JP2012042384A - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP2012042384A
JP2012042384A JP2010185148A JP2010185148A JP2012042384A JP 2012042384 A JP2012042384 A JP 2012042384A JP 2010185148 A JP2010185148 A JP 2010185148A JP 2010185148 A JP2010185148 A JP 2010185148A JP 2012042384 A JP2012042384 A JP 2012042384A
Authority
JP
Japan
Prior art keywords
temperature
heat
temperature sensor
sensing element
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010185148A
Other languages
Japanese (ja)
Other versions
JP5644257B2 (en
Inventor
Kentaro Shioda
健太郎 潮田
Hiroshi Kobayashi
浩 小林
Yutaka Matsuo
裕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010185148A priority Critical patent/JP5644257B2/en
Publication of JP2012042384A publication Critical patent/JP2012042384A/en
Application granted granted Critical
Publication of JP5644257B2 publication Critical patent/JP5644257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To propose a temperature sensor capable of having a long wire length without making curvature radius of lead wires small.SOLUTION: The temperature sensor 100 includes thermo sensitive element 10 for outputting electrical signals corresponding to the temperature of a heat source and the lead wires 31, 32 for outputting the electrical signals. The lead wires 31, 32 are wired to wind around a prescribed point.

Description

本発明は熱源の温度を非接触測定する温度センサに関する。   The present invention relates to a temperature sensor for non-contact measurement of the temperature of a heat source.

熱源の温度を非接触測定するための温度センサとして、熱源から輻射される赤外線の熱量を検出する方式が知られている。この種の温度センサは、熱源からの赤外線を効率よく吸収する赤外線吸収膜を備えており、赤外線受光に起因する赤外線吸収膜の温度上昇を感温素子で検知する。感温素子は、温度に対応して電気的特性が変化する温度特性を有しており、感温素子から出力される電気信号に基づいて熱源の温度を推定することができる。このような感温素子として、温度に応じて抵抗値が変化する抵抗温度特性を有するサーミスタ、又は温度に応じた熱起電力を発生する熱電対等が知られている。また、赤外線吸収膜として、遠赤外線の波長帯域を吸収する特性を有するポリイミド等の高分子フィルムが知られている。   As a temperature sensor for non-contact measurement of the temperature of the heat source, a method of detecting the amount of infrared heat radiated from the heat source is known. This type of temperature sensor includes an infrared absorption film that efficiently absorbs infrared rays from a heat source, and a temperature-sensitive element detects an increase in temperature of the infrared absorption film due to infrared reception. The temperature sensing element has a temperature characteristic in which an electrical characteristic changes corresponding to the temperature, and the temperature of the heat source can be estimated based on an electric signal output from the temperature sensing element. As such a temperature sensitive element, a thermistor having a resistance temperature characteristic in which a resistance value changes according to temperature, a thermocouple that generates a thermoelectromotive force according to temperature, or the like is known. Further, as an infrared absorbing film, a polymer film such as polyimide having a characteristic of absorbing a far-infrared wavelength band is known.

感温素子から出力される電気信号は、赤外線吸収膜上に配線されたリード配線を伝わって検出回路に供給される。リード配線の熱伝導率(400W/mK)は、赤外線吸収膜の熱伝導率(0.2〜0.4W/mK)よりも極めて高いため、赤外線吸収膜から感温素子に流れ込んだ熱量の一部は、感温素子の温度上昇に殆ど寄与せずに、リード配線を伝わって外部に流出してしまい、感温素子の感度低下を招く要因の一つとして指摘されている。このような事情に鑑み、感温素子からリード配線を伝わって外部に熱が流出することを抑制するための配線パターンとして、例えば、実用新案登録2506241号公報に開示されているように、ミアンダ状の配線パターンが知られている。ミアンダ状の配線パターンは、繰り返し折り返しながら屈曲しているため、実質的な配線長を長くすることが可能になり、熱抵抗を高くできるという利点を有している。   The electrical signal output from the temperature sensing element is supplied to the detection circuit through the lead wiring wired on the infrared absorption film. Since the thermal conductivity (400 W / mK) of the lead wiring is extremely higher than the thermal conductivity (0.2 to 0.4 W / mK) of the infrared absorption film, the amount of heat flowing from the infrared absorption film to the temperature sensitive element is one. This part is pointed out as one of the factors that cause a decrease in the sensitivity of the temperature sensing element because it hardly flows into the temperature of the temperature sensing element and flows out through the lead wiring. In view of such circumstances, as a wiring pattern for suppressing heat from flowing out of the lead wire from the temperature sensing element, for example, as disclosed in Utility Model Registration No. 2506241, a meander shape is disclosed. The wiring pattern is known. Since the meander-like wiring pattern is bent while being repeatedly folded, the substantial wiring length can be increased and the thermal resistance can be increased.

実用新案登録2506241号公報Utility Model Registration No. 2506241

しかし、赤外線吸収膜の面積が小さいと、限られたスペース内にミアンダ状のリード配線を詰め込まなければならないので、折り曲げの曲率半径は極めて小さいものとなり、回路設計上の制限を受ける虞がある。また、リード配線を小さな曲率半径で繰り返し屈曲させると、折り返し箇所に作用する応力によってリード配線の剥離やひび割れ等を引き起こす場合があるので、好ましくない。特に、感温素子からの熱流出抑制のためにリード配線の熱抵抗を高くする場合には、リード配線を細く薄くするので、応力に対して脆くなりやすくなる。   However, if the area of the infrared absorption film is small, meander-shaped lead wirings must be packed in a limited space, so that the bending radius of curvature becomes extremely small, which may limit circuit design. Further, it is not preferable to repeatedly bend the lead wiring with a small radius of curvature, because the lead wiring may be peeled off or cracked due to the stress acting on the folded portion. In particular, when the thermal resistance of the lead wiring is increased in order to suppress the heat outflow from the temperature sensitive element, the lead wiring is thinned and thinned, so that it tends to become brittle against stress.

そこで、本発明は、リード配線の曲率半径を小さくすることなく、その配線長を長くできる温度センサを提案することを課題とする。   Therefore, an object of the present invention is to propose a temperature sensor that can increase the wiring length without reducing the radius of curvature of the lead wiring.

上記の課題を解決するため、本発明に係わる温度センサは、熱源の温度に対応した電気信号を出力する感温素子と、電気信号を出力するためのリード配線と、を備え、リード配線は、所定点の周囲を巻回するように配線されている。このような配線構造によれば、リード配線が配線される領域の周縁に沿ってリード配線を巻回させることができるので、リード配線が配線される領域面積が小さくても、リード配線の配線長を長くできる。   In order to solve the above-described problems, a temperature sensor according to the present invention includes a temperature-sensitive element that outputs an electrical signal corresponding to the temperature of a heat source, and a lead wiring for outputting the electrical signal. It is wired so as to wind around a predetermined point. According to such a wiring structure, since the lead wiring can be wound along the periphery of the region where the lead wiring is wired, even if the area of the lead wiring is small, the wiring length of the lead wiring is small. Can be long.

温度センサは、熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜を更に備えてもよい。感温素子は、赤外線吸収膜の熱量を検知することにより熱源の温度に対応した電気信号を出力することができる。また、赤外線吸収膜の周縁に沿ってリード配線を巻回させることができるので、赤外線吸収膜の面積が小さくても、リード配線の配線長を長くできる。リード配線による熱伝導以外の熱が感温素子から逃げる場合を想定した場合、熱の逃げる方向に対してリード配線が横断しているため、熱がより逃げにくい構成を提供できる。   The temperature sensor may further include an infrared absorption film that generates heat by absorbing infrared rays radiated from a heat source. The temperature sensing element can output an electric signal corresponding to the temperature of the heat source by detecting the amount of heat of the infrared absorption film. Further, since the lead wiring can be wound along the peripheral edge of the infrared absorption film, the wiring length of the lead wiring can be increased even if the area of the infrared absorption film is small. Assuming that heat other than heat conduction by the lead wiring escapes from the temperature sensitive element, the lead wiring crosses in the direction of heat escape, so that it is possible to provide a configuration in which heat is more difficult to escape.

本発明に係わる温度センサは、赤外線吸収膜に分布する熱量を感温素子に集熱するための集熱部材を更に備えてもよい。赤外線吸収膜に分布する熱量は、集熱部材を伝わって感温素子に速やかに伝熱するため、熱源の温度を正確かつ応答性よく測定することができる。   The temperature sensor according to the present invention may further include a heat collecting member for collecting the amount of heat distributed in the infrared absorption film in the temperature sensitive element. The amount of heat distributed in the infrared absorbing film is transferred to the temperature sensitive element quickly through the heat collecting member, so that the temperature of the heat source can be measured accurately and with good responsiveness.

本発明に係わる温度センサによれば、リード配線の曲率半径を小さくすることなくその配線長を長くできる。   According to the temperature sensor of the present invention, the wiring length can be increased without reducing the curvature radius of the lead wiring.

実施例1に係わる温度センサの説明図である。3 is an explanatory diagram of a temperature sensor according to Embodiment 1. FIG. 実施例2に係わる温度センサの説明図である。It is explanatory drawing of the temperature sensor concerning Example 2. FIG. 比較例に係わる温度センサの説明図である。It is explanatory drawing of the temperature sensor concerning a comparative example. 実施例4に係わる温度センサの回路構成図である。6 is a circuit configuration diagram of a temperature sensor according to Embodiment 4. FIG. 実施例4に係わる温度センサの断面図である。6 is a cross-sectional view of a temperature sensor according to Embodiment 4. FIG. 実施例4に係わる温度センサの一部平面図である。6 is a partial plan view of a temperature sensor according to Embodiment 4. FIG. 実施例4に係わる温度センサの説明図である。FIG. 10 is an explanatory diagram of a temperature sensor according to a fourth embodiment. 実施例4に係わる温度センサの一部断面図である。6 is a partial cross-sectional view of a temperature sensor according to Embodiment 4. FIG. 実施例4に係わる温度センサの一部断面図である。6 is a partial cross-sectional view of a temperature sensor according to Embodiment 4. FIG.

以下、各図を参照しながら本発明に係わる実施例について説明する。同一の部材については同一の符号を付すものとし、重複する説明を省略する。なお、図面は、模式的なものであり、部材相互間の寸法の比率や部材の形状等は、本発明の効果が得られる範囲内で現実のセンサ構造とは異なっていてもよい。   Embodiments according to the present invention will be described below with reference to the drawings. The same members are denoted by the same reference numerals, and redundant description is omitted. The drawings are schematic, and the ratio of dimensions between members, the shape of the members, and the like may be different from the actual sensor structure within a range where the effects of the present invention can be obtained.

図1は実施例1に係わる温度センサ100の説明図である。温度センサ100は、熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜20と、赤外線吸収膜20の熱量を検知することにより熱源の温度に対応した電気信号を出力する感温素子10と、感温素子10から電気信号を出力するためのリード配線31,32とを備える。赤外線吸収膜20の材質は、熱源からの輻射赤外線を効率よく吸収して発熱する材質であればよく、例えば、遠赤外線と称される4μm〜10μmの波長帯域の光に吸収スペクトラムを有する材質が望ましい。このような材質として、フッ素、シリコーン、ポリエステル、ポリイミド、ポリエチレン、ポリカーボネート、PPS(ポリフェニレンスルフィド)等の高分子材料からなる樹脂が好ましい。感温素子10は、温度に応じて電気的特性が変化するセンサ素子(例えば、抵抗温度特性を有するサーミスタ、サーモパイル、金属測温度体等)である。感温素子10は、リード配線31,32にそれぞれ接続する電極11,12を備えており、感温素子10の温度変化に対応する電気特性の変化は、熱源の温度に対応する電気信号としてリード配線31,32から外部に取り出される。例えば、感温素子10が抵抗温度特性を有するサーミスタである場合には、感温素子10の温度変化は、抵抗値変化として現れる。感温素子10に予め所定の電流を流しておくことにより、感温素子10の抵抗値変化は、電圧変化として検出される。感温素子10の出力電圧は、熱源の温度に対応する電気信号として信号処理される。   FIG. 1 is an explanatory diagram of a temperature sensor 100 according to the first embodiment. The temperature sensor 100 absorbs infrared rays radiated from the heat source and generates heat, and the temperature sensing element 10 outputs an electric signal corresponding to the temperature of the heat source by detecting the amount of heat of the infrared absorption film 20. And lead wires 31 and 32 for outputting an electric signal from the temperature sensing element 10. The material of the infrared absorption film 20 may be any material that efficiently absorbs radiation infrared rays from a heat source and generates heat. For example, a material having an absorption spectrum for light in a wavelength band of 4 μm to 10 μm called far infrared rays. desirable. As such a material, a resin made of a polymer material such as fluorine, silicone, polyester, polyimide, polyethylene, polycarbonate, PPS (polyphenylene sulfide) is preferable. The temperature sensing element 10 is a sensor element (for example, a thermistor, a thermopile, a metal thermometer having a resistance temperature characteristic, etc.) whose electrical characteristics change according to temperature. The temperature sensing element 10 includes electrodes 11 and 12 connected to lead wires 31 and 32, respectively. A change in electrical characteristics corresponding to the temperature change of the temperature sensing element 10 is read as an electrical signal corresponding to the temperature of the heat source. The wires 31 and 32 are taken out to the outside. For example, when the temperature sensitive element 10 is a thermistor having resistance temperature characteristics, the temperature change of the temperature sensitive element 10 appears as a resistance value change. By causing a predetermined current to flow through the temperature sensing element 10 in advance, a change in resistance value of the temperature sensing element 10 is detected as a voltage change. The output voltage of the temperature sensing element 10 is signal-processed as an electrical signal corresponding to the temperature of the heat source.

リード配線31,32は、所定点の周囲を巻回するように配線されている。所定点の位置は、特に限定されるものではないが、例えば、感温素子10が配置されている箇所の任意の箇所が好ましく、感温素子10の中心位置がより好ましい。このような配線構造によれば、赤外線吸収膜20の周縁に沿ってリード配線31,32を巻回させることができるので、赤外線吸収膜20の面積が小さくても、リード配線31,32の配線長を長くできる。また、所定点の周囲を巻回するようにリード配線31,32を巻回させることにより、リード配線31,32の屈曲部分50の曲率半径を大きくできるため、リード配線31,32を急峻に折り曲げる必要がなく、リード配線31,32の剥離やひび割れ等を効果的に抑制できる。例えば、赤外線吸収膜20の形状が矩形である場合には、リード配線31,32の屈曲部分50の折り曲げ角度を90°程度に抑えることができる。   The lead wires 31 and 32 are wired so as to be wound around a predetermined point. Although the position of the predetermined point is not particularly limited, for example, an arbitrary position where the temperature sensing element 10 is disposed is preferable, and the center position of the temperature sensing element 10 is more preferable. According to such a wiring structure, since the lead wirings 31 and 32 can be wound along the peripheral edge of the infrared absorption film 20, even if the area of the infrared absorption film 20 is small, the wiring of the lead wirings 31 and 32 is possible. The length can be increased. Further, by winding the lead wires 31 and 32 so as to wind around a predetermined point, the curvature radius of the bent portion 50 of the lead wires 31 and 32 can be increased, so that the lead wires 31 and 32 are bent sharply. There is no need, and peeling of the lead wires 31 and 32, cracking, and the like can be effectively suppressed. For example, when the shape of the infrared absorption film 20 is rectangular, the bending angle of the bent portion 50 of the lead wirings 31 and 32 can be suppressed to about 90 °.

図2は実施例2に係わる温度センサ200の説明図である。同図に示すように、温度センサ200は、集熱部材40を備える点において実施例1と相違し、その余の点で実施例1,2は共通のセンサ構造を有している。集熱部材40は、赤外線吸収膜20の各所に分布している熱量を捕捉し、これを感温素子10に集熱させるための部材である。集熱部材40は、感温素子10近傍の領域だけでなく感温素子10から離れた領域からも広範囲にわたって熱量を捕捉し、感温素子10に効率良く集熱できるように、電極11,12を起点として赤外線吸収膜20の面内に放射状に形成されている。集熱部材40は、電気信号の伝送に係わる部材ではなく、熱伝導のみに係わる部材であるため、外部の部品に接続することなく、赤外線吸収膜20の面内で終端している。このため、集熱部材40から外部に熱が流出することはなく、集熱部材40の終端から感温素子10へ向かって一方向に熱が流れる。集熱部材40は、赤外線吸収膜20の各所に蓄熱している熱量を万遍なく捕捉するために、電極11,12を起点として赤外線吸収膜20の外周端部に向かって枝分かれを繰り返しながら放射状に形成されているのが好ましい。このような構成により、赤外線吸収膜20に分布する熱量は、集熱部材40の枝と枝との間に島状に点在し、赤外線吸収膜20と感温素子10との間の温度勾配により、感温素子10へ向けて熱の流れを生じさせることができる。また、集熱部材40を放射状に形成することで、熱を捕捉できる集熱範囲50を赤外線吸収膜20全体に拡大することが可能になり、集熱効率を高めることができる。また、集熱部材40と電極11,12との接続部分から赤外線吸収膜20の各点へ至る伝熱経路を短くできるため、赤外線吸収膜20に分布する熱量を低熱抵抗の伝熱経路を通じて感温素子10へ素早く集熱することができる。これにより、感温素子10は、熱源の温度変化に対して応答性よく反応することができる。   FIG. 2 is an explanatory diagram of a temperature sensor 200 according to the second embodiment. As shown in the figure, the temperature sensor 200 is different from the first embodiment in that a heat collecting member 40 is provided, and the first and second embodiments have a common sensor structure. The heat collecting member 40 is a member for capturing the amount of heat distributed in various places of the infrared absorption film 20 and collecting the heat in the temperature sensing element 10. The heat collecting member 40 captures heat over a wide range not only from the region in the vicinity of the temperature sensing element 10 but also from the region away from the temperature sensing element 10, so that the electrodes 11, 12 can collect heat efficiently in the temperature sensing element 10. Are formed radially in the plane of the infrared absorption film 20. The heat collecting member 40 is not a member related to transmission of an electric signal but a member related only to heat conduction, and thus terminates in the plane of the infrared absorption film 20 without being connected to an external component. For this reason, heat does not flow out from the heat collecting member 40, and heat flows in one direction from the end of the heat collecting member 40 toward the temperature sensing element 10. The heat collecting member 40 radiates while repeatedly branching from the electrodes 11 and 12 toward the outer peripheral end of the infrared absorbing film 20 in order to uniformly capture the amount of heat stored in various places of the infrared absorbing film 20. It is preferable that it is formed. With such a configuration, the amount of heat distributed in the infrared absorption film 20 is scattered in an island shape between the branches of the heat collecting member 40, and the temperature gradient between the infrared absorption film 20 and the temperature sensing element 10. Thus, a heat flow can be generated toward the temperature sensing element 10. In addition, by forming the heat collecting member 40 radially, the heat collecting range 50 in which heat can be captured can be expanded to the entire infrared absorbing film 20, and the heat collecting efficiency can be increased. In addition, since the heat transfer path from the connection portion between the heat collecting member 40 and the electrodes 11 and 12 to each point of the infrared absorption film 20 can be shortened, the amount of heat distributed in the infrared absorption film 20 can be sensed through the heat transfer path with low thermal resistance. Heat can be quickly collected to the temperature element 10. Thereby, the temperature sensing element 10 can react with high responsiveness to the temperature change of the heat source.

集熱部材40を流れる熱量は、感温素子10に近づく程、多くなるので、感温素子10に近づく程、集熱部材40を太くして熱抵抗を下げるのが好ましい。これにより、集熱部材40は、終端に近づく程、細くなり、熱抵抗が高くなるので、終端方向への熱の流れを抑制し、感温素子10への熱の流れを促進させることができる。また、赤外線吸収膜20の各点に分布する熱量が少ない場合であっても、低抵抗の集熱部材40を介して熱が集められ、感温素子10へ流れ込むため、感温素子10の温度低下を抑制し、感度特性を高めることができる。   Since the amount of heat flowing through the heat collecting member 40 increases as it approaches the temperature sensing element 10, it is preferable that the heat collecting member 40 be thickened and the thermal resistance be lowered as the temperature sensing element 10 is approached. Thereby, the heat collecting member 40 becomes thinner as it approaches the end, and the thermal resistance becomes higher. Therefore, the heat flow toward the end can be suppressed and the heat flow to the temperature sensing element 10 can be promoted. . Further, even when the amount of heat distributed to each point of the infrared absorption film 20 is small, heat is collected via the low-resistance heat collecting member 40 and flows into the temperature sensing element 10. Decrease can be suppressed and sensitivity characteristics can be enhanced.

熱源からの赤外線が赤外線吸収膜20に輻射され始めた時点では、感温素子10と赤外線吸収膜20との間の温度差は大きく、両者の温度勾配によって集熱部材40から感温素子10へ熱が流入する。すると、感温素子10の温度上昇に伴い、温度勾配は小さくなるので、感温素子10への熱流入は少なくなる。一方、感温素子10に集熱された熱量の一部は、リード配線31,32や外界雰囲気を伝わって放熱され、感温素子10の温度低下が生じるため、温度勾配によって感温素子10への熱流入が持続する。そして、感温素子10へ流れ込む熱量と感温素子10から流れ出す熱量とが釣り合ったところで、熱平衡状態になり、感温素子10の温度は一定になる。   At the time when the infrared rays from the heat source start to be radiated to the infrared absorption film 20, the temperature difference between the temperature sensing element 10 and the infrared absorption film 20 is large, and the temperature gradient from both the heat collecting member 40 to the temperature sensing element 10. Heat flows in. Then, as the temperature of the temperature sensitive element 10 rises, the temperature gradient becomes smaller, so that the heat flow into the temperature sensitive element 10 decreases. On the other hand, a part of the heat collected in the temperature sensing element 10 is radiated through the lead wires 31 and 32 and the ambient atmosphere, and the temperature of the temperature sensing element 10 is lowered. The heat inflow continues. Then, when the amount of heat flowing into the temperature sensing element 10 and the amount of heat flowing out of the temperature sensing element 10 are balanced, a thermal equilibrium state is established, and the temperature of the temperature sensing element 10 becomes constant.

集熱部材40の材質は、赤外線吸収膜20の熱抵抗よりも小さい熱抵抗を有し、熱伝導性に優れている材質であればよい。例えば、集熱部材40の材質は、リード配線31,32の材質と同一でもよく、或いは異なるものでもよい。集熱部材40の材質がリード配線31,32の材質と同一である場合には、集熱部材40とリード配線31,32とを同一の成膜工程で形成できるという利点を有する。例えば、赤外線吸収膜20上に銅箔を形成し、公知の印刷技術を用いてこれを所定形状にパターニングすることで、導電性を有する集熱部材40とリード配線31,32とを一括形成することができる。集熱部材40の材質がリード配線31,32の材質と異なる場合には、集熱部材40の材質として、例えば、金属以外の熱伝導率の高い材質(カーボングラファイト膜など)を用いてもよい。   The material of the heat collection member 40 should just be a material which has a thermal resistance smaller than the thermal resistance of the infrared rays absorption film 20, and is excellent in thermal conductivity. For example, the material of the heat collecting member 40 may be the same as or different from the material of the lead wires 31 and 32. When the material of the heat collecting member 40 is the same as the material of the lead wires 31 and 32, there is an advantage that the heat collecting member 40 and the lead wires 31 and 32 can be formed in the same film forming process. For example, a copper foil is formed on the infrared absorbing film 20 and patterned into a predetermined shape using a known printing technique, thereby forming the heat collecting member 40 and the lead wires 31 and 32 having conductivity at once. be able to. When the material of the heat collecting member 40 is different from the material of the lead wires 31 and 32, for example, a material having a high thermal conductivity other than metal (such as a carbon graphite film) may be used as the material of the heat collecting member 40. .

リード配線31,32は、所定点の周囲(より詳細には、集熱部材40の周囲)を巻回するように配線されている。このような配線構造によれば、赤外線吸収膜20の周縁に沿ってリード配線31,32を巻回させることができるので、集熱部材40の形成領域41の面積を十分に確保しつつ、リード配線31,32の配線長を長くできる。一方、図3に示す比較例に係わる温度センサ300では、リード配線31,32をミアンダ状に折り返し屈曲させているため、リード配線31,32の形成領域71,72の占有面積によって集熱部材40の形成領域42の面積が圧迫されてしまい、集熱部材40の大面積化が困難である。また、リード配線31,32の屈曲部分70の折り曲げ角度は、回路設計上の制約により限度があるため、限られたスペースの中でその配線長を長くするのは困難である。実施例2と比較例とを比較すると、実施例2に係わる集熱部材40の形成領域41の面積は、比較例に係わる集熱部材40の形成領域42の面積の約1.5倍であり、且つ実施例2に係わるリード配線31,32の配線長は、比較例に係わるリード配線31,32の配線長の約1.5倍である。このように、実施例2によれば、集熱部材40の大面積化による集熱効率の向上と、リード配線31,32の熱抵抗増大による熱流出の抑制を両立させることができる。   The lead wirings 31 and 32 are wired so as to be wound around a predetermined point (more specifically, around the heat collecting member 40). According to such a wiring structure, since the lead wirings 31 and 32 can be wound along the peripheral edge of the infrared absorption film 20, the lead is formed while sufficiently securing the area of the formation region 41 of the heat collecting member 40. The wiring length of the wirings 31 and 32 can be increased. On the other hand, in the temperature sensor 300 according to the comparative example shown in FIG. 3, since the lead wires 31 and 32 are bent in a meander shape, the heat collecting member 40 depends on the area occupied by the formation regions 71 and 72 of the lead wires 31 and 32. Therefore, it is difficult to increase the area of the heat collecting member 40. In addition, the bending angle of the bent portion 70 of the lead wirings 31 and 32 is limited due to restrictions in circuit design, so it is difficult to increase the wiring length in a limited space. Comparing Example 2 and the comparative example, the area of the heat collecting member 40 forming region 41 according to Example 2 is about 1.5 times the area of the heat collecting member 40 forming region 42 according to the comparative example. In addition, the wiring length of the lead wirings 31 and 32 according to the second embodiment is about 1.5 times the wiring length of the lead wirings 31 and 32 according to the comparative example. As described above, according to the second embodiment, it is possible to achieve both improvement in heat collection efficiency by increasing the area of the heat collection member 40 and suppression of heat outflow due to increase in the thermal resistance of the lead wires 31 and 32.

比較例では、リード配線31,32の屈曲部分70に作用する応力を低減するために、屈曲部分70の曲率半径を大きくすると、リード配線31,32の折り返し回数が少なくなるので、結果的にその配線長が短くなってしまう。これに対し、実施例2では、リード配線31,32の屈曲部分60に作用する応力を低減するために、屈曲部分60の折り曲げ角度を大きくしても、その配線長は殆ど短くならない。このように、実施例2によれば、屈曲部分60の曲率半径を大きくすることによって、屈曲部分60に作用する応力を低減しつつ、リード配線31,32の配線長を長くすることができる。なお、実施例2において、赤外線吸収膜20の四隅が丸まっている場合には、その丸みに沿って屈曲部分60を緩やかに(曲率半径を大きく)してもリード配線31,32の長さに殆ど影響は生じないが、比較例において、赤外線吸収膜20の四隅が丸まっている場合には、リード配線31,32と赤外線吸収膜20の四隅とが接触しないように屈曲部分70を緩やかにすると、屈曲部分60が広がるため折返し数が減り、リード配線31,32の配線長が短くなるという不都合が生じる。   In the comparative example, if the radius of curvature of the bent portion 70 is increased in order to reduce the stress acting on the bent portion 70 of the lead wirings 31 and 32, the number of turns of the lead wirings 31 and 32 is reduced. The wiring length is shortened. On the other hand, in Example 2, even if the bending angle of the bent portion 60 is increased in order to reduce the stress acting on the bent portion 60 of the lead wirings 31 and 32, the wiring length is hardly shortened. As described above, according to the second embodiment, by increasing the radius of curvature of the bent portion 60, it is possible to increase the wiring length of the lead wires 31 and 32 while reducing the stress acting on the bent portion 60. In the second embodiment, when the four corners of the infrared absorption film 20 are rounded, the length of the lead wirings 31 and 32 is increased even if the bent portion 60 is gently (curved radius) along the roundness. In the comparative example, when the four corners of the infrared absorption film 20 are rounded, the bent portion 70 is loosened so that the lead wires 31 and 32 and the four corners of the infrared absorption film 20 do not come into contact with each other. In addition, since the bent portion 60 is widened, the number of turns is reduced, and the wiring length of the lead wires 31 and 32 is shortened.

図4は実施例3に係わる温度センサ400の回路構成図である。赤外線温度センサ400は、直列接続された赤外線検知用感温素子10A及び固定抵抗素子13Aから成るハーフブリッジ回路と、直列接続された温度補償用感温素子10B及び固定抵抗素子13Bから成るハーフブリッジ回路とが並列接続されたフルブリッジ回路を有している。二つの固定抵抗素子13A,13Bの接続点と、二つの感温素子10A,10Bの接続点との間には、電源14が接続されており、フルブリッジ回路に電流が流れるように構成されている。赤外線検知用感温素子10Aは、熱源から放射される赤外線の熱量を検知するためのセンサ素子であり、温度補償用感温素子10Bは、外部環境からの熱量を検知するためのセンサ素子である。赤外線検知用感温素子10Aが受け取る熱量は、熱源から放射される赤外線の熱量に限らず、外部環境からの熱量も受け取るため、外部環境からの熱量を温度補償用感温素子10Bで検出することにより、熱源から放射される赤外線の熱量(即ち、熱源の温度)を推定することができる。このため、赤外線検知用感温素子10Aは、熱源から放射される赤外線を受光できるように配置される一方、温度補償用感温素子10Bは、熱源から放射される赤外線を受光しないように(言い換えれば、外部環境からの熱量のみを検知できるように)配置される。   FIG. 4 is a circuit configuration diagram of a temperature sensor 400 according to the third embodiment. The infrared temperature sensor 400 includes a half bridge circuit composed of a temperature sensing element 10A and a fixed resistance element 13A connected in series, and a half bridge circuit composed of a temperature compensation temperature sensor 10B and a fixed resistance element 13B connected in series. And have a full bridge circuit connected in parallel. A power source 14 is connected between the connection point of the two fixed resistance elements 13A and 13B and the connection point of the two temperature sensing elements 10A and 10B, and is configured so that a current flows through the full bridge circuit. Yes. The infrared sensing temperature sensing element 10A is a sensor element for sensing the amount of infrared radiation emitted from the heat source, and the temperature compensating temperature sensing element 10B is a sensor element for sensing the amount of heat from the external environment. . The amount of heat received by the infrared sensing temperature sensing element 10A is not limited to the amount of infrared radiation radiated from the heat source, but also receives the amount of heat from the external environment, so the temperature compensation temperature sensing element 10B detects the amount of heat from the external environment. Thus, the amount of infrared heat radiated from the heat source (that is, the temperature of the heat source) can be estimated. For this reason, the infrared detecting temperature sensing element 10A is arranged so as to receive infrared rays emitted from the heat source, while the temperature compensating temperature sensing element 10B does not receive infrared rays emitted from the heat source (in other words, For example, so that only the amount of heat from the external environment can be detected).

赤外線検知用感温素子10Aと固定抵抗素子13Aとの接続点には出力端子15が接続され、温度補償用感温素子10Bと固定抵抗素子13Bとの接続点には出力端子16が接続されている。赤外線検知用感温素子10A及び温度補償用感温素子10Bの抵抗温度特性を略同一に調整し、固定抵抗素子13A,13Bの抵抗値を略同一に調整すると、赤外線温度センサ400に熱源からの赤外線が照射されない状態では、出力端子15,16の間の電圧はゼロとなる一方、赤外線温度センサ400に熱源からの赤外線が照射される状態では、赤外線検知用感温素子10A及び温度補償用感温素子10Bのそれぞれの抵抗値変化の相違により、出力端子電極15,16の間に不平衡電圧が出力される。この不平衡電圧と熱源の温度とを予め対応付けたマップデータを用意しておくことで、不平衡電圧から熱源の温度を推定することができる。   An output terminal 15 is connected to a connection point between the infrared sensing temperature sensing element 10A and the fixed resistance element 13A, and an output terminal 16 is connected to a connection point between the temperature compensation temperature sensing element 10B and the fixed resistance element 13B. Yes. When the resistance temperature characteristics of the temperature sensing element 10A for infrared detection and the temperature sensing element 10B for temperature compensation are adjusted to be substantially the same, and the resistance values of the fixed resistance elements 13A and 13B are adjusted to be substantially the same, the infrared temperature sensor 400 receives the heat from the heat source. In the state where infrared rays are not irradiated, the voltage between the output terminals 15 and 16 becomes zero. On the other hand, in the state where the infrared temperature sensor 400 is irradiated with infrared rays from a heat source, the infrared detecting temperature sensing element 10A and the temperature compensation feeling. An unbalanced voltage is output between the output terminal electrodes 15 and 16 due to the difference in resistance value of each of the temperature elements 10B. By preparing map data that associates the unbalanced voltage with the temperature of the heat source in advance, the temperature of the heat source can be estimated from the unbalanced voltage.

図5は温度センサ400の断面図であり、図6は温度センサ400の一部平面図である。図6に示すように、赤外線検知用感温素子10Aは、赤外線吸収膜20A上においてリード配線31A,32Aにそれぞれ接続する電極11A,12Aを備えており、赤外線検知用感温素子10Aの温度変化に対応する電気特性の変化は、熱源と外部環境からもたらされる熱量に対応する電気信号としてリード配線31A,32Aから外部に取り出される。同様に、温度補償用感温素子10Bは、赤外線吸収膜20B上においてリード配線31B,32Bにそれぞれ接続する電極11B,12Bを備えており、温度補償用感温素子10Bの温度変化に対応する電気特性の変化は、外部環境からもたらされる熱量に対応する電気信号としてリード配線31B,32Bから外部に取り出される。リード配線31A,32A,31B,32Bは、半田412を介して電線411に接続されている。なお、赤外線吸収膜20A,20Bは、相互に熱伝導しないように分離しているのが好ましい。図5に示すように、赤外線吸収膜20A,20Bは、スペーサ403を介してカバー402と底板401との間に介挿されている。カバー402は、熱源からの赤外線が温度補償用感温素子10Bに入射しないように遮蔽するとともに、熱源からの赤外線を赤外線吸収膜20Aに導くための導光部420を備える。電線411は、接着剤413によって底板401に接着されている。   FIG. 5 is a cross-sectional view of the temperature sensor 400, and FIG. 6 is a partial plan view of the temperature sensor 400. As shown in FIG. 6, the infrared sensing temperature sensing element 10A includes electrodes 11A and 12A connected to the lead wires 31A and 32A on the infrared absorbing film 20A, respectively, and the temperature change of the infrared sensing temperature sensing element 10A. The change in the electrical characteristics corresponding to is taken out from the lead wires 31A and 32A as an electrical signal corresponding to the amount of heat generated from the heat source and the external environment. Similarly, the temperature compensation temperature sensing element 10B includes electrodes 11B and 12B connected to the lead wirings 31B and 32B, respectively, on the infrared absorption film 20B, so that the electric current corresponding to the temperature change of the temperature compensation temperature sensing element 10B can be obtained. The change in characteristics is taken out from the lead wires 31B and 32B as an electrical signal corresponding to the amount of heat generated from the external environment. The lead wirings 31 </ b> A, 32 </ b> A, 31 </ b> B, and 32 </ b> B are connected to the electric wire 411 through the solder 412. The infrared absorption films 20A and 20B are preferably separated so as not to conduct heat mutually. As shown in FIG. 5, the infrared absorption films 20 </ b> A and 20 </ b> B are interposed between the cover 402 and the bottom plate 401 via spacers 403. The cover 402 includes a light guide unit 420 that shields infrared rays from the heat source from entering the temperature-compensating temperature sensitive element 10B and guides the infrared rays from the heat source to the infrared absorption film 20A. The electric wire 411 is bonded to the bottom plate 401 with an adhesive 413.

温度センサ400の感度を向上させるための構造として、導光部420の開口面積を大きくとることが考えられるが、感温素子10A近傍の赤外線吸収膜20Aの温度分布しか感温素子10Aの温度変化に寄与しないため、図7に示すように、赤外線吸収膜20Aの面積(受光面積)は、導光部420の開口面積よりも小さくてもよい。赤外線吸収膜20Aの面積を導光部420の開口面積よりも小さくするための構造として、例えば図8に示すように、赤外線の受光面にアパーチャ421を設けて、赤外線吸収膜20Aの面積を小さくする構造、又は図9に示すように、導光部420の内壁をテーパ状にして赤外線吸収膜20Aの面積を小さくする構造等が考えられる。このような構造においては、赤外線吸収膜20Aの面積は、小さくなるため、リード配線31A,31Bの配線パターンは、実施例1或いは実施例2と同様の配線パターンに設計するのが好ましい。なお、図8に示すθ1及び図9に示すθ2は、それぞれ赤外線入射角度範囲を示す。赤外線吸収膜20Aには、実施例2と同様に、集熱部材を設けてもよい。また、導光部420の内壁には、赤外線吸収膜又は赤外線反射膜の何れか一方を形成してもよい。   As a structure for improving the sensitivity of the temperature sensor 400, it is conceivable to increase the opening area of the light guide unit 420. However, only the temperature distribution of the infrared absorption film 20A in the vicinity of the temperature sensitive element 10A changes the temperature of the temperature sensitive element 10A. 7, the area (light receiving area) of the infrared absorption film 20 </ b> A may be smaller than the opening area of the light guide unit 420 as shown in FIG. 7. As a structure for making the area of the infrared absorption film 20A smaller than the opening area of the light guide section 420, for example, as shown in FIG. 8, an aperture 421 is provided on the infrared receiving surface to reduce the area of the infrared absorption film 20A. As shown in FIG. 9, a structure in which the inner wall of the light guide 420 is tapered to reduce the area of the infrared absorption film 20 </ b> A can be considered. In such a structure, since the area of the infrared absorption film 20A becomes small, it is preferable that the wiring patterns of the lead wirings 31A and 31B are designed to be the same wiring patterns as those in the first or second embodiment. Note that θ1 shown in FIG. 8 and θ2 shown in FIG. 9 each indicate an infrared incident angle range. The infrared absorbing film 20A may be provided with a heat collecting member as in the second embodiment. In addition, either the infrared absorption film or the infrared reflection film may be formed on the inner wall of the light guide unit 420.

本発明に係わる温度センサは、熱源の温度を非接触測定する用途に利用できる。   The temperature sensor according to the present invention can be used for non-contact measurement of the temperature of the heat source.

10…感温素子
11,12…電極
20…赤外線吸収膜
31,32…リード配線
40…集熱部材
100,200,300,400…温度センサ
DESCRIPTION OF SYMBOLS 10 ... Temperature sensing element 11, 12 ... Electrode 20 ... Infrared absorption film 31, 32 ... Lead wiring 40 ... Heat collecting member 100, 200, 300, 400 ... Temperature sensor

Claims (3)

熱源の温度に対応した電気信号を出力する感温素子と、
前記電気信号を出力するためのリード配線と、を備え、
前記リード配線は、所定点の周囲を巻回するように配線されている、温度センサ。
A temperature sensing element that outputs an electrical signal corresponding to the temperature of the heat source;
A lead wiring for outputting the electrical signal,
The temperature sensor, wherein the lead wiring is wired so as to wind around a predetermined point.
請求項1に記載の温度センサであって、
前記熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜を更に備え、
前記感温素子は、前記赤外線吸収膜の発熱を検知して前記熱源の温度に対応する電気信号を出力する、温度センサ。
The temperature sensor according to claim 1,
An infrared absorption film that absorbs infrared rays radiated from the heat source and generates heat;
The temperature sensor is a temperature sensor that detects heat generation of the infrared absorption film and outputs an electrical signal corresponding to the temperature of the heat source.
請求項2に記載の温度センサであって、
前記赤外線吸収膜に分布する熱量を前記感温素子に集熱するための集熱部材を更に備える、温度センサ。
The temperature sensor according to claim 2,
A temperature sensor further comprising a heat collecting member for collecting heat quantity distributed in the infrared absorption film on the temperature sensitive element.
JP2010185148A 2010-08-20 2010-08-20 Temperature sensor Active JP5644257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185148A JP5644257B2 (en) 2010-08-20 2010-08-20 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185148A JP5644257B2 (en) 2010-08-20 2010-08-20 Temperature sensor

Publications (2)

Publication Number Publication Date
JP2012042384A true JP2012042384A (en) 2012-03-01
JP5644257B2 JP5644257B2 (en) 2014-12-24

Family

ID=45898876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185148A Active JP5644257B2 (en) 2010-08-20 2010-08-20 Temperature sensor

Country Status (1)

Country Link
JP (1) JP5644257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134033A (en) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 Infrared sensor
WO2021100312A1 (en) * 2019-11-21 2021-05-27 株式会社芝浦電子 Infrared temperature sensor, temperature detection device, and image formation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394127A (en) * 1989-09-06 1991-04-18 Toyota Central Res & Dev Lab Inc Infrared ray sensor
JP2506241Y2 (en) * 1989-09-26 1996-08-07 石塚電子株式会社 Non-contact temperature detector
JP2000501832A (en) * 1995-12-04 2000-02-15 ロッキード マーティン アイアール イメージング システムズ インコーポレーテッド Infrared radiation detector with reduced active area
JP2011232294A (en) * 2010-04-30 2011-11-17 Tdk Corp Temperature sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394127A (en) * 1989-09-06 1991-04-18 Toyota Central Res & Dev Lab Inc Infrared ray sensor
JP2506241Y2 (en) * 1989-09-26 1996-08-07 石塚電子株式会社 Non-contact temperature detector
JP2000501832A (en) * 1995-12-04 2000-02-15 ロッキード マーティン アイアール イメージング システムズ インコーポレーテッド Infrared radiation detector with reduced active area
JP2011232294A (en) * 2010-04-30 2011-11-17 Tdk Corp Temperature sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134033A (en) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 Infrared sensor
WO2017131166A1 (en) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 Infrared sensor
US11118980B2 (en) 2016-01-29 2021-09-14 Mitsubishi Materials Corporation Infrared sensor
WO2021100312A1 (en) * 2019-11-21 2021-05-27 株式会社芝浦電子 Infrared temperature sensor, temperature detection device, and image formation device

Also Published As

Publication number Publication date
JP5644257B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5640529B2 (en) Infrared sensor and circuit board having the same
US9568371B2 (en) Infrared sensor
JP5514071B2 (en) Temperature sensor
JP5866881B2 (en) Infrared temperature sensor
JP5335233B2 (en) Method of manufacturing a radiation thermal detection device comprising an active microbolometer and a passive microbolometer
JP5046198B2 (en) Temperature sensor
KR101972197B1 (en) Infrared sensor and infrared sensor device
JP2011216323A (en) Induction heating cooker
JP5644257B2 (en) Temperature sensor
JP6476596B2 (en) Temperature sensor
JP2013113732A (en) Infrared sensor and induction heating cooker provided with the same
JP5741830B2 (en) Infrared sensor device
JP5564681B2 (en) Infrared sensor
JP6319406B2 (en) Infrared sensor device
JP6160381B2 (en) Temperature sensor
JP5920388B2 (en) Temperature sensor
JP6030273B1 (en) Infrared temperature sensor and apparatus using infrared temperature sensor
JP2011128065A (en) Infrared array sensor device
CN212963724U (en) Infrared sensor and electronic device
JP5569268B2 (en) Battery temperature sensor device
JP5573599B2 (en) Infrared sensor and induction heating cooker equipped with the same
JP2015197371A (en) Thermopile element and gas detector
JP2017219339A (en) Noncontact temperature sensor and noncontact temperature measuring apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150