー73が設置される。制御装置75が、再加熱装置65と温湿度センサー73とに電気的に接続される。湿潤加熱室52に設けられた温湿度センサー73から読み取った値に基づいて、制御装置75が再加熱装置65を制御する。これにより、湿潤加熱室52に供給される湿潤気体410の湿度及び温度が調節される。廃液容器60内の廃液320にせん断力を付与するため、攪拌機72と攪拌機72に連結する攪拌翼74が湿潤加熱室52に設置される。攪拌翼74を回転することにより、せん断速度100(1/s)から1000(1/s)のせん断力が廃液320に加えられる。これにより、廃液320が流動する。湿潤加熱室52内の湿潤気体410は回収気体411として回収される。
廃液容器60には、廃液320の温度を所定の範囲に調節する温調機80が設けられる。温調機80により廃液320を所定の温度範囲内に調節することができる。
図1を用いて、本実施形態の作用について説明する。始めに、制御部29により、弁26a、弁28aが開位置とされる。溶媒タンク26から溶媒301が、添加剤タンク28から添加剤302が、ホッパ27からTAC300が、それぞれ、溶解タンク20に送られる。ジャケット20aにより、溶解タンク20内を−10℃以上55℃以下の範囲に温度調整する。第1攪拌翼20c、第2攪拌翼20eを適宜選択して回転することにより、TAC300、溶媒301そして添加剤302を含む液から、膨潤液305を得る。
ポンプ21により、膨潤液305が加熱装置22に送液される。膨潤液305に加熱処理または加圧下での加熱処理を施し、TAC300を溶媒301に溶解させてドープ306を得る。膨潤液305の温度は、−100℃以上−10℃以下、或いは0℃以上120℃以下であることが好ましい。加熱溶解法及び冷却溶解法を適宜選択して行うことでTACを溶媒に十分溶解させることが可能となる。温調機23によりドープ306は0〜40℃温度範囲に調整される。濾過装置24によりドープ306が濾過され、ドープ306中の不純物が取り除かれる。濾過後のドープ306は、図示しないバルブを介してストックタンク12に供給される。
これらの方法により、TAC濃度が5重量%〜40重量%であるドープ306を製造することができる。より好ましくはTAC濃度が15重量%以上30重量%以下であり、最も好ましくは17重量%以上25重量%以下の範囲とすることである。また、添加剤302(主には可塑剤である)の濃度は、ドープ中の固形分全体を100重量%とした場合に1重量%以上30重量%以下の範囲とすることが好ましい。
ドープ製造設備10にて調製されたドープ306は、ストックタンク12に貯蔵される。ストックタンク12に貯蔵されたドープ306は、ポンプ31により濾過装置34を介して、溶液製膜設備14へ送られる。溶液製膜設備14では、溶液流延方法により、ドープ306から最終製品となるフィルムが製造される。
ドープ306を調製していたドープ製造設備10において、ドープ306から、TAC300の代わりに他のポリマーが含まれる新たなドープへ切り替える場合の、各装置の詳細について説明する。
図示しない信号出力手段により、制御部29にドープ切り替え信号が送信される。制御部29は、図示しない信号出力手段からのドープ切り替え信号を検出すると、弁26a、28aを閉位置にし、ホッパ27のTAC300の供給を停止し、ポンプ21、31を停止する。
次いで、洗浄装置37は、洗浄液310をドープ調製通過装置へ供給する。ドープ調製通過装置に送られた洗浄液310は、ドープ調製通過装置に残留する膨潤液305やドープ306とともに、廃液320となって、ドープ調製通過装置から排出される。これにより、ドープ調製通過装置に洗浄処理が行われる。残留する膨潤液305やドープ306を十分に除去した後、洗浄液310のドープ調製通過装置への供給を停止して、洗浄処理が完了する。洗浄処理にて排出される廃液320の固形分濃度は、0.1重量%以上25重量%以下である。なお、固形分濃度とは、廃液320におけるポリマーや添加剤の濃度を指す。
洗浄装置37による洗浄処理が終わった後、再び、図示しない信号出力手段により、制御部29にドープ切り替え信号が送信される。制御部29は、ドープ切り替え信号を検出すると、弁26a、28aを開位置にし、ホッパ27から新たなポリマーの供給を開始し、ポンプ21、31を運転する。このようにして、ドープ製造設備10では、新たなドープが調製される。溶液製膜設備14では、従前のフィルムと異なる品種のフィルムが新たなドープから製造される。
次に、洗浄処理にて生成した廃液320から精製溶媒330を抽出するまでの詳細について説明する。図1及び図2に示すように、洗浄処理の開始後、廃液タンク42は、ドープ調製通過装置から排出され、洗浄液310と、ドープ調製通過装置に残留する膨潤液305又はドープ306とを含む廃液320を回収する。
廃液タンク42から、湿潤加熱室52内に設置される廃液容器60に廃液320が供給される。温度及び湿度を所定の範囲内で略一定になるように調節された湿潤気体410が湿潤加熱室52に供給される。一方、攪拌翼74を回転することにより、廃液320にせん断力が加えられる。廃液320から溶媒が蒸発する。蒸発した溶媒は、吸着回収部により回収され、吸着処理及び脱着処理を経て、混合液322となる。吸着処理及び脱着処理により生成した混合液322は、蒸留塔44に送られる。蒸留塔44では、混合液322に分留処理することにより、精製溶媒330が生成される。精製溶媒330は、新たなドープの調製用の溶媒として用いられる。湿潤加熱処理により、廃液容器60内の廃液320から溶媒が蒸発し、最終的に、廃液容器60には、残留物321が残留する。また、乾燥加熱処理及び湿潤加熱処理を経て生成した残留物321は、所定の処理を経て、廃棄或いは、再利用される。
次に、湿潤加熱処理における、溶媒301の蒸発の詳細について説明する。溶媒301をなす化合物(以下、溶媒化合物と称する)を十分に含む廃液320に乾燥加熱処理を施すと、廃液320の液面及び液面の近傍に存在していた溶媒化合物が外気に放出される。したがって、乾燥加熱処理を一定期間以上行うと、廃液320の液面及び液面の近傍は、微量の溶媒化合物が存在する状態、いわゆる減率乾燥状態になる。
本実施形態では、水分子を含む湿潤気体410中で、液面及び液面の近傍が減率乾燥状態にある廃液320に湿潤加熱処理を行う。液面及び液面近傍の廃液320に水分子が吸収されると共に、廃液320が攪拌翼74に攪拌される。減率乾燥状態にある廃液320の液面から水分子が吸収されると、水分子により廃液320内の網目構造の目を押し広げられる。さらに、廃液320を攪拌することにより、廃液320の内部にまで水分子が吸収される。したがって、深層部に存在する溶媒化合物が廃液320の液面及び液面の近傍まで拡散到達しやすくなる。その結果、廃液320から溶媒化合物を容易に蒸発させることができる。つまり、廃液320の内部についても短時間に水分子を吸収させることができ、廃液320全体の乾燥速度(脱溶媒速度)を上げることができる。
水分子が廃液320に吸収されると、水分子によって廃液320内部の自由体積が膨張する。これにより溶媒の拡散が促進すると考えられる。廃液320の表面での水の蒸気圧を高くし、なるべく多くの水分子を廃液320に吸収させることにより、乾燥速度を上げることができる。
湿潤加熱処理が施される際の、廃液320の液面から廃液容器60の内側の底面までの深さDは、水分子が廃液320に侵入し得る深さを超えないことが好ましく、具体的には、深さDは30cm以下であることが好ましい。なお、廃液320がゲル状のもの或いは、固体の場合も同様である。
湿潤加熱室52で用いられる湿潤気体410の条件として、水分子をより多く含むこと、相対湿度が高いことが好ましい。
湿潤気体410における水の蒸気量は、廃液320の表面近傍温度における水の飽和蒸気量をMSとすると、0.5MS以上1MS以下であることが好ましい。その理由は、0.5MS未満の場合、乾燥促進の効果がなくなり、1MSを越える場合 系内を大気圧以上に加圧するための設備が必要となるからである。湿潤気体410は、好ましくは、80℃〜250℃の温度範囲に制御される。その理由は、80℃未満の場合、乾燥に非常に時間がかかるためであり、250℃を超えると油や樹脂の発火点が近づき、装置安全上危険となるからである。
本実施形態では、湿潤気体の成分として軟水420を用いたが、これに限られない。湿潤気体の成分が溶媒と相溶する場合には、減率乾燥状態の廃液320中における溶媒化合物の拡散が行われやすくなるため、好ましい。
湿潤気体の成分として、具体的には、水分子、有機化合物、これらの混合物を用いることができる。水分子を含むものとして、軟水のほか、硬水、純水などを用いることができる。なお、本発明の明細書における純水とは、電気抵抗率が少なくとも1MΩ以上であり、特にナトリウム、カリウム、マグネシウム、カルシウムなどの金属イオンの含有濃度は1ppm未満、塩素、硝酸などのアニオンは0.1ppm未満の含有濃度を指す。純水は、逆浸透膜、イオン交換樹脂、蒸留などの単体、或いは組み合わせによって、容易に得ることができる。湿潤気体の成分として、メタノール、アセトンやメチルエチルケトン等の有機化合物を用いることができる。
図3は、脱溶媒装置に配される、湿潤加熱室の別の態様の概略構成図を示す。図2と同様の構成には同じ番号を付して、説明を省略する場合がある。
湿潤加熱室52には、廃液容器60が設置される。廃液タンク42に貯留する廃液320が廃液容器60に供給される。湿潤加熱室52の内部は、湿潤気体410で満たされている。図3に示すように、湿潤気体410を湿潤加熱室52に供給するため、軟水420を加熱して水蒸気421をつくるボイラ61と、空気422を送風するブロア62と、ブロア62によって送られた空気422を加熱する熱交換器63と、水蒸気421と熱交換器63を経た空気422とから湿潤気体410をつくる混合器64と、湿潤気体410を加熱して、湿潤加熱室52へ送る再加熱装置65と、再加熱装置65に接続されたノズル82が設置される。ノズル82の先端は廃液320の内部に位置する。
本実施形態では、水分子を含む湿潤気体410中で、液面及び液面の近傍が減率乾燥状態にある廃液320に湿潤加熱処理を行う。ノズル82から湿潤気体410がノズル82から廃液320に吹き込まれる。廃液320の内部に湿潤気体410が吹き込まれるので、廃液320の内部にまで水分子が吸収される。したがって、深層部に存在する溶媒化合物が廃液320の液面及び液面の近傍まで拡散到達しやすくなる。その結果、廃液320から溶媒化合物を容易に蒸発させることができる。つまり、廃液320の内部についても短時間に水分子を吸収させることができ、廃液320全体の乾燥速度(脱溶媒速度)を上げることができる。湿潤気体410を吹き込む速度は0.5(m/s)〜10(m/s)の範囲に制御される。湿潤気体410を吹き込むことにより、廃液320が流動する。湿潤加熱室52内の湿潤気体410は回収気体411として回収される。
湿潤気体410の温度、及び蒸気量、廃液320の温度を別系統で制御することにより、廃液320に付着する結露水を少なくすることができる。したがって、表面積を向上でき、結露水に起因するドレイン水中の溶媒の溶媒量を減らし、環境負荷を低減することができる。
ここで表面積とは、溶媒を含む溶液(廃液)の表面積を意味する。結露水が表面に付着して溶液を覆ってしまうと、その部分は過熱水蒸気などの気体に触れることができない。その状況では効率が落ちてしまう。したがって、結露水を少なくし、過熱水蒸気などの気体に触れる表面積を向上することが好ましい。
脱溶媒によって取り除かれる溶媒(例えば、メチレンクロライド)は、通常、乾燥気体(例えば、過熱水蒸気など)に混じって大気放出、もしくは回収塔などで再回収される。しかしながら、結露水などへメチレンクロライドが溶け込むと、装置の壁面や配管を通して、この微量に溶媒を含んだ結露水がドレイン水などと混じりあう場合がある。ドレイン水には、機械油などが混入しているので、ドレイン水は通常は回収され、処理される。ドレイン水にメチレンクロライドなどの有機溶媒が混じっていても除去できない可能性もあり、ドレイン水中の溶媒の溶媒量を減らすことが好ましい。
また、結露を防ぐことで有機溶媒の無駄な拡散を防げるので、環境負荷を低減することができる。特に、廃液する場合の排出規制(濃度)は大気放出に比べて厳しく、環境負荷を低減することが好ましい。
(ポリマー)
本実施形態において、ポリマーとしてセルロースアシレートを用いる。セルロースアシレートとしては、トリアセチルセルロース(TAC)が特に好ましい。セルロースアシレートの中でも、セルロースの水酸基の水素原子に対するアシル基の置換度が下記式(I)〜(III)の全てを満足するものがより好ましい。以下の式(I)〜(III)において、A及びBは、セルロースの水酸基の水素原子に対するアシル基の置換度を表わしている。Aはアセチル基の置換度であり、またBは炭素原子数3〜22のアシル基の置換度である。TACの90重量%以上が0.1mm〜4mmの粒子であることが好ましい。
(I) 2.5≦A+B≦3.0
(II) 0≦A≦3.0
(III) 0≦B≦2.9
但し、本実施形態に用いられるポリマーはセルロースアシレートに限定されるものではない。
セルロースを構成するβ−1,4結合しているグルコース単位は、2位,3位及び6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部または全部を炭素数2以上のアシル基によりエステル化した重合体(ポリマー)である。アシル置換度は、2位,3位及び6位それぞれについて、セルロースの水酸基がエステル化している割合(100%のエステル化は置換度1である)を意味する。
全アシル化置換度、即ち、DS2+DS3+DS6は2.00〜3.00が好ましく、より好ましくは2.22〜2.90であり、特に好ましくは2.40〜2.88である。また、DS6/(DS2+DS3+DS6)は0.28以上が好ましく、より好ましくは0.30以上、特に好ましくは0.31〜0.34である。ここで、DS2はグルコース単位の2位の水酸基のアシル基による置換度(以下、「2位のアシル置換度」とも言う)であり、DS3は3位の水酸基のアシル基による置換度(以下、「3位のアシル置換度」とも言う)であり、DS6は6位の水酸基のアシル基による置換度(以下、「6位のアシル置換度」とも言う)である。
本発明のセルロースアシレートに用いられるアシル基は1種類だけでも良いし、或いは2種類以上のアシル基が使用されていても良い。2種類以上のアシル基を用いるときは、その1つがアセチル基であることが好ましい。2位,3位及び6位の水酸基による置換度の総和をDSAとし、2位,3位及び6位の水酸基のアセチル基以外のアシル基による置換度の総和をDSBとすると、DSA+DSBの値は、より好ましくは2.22〜2.90であり、特に好ましくは2.40〜2.88である。また、DSBは0.30以上であり、特に好ましくは0.7以上である。さらにDSBはその20%以上が6位水酸基の置換基であるが、より好ましくは25%以上が6位水酸基の置換基であり、30%以上がさらに好ましく、特には33%以上が6位水酸基の置換基であることが好ましい。またさらに、セルロースアシレートの6位の置換度が0.75以上であり、さらには0.80以上であり特には0.85以上であるセルロースアシレートも挙げることができる。これらのセルロースアシレートにより溶解性の好ましい溶液(ドープ)が作製できる。特に非塩素系有機溶媒において、良好な溶液の作製が可能となる。さらに粘度が低く、濾過性の良い溶液の作製が可能となる。
セルロースアシレートの原料であるセルロースは、リンター,パルプのどちらから得られたものでも良い。
セルロースアシレートの炭素数2以上のアシル基としては、脂肪族基でもアリール基でも良く特に限定されない。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステル或いは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していても良い。これらの好ましい例としては、プロピオニル、ブタノイル、ペンタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げることができる。これらの中でも、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどがより好ましく、特に好ましくはプロピオニル、ブタノイルである。
(溶媒)
ドープを調製する溶媒としては、芳香族炭化水素(例えば、ベンゼン,トルエンなど)、ハロゲン化炭化水素(例えば、ジクロロメタン,クロロベンゼンなど)、アルコール(例えば、メタノール,エタノール,n−プロパノール,n−ブタノール,ジエチレングリコールなど)、ケトン(例えば、アセトン,メチルエチルケトンなど)、エステル(例えば、酢酸メチル,酢酸エチル,酢酸プロピルなど)及びエーテル(例えば、テトラヒドロフラン,メチルセロソルブなど)などが挙げられる。ドープとはポリマーを溶媒に溶解または分散して得られるポリマー溶液,分散液を意味している。
これらの中でも炭素原子数1〜7のハロゲン化炭化水素が好ましく用いられ、ジクロロメタンが最も好ましく用いられる。TACの溶解性、流延膜の支持体からの剥ぎ取り性、フィルムの機械的強度、及びフィルムの光学特性等の物性の観点から、ジクロロメタンの他に炭素原子数1〜5のアルコールを1種ないし数種類混合することが好ましい。アルコールの含有量は、溶媒全体に対し2重量%〜25重量%が好ましく、5重量%〜20重量%がより好ましい。アルコールの具体例としては、メタノール,エタノール,n−プロパノール,イソプロパノール,n−ブタノールなどが挙げられるが、メタノール,エタノール,n−ブタノール或いはこれらの混合物が好ましく用いられる。
ところで、最近、環境に対する影響を最小限に抑えることを目的に、ジクロロメタンを使用しない場合の溶媒組成についても検討が進み、この目的に対しては、炭素原子数が4〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステル、炭素数1〜12のアルコールが好ましく用いられる。これらを適宜混合して用いることがある。例えば、酢酸メチル,アセトン,エタノール,n−ブタノールの混合溶媒が挙げられる。これらのエーテル、ケトン,エステル及びアルコールは、環状構造を有するものであってもよい。また、エーテル、ケトン,エステル及びアルコールの官能基(すなわち、−O−,−CO−,−COO−及び−OH)のいずれかを2つ以上有する化合物も、溶媒として用いることができる。
セルロースアシレートの詳細については、特開2005−104148号の[0140]段落から[0195]段落に記載されている。これらの記載も本発明にも適用できる。また、溶媒及び可塑剤,劣化防止剤,紫外線吸収剤(UV剤),光学異方性コントロール剤,レターデーション制御剤,染料,マット剤,剥離剤,剥離促進剤などの添加剤についても、同じく特開2005−104148号の[0196]段落から[0516]段落に詳細に記載されている。
[実施例]
以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。但し、これらに限定されるものではない。
[実験1]
固形分量30wt%、セルローストリアセテートと塩化メチレンを含むポリマー溶液を準備した。ポリマー溶液を貯えた容器(0.7m×0.5m×0.5m)を湿潤加熱室に配した。湿潤加熱室に、温度110℃・蒸気量0(g/m)の気体と、温度110℃・蒸気量500(g/m)の気体との2種類の気体を供給した。湿潤加熱処理中に、種々の方法にてポリマー溶液の内部を流動させながら、上述の気体供給条件下にて乾燥(脱溶媒)を行った。
<攪拌>
乾燥初期の30分、小型汎用攪拌機を用いて、せん断速度200(1/s)でポリマー溶液を攪拌した後、上述の気体供給条件下で気体とポリマー溶液を接触させながら乾燥を行った。
<蒸気吹き込み>
ノズルを直接ポリマー溶液内部へ挿入し、蒸気の一部を風速2(m/s)で蒸気ノズルから噴出させて乾燥を行った。
<残留塩化メチレンの測定方法>
乾燥固化したサンプル内部をくりぬき、バイヤル瓶に入れて密閉した。このバイヤル瓶をガスクロマトグラフィ(GC390B、ジーエルサイエンス社)と接続したヘッドスペーサー(Tekmar 7000HT、ジーエルサイエンス社)に投入した。ヘッドスペーサーでのバイヤル瓶の加熱条件は180℃、5分間で行った。バイヤル瓶内で揮発した残留溶媒蒸気がヘッドスペーサーから自動でガスクロマトグラフィに投入され、得られたピーク面積と塩化メチレンの検量線からサンプル中に残留していた溶媒量を算出し、バイヤル瓶から取り出したサンプルの重量を電子天秤で測定して固形分量とし、固形分量に対する溶媒量を重量%(以下wt%)として計算した。
表1は、気体の供給条件、ポリマー溶液の流動の有無、残留塩化メチレンが1wt%以下になるまでの時間をまとめたものである。
Figure 2012052075
実験1より、従来のように水蒸気とポリマー溶液を単に接触させて乾燥を行う方式に比較して、ポリマー溶液を攪拌と併せて水蒸気と接触させながら乾燥を行う、もしくは水蒸気を吹き込みながら乾燥を行うことにより、乾燥が飛躍的に促進されることが分かった。
攪拌条件については、せん断速度を100(1/s)未満とすると、ほとんど気泡が発生せず、乾燥促進の効果は得られなかった。せん断速度を1000(1/s)より大きくすると、発生する気泡の密度、気泡体積に変化はなく、乾燥促進の効果も変わらなかった。
気体の吹き込み条件について、速度を0.5(m/s)未満とすると、ほとんど気泡が発生せず、乾燥促進の効果は得られなかった。速度を10(m/s)より大きくすると、発生する気泡の密度、気泡体積に変化はなく、乾燥促進の効果も変わらなかった。
[実験2]
固形分量30wt%、セルローストリアセテートと塩化メチレンを含むポリマー溶液を準備した。ポリマー溶液を貯えた容器(0.7m×0.5m×0.5m)を湿潤加熱室に配した。湿潤加熱室に、温度80〜250℃、蒸気量0〜500(g/m)の範囲内で変化させた気体を供給した。乾燥初期に小型汎用攪拌機を用いて、せん断速度200(1/s)で30分ポリマー溶液を攪拌したのち、湿潤加熱処理中に、上述の気体供給条件下にて乾燥(脱溶媒)を行った。
<残留塩化メチレンの測定方法>
乾燥固化したサンプル内部をくりぬき、バイヤル瓶に入れて密閉した。このバイヤル瓶をガスクロマトグラフィ(GC390B、ジーエルサイエンス社)と接続したヘッドスペーサー(Tekmar 7000HT、ジーエルサイエンス社)に投入した。バイヤル瓶内で揮発した残留溶媒蒸気がヘッドスペーサーから自動でガスクロマトグラフィに投入され、得られたピーク面積と塩化メチレンの検量線からサンプル中に残留していた溶媒量を算出し、バイヤル瓶から取り出したサンプルの重量を電子天秤で測定して固形分量とし、固形分量に対する溶媒量を重量%(以下wt%)として計算した。
表2は、気体温度、蒸気量、残留塩化メチレンが1wt%以下になるまでの時間をまとめたものである。なお、表2中において乾燥風蒸気量の()内の数値は相対湿度を示す。
Figure 2012052075
実験2より、気体温度が同じ場合、蒸気量が多くなるにしたがい、残留塩化メチレンが1wt%以下になるまでの時間が短くなることが分かる。蒸気量が同じ場合、気体温度が高くなるにしたがい、残留塩化メチレンが1wt%以下になるまでの時間が短くなることが分かる。
10…ドープ製造設備、11、13…配管、12…ストックタンク、14…溶液製膜設備、40…廃液処理設備、43…脱溶媒装置、44…蒸留塔、52…湿潤加熱室、60…廃液容器、61…ボイラ、62…ブロア、63…熱交換器、64…混合機、65…再加熱装置、72…攪拌機、74…攪拌翼、80…温調機、82…ノズル、300…TAC、301…溶媒、302…添加剤、305…膨潤液、306…ドープ、320…廃液、321…残留物、322…混合液、330…精製溶媒、410…湿潤気体

Claims (10)

  1. ポリマー溶液の脱溶媒方法であって、
    少なくとも第1溶媒、及びポリマーを含むポリマー溶液を準備する工程と、
    前記第1溶媒と異なる第2溶媒を含み、温度及び/又は湿度が制御された気体中に前記ポリマー溶液を配し、かつ前記ポリマー溶液を流動する工程と、
    を備えるポリマー溶液の脱溶媒方法。
  2. 請求項1記載のポリマー溶液の脱溶媒方法であって、前記ポリマー溶液の内部に機械的にせん断力を加えることにより前記ポリマー溶液を流動するポリマー溶液の脱溶媒方法。
  3. 請求項2記載のポリマー溶液の脱溶媒方法であって、前記ポリマー溶液を流動するために加えられるせん断力が、せん断速度100(1/s)〜1000(1/s)のせん断力であるポリマー溶液の脱溶媒方法。
  4. 請求項1記載のポリマー溶液の脱溶媒方法であって、前記ポリマー溶液に前記気体を吹き込むことにより前記ポリマー溶液を流動するポリマー溶液の脱溶媒方法。
  5. 請求項4記載のポリマー溶液の脱溶媒方法であって、前記気体を吹き込む速度が0.5(m/s)〜10(m/s)であるポリマー溶液の脱溶媒方法。
  6. 請求項1〜5の何れか記載のポリマー溶液の脱溶媒方法であって、前記気体の温度が80℃〜250℃の範囲にあるポリマー溶液の脱溶媒方法。
  7. 請求項1〜6の何れか記載のポリマー溶液の脱溶媒方法であって、前記気体中の前記第2溶媒の蒸気量は、前記ポリマー溶液の表面近傍温度における第2溶媒の飽和蒸気量をMSとすると、0.5MS〜1MSであるポリマー溶液の脱溶媒方法。
  8. 請求項1〜7の何れか記載のポリマー溶液の脱溶媒方法であって、前記第1溶媒がメチレンクロライド、メタノール、ブタノールのうち少なくとも1つを含み、前記第2溶媒が水、メタノール、アセトン、メチルケトンのうち少なくとも1つを含むポリマー溶液の脱溶媒方法。
  9. 請求項1〜8の何れか記載のポリマー溶液の脱溶媒方法であって、前記ポリマー溶液を準備する工程において、廃棄物中に含ませて前記ポリマー溶液を準備するポリマー溶液の脱溶媒方法。
  10. ポリマー溶液の脱溶媒装置であって、
    少なくとも第1溶媒及びポリマーを含むポリマー溶液を保持し、前記ポリマー溶液の温度を制御する手段と、
    前記第1溶媒と異なる第2溶媒を含む気体を供給する手段と、
    前記気体中の前記第2溶媒蒸気圧及び温度、前記ポリマー溶液表面温度を検出する手段と、
    前記検出手段の検出結果に基づいて前記気体の供給量及び温度を制御する手段と、
    前記ポリマー溶液を流動する手段と、
    を有するポリマー溶液の脱溶媒装置。
JP2010198096A 2010-09-03 2010-09-03 ポリマー溶液の脱溶媒方法、及び装置 Pending JP2012052075A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198096A JP2012052075A (ja) 2010-09-03 2010-09-03 ポリマー溶液の脱溶媒方法、及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198096A JP2012052075A (ja) 2010-09-03 2010-09-03 ポリマー溶液の脱溶媒方法、及び装置

Publications (1)

Publication Number Publication Date
JP2012052075A true JP2012052075A (ja) 2012-03-15

Family

ID=45905769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198096A Pending JP2012052075A (ja) 2010-09-03 2010-09-03 ポリマー溶液の脱溶媒方法、及び装置

Country Status (1)

Country Link
JP (1) JP2012052075A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514005A (ja) * 2012-03-28 2015-05-18 ラシリック, インコーポレイテッドRASIRC, Inc. 多成分溶液からプロセスガスを送達する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514005A (ja) * 2012-03-28 2015-05-18 ラシリック, インコーポレイテッドRASIRC, Inc. 多成分溶液からプロセスガスを送達する方法

Similar Documents

Publication Publication Date Title
JP4889335B2 (ja) 溶液製膜方法
JP4749741B2 (ja) テンタ式乾燥機及び溶液製膜方法
JP4849927B2 (ja) 溶液製膜方法
JP4610507B2 (ja) 溶液製膜方法
JP2008242215A (ja) 溶液製膜方法及び溶液製膜設備
JP5339679B2 (ja) 高融点化合物の除去方法及び設備、溶媒回収方法及び設備、溶液製膜方法及び設備
JP2012052075A (ja) ポリマー溶液の脱溶媒方法、及び装置
JP2006306052A (ja) 溶液製膜方法
JP5571300B2 (ja) 溶液製膜方法及び溶液製膜設備
JP2005262762A (ja) 溶液製膜方法
JP2007316858A (ja) 防爆装置及び方法並びにポリマーフイルムの製造装置及び方法
KR101366041B1 (ko) 폴리머 필름의 제조방법
JP5265286B2 (ja) 溶液製膜方法
JP2008230234A (ja) セルロースアシレートフィルムの製造方法
JP4841273B2 (ja) 溶液製膜方法
JP4823783B2 (ja) ポリマーフイルムの製造方法
JP2011246504A (ja) セルロースアシレートフィルムの製造方法
JP2007290370A (ja) ポリマーフイルムの製造装置及び製造方法
JP2009083219A (ja) ポリマー溶液の脱溶媒方法
JP5037879B2 (ja) 流延装置、溶液製膜設備、流延膜の形成方法及び溶液製膜方法
JP5305891B2 (ja) 溶液製膜方法
JP2009233937A (ja) セルロースアシレートフィルムの製造方法
JP2005000793A (ja) 添加剤除去方法及び溶液製膜方法
JP2009161702A (ja) セルロースアシレートフィルムの製造方法
JP5153393B2 (ja) セルロースアシレートフィルムの製造方法