JP2012049361A - ボンド磁石の製造方法及びボンド磁石 - Google Patents

ボンド磁石の製造方法及びボンド磁石 Download PDF

Info

Publication number
JP2012049361A
JP2012049361A JP2010190700A JP2010190700A JP2012049361A JP 2012049361 A JP2012049361 A JP 2012049361A JP 2010190700 A JP2010190700 A JP 2010190700A JP 2010190700 A JP2010190700 A JP 2010190700A JP 2012049361 A JP2012049361 A JP 2012049361A
Authority
JP
Japan
Prior art keywords
magnet
magnetized
powder
bonded magnet
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010190700A
Other languages
English (en)
Inventor
Haruhiro Yukimura
治洋 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2010190700A priority Critical patent/JP2012049361A/ja
Publication of JP2012049361A publication Critical patent/JP2012049361A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】小型化・小径化された着磁極間距離の狭いボンド磁石の被着磁体に対して、多極磁場を印加することが可能であり、かつ、効率の良い簡素化された構成の粉末加工成形機によって製造できるボンド磁石の製造方法を提供する。
【解決手段】未着磁の被着磁体を、磁石材料のキュリー点以上の温度に昇温し、その後、降温し、一定の磁場を被着磁体に印加してボンド磁石を製造する方法において、ボンド磁石用の磁石粉と熱硬化樹脂粉との混合粉7´´を粉末成形加工機100で加圧すると同時にキュリー点以上の温度に昇温中に熱硬化樹脂粉を熱硬化させる。その後、連続して、ダイ4に包含される加熱手段からの熱を断熱部3で遮りながら、被着磁体を着磁部2で多極着磁して、小型・小径のモータ、ロータ等の回転子用のボンド磁石を製造する。
【選択図】図1

Description

本発明は、ボンド磁石の製造方法及びボンド磁石に関し、さらに詳細には円環状、円筒状であって多極着磁したボンド磁石の製造方法及びボンド磁石に関する。
ボンド磁石は、通常、未着磁の磁石粉と熱硬化性樹脂粉とを混合して混合粉を作製し、この混合粉を金型を含む粉末成形加工機で圧縮成形体を作製し、該圧縮成形体の熱硬化樹脂分を熱硬化し、所望の形状のいわゆるグリーン体(本願明細書では「被着磁体」という)を作製する。この後、被着磁体は着磁され、永久磁石化されたボンド磁石を得る。
上記方法によって製造されたボンド磁石は、混合粉が粉末成形加工機によって好適に圧縮成形されるため高密度となり、高特性のボンド磁石を得ることができる。このようにして得られるボンド磁石は、円環状又は円筒状に圧縮成形・熱硬化された後、N極、S極が交互に多極着磁され、しばしばステッピングモータ等の回転子に使用される。
ところで、年々、回転機構を含むエレクトロニクス製品、そして、そこに使用される回転子も軽薄短小化している。そして、それにつれ回転子用のボンド磁石が小型、小径化しており、多極着磁が困難になってきている。
多極着磁は、マグネットワイヤにパルス状の大電流を流してボンド磁石に多極化された磁場を付与するものであるが、ボンド磁石が小型、小径化すると多極着磁を施す際、着磁極間距離が狭くならざるを得ない。そのため現状の着磁手段のマグネットワイヤを細くする必要が生じる。ところが、十分な着磁を施すためにパルス電流を流すと、細いマグネットワイヤはジュール熱で断線し易くなる。
この不具合を解決するために、特許文献1又は2には、永久磁石(以下、着磁前の磁石を適宜「被着磁体」という)を被着磁体のキュリー点の温度未満の高温に曝すことにより飽和着磁磁場を減少させて着磁する方法が提示されている。しかし、この着磁方法では好適な磁気特性が得られない。
また、この方法では、着磁コイルに通電しながら磁場を被着磁体に対して印加する際、高温によって絶縁部分が破壊しがちである。また、同方法では、高温に曝されるため着磁手段のモールド樹脂材が劣化し易く、結果的に着磁手段の寿命が短くなり製造コスト上好ましくない。
そこで、上記の着磁方法を改善すべく、本願発明者は、特許文献3に示されている、被着磁体を磁石材料のキュリー点以上の温度に昇温してから、キュリー点未満の温度まで降温させつつ、その間一定の磁場を印加しつづける着磁方法を見出した[以下、この方法による着磁方法をUHM着磁法(Ultra High Magnetizing processの略称)と称する]。
係るUHM着磁法によれば、円環状又は円筒状の被着磁体が小径化した状態で多極磁化して着磁極間距離が狭くなっても、好適な多極着磁が可能であり上記課題を解決できる。
特許2940048号公報 特開平6−140248号公報 特開2006−203173号公報
ところが、被着磁前の熱硬化が完了した被着磁体たるボンド磁石に、さらに別の加熱手段を用いながらUHM着磁法を施すと、一度熱硬化樹脂を熱硬化したボンド磁石をキュリー点以上という高温まで再加熱することになる。これでは、二度の加熱工程が必要であり、製造コスト上、好ましくない結果を招く。
本発明は、従来のボンド磁石の製造工程にUHM着磁法を採用しながら、工程を煩雑にすることなくかつ低製造コストで、好適な磁気特性が得られるボンド磁石の製造方法及びボンド磁石を提供することを目的とする。
(発明の態様)以下、当該発明の態様を示す。(1)から(4)項が請求項1から請求項4に対応する。
(1)加熱手段を含むダイと、着磁部と、前記ダイと前記着磁部との間に断熱部とを含む粉末成形用金型を備えた粉末成形加工機によってボンド磁石を製造する方法であって、前記ボンド磁石用の磁石粉末及び熱硬化性樹脂を混合した混合粉を加圧し、かつ前記熱硬化性樹脂を熱硬化して、未着磁の被着磁体を成形し、その後、前記加熱手段からの熱を前記断熱部で遮りながら前記被着磁体を前記着磁部で着磁してボンド磁石を製造することを特徴とするボンド磁石の製造方法。
(1)項に係るボンド磁石の製造方法によれば、ボンド磁石が小型、小径化し、かつ円環状、円筒状にし、多極を持つ回転子用ボンド磁石を製造することができる。
特に、本項では、一台の粉末加工性成形機を用いて、ボンド磁石の、加圧成形、熱硬化及び着磁の各工程を連続化することができる。
(2)前記熱硬化する工程は、前記ボンド磁石用の磁石材料のキュリー点以上の温度まで昇温されることによってなされ、前記熱硬化後の前記未着磁の被着磁体は、キュリー点以上の温度を維持したまま前記着磁部に移動され、前記着磁部では、前記熱硬化後の前記未着磁の被着磁体に、キュリー点以上の温度からキュリー点未満の温度に下がるまで、着磁用の磁場を印加し続けることを特徴とする(1)項に記載のボンド磁石の製造方法。
本項は、UHM着磁法を本発明に係るボンド磁石の着磁に適用する方法を例示する。本項によって、被着磁体が小型、小径化されたものであっても、被着磁体に多極着磁が好適に施される。
(3)前記着磁する工程は、電磁石又は永久磁石によって印加される多極磁場で行われることを特徴とする(1)項または(2)項のいずれかに記載のボンド磁石の製造方法。
着磁部の着磁手段には、電磁石又は永久磁石が使用される。前者の電磁石の場合は、電磁石を構成するモールド部分等が熱によって破壊されないように、かつ、後者の永久磁石の場合は、熱によって永久磁石が減磁しないように、粉末加工成形機の金型機構を改変する必要がある。それぞれについての好適実施形態は、後述する第1実施形態、第2実施形態に対応する。
(4) (1)項から(3)項のいずれかに記載の製造方法によって製造されるボンド磁石。
(1)項から(3)項の製造方法によって得られる磁石はボンド磁石である。このボンド磁石は、基本的に回転子用のものであるため、多極着磁がされている。小型、小径化されても、上記製造方法によれば、好適な回転子用の多極ボンド磁石を提供することができる。
本発明によれば、従来のボンド磁石の製造工程にUHM着磁法を採用しながら、特に小型、小径化された被着磁体に多極着磁を施すときに、シンプルかつ低コストで、好適な磁気特性が得られるボンド磁石の製造方法及びボンド磁石を提供することができる。
第1実施形態において、ボンド磁石用混合粉を粉末成形加工機の金型部に充填した状態を示す断面図である。 第1実施形態において、ボンド磁石用混合粉を粉末成形加工機の金型部に充填した状態のまま下パンチを鉛直下方に変位させ、磁石粉を圧縮成形および加熱する領域まで移動した状態を示す断面図である。 第1実施形態において、図2に示された充填されたボンド磁石用混合粉を上パンチと下パンチによって加圧して圧縮成形するとともに、熱硬化性樹脂を加熱し被着磁体を作製する状態を示す断面図である。 第1実施形態において、加熱された被着磁体を、下パンチで変位させて、多極着磁する状態を示す断面図である。 第1実施形態において、多極着磁が完了したボンド磁石を取り出す位置まで、下パンチを上げた状態を示す断面図である。 第2実施形態において、ボンド磁石用混合粉を粉末成形加工機の金型部に充填した状態を示す断面図である。 第2実施形態において、図6に示された充填されたボンド磁石用混合粉を上パンチと下パンチによって加圧して圧縮成形するとともに、熱硬化性樹脂を加熱し被着磁体を作製する状態を示す断面図である。 第2実施形態において、加熱された被着磁体を、下パンチで押し上げて、永久磁石を用いて多極着磁する状態を示す断面図である。 第2実施形態において、多極着磁されたボンド磁石を、着磁領域から隔離した状態を示す断面図である。 第2実施形態において、多極着磁が完了したボンド磁石を取り出す位置まで、下パンチを下げた状態を示す断面図である。
以下、図面を参照しながら、本発明に係るボンド磁石の製造方法について、着磁手段に電磁石を使用する第1実施形態と、着磁手段に永久磁石を使用する第2実施形態に分けて説明する。
[第1実施形態]
図1から図5は、第1実施形態に係るボンド磁石の製造方法に用いられる粉末成形加工機100を示す概略断面図である。
まず、図1を参照しながら、粉末成形加工機100の基本構成を説明する。
粉末成形加工機100は、上パンチ1と、臼構造体(2、3、4)と、下パンチ5と、円柱状のコアロッド6とを備えている。
上パンチ1は、フランジ状のストッパ8を備えた円筒部材である。下パンチ5は、上パンチ1と同様にストッパ9をフランジ状に備えた円筒部材である。
図1から分かるように、上パンチ1と下パンチ5は、外径及び内径並びに肉厚が等しく、また対向する端面同士が平行に当接するように形成されている。
臼構造体(2、3、4)は、着磁ヨーク(着磁部)2、断熱部3及びダイ4を含み、上パンチ1及び下パンチ5が摺動できる円柱空間からなるキャビティ10を備え、粉末成形加工機100の基部に固定されている。
着磁ヨーク2は、図示しないが、被着磁体に対して多極着磁可能な構成、機能を持つ電磁石又は永久磁石を含んでいる。
断熱部3は、耐熱性金属製のケーシング(不図示)で形成し、その内部にパイプを引き回して冷却水が循環するようにしたものにしたり、或いは、ケーシング(不図示)内でグラスウール、ロックウール、セルロースファイバのような繊維系断熱材や、フェノールフォームのような発泡系断熱材等の断熱材をケーシングの中に包含させるようにすることが好ましい。同時にケーシング内に断熱材を含ませながら冷却水を循環するようにしてもよい。さらに、断熱部3の体積を大きくしたり又は鉛直方向に沿って長さを伸ばす等によって、断熱部3の熱容量を大きくして断熱効果を向上させるようにしてもよい。
さらに断熱部3は、従来技術の課題であった高温に曝される着磁手段の構成要素のモールド樹脂が劣化し易く、結果的に着磁手段の寿命が短くかつ製造コスト上好ましくない点を解消するために、ダイ4に含まれる加熱手段(不図示)から発生される熱が、着磁ヨーク2にできるだけ伝達しないようにする。
キャビティ10は、混合粉7´´が充填し易いようにかつ上パンチ1と臼構造体(2、3、4)のかじりを防止できるように、かつ、混合粉7´´が次の工程で重力方向に下降し易いように、鉛直方向上方に末広がり状にテーパ加工されていることが好ましい。また、テーパ付け加工ばかりでなく、上パンチ1、下パンチ5及びダイ4のかじり防止のためには、各隣接し摺動する隙間に一定のクリアランスを設けておくことが好ましい。
円柱状のコアロッド6は、上パンチ1、下パンチ5の中空部に嵌合、摺動可能にされており、上パンチ1、下パンチ5の鉛直方向移動のガイド手段である。
次に、図1から図5を参照して、粉末成形加工機100を用いた、第1実施形態に係るボンド磁石7(図5参照)の製造方法を説明する。
<ボンド磁石用の混合粉7´´の作製及び充填工程:図1参照>
永久磁石粉と熱硬化樹脂粉とを一定の割合で、好ましくは非酸化性雰囲気中で、ヘンシェルミキサー等の混合機で十分に混合した混合粉を準備する。
永久磁石粉は、BaCO3、SrCO3等と酸化鉄との反応によって製造されるフェライト系磁石材料の合金を粉砕したもの、SmCo系、SmCo17系等のサマリウムコバルト系磁石材料、NdFe14B系のネオジウム系磁石材料等の希土類系磁石の合金から粉砕したもの又は同希土類系磁石材料の溶湯を急冷薄帯化して粉砕したものを用いる。サマリウムコバルト系磁石材料、ネオジウム系磁石材料等の希土類系磁石材料は、酸化しやすいため、非酸化雰囲気で粉砕、混合、保管することが好ましい。
熱硬化樹脂は、フェノール樹脂、メラミン樹脂、FRP、エポキシ樹脂、ジアリルフタレート樹脂等の熱硬化樹脂を用いたいずれかの樹脂バインダ用の高分子樹脂を用いることが好ましい。熱硬化樹脂は、二次粒子化していない状態の粉体とし、該粉体と上記のいずれかの永久磁石粉とを十分混合してボンド磁石用の混合粉を作製する。
また、熱硬化樹脂は、各永久磁石粉のキュリー点を鑑みて、熱硬化温度がキュリー点以下のものを選択するようにする。
例えば、フェライト系磁石材料、ネオジウム系磁石材料、サマリウムコバルト系磁石材料の各キュリー点は、それぞれ460度、310度、700〜800度程度とされている。
このようにキュリー点が各磁石材料で異なるため、各磁石材料に応じて、キュリー点以下で熱硬化するような熱硬化温度特性を備えた熱硬化樹脂を選択することが好ましい。
以上のように準備されたボンド磁石用の混合粉7´´は、臼構造体(2、3、4)のキャビティ10内に鉛直下方から挿入された下パンチ5を断熱部3の下面よりもやや下の位置に固定して形成された臼構造体(2、3、4)と、下パンチ5と、コアロッド6と、によって囲まれた円環状又は円筒状のキャビティ10に充填される。
この充填の際、臼構造体(2、3、4)に振動を付与しながら充填すると効率的でよい。そして、臼構造体(2、3、4)のキャビティ10から溢れ出た混合粉7´´は、臼構造体(2、3、4)の上端面にたとえば長尺矩形状の板状のへら部材を滑らせてすり切り除去する。このようにすると、上パンチ11がコアロッド6及び臼構造体(2、3、4)に挿入されるときに、上パンチ11と臼構造体(2、3、4)とが、かじることなく、円滑な圧縮成形を達成できる。また、ボンド磁石7(図5参照)のための必要十分な量の混合粉7´´をキャビティ10に充填することができる。
<充填された混合粉7´´の移動工程:図2参照>
次に、下パンチ5を鉛直下方に一定距離下げて、臼構造体(2、3、4)のダイ4の領域まで充填された混合粉7´´を圧縮しないまま移動し、ダイ4の領域に混合粉7´´が位置決めされるように下パンチ5を固定させておく。
<混合粉7´´の圧縮成形及び加熱硬化工程:図3参照>
次に、下パンチ5によって鉛直下方から支えられている混合粉7´´に対して、上パンチ1を鉛直上方から鉛直下方に向け駆動させて、上パンチ1と下パンチ5との間で混合粉7´´を加圧して圧縮成形を行う。このとき略同じタイミングでUHM着磁法を適用する。そのため、ダイ4に含まれるヒータ(不図示)等の加熱手段からの熱を制御することによって、混合粉7´´中の磁石粉のキュリー点よりも高い温度に混合粉7´´を昇温する。
この昇温過程で、混合粉7´´中の熱硬化樹脂が軟化又は溶融し、混合粉7´´をダイ4の領域で圧縮成形・熱硬化するため、ボンド磁石7の着磁前の被着磁体7´が得られる。
<多極着磁工程:図4参照>
上記工程で得られた被着磁体7´を、キュリー点よりも高い温度のまま臼構造体(2、3、4)の着磁ヨーク2の領域まで、下パンチ5で押し上げたら、今度は、断熱部3によってダイ4の加熱手段からの熱を遮りながら、被着磁体7´の温度を自然冷却又は冷却ファンの送風等によって降温させながら、着磁ヨーク2に含まれる図示しない電磁石によって多極着磁し、ボンド磁石7を得る。
<ボンド磁石7の取出し工程:図5参照>
最後に、下パンチ5の上端部を臼構造体(2、3、4)の着磁ヨーク2の頂面に一致させて、温度が下がったボンド磁石7を着磁ヨーク2の頂面上を滑らせながら採取し、図示しないストックエリアに配列し、円環状又は円筒状のボンド磁石7を得る。
このように、第1実施形態によれば、熱硬化樹脂の熱硬化工程と、被着磁体7´の着磁工程とが連続して実行できるため、熱硬化と着磁が、同一の粉末成形加工機100で連続的に施され、すなわち、被着磁体が着磁ヨーク2(着磁部)に移動した時点で多極着磁されたボンド磁石7を得ることができる。
また、第1実施形態によれば、加熱硬化工程に係る手段と着磁中の冷却工程に係る手段が鉛直方向に沿って上パンチ1、下パンチ5、コアロッド6、臼構造体(2、3、4)のキャビティ10が同一の中心軸に沿って形成された金型構造体を粉末成形加工機100に配置することによって、混合粉充填から着磁を経てボンド磁石が多極着磁されるまでの工程を一台の粉末成形加工機100で連続的に処理することができる。
また、第1実施形態では、UHM着磁法による好適な着磁をするため、磁石材料のキュリー点よりも高い温度にボンド磁石用の混合粉若しくは被着磁体を加熱し昇温するための加熱手段をダイ4に含んでいる。そのため、加熱空間が成形金型(上パンチ1、下パンチ5、コアロッド6、臼構造体(2、3、4)等からなる。以下同様)によって形成されるキャビティ10を兼用している。そのため、ボンド磁石用の混合粉を加熱空間に供給し、熱硬化樹脂の熱硬化前における熱硬化樹脂の軟化又は溶融化とを同期させながら加圧成形を行うことができ、熱硬化樹脂の熱硬化後にはボンド磁石の高密度化、ひいては高磁気特性化が容易に可能となる。そして、所望密度のボンド磁石を比較的低圧力で製造することができ、これにより、成形金型の寿命を向上させることができる。
[第2実施形態]
図6から図10は、第2実施形態に係るボンド磁石の製造方法に用いられる粉末成形加工機200を示す概略断面図である。
まず、図6を参照しながら、粉末成形加工機200の基本構成を説明する。
粉末成形加工機200は、上パンチ11と、着磁ヨーク12及び断熱部13からなる組立体18と、ダイ14と、下パンチ15と、円柱状のコアロッド16とを備えている。
ダイ14は、上パンチ11及び下パンチ15が摺動できる円柱空間の
キャビティ10´を備え、粉末成形加工機200に固定されている。
着磁ヨーク12は、上パンチ11に対して摺動可能に嵌合されて配置されるが、その内部に含まれる図示しない着磁手段は永久磁石を用いることができる。
それは、図6に示されるように、着磁ヨーク12と着磁ヨーク12の真下に隣接して一体的に配置される断熱部13との組立体18を、図示しない加熱手段を含むダイ14から所定距離、隔離するためである。この所定距離の隔離空間と断熱部13とによって、着磁手段の永久磁石が、加熱手段から発生する熱に第1実施形態よりも曝されることがないため、熱減磁によって当該永久磁石の磁力が低下することを防げられ、着磁手段としての機能が維持される。
上パンチ11及び下パンチ15は、第1実施形態で説明した上パンチ1及び下パンチ5と同様の構成を有し、また、断熱部13、着磁ヨーク12及びキャビティ10´は、第1実施形態の断熱部3、着磁ヨーク2及びキャビティ10と同様の構成を有するので、これらの説明は省略する。
次に、図6から図10を参照して、粉末成形加工機200を用いた、第2実施形態に係るボンド磁石17の製造方法を以下説明する。
<混合粉17´´の充填工程:図6参照>
第1実施形態と同様な方法で準備した永久磁石粉と熱硬化樹脂粉とを十分混合した混合粉17´´を、キャビティ10´に、鉛直下方から挿入された下パンチ15を、キャビティ10´内の適当な位置に配置し、ダイ14、下パンチ15及びコアロッド16によって形成された空間に第1実施形態と同様な方法で充填する。
<混合粉17´´の圧縮成形及び加熱硬化工程:図7参照>
次に、下パンチ15で固定されている、ダイ14の領域にある混合粉17´´に対して鉛直上方から鉛直下方に向けて、上パンチ11を駆動させて、混合粉17´´の圧縮成形を行う。このとき同時に、図示しないダイ14の加熱手段によって、混合粉17´´中の磁石粉の磁性体のキュリー点よりも高い温度まで混合粉17´´を昇温する。
<多極着磁工程:図8参照>
混合粉17´´を加圧して圧縮成形すると同時に熱硬化樹脂を熱硬化すると被着磁体17´が作製されるが、この被着磁体17´を、組立体18の着磁ヨーク12の領域まで、下パンチ15で押し上げる。着磁ヨーク12の領域に被着磁体17´を位置決めし、着磁ヨーク12に含まれる図示しない永久磁石によって、被着磁体17´が多極着磁されたボンド磁石17を得る。
<ボンド磁石17の取出し工程:図9、10参照>
次に、上パンチ11と上パンチ11に嵌合された着磁ヨーク12及び断熱材13との組立体18とを、鉛直上方に移動させ(図9)、下パンチ15の上端部をダイ14の頂面に一致させる(図10)。それから、例えば、自然冷却されたボンド磁石17を着磁ヨーク2の頂面上を滑らせながら採取し、円環状又は円筒状のボンド磁石17を得る。
以上、第2実施形態によれば、粉末加工成形機200において永久磁石が熱から遮断されるように配置されて熱減磁のおそれがなくなるため、被着磁体に対する着磁手段に永久磁石を使うことができる。併せて、第2実施形態によれば、第1実施形態に係るボンド磁石の製造法で得られるボンド磁石と同様な、好適な磁気特性を持ち、かつ、小型、小径化され、かつ、多極着磁されたボンド磁石の製造方法を提供することができる。また、永久磁石を着磁手段に使うと着磁用の電力が不要であり、コスト削減に貢献できるという利点がある。
尚、本発明は、上記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、第2実施形態で着磁手段に永久磁石を用いたが、永久磁石の代わりに電磁石を用いてもよい。
2、12:着磁ヨーク(着磁部)、3、13:断熱部、4、14:ダイ、7´´、17´´:混合粉、7´、17´:被着磁体、7、17:ボンド磁石、100、200:粉末成形加工機。

Claims (4)

  1. 加熱手段を含むダイと、着磁部と、前記ダイと前記着磁部との間に断熱部とを含む粉末成形用金型を備えた粉末成形加工機によってボンド磁石を製造する方法であって、
    前記ボンド磁石用の磁石粉末及び熱硬化性樹脂を混合した混合粉を加圧し、かつ前記熱硬化性樹脂を熱硬化して、未着磁の被着磁体を成形し、
    その後、前記加熱手段からの熱を前記断熱部で遮りながら前記被着磁体を前記着磁部で着磁してボンド磁石を製造することを特徴とするボンド磁石の製造方法。
  2. 前記熱硬化する工程は、前記ボンド磁石用の磁石材料のキュリー点以上の温度まで昇温されることによってなされ、前記熱硬化後の前記未着磁の被着磁体は、キュリー点以上の温度を維持したまま前記着磁部に移動され、
    前記着磁部では、前記熱硬化後の前記未着磁の被着磁体に、キュリー点以上の温度からキュリー点未満の温度に下がるまで、着磁用の磁場を印加し続けることを特徴とする請求項1に記載のボンド磁石の製造方法。
  3. 前記着磁する工程は、電磁石又は永久磁石によって印加される多極磁場で行われることを特徴とする請求項1または請求項2のいずれかに記載のボンド磁石の製造方法。
  4. 請求項1から請求項3のいずれかに記載の製造方法によって製造されるボンド磁石。
JP2010190700A 2010-08-27 2010-08-27 ボンド磁石の製造方法及びボンド磁石 Pending JP2012049361A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190700A JP2012049361A (ja) 2010-08-27 2010-08-27 ボンド磁石の製造方法及びボンド磁石

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190700A JP2012049361A (ja) 2010-08-27 2010-08-27 ボンド磁石の製造方法及びボンド磁石

Publications (1)

Publication Number Publication Date
JP2012049361A true JP2012049361A (ja) 2012-03-08

Family

ID=45903893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190700A Pending JP2012049361A (ja) 2010-08-27 2010-08-27 ボンド磁石の製造方法及びボンド磁石

Country Status (1)

Country Link
JP (1) JP2012049361A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050288A (ja) * 2013-08-30 2015-03-16 ミネベア株式会社 ボンド磁石の製造方法およびボンド磁石
WO2023120242A1 (ja) * 2021-12-22 2023-06-29 ミネベアミツミ株式会社 永久磁石の製造方法および永久磁石

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050288A (ja) * 2013-08-30 2015-03-16 ミネベア株式会社 ボンド磁石の製造方法およびボンド磁石
WO2023120242A1 (ja) * 2021-12-22 2023-06-29 ミネベアミツミ株式会社 永久磁石の製造方法および永久磁石

Similar Documents

Publication Publication Date Title
US5886070A (en) Production method for anisotropic resin-bonded magnets
US6423264B1 (en) Process for forming rotating electromagnets having soft and hard magnetic components
EP1830451A1 (en) Rotor for motor and method for producing the same
JP5334175B2 (ja) 異方性ボンド磁石の製造方法、磁気回路及び異方性ボンド磁石
WO2014038607A1 (ja) 永久磁石の製造方法、永久磁石の製造装置、永久磁石、回転電機、および回転電機用の永久磁石
US3564705A (en) Method for providing oriented pole pieces in a dynamoelectric machine
US20240006100A1 (en) Method of manufacturing permanent magnets
Kim et al. A new anisotropic bonded NdFeB permanent magnet and its application to a small DC motor
CN105702444A (zh) 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品
US20130192723A1 (en) Method for manufacturing bonded magnet
WO2006098410A1 (ja) 永久磁石の着磁装置、および永久磁石の着磁方法
JP2012049361A (ja) ボンド磁石の製造方法及びボンド磁石
US20080298995A1 (en) Method of manufacturing rare-earth bond magnet
JP4605317B2 (ja) 希土類異方性ボンド磁石の製造方法、磁石成形体の配向処理方法および磁場中成形装置
JP2001355006A (ja) 複合構造体とその製造方法並びにモーター
JP6618836B2 (ja) 希土類焼結磁石の製造方法
JPS63110605A (ja) 磁石の製造方法および装置
US20190311827A1 (en) Sintered magnet, electrical machine, use of the sintered magnet for an electrical machine and manufacturing method of a sintered magnet
JP6021096B2 (ja) ボンド磁石の減磁量を増加させる方法
JPH09148165A (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JP6054681B2 (ja) 希土類鉄系ボンド磁石およびそれを用いたロータ,電磁デバイスの製造方法
JP6438713B2 (ja) 希土類鉄系磁石粉体およびそれを用いたボンド磁石
JP2017103940A (ja) ロータの製造方法
JP2018037620A (ja) シャフト一体型ボンド磁石の成形方法及び製造方法
JPS62224916A (ja) 希土類磁石の製造方法