JP2012041578A - Water electrolysis cell - Google Patents

Water electrolysis cell Download PDF

Info

Publication number
JP2012041578A
JP2012041578A JP2010181798A JP2010181798A JP2012041578A JP 2012041578 A JP2012041578 A JP 2012041578A JP 2010181798 A JP2010181798 A JP 2010181798A JP 2010181798 A JP2010181798 A JP 2010181798A JP 2012041578 A JP2012041578 A JP 2012041578A
Authority
JP
Japan
Prior art keywords
water
electrolyte
cathode
anode
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010181798A
Other languages
Japanese (ja)
Other versions
JP5759687B2 (en
Inventor
Hiroshige Matsumoto
広重 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010181798A priority Critical patent/JP5759687B2/en
Priority to PCT/JP2011/068502 priority patent/WO2012023535A1/en
Publication of JP2012041578A publication Critical patent/JP2012041578A/en
Application granted granted Critical
Publication of JP5759687B2 publication Critical patent/JP5759687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water electrolysis cell which generates hydrogen and oxygen in a gas phase.SOLUTION: The water electrolysis cell has a structure in which an anode and a cathode, which are formed by containing a water-repellent material, are joined to both sides of a proton conducting porous electrolyte. On opposite side surfaces of the joined surfaces of the anode and the cathode with the porous electrolyte, an anode chamber and a cathode chamber are formed, respectively. With this structure, a direct current is applied between the anode and the cathode with a gap of the porous electrolyte filled with water, thereby generating oxygen gas on the anode under a gas phase state, and hydrogen ions generated at the same time move in the porous electrolyte, obtain electrons on the cathode, and thus turn into hydrogen gas under the gas phase state.

Description

本発明は水電解セルに係り、特に、水素及び酸素を気相中に生成させる水電解セルの構造に関する。   The present invention relates to a water electrolysis cell, and more particularly to a structure of a water electrolysis cell that generates hydrogen and oxygen in a gas phase.

近年、再生可能エネルギー利用、CO2排出量削減等を促進するため、エネルギー源としての水素の利用が注目されている。これに伴い、水素製造のため水電解技術の研究開発も広く進められている。水の電気分解の方法としては、アルカリ水電解(例えば特許文献1)や固体高分子電解質を用いた水電解が公知である(例えば特許文献2)。   In recent years, the use of hydrogen as an energy source has attracted attention in order to promote the use of renewable energy, the reduction of CO2 emissions, and the like. Along with this, research and development of water electrolysis technology has been promoted widely for hydrogen production. As methods for electrolysis of water, alkaline water electrolysis (for example, Patent Document 1) and water electrolysis using a solid polymer electrolyte are known (for example, Patent Document 2).

従来の固体高分子電解質膜を用いた水電解セル100は、図9に示すように触媒電極102,103を接合した固体高分子電解質膜101を挟んで、その両側に給電体104a,104b及び通電板105a,105bにより構成される。電解質膜101で仕切られた空間には、陰極室106と陽極室107が形成されている。
この水電解セル100による水電解の機構は、陰極室106及び陽極室107に水を供給し、電極102,103に直流電流を通電することにより、陽極室107において酸素と同時に生成する水素イオンは固体高分子電解質膜101を移動し、陰極室106で電子を得て水素ガスとなる。この場合、電解質材料としては、通常、緻密性のプロトン伝導性高分子膜が用いられる。なお、文献1の技術では、得られる水素、酸素の高純度化を図るため、電解質膜101の両面に白金族金属108をメッキした材料を用いることを提案している。
As shown in FIG. 9, a conventional water electrolysis cell 100 using a solid polymer electrolyte membrane sandwiches a solid polymer electrolyte membrane 101 to which catalyst electrodes 102 and 103 are joined, and feeds 104a and 104b and energization on both sides thereof. It is comprised by board 105a, 105b. In the space partitioned by the electrolyte membrane 101, a cathode chamber 106 and an anode chamber 107 are formed.
The mechanism of water electrolysis by the water electrolysis cell 100 is that water is supplied to the cathode chamber 106 and the anode chamber 107 and a direct current is applied to the electrodes 102 and 103, so that hydrogen ions generated simultaneously with oxygen in the anode chamber 107 are The solid polymer electrolyte membrane 101 is moved, and electrons are obtained in the cathode chamber 106 to become hydrogen gas. In this case, a dense proton conductive polymer membrane is usually used as the electrolyte material. The technique of Document 1 proposes to use a material in which platinum group metal 108 is plated on both surfaces of the electrolyte membrane 101 in order to increase the purity of the obtained hydrogen and oxygen.

特開2005−163059号公報JP 2005-163059 A 特開平10−102273号公報Japanese Patent Laid-Open No. 10-102273

従来のアルカリ水電解又は固体高分子電解質膜を用いる水電解では、水素や酸素はいずれも液相(水)中で気泡として発生することになる。この場合、気泡発生には大きな表面エネルギーを必要とする。また、気泡が大きく成長すると、反応場(触媒)に水が供給されなくなるため、反応進行が妨げられるという問題がある。
さらに、固体高分子電解質膜を用いる方式では、電解質膜の機械強度が極めて弱いため、加圧水素、酸素の製造が困難という問題がある。
In conventional water electrolysis using alkaline water electrolysis or a solid polymer electrolyte membrane, both hydrogen and oxygen are generated as bubbles in the liquid phase (water). In this case, a large surface energy is required to generate bubbles. In addition, when bubbles grow large, water is not supplied to the reaction field (catalyst), and there is a problem that the progress of the reaction is hindered.
Furthermore, the method using a solid polymer electrolyte membrane has a problem that it is difficult to produce pressurized hydrogen and oxygen because the mechanical strength of the electrolyte membrane is extremely weak.

上記課題を解決すべく本願発明者は鋭意研究の結果、気相中で水素や酸素を発生させる水電解セルの構造を見出し、試験により確認して以下の発明を完成した。すなわち、
本発明に係る水電解セルは、
(1)プロトン伝導性多孔質電解質と、撥水性材料を含んで構成され多孔質電解質の両面にそれぞれ接合される電極(陽極及び陰極)と、多孔質電解質に水を供給する手段と、備えて成り、陽極又は陰極の多孔質電解質との接合面の反対側に、気相中にそれぞれ酸素ガス又は水素ガスを生成可能に構成したことを特徴とする。
As a result of diligent research, the inventor of the present application has found the structure of a water electrolysis cell that generates hydrogen and oxygen in the gas phase and has confirmed the results by tests to complete the following invention. That is,
The water electrolysis cell according to the present invention is:
(1) Proton conductive porous electrolyte, electrodes (anode and cathode) each including a water repellent material and bonded to both surfaces of the porous electrolyte, and means for supplying water to the porous electrolyte, It is characterized in that oxygen gas or hydrogen gas can be generated in the gas phase on the opposite side of the joining surface of the anode or cathode with the porous electrolyte.

図1は、本発明に係る水電解セルの構造を模式的に示した図である。本発明に係る水電解セルは、プロトン伝導性多孔質電解質の両側に、撥水性材料を含んで構成される陽極及び陰極(以下、撥水性電極と略称することがある)が接合された構造を備えている。両電極の多孔質電解質との接合面の反対側面には、陰極室又は陽極室が形成される。
電解用の水は、水供給手段を介して供給される。この場合、多孔質電解質側のみに水が供給され、陰極室側又は陽極室側に浸入することのないように、必要に応じてシール剤等によりシールされる。なお、電解質はプロトン伝導性を持つので、アルカリ水電解のように供給する水自体が電解質である必要はない。
FIG. 1 is a diagram schematically showing the structure of a water electrolysis cell according to the present invention. The water electrolysis cell according to the present invention has a structure in which an anode and a cathode (hereinafter sometimes abbreviated as a water repellent electrode) composed of a water repellent material are joined to both sides of a proton conductive porous electrolyte. I have. A cathode chamber or an anode chamber is formed on the side surface opposite to the bonding surface of both electrodes with the porous electrolyte.
The water for electrolysis is supplied through a water supply means. In this case, water is supplied only to the porous electrolyte side and sealed with a sealant or the like as necessary so as not to enter the cathode chamber side or the anode chamber side. Since the electrolyte has proton conductivity, it is not necessary for the supplied water itself to be an electrolyte as in alkaline water electrolysis.

本発明に用いる多孔質電解質材料としては、例えば含水酸化チタンナノ粒子を好適に用いることができる。また、撥水性電極(陰極及び陽極)は、触媒粒子を撥水性伝導性担体に担持させて構成されている。触媒材料としては、例えば白金担持カーボンを好適に用いることができ、また撥水性伝導性担体としては、例えばテフロン(登録商標)修飾多孔質カーボンを好適に用いることができる。
かかる構成により本発明に係る水電解セルは、多孔質電解質の隙間に水を充填した状態で、両電極間に直流電流を通電することにより、陽極において気相状態下で酸素ガスが生成し、同時に生成する水素イオンは多孔質電解質を移動し、陰極において電子を得て気相状態下で水素ガスとなる。
As the porous electrolyte material used in the present invention, for example, hydrous titanium oxide nanoparticles can be suitably used. The water-repellent electrode (cathode and anode) is configured by supporting catalyst particles on a water-repellent conductive carrier. As the catalyst material, for example, platinum-supported carbon can be suitably used, and as the water-repellent conductive carrier, for example, Teflon (registered trademark) -modified porous carbon can be suitably used.
With such a configuration, the water electrolysis cell according to the present invention is a state in which water is filled in the gap between the porous electrolytes, and a direct current is passed between both electrodes, whereby oxygen gas is generated in a gas phase at the anode, Simultaneously generated hydrogen ions move through the porous electrolyte, obtain electrons at the cathode, and become hydrogen gas under gas phase conditions.

さらに本発明による水電解セルは、加圧水素・酸素の製造が可能な構造を有する。すなわち、撥水性電極は水が浸入しにくい性質を有しているため、多孔質電解質に供給する水を加圧することができる。加圧状態において電極室を閉鎖すれば、発生した水素や酸素により電極室の圧力は上昇するが、多孔質電解質の水圧以下に維持すれば、水素や酸素が電解質に浸入することはない。このようにして、安定的な電気分解により、加圧水素ガスや加圧酸素ガスを得ることが可能となる。   Furthermore, the water electrolysis cell according to the present invention has a structure capable of producing pressurized hydrogen / oxygen. That is, since the water repellent electrode has a property that water does not easily enter, the water supplied to the porous electrolyte can be pressurized. If the electrode chamber is closed in the pressurized state, the pressure of the electrode chamber increases due to the generated hydrogen and oxygen, but if maintained below the water pressure of the porous electrolyte, hydrogen and oxygen will not enter the electrolyte. In this way, pressurized hydrogen gas or pressurized oxygen gas can be obtained by stable electrolysis.

本発明の水電解セルにおける反応機構について、さらに詳細に説明する。図3を参照して、供給された水は、多孔質電解質粒子の隙間に充填される。プロトン(水素イオン、H+)は多孔質電解質粒子の表面、あるいは内部を通過することができる。触媒粒子は、撥水性担体と共に存在している。担体は電子伝導性を有し、触媒上で起こる電極反応で生じる/不足する電子を集電し、リード線に渡す/リード線から供給する機能を持つ。 The reaction mechanism in the water electrolysis cell of the present invention will be described in more detail. Referring to FIG. 3, the supplied water is filled in the gaps between the porous electrolyte particles. Protons (hydrogen ions, H + ) can pass through or inside the porous electrolyte particles. The catalyst particles are present together with the water repellent carrier. The carrier has electron conductivity, and has a function of collecting / delivering electrons generated / deficient due to an electrode reaction occurring on the catalyst, and delivering / delivering them to / from the lead wire.

次に、図4を参照して、上記構造において水の電解反応は以下のプロセスにより起こる。
(a)陰極側
陰極では、カソード反応(2H++2e-→H2)が進行する。この反応は、リード線から担体を介して触媒に電子が供給され、かつ、電解質から触媒にプロトン(水素イオン、H+)が供給され、これらが反応して気体である水素(H2)を生成するものである(同図(a))。本発明においては、撥水性担体を用いているため、担体の集合体の中には水に濡れていない空間が存在し、水素はその空間に放出されることにより、電極反応が促進される。
Next, referring to FIG. 4, in the above structure, the water electrolysis occurs by the following process.
(A) Cathode side At the cathode, cathode reaction (2H + + 2e− → H 2 ) proceeds. In this reaction, electrons are supplied from the lead wire to the catalyst through the carrier, and protons (hydrogen ions, H + ) are supplied from the electrolyte to the catalyst, and these react to react with hydrogen (H 2 ), which is a gas. It is generated ((a) in the figure). In the present invention, since a water-repellent carrier is used, a space not wetted by water exists in the aggregate of carriers, and hydrogen is released into the space, thereby promoting the electrode reaction.

(b)陽極側
陽極では、アノード反応(2H2O→O2+2H++2e-)が進行する。カソード反応と同様に、液体の水が触媒上でプロトンと電子と酸素に分かれる(同図(b))。生じた酸素が、空間に放出されるため電極反応が速やかに起きる。
このように、本発明の水電解セルでは水を電解質側から供給する構造であるため、撥水性電極に水を通過させる必要がない。このため、発生した水素や酸素が円滑にガス抜けするように電極を設計することが可能である。
(B) The anode reaction (2H 2 O → O 2 + 2H + + 2e−) proceeds at the anode on the anode side. Similar to the cathode reaction, liquid water is separated into protons, electrons, and oxygen on the catalyst ((b) in the figure). Since the generated oxygen is released into the space, the electrode reaction occurs quickly.
Thus, since the water electrolysis cell of the present invention has a structure for supplying water from the electrolyte side, it is not necessary to pass water through the water-repellent electrode. For this reason, it is possible to design an electrode so that generated hydrogen and oxygen can be smoothly released.

(2)前記陽極及び前記陰極は、前記多孔質電解質との接合面側に、半撥水性材料と触媒の混合物により構成されるガス拡散電極層と、その外側に電気伝導性を有する撥水性材料により構成される集電体層と、の2層により構成されることを特徴とする。
半撥水性材料としては、例えば、ケッチェンブラックなどの中程度の親水性を有する炭素材料を好適に用いることができる。また、触媒としては、例えば白金担持カーボンを好適に用いることができる。なお、撥水性材料については、第一の発明と同一材料を用いることができる。
図2は、本発明に係る水電解セルの構造を模式的に示した図である。上記(1)の発明では、撥水性材料の影響により水が電極内部に浸透し難いため、触媒反応が界面近傍に限定される。本発明によれば、電極部が、半撥水性材料からなり反応場として機能するガス拡散電極層と、撥水性材料からなり電気伝導体として機能する集電体層と、の2層構造であるため、撥水性を確保しつつ、反応効率のさらなる向上が可能となる。
(2) The anode and the cathode have a gas diffusion electrode layer composed of a mixture of a semi-water-repellent material and a catalyst on the joint surface side with the porous electrolyte, and a water-repellent material having electrical conductivity on the outside thereof. It is characterized by being comprised by two layers of the collector layer comprised by these.
As the semi-water-repellent material, for example, a carbon material having moderate hydrophilicity such as ketjen black can be suitably used. As the catalyst, for example, platinum-supported carbon can be suitably used. As the water repellent material, the same material as that of the first invention can be used.
FIG. 2 is a diagram schematically showing the structure of the water electrolysis cell according to the present invention. In the invention of (1), water hardly penetrates into the electrode due to the influence of the water repellent material, so that the catalytic reaction is limited to the vicinity of the interface. According to the present invention, the electrode portion has a two-layer structure of a gas diffusion electrode layer made of a semi-water repellent material and functioning as a reaction field, and a current collector layer made of a water repellent material and functioning as an electric conductor. Therefore, the reaction efficiency can be further improved while ensuring water repellency.

本発明によれば、水素や酸素を気相中に生成させる構造であるため、液相中で生成させる従来の水電解セルと比較して、気泡生成に必要なエネルギーが不要となり、その分、効率が向上するという効果がある。
また、電極材料として水の浸入を阻止しガスのみを通過させる撥水性材料を用いているため、多孔質電解質に供給する水を加圧することができる。これにより加圧水素、加圧酸素の製造が容易に可能という効果がある。この特性を利用して、例えば燃料電池自動車や水素自動車等への高圧水素の供給に際して、昇圧に要するエネルギーの大幅削減が可能となる。
According to the present invention, since it is a structure that generates hydrogen and oxygen in the gas phase, compared with the conventional water electrolysis cell that is generated in the liquid phase, energy required for bubble generation is unnecessary, This has the effect of improving efficiency.
In addition, since the water repellent material that prevents only water from entering and allows only gas to pass through is used as the electrode material, the water supplied to the porous electrolyte can be pressurized. Thereby, there is an effect that it is possible to easily produce pressurized hydrogen and pressurized oxygen. By utilizing this characteristic, for example, when supplying high-pressure hydrogen to a fuel cell vehicle, a hydrogen vehicle, etc., it is possible to greatly reduce the energy required for boosting.

第一の発明に係る水電解セルの構造を示す図である。It is a figure which shows the structure of the water electrolysis cell which concerns on 1st invention. 第二の発明に係る水電解セルの構造を示す図である。It is a figure which shows the structure of the water electrolysis cell which concerns on 2nd invention. 多孔質電解質と撥水性電極の界面を模式的に示す図である。It is a figure which shows typically the interface of a porous electrolyte and a water-repellent electrode. 界面において進行する電極反応を模式的に示す図である。It is a figure which shows typically the electrode reaction which advances in an interface. 試験に用いた水電解セル(多孔質電解質、緻密電解質)の構造を示す図である。It is a figure which shows the structure of the water electrolysis cell (porous electrolyte, dense electrolyte) used for the test. 試験装置の概要を示す図である。It is a figure which shows the outline | summary of a test apparatus. 水温25℃における電流−電圧曲線を示すグラフである。It is a graph which shows the current-voltage curve in water temperature 25 degreeC. 水温60℃における電流−電圧曲線を示すグラフである。It is a graph which shows the current-voltage curve in water temperature 60 degreeC. 従来の固体高分子電解質膜を用いた水電解セル100の構造を示す図である。It is a figure which shows the structure of the water electrolysis cell 100 using the conventional solid polymer electrolyte membrane.

多孔質電解質を用いた水電解セルの効果を確かめるために、多孔質電解質および緻密電解質を用いた水電解セルを作製し、水電解試験を行い、電流−電圧曲線を比較した。
多孔質電解質として、硫酸修飾含水酸化チタンをナフィオン(登録商標)分散液(デュポン社製)をバインダーとして加熱し、固定化したものを用いた。また、緻密電解質として、ナフィオン(登録商標)117(同社製市販品)を用いた。電極には同一のものを用い、電極を電解質に取り付けるために行うホットプレスの条件も同一とした。
In order to confirm the effect of a water electrolysis cell using a porous electrolyte, a water electrolysis cell using a porous electrolyte and a dense electrolyte was prepared, a water electrolysis test was performed, and current-voltage curves were compared.
As the porous electrolyte, one obtained by heating and fixing sulfuric acid-modified hydrous titanium oxide with Nafion (registered trademark) dispersion (manufactured by DuPont) as a binder was used. Further, Nafion (registered trademark) 117 (commercially available product) was used as a dense electrolyte. The same electrode was used, and the conditions of hot pressing performed to attach the electrode to the electrolyte were also the same.

(1)試料作製
(a)電極
テフロン(登録商標)で撥水処理を施したカーボンペーパー(請求項のガス拡散電極層に該当)に、白金担持カーボンを塗布したもの(請求項のガス拡散集電体層に該当)を電極として用いた。白金担持カーボンはナフィオン(登録商標)(デュポン社製)と混合され、カーボンペーパーに固定されている。白金の担持量は、1mg/m2である。
(1) Sample preparation (a) electrode Carbon paper treated with water repellent treatment with Teflon (registered trademark) (corresponding to the gas diffusion electrode layer of claim) and platinum-supported carbon applied (the gas diffusion collection of claim) Corresponding to the electric layer) was used as an electrode. Platinum-supported carbon is mixed with Nafion (registered trademark) (manufactured by DuPont) and fixed to carbon paper. The supported amount of platinum is 1 mg / m2.

(b)電解質用材料
硫酸修飾含水酸化チタンは、硫酸チタニルを水に溶解後、ホットプレートによって加熱し、生成する白色沈殿を濾別することにより調製した。アナターゼ相の酸化チタンのナノ粒子と硫酸が複合化した様態を有し、多孔質かつプロトン伝導性を持つ。
適量のイソプロパノールに硫酸修飾含水酸化チタンの粉末およびナフィオン(登録商標)分散液を加え、瑪瑙乳鉢にて混合した。ナフィオン(登録商標)分散液の量は、ナフィオン(登録商標)の量が含水酸化チタンの10重量パーセントとなるように調整した。イソプロパノールの量は、混合物がペースト状となるように調整した。
(B) Electrolyte material Sulfuric acid-modified hydrous titanium oxide was prepared by dissolving titanyl sulfate in water, heating it with a hot plate, and filtering off the white precipitate formed. It has a form in which anatase-phase titanium oxide nanoparticles and sulfuric acid are combined, and is porous and has proton conductivity.
To a suitable amount of isopropanol, a powder of hydrous titanium oxide modified with sulfuric acid and a Nafion (registered trademark) dispersion were added and mixed in an agate mortar. The amount of Nafion (registered trademark) dispersion was adjusted so that the amount of Nafion (registered trademark) was 10 weight percent of the hydrous titanium oxide. The amount of isopropanol was adjusted so that the mixture became a paste.

(c)水電解セル
図5に、それぞれ多孔質電解質(同図(a))及び緻密電解質(同図(b))を用いた水電解セルの構造を示す。
多孔質電解質を用いたセルは、以下のようにして作製した。
10mm×10mm(同図のB)および20mm×20mm(同図のC)に揃えた上記電極(撥水カーボンペーパーに白金担持カーボンを塗布したもの)の上に、電解質用混合物のペーストをそれぞれ塗布し(同図のA)、乾燥した。20mm角電極の中央に、10mm角電極の試料を電解質面が接触するように重ね、これを140℃でホットプレスし、水電解セルとした。
一方、緻密電解質を用いたセルは、以下のようにして作製した。
25mm角のナフィオン(登録商標)117(同図のD)の片面に20mm角の電極(同図のE)を配置し、もう片面に10mm角の電極(同図のF)を配置した。白金担持カーボンがナフィオン(登録商標)117と接触するようにした。電極はどちらもナフィオン(登録商標)の中央に来るように配置した。これを140℃でホットプレスすることにより、水電解セルとした。
(C) Water electrolysis cell FIG. 5 shows the structure of a water electrolysis cell using a porous electrolyte (FIG. 5A) and a dense electrolyte (FIG. 5B), respectively.
A cell using the porous electrolyte was produced as follows.
Apply the electrolyte mixture paste on the above electrodes (water-repellent carbon paper coated with platinum-supported carbon) in 10mm x 10mm (B in the figure) and 20mm x 20mm (C in the figure). (A in the figure) and dried. A 10 mm square electrode sample was stacked in the center of the 20 mm square electrode so that the electrolyte surface was in contact, and this was hot pressed at 140 ° C. to obtain a water electrolysis cell.
On the other hand, a cell using a dense electrolyte was produced as follows.
A 20 mm square electrode (E in the figure) was placed on one side of a 25 mm square Nafion (registered trademark) 117 (D in the figure), and a 10 mm square electrode (F in the figure) was placed on the other side. The platinum-supported carbon was brought into contact with Nafion (registered trademark) 117. Both electrodes were placed in the center of Nafion (registered trademark). This was hot-pressed at 140 ° C. to obtain a water electrolysis cell.

(2)試験方法
図6に、試験装置1の概要を示す。多孔質電解質2a及びその両側の電極2b、2cにより構成される水電解セル2を、上蓋1a、下蓋1bにより挟持し、陰極2aを中蓋1cで覆うように構成されている。上蓋1aと中蓋1cで囲まれた空間には蒸留水が満たされる。両電極間に直流電流を通電することにより、中蓋1cと陰極2aで囲まれる空間に陰極室4が、下蓋1bと陽極2cで囲まれる空間に陽極室4が、それぞれ形成される。
上記のセルをそれぞれ集電金属網で挟み、蒸留水中に浸した状態で電圧を印加し、電流を測定した。電極面積は、10mm角の電極に規制されると仮定し、1cm2とした。流れた電流値を電極面積1cm2で除して、電流密度とした。
水の温度は、25℃および60℃の2条件にて測定を行った。
(2) Test Method FIG. 6 shows an outline of the test apparatus 1. A water electrolysis cell 2 composed of a porous electrolyte 2a and electrodes 2b and 2c on both sides thereof is sandwiched between an upper lid 1a and a lower lid 1b, and the cathode 2a is covered with an inner lid 1c. The space surrounded by the upper lid 1a and the inner lid 1c is filled with distilled water. By applying a direct current between both electrodes, a cathode chamber 4 is formed in a space surrounded by the inner lid 1c and the cathode 2a, and an anode chamber 4 is formed in a space surrounded by the lower lid 1b and the anode 2c.
Each of the above cells was sandwiched between current collector metal nets, and a voltage was applied while immersed in distilled water, and the current was measured. The electrode area was assumed to be regulated by a 10 mm square electrode, and was 1 cm 2. The current density was divided by the electrode area of 1 cm 2 to obtain the current density.
The water temperature was measured under two conditions of 25 ° C and 60 ° C.

(3)試験結果
図7,8に、多孔質電解質を用いた場合と緻密電解質を用いた場合の電流電圧曲線を示す。水の電気分解は、(水の1molあたりの生成自由エネルギー変化)/2F(F:ファラデー定数)で表される理論電解電圧以上の電圧を印加することによって進行しうる。
理論電解電圧に余分に加えられる電圧は過電圧と呼ばれ、電極反応が進行するために必要な電極過電圧と電解質中をイオンが動くために必要な電解質過電圧からなる。後者は(電解質抵抗)×(電流)で表される。理論電解電圧は約1.2Vであり、理論過電圧を超えて印加された分の電圧、すなわち(印加電圧)−(理論電解電圧)が過電圧に等しい。
水温が25℃(図7)、60℃(図8)いずれの場合も、印加電圧が1.4V以上においては、同じ電流密度を得るための印加電圧は多孔質電解質を用いた場合の方が小さい。すなわち、多孔質電解質を用いた場合の方が過電圧は小さい。
一方、別に測定した電解質の抵抗値は、
多孔質電解質セルの電解質抵抗:5.53Ω(25℃)、4.68Ω(60℃)
緻密電解質セルの電解質抵抗::0.95Ω(25℃)、1.16Ω(60℃)
すなわち、各々の実験は異なるサンプルで行われたため、サンプルの違いによるばらつきはあるが、電解質抵抗過電圧は緻密電解質セルの方が大きい。
以上より、同一の電極を用いているにもかかわらず、電極過電圧は多孔質電解質を用いた場合の方が小さい。これは、多孔質電解質を介して、水の供給が円滑に行われた結果であり、多孔質電解質セルの優位性が実証された。
(3) Test results FIGS. 7 and 8 show current-voltage curves when a porous electrolyte is used and when a dense electrolyte is used. The electrolysis of water can proceed by applying a voltage higher than the theoretical electrolysis voltage represented by (change in free energy of formation per 1 mol of water) / 2F (F: Faraday constant).
The voltage added to the theoretical electrolysis voltage is called overvoltage, and consists of the electrode overvoltage necessary for the electrode reaction to proceed and the electrolyte overvoltage necessary for ions to move in the electrolyte. The latter is expressed by (electrolyte resistance) × (current). The theoretical electrolysis voltage is about 1.2 V, and the voltage applied beyond the theoretical overvoltage, that is, (applied voltage) − (theoretical electrolysis voltage) is equal to the overvoltage.
In both cases where the water temperature is 25 ° C. (FIG. 7) and 60 ° C. (FIG. 8), when the applied voltage is 1.4 V or higher, the applied voltage for obtaining the same current density is smaller when the porous electrolyte is used. . That is, the overvoltage is smaller when the porous electrolyte is used.
On the other hand, the resistance value of the electrolyte measured separately is
Electrolytic resistance of the porous electrolyte cell: 5.53Ω (25 ° C.), 4.68Ω (60 ° C.)
Electrolyte resistance of dense electrolyte cell: 0.95Ω (25 ° C), 1.16Ω (60 ° C)
That is, since each experiment was performed with different samples, there was variation due to the difference in the samples, but the electrolyte resistance overvoltage was larger in the dense electrolyte cell.
From the above, although the same electrode is used, the electrode overvoltage is smaller when the porous electrolyte is used. This is a result of smooth water supply through the porous electrolyte, demonstrating the superiority of the porous electrolyte cell.

本発明は、水電解による水素ガス、酸素ガスの製造装置用材料として広く利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be widely used as a material for an apparatus for producing hydrogen gas and oxygen gas by water electrolysis.

1・・・・試験装置
2・・・・水電解セル
2a・・・多孔質電解質
2b・・・陰極
2c・・・陽極
3・・・・陰極室
4・・・・陽極室

DESCRIPTION OF SYMBOLS 1 ... Test apparatus 2 ... Water electrolysis cell 2a ... Porous electrolyte 2b ... Cathode 2c ... Anode 3 ... Cathode chamber 4 ... Anode chamber

Claims (2)

プロトン伝導性多孔質電解質と、
撥水性材料を含んで構成され、多孔質電解質の両面にそれぞれ接合される電極(陽極及び陰極)と、
多孔質電解質に水を供給する手段と、備えて成り、
陽極又は陰極の多孔質電解質との接合面の反対側に、気相中にそれぞれ酸素ガス又は水素ガスを生成可能に構成したことを特徴とする水電解セル。
A proton conductive porous electrolyte;
An electrode (anode and cathode) composed of a water-repellent material and bonded to both surfaces of the porous electrolyte;
Means for supplying water to the porous electrolyte,
A water electrolysis cell characterized in that oxygen gas or hydrogen gas can be generated in the gas phase on the opposite side of the anode or cathode bonding surface with the porous electrolyte.
前記陽極及び前記陰極は、前記多孔質電解質との接合面側に、半撥水性材料と触媒の混合物により構成されるガス拡散電極層と、その外側に電気伝導性を有する撥水性材料により構成されるガス拡散集電体層と、の2層により構成されることを特徴とする請求項1に記載の水電解セル。 The anode and the cathode are composed of a gas diffusion electrode layer composed of a mixture of a semi-water-repellent material and a catalyst on the joint surface side with the porous electrolyte, and a water-repellent material having electrical conductivity on the outside thereof. 2. The water electrolysis cell according to claim 1, wherein the water electrolysis cell is composed of two layers: a gas diffusion current collector layer.
JP2010181798A 2010-08-16 2010-08-16 Water electrolysis cell Active JP5759687B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010181798A JP5759687B2 (en) 2010-08-16 2010-08-16 Water electrolysis cell
PCT/JP2011/068502 WO2012023535A1 (en) 2010-08-16 2011-08-15 Water electrolysis cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181798A JP5759687B2 (en) 2010-08-16 2010-08-16 Water electrolysis cell

Publications (2)

Publication Number Publication Date
JP2012041578A true JP2012041578A (en) 2012-03-01
JP5759687B2 JP5759687B2 (en) 2015-08-05

Family

ID=45605188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181798A Active JP5759687B2 (en) 2010-08-16 2010-08-16 Water electrolysis cell

Country Status (2)

Country Link
JP (1) JP5759687B2 (en)
WO (1) WO2012023535A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502313A (en) * 2010-12-08 2014-01-30 アストリウム ゲーエムベーハー Electrolysis method and electrolytic cell
JP2015527482A (en) * 2012-06-12 2015-09-17 モナシュ ユニバーシティ Breathable electrode structure and method and system for water splitting
JPWO2015020065A1 (en) * 2013-08-05 2017-03-02 国立大学法人山梨大学 Hydrogen purification booster
JPWO2015034088A1 (en) * 2013-09-06 2017-03-02 株式会社エム光・エネルギー開発研究所 Electrochemical reactor equipped with a liquid repellent porous membrane
KR20180135467A (en) * 2016-04-13 2018-12-20 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 An electrochemical reaction device using a switch on and off the ion
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
WO2021084935A1 (en) * 2019-10-31 2021-05-06 カーリットホールディングス株式会社 Catalyst-supporting porous substrate for electrolysis, electrode for electrolysis, gas diffusion layer, stack cell for electrolysis, and cell module for electrolysis
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013185169A1 (en) * 2012-06-12 2013-12-19 Monash University Gas permeable electrode and method of manufacture
CN104498985A (en) * 2014-12-18 2015-04-08 彭兆钦 Vehicle-mounted hydrogen-oxygen gas manufacturing device and system
JP6845436B2 (en) 2016-11-01 2021-03-17 国立研究開発法人宇宙航空研究開発機構 Cell for water electrolysis / fuel cell power generation and cell laminate in which a plurality of these are laminated
JP7010430B2 (en) 2017-11-10 2022-01-26 国立研究開発法人宇宙航空研究開発機構 Methane synthesizer
CN109498825B (en) * 2019-01-04 2023-07-25 厦门理工学院 Household disinfection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229069A (en) * 1985-07-30 1987-02-07 Masahiro Watanabe Bfe-type electrode for fuel cell or the like
JPH04311587A (en) * 1991-04-09 1992-11-04 Mitsubishi Heavy Ind Ltd Electrochemical device using ion-exchange resin membrane
JPH06223835A (en) * 1993-01-21 1994-08-12 Aqueous Res:Kk Gas diffusion electrode
JPH11131278A (en) * 1997-10-27 1999-05-18 Mitsubishi Heavy Ind Ltd Production of polymer cell for water electrolyzing and polymer cell for water electrolyzing
JP2000106200A (en) * 1998-09-29 2000-04-11 Japan Storage Battery Co Ltd Gas diffused electrode-electrolyte film joint body and fuel cell
JP2001160398A (en) * 1999-12-01 2001-06-12 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and fuel cell using the same
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229069A (en) * 1985-07-30 1987-02-07 Masahiro Watanabe Bfe-type electrode for fuel cell or the like
JPH04311587A (en) * 1991-04-09 1992-11-04 Mitsubishi Heavy Ind Ltd Electrochemical device using ion-exchange resin membrane
JPH06223835A (en) * 1993-01-21 1994-08-12 Aqueous Res:Kk Gas diffusion electrode
JPH11131278A (en) * 1997-10-27 1999-05-18 Mitsubishi Heavy Ind Ltd Production of polymer cell for water electrolyzing and polymer cell for water electrolyzing
JP2000106200A (en) * 1998-09-29 2000-04-11 Japan Storage Battery Co Ltd Gas diffused electrode-electrolyte film joint body and fuel cell
JP2001160398A (en) * 1999-12-01 2001-06-12 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and fuel cell using the same
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502313A (en) * 2010-12-08 2014-01-30 アストリウム ゲーエムベーハー Electrolysis method and electrolytic cell
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
JP2015527482A (en) * 2012-06-12 2015-09-17 モナシュ ユニバーシティ Breathable electrode structure and method and system for water splitting
US10087536B2 (en) 2012-06-12 2018-10-02 Aquahydrex Pty Ltd Breathable electrode and method for use in water splitting
US11018345B2 (en) 2013-07-31 2021-05-25 Aquahydrex, Inc. Method and electrochemical cell for managing electrochemical reactions
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
JPWO2015020065A1 (en) * 2013-08-05 2017-03-02 国立大学法人山梨大学 Hydrogen purification booster
US10407780B2 (en) * 2013-09-06 2019-09-10 M Hikari & Energy Laboratory Co., Ltd. Electrochemical reactor comprising liquid-repellent porous membrane
JPWO2015034088A1 (en) * 2013-09-06 2017-03-02 株式会社エム光・エネルギー開発研究所 Electrochemical reactor equipped with a liquid repellent porous membrane
US11459662B2 (en) 2013-09-06 2022-10-04 M Hikari & Energy Laboratory Co., Ltd. Electrochemical reactor comprising liquid-repellant porous membrane
KR20180135467A (en) * 2016-04-13 2018-12-20 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 An electrochemical reaction device using a switch on and off the ion
KR102300222B1 (en) 2016-04-13 2021-09-09 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 Electrochemical reaction device using on/off side switches of ions
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte
US11682783B2 (en) 2019-02-01 2023-06-20 Aquahydrex, Inc. Electrochemical system with confined electrolyte
WO2021084935A1 (en) * 2019-10-31 2021-05-06 カーリットホールディングス株式会社 Catalyst-supporting porous substrate for electrolysis, electrode for electrolysis, gas diffusion layer, stack cell for electrolysis, and cell module for electrolysis

Also Published As

Publication number Publication date
JP5759687B2 (en) 2015-08-05
WO2012023535A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5759687B2 (en) Water electrolysis cell
Li et al. Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0. 2Sr0. 8TiO3+ δ composite cathode
Carmo et al. A comprehensive review on PEM water electrolysis
CN105734606B (en) A kind of SPE water electrolysis structure of ultra-thin membrane electrode and its preparation and application
JP6021074B2 (en) Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
Zhang et al. Study on a novel manufacturing process of membrane electrode assemblies for solid polymer electrolyte water electrolysis
JP6083531B2 (en) Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
Pérez-Rodríguez et al. Electrochemical reactors for CO2 reduction: From acid media to gas phase
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
US20060257717A1 (en) Gas diffusion electrode and method for making same
JP7325082B2 (en) Carbon dioxide reduction device and carbon dioxide reduction method
JP2011514634A (en) Direct fuel cell without selectively permeable membrane and components thereof
US10233550B2 (en) Porous electrode for proton-exchange membrane
US20190112720A1 (en) Pulsed current catalyzed gas diffusion electrodes for high rate, efficient co2 conversion reactors
US20140287347A1 (en) Method for fabricating a membrane-electrode assembly
Kheirmand et al. Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Sun et al. A Na-ion direct formate fuel cell converting solar fuel to electricity and hydrogen
Hirata et al. Performance of yttria-stabilized zirconia fuel cell using H2–CO2 gas system and CO–O2 gas system
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
Zhou et al. Electrocatalytic Oxidation of Formic Acid at Pt Modified Electrodes: Substrate Effect of Unsintered Au Nano‐Structure
Yang et al. Spatially confined catalysis-enhanced high-temperature carbon dioxide electrolysis
JP5614388B2 (en) Method for producing catalyst paste
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
Yang et al. Optimal MEA structure and operating conditions for fuel cell reactors with hydrogen peroxide and power cogeneration
JP3508100B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250