JP2012036272A - Heat-shrinkable polyester film, and insulated container using the same - Google Patents

Heat-shrinkable polyester film, and insulated container using the same Download PDF

Info

Publication number
JP2012036272A
JP2012036272A JP2010176442A JP2010176442A JP2012036272A JP 2012036272 A JP2012036272 A JP 2012036272A JP 2010176442 A JP2010176442 A JP 2010176442A JP 2010176442 A JP2010176442 A JP 2010176442A JP 2012036272 A JP2012036272 A JP 2012036272A
Authority
JP
Japan
Prior art keywords
heat
film
shrinkage
main
shrinkable polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010176442A
Other languages
Japanese (ja)
Other versions
JP5249996B2 (en
Inventor
Shigeki Ikeda
茂喜 池田
Yuji Nagase
勇二 長瀬
Hideyasu Miyazaki
英安 宮崎
Yasunari Shigematsu
靖得 重松
Shujiro Hori
周二郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Tokan Kogyo Co Ltd
Original Assignee
Mitsubishi Plastics Inc
Tokan Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc, Tokan Kogyo Co Ltd filed Critical Mitsubishi Plastics Inc
Priority to JP2010176442A priority Critical patent/JP5249996B2/en
Publication of JP2012036272A publication Critical patent/JP2012036272A/en
Application granted granted Critical
Publication of JP5249996B2 publication Critical patent/JP5249996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-shrinkable polyester film extremely excellent in natural shrinkage resistance, and hardly generating shrinkage deficiency when being heated at ≥80°C, especially a heat-shrinkable polyester film capable of forming an insulated gripping part of the insulated container by being quickly shrunk by heating when being used for the insulated container, and dispensing with storage under temperature control even in such a period that the outside air temperature rises.SOLUTION: In this heat-shrinkable polyester film, the maximum shrinkage stress at 75°C in the main shrinkage direction of the film is ≥4.4 MPa and ≤12.0 MPa, and a shrinkage rate in the main shrinkage direction when the film is stored for 8 hours under the 60°C×40% RH atmosphere is ≤2.0%, and the shrinkage rate in the main shrinkage direction when the film is dipped for 10 seconds into warm water at 80°C is ≥10% and <80%.

Description

本発明は、熱収縮性ポリエステル系フィルムに関し、詳しくは、断熱容器用の熱収縮性フィルムとして有用な熱収縮性ポリエステル系フィルムに関する。   The present invention relates to a heat-shrinkable polyester film, and more particularly to a heat-shrinkable polyester film useful as a heat-shrinkable film for a heat insulating container.

食器や自動販売機の飲料カップ等の用途向けに、断熱構造を付与したカップ状容器が提案されている。例えば、特許文献1及び2には、容器本体の胴部壁外周面に外スリーブをスライド可能に外嵌して上下いずれか一方を固着すると共に、前記外スリーブを上下方向に圧縮して外スリーブに設けた複数のスリット形成区間部を、外スリーブの外方に突出させることで断熱把持部を形成する断熱容器が開示されている。しかしながら、特許文献1及び2で開示されている断熱容器は、その断熱把持部を人の力等を用いて形成させる必要があった。   A cup-like container having a heat insulating structure has been proposed for uses such as tableware and beverage cups for vending machines. For example, in Patent Documents 1 and 2, an outer sleeve is slidably fitted on the outer peripheral surface of the body wall of the container body, and either the upper or lower side is fixed, and the outer sleeve is compressed in the vertical direction. The heat insulation container which forms the heat insulation holding part by making the some slit formation area part provided in FIG. However, the heat insulating containers disclosed in Patent Documents 1 and 2 have to form the heat insulating grips using human power or the like.

特許文献3には、前記外スリーブの内壁面に熱収縮性フィルムを取り付け、その熱収縮性フィルムが収縮することで前記スリット形成区間部を突出させ、断熱把持部を形成させる方法が開示されている。ここで用いられる熱収縮性フィルムについて、その特性や材質は限定されていないが、一定以上の収縮応力を有し、かつ自然収縮率が低いフィルムであることが求められている。   Patent Document 3 discloses a method in which a heat-shrinkable film is attached to the inner wall surface of the outer sleeve, and the heat-shrinkable film shrinks to project the slit forming section and form a heat-insulating grip. Yes. The heat-shrinkable film used here is not limited in its characteristics and materials, but is required to be a film having a certain level of shrinkage stress and a low natural shrinkage rate.

該断熱容器に用いる熱収縮性フィルムについて、その収縮応力が低すぎると前記スリット形成区間部を押し上げることができず、該断熱容器の特徴である断熱性が付与できなくなる。その一方、該断熱容器は、形成後に容器を重ね合わせた状態で倉庫保管されるが、自然収縮率が高いフィルムを用いた場合には、倉庫の気温上昇に伴いフィルムの熱収縮が発生して断熱把持部が突出してしまうため、重ね合わせた容器が外れにくくなる不具合を生じる。更に言えば、該断熱容器の国内流通は、主にトラックによる搬送であるが、トラック荷台の温度が上昇した場合も同様の現象が起こり、その結果、重ね合わせた容器が外れにくくなってしまう。そのため、特に外気温が上昇する季節の製品搬送や保管の際には、保冷倉庫や保冷車等を使用して自然収縮を抑制する必要があり、コストが嵩む一因となっている。   About the heat-shrinkable film used for this heat insulation container, when the shrinkage stress is too low, the said slit formation area part cannot be pushed up, and the heat insulation which is the characteristic of this heat insulation container cannot be provided. On the other hand, the insulated container is stored in a warehouse with the containers overlapped after formation. However, when a film having a high natural shrinkage rate is used, the film shrinks as the temperature of the warehouse increases. Since the heat insulating gripping portion protrudes, there arises a problem that the stacked containers are difficult to come off. Furthermore, although the domestic distribution of the heat insulating containers is mainly transported by truck, the same phenomenon occurs when the temperature of the truck bed rises, and as a result, the stacked containers are difficult to come off. For this reason, it is necessary to suppress natural shrinkage by using a cold storage warehouse, a cold storage vehicle, or the like, particularly during product transportation and storage in the season when the outside air temperature rises, which is a cause of increasing costs.

自然収縮率の低い熱収縮性フィルムとしては、ポリエステル系樹脂又はポリスチレン系樹脂の単一素材からなるフィルム、又はポリスチレン系樹脂とポリエステル系樹脂の積層フィルム等が検討されている。
単一素材からなるフィルムとしては、例えば特許文献4には、少なくとも2種以上のポリエステル系共重合体からなり、熱収縮率−温度グラフにおいて、60℃〜95℃の間で急激な立ち上がりを画く熱収縮性フィルムが開示されている。また、特許文献5には、ポリエステル系樹脂又はポリスチレン系樹脂からなり、主延伸方向の収縮率が70℃×10秒で10%以下であり、40℃×7日で2.5%以下である熱収縮性フィルムが開示されている。
積層フィルムとしては、例えば特許文献6には、ポリエステル系樹脂と該ポリエステル系樹脂に対して反応性を有する変性スチレン系エラストマーとを含有する表裏層と、ポリスチレン系樹脂とポリエステル系樹脂とを含有する中間層とからなり、30℃で30日間保存した後の主収縮方向の自然収縮率が3.0%以下である熱収縮性積層フィルムが開示されている。また、特許文献7には、ポリエステル系樹脂からなる層、粘着付与樹脂を含む層、スチレン系樹脂からなる層の少なくとも3層からなり、30℃50%RH雰囲気下で30日間保管したときの自然収縮率が3%未満である熱収縮性積層フィルムが開示されている。
As a heat shrinkable film having a low natural shrinkage rate, a film made of a single material of a polyester resin or a polystyrene resin, a laminated film of a polystyrene resin and a polyester resin, and the like have been studied.
As a film made of a single material, for example, Patent Document 4 is made of at least two or more polyester copolymers, and shows a sharp rise between 60 ° C. and 95 ° C. in the heat shrinkage rate-temperature graph. A heat shrinkable film is disclosed. Patent Document 5 includes a polyester resin or a polystyrene resin, and the shrinkage in the main stretching direction is 10% or less at 70 ° C. × 10 seconds and 2.5% or less at 40 ° C. × 7 days. A heat shrinkable film is disclosed.
As a laminated film, for example, Patent Document 6 contains a front and back layer containing a polyester resin and a modified styrene elastomer having reactivity with the polyester resin, and a polystyrene resin and a polyester resin. A heat-shrinkable laminated film comprising an intermediate layer and having a natural shrinkage rate of 3.0% or less in the main shrinkage direction after being stored at 30 ° C. for 30 days is disclosed. Patent Document 7 includes at least three layers of a polyester resin layer, a tackifier resin layer, and a styrene resin layer, and is natural when stored in an atmosphere of 30 ° C. and 50% RH for 30 days. A heat-shrinkable laminated film having a shrinkage rate of less than 3% is disclosed.

特許文献4〜7に開示されている熱収縮性フィルムは、常温下では殆ど自然収縮しない程度の耐自然収縮性を有しつつ、60℃以上に加熱した際には速やかに収縮するという良好な収縮仕上がり性や収縮加工性も有している。
しかしながら、外気温が上昇する季節においては、倉庫やトラックの荷台の雰囲気温度は50℃を超える可能性があり、これら熱収縮性フィルムの収縮開始温度に近づいてしまう。したがって、特許文献4〜7に開示されている熱収縮性フィルムを前記断熱容器に用いる場合には、コストが嵩む保冷倉庫での保管や保冷車での搬送が必要不可欠である。
The heat-shrinkable films disclosed in Patent Documents 4 to 7 have good natural shrinkage resistance such that they hardly shrink at room temperature, and quickly shrink when heated to 60 ° C or higher. It also has shrink finish and shrink workability.
However, in the season when the outside air temperature rises, the ambient temperature of the warehouse or truck bed may exceed 50 ° C., and approaches the shrinkage start temperature of these heat-shrinkable films. Therefore, when the heat-shrinkable film disclosed in Patent Documents 4 to 7 is used for the heat insulating container, it is indispensable to store it in a cold storage warehouse and transport it in a cold vehicle.

特開2006−044723号公報JP 2006-044723 A 特開2006−160346号公報JP 2006-160346 A 国際公開第2009/054110号International Publication No. 2009/054110 特開平6−122152号公報JP-A-6-122152 特開2000−229357号公報JP 2000-229357 A 特許第4364085号公報Japanese Patent No. 4364085 特許第4426488号公報Japanese Patent No. 4426488

本発明の課題は、耐自然収縮性に極めて優れると同時に、80℃以上に加熱した時に収縮不足が生じにくい熱収縮性ポリエステル系フィルム、特に、断熱容器用として用いた際に、加熱により速やかに収縮して該断熱容器の断熱把持部を形成し、かつ外気温が上昇する季節においても温度制御下での保管が必要ない熱収縮性ポリエステル系フィルムを提供することにある。   An object of the present invention is a heat shrinkable polyester film that is extremely excellent in spontaneous shrink resistance and at the same time is less susceptible to insufficient shrinkage when heated to 80 ° C. or more, particularly when used as a heat insulating container. An object of the present invention is to provide a heat-shrinkable polyester film that shrinks to form a heat-insulating gripping portion of the heat-insulating container and that does not need to be stored under temperature control even in the season when the outside air temperature rises.

本発明は、下記[1]〜[4]に関する。
[1]フィルムの主収縮方向における75℃の最大収縮応力が、4.4MPa以上12.0MPa以下であり、フィルムを60℃×40%RH雰囲気下にて8時間保管したときの主収縮方向の収縮率が2.0%以下であり、かつフィルムを80℃の温水に10秒間浸漬したときの主収縮方向の収縮率が10%以上80%未満であることを特徴とする熱収縮性ポリエステル系フィルム。
[2]全ポリエステル樹脂成分中において、ジカルボン酸成分の主成分をテレフタル酸、ジオール成分の主成分をエチレングリコールとし、かつ(a)イソフタル酸、(b)1,4−シクロヘキサンジメタノール、及び(c)ネオペンチルグリコールからなる群から選ばれる1種以上を含有した共重合ポリエステルである、上記[1]に記載の熱収縮性ポリエステル系フィルム。
[3]60℃の温水に5分間浸漬したときの主収縮方向の収縮率が2.7%以下であり、かつ70℃の温水に10秒間浸漬したときの主収縮方向の収縮率が3%以下である、上記[1]又は[2]に記載の熱収縮性ポリエステル系フィルム。
[4]上記[1]〜[3]のいずれかに記載の熱収縮性ポリエステル系フィルムを用いた断熱容器。
The present invention relates to the following [1] to [4].
[1] The maximum shrinkage stress at 75 ° C. in the main shrinkage direction of the film is 4.4 MPa or more and 12.0 MPa or less, and when the film is stored in an atmosphere of 60 ° C. × 40% RH for 8 hours, A heat shrinkable polyester system having a shrinkage ratio of 2.0% or less and a shrinkage ratio in the main shrinkage direction of 10% or more and less than 80% when the film is immersed in warm water at 80 ° C. for 10 seconds. the film.
[2] In all polyester resin components, the main component of the dicarboxylic acid component is terephthalic acid, the main component of the diol component is ethylene glycol, and (a) isophthalic acid, (b) 1,4-cyclohexanedimethanol, and ( c) The heat-shrinkable polyester film according to the above [1], which is a copolyester containing at least one selected from the group consisting of neopentyl glycol.
[3] The shrinkage rate in the main shrinkage direction when immersed in warm water at 60 ° C. for 5 minutes is 2.7% or less, and the shrinkage rate in the main shrinkage direction when immersed in warm water at 70 ° C. for 10 seconds is 3%. The heat-shrinkable polyester film according to [1] or [2] above.
[4] A heat insulating container using the heat-shrinkable polyester film according to any one of [1] to [3].

本発明の熱収縮性ポリエステル系フィルムは、60℃以下の雰囲気下では収縮しにくく自然収縮率が極めて低い一方で、80℃以上に加熱した時には良好に熱収縮し、収縮不足が生じにくい。該フィルムを断熱容器へ用いた場合、加熱により速やかに収縮して断熱把持部を形成し、かつ外気温が上昇する季節においても温度制御下での保管が必要ない断熱容器を提供できる。   The heat-shrinkable polyester film of the present invention is hardly shrunk under an atmosphere of 60 ° C. or less and has a very low natural shrinkage rate. When the film is used for a heat insulating container, it is possible to provide a heat insulating container that quickly shrinks by heating to form a heat insulating gripping part and that does not need to be stored under temperature control even in the season when the outside air temperature rises.

以下、本発明の熱収縮性ポリエステル系フィルムならびに該フィルムを用いた断熱容器について、詳細に説明する。   Hereinafter, the heat-shrinkable polyester film of the present invention and the heat insulating container using the film will be described in detail.

[熱収縮性ポリエステル系フィルム]
本発明の熱収縮性ポリエステル系フィルムは、フィルムの主収縮方向における75℃の最大収縮応力が、4.4MPa以上12.0MPa以下であり、好ましくは4.4MPa以上10.0MPa以下、より好ましくは5.0MPa以上8.0MPa以下である。75℃の最大収縮応力が4.4MPa未満であると、断熱容器に該フィルムを用いた場合、断熱把持部が形成されるまでに時間がかかりすぎる、もしくは断熱把持部を完全に形成できない(いわゆる腑形性が悪い)場合がある。一方、12.0MPaを超えると、フィルムの自然収縮率が高くなってしまうため好ましくない。
[Heat-shrinkable polyester film]
The heat-shrinkable polyester film of the present invention has a maximum shrinkage stress at 75 ° C. in the main shrinkage direction of the film of 4.4 MPa to 12.0 MPa, preferably 4.4 MPa to 10.0 MPa, more preferably It is 5.0 MPa or more and 8.0 MPa or less. When the maximum shrinkage stress at 75 ° C. is less than 4.4 MPa, when the film is used for a heat insulating container, it takes too much time until the heat insulating grip portion is formed, or the heat insulating grip portion cannot be completely formed (so-called May be badly shaped). On the other hand, when it exceeds 12.0 MPa, the natural shrinkage rate of the film increases, which is not preferable.

フィルムの最大収縮応力は、フィルムの材質や成分、ならびに主収縮方向の延伸条件により制御することができる。
PETボトルの収縮ラベルの材質としては、ポリ塩化ビニル(PVC)やポリスチレン系樹脂、ポリエステル系樹脂等を延伸してなる熱収縮性フィルムが好適に用いられているが、本発明の効果を達成するにはポリエステル系樹脂からなるフィルムであることが重要である。ポリエステル系樹脂からなる熱収縮性フィルムは材質の特性上、他に比べて耐自然収縮性に優れ、収縮応力の制御が容易なためである。
ポリエステル系フィルムを構成する成分が変動すると結晶性が変化し、例えば結晶性が高いフィルムほど収縮応力が高くなる傾向にある。ただし、結晶性が高いフィルムは収縮不足が生じやすくなる。そのため、本発明においては結晶性を抑えるようなフィルム成分とする方が好ましい。
延伸条件については、延伸温度、熱処理温度、ならびに弛緩率等を調整することで、収縮応力を制御することができる。中でも延伸温度は収縮応力に大きく影響し、延伸温度を低く設定するほど収縮応力を高い値に制御することができる。
The maximum shrinkage stress of the film can be controlled by the material and components of the film and the stretching conditions in the main shrinkage direction.
As a material for the shrinkable label of the PET bottle, a heat-shrinkable film formed by stretching polyvinyl chloride (PVC), polystyrene resin, polyester resin or the like is preferably used, and the effect of the present invention is achieved. It is important that the film is made of a polyester resin. This is because a heat-shrinkable film made of a polyester-based resin is superior in natural shrinkage resistance to other materials and can easily control shrinkage stress.
When the component which comprises a polyester-type film changes, crystallinity will change, for example, it exists in the tendency for shrinkage stress to become high, so that a film with high crystallinity. However, a film having high crystallinity tends to cause insufficient shrinkage. Therefore, in the present invention, it is preferable to use a film component that suppresses crystallinity.
Regarding the stretching conditions, the shrinkage stress can be controlled by adjusting the stretching temperature, the heat treatment temperature, the relaxation rate, and the like. Among them, the stretching temperature greatly affects the shrinkage stress, and the shrinkage stress can be controlled to a higher value as the stretching temperature is set lower.

本発明の熱収縮性ポリエステル系フィルムは、60℃×40%RH雰囲気下にて8時間保管したときの主収縮方向の収縮率が2.0%以下であり、好ましくは1.8%以下、より好ましくは1.6%以下である。60℃×40%RH雰囲気下にて8時間保管したときの収縮率が2.0%を超えると、断熱容器に該フィルムを用いた場合、保管時の気温上昇に伴い、フィルムの熱収縮が発生して断熱把持部が少し突出してしまう。その結果、前述のとおり、重ね合わせた断熱容器が外れにくくなってしまうため、好ましくない。   The heat-shrinkable polyester film of the present invention has a shrinkage ratio in the main shrinkage direction of 2.0% or less, preferably 1.8% or less when stored at 60 ° C. × 40% RH atmosphere for 8 hours. More preferably, it is 1.6% or less. When the shrinkage rate when stored for 8 hours in an atmosphere of 60 ° C. × 40% RH exceeds 2.0%, when the film is used in a heat-insulating container, the film shrinks due to an increase in temperature during storage. It will occur and the heat insulating gripping part will protrude slightly. As a result, as described above, it is not preferable because the stacked heat insulating containers are difficult to come off.

60℃×40%RH雰囲気下にて8時間保管したときの収縮率を2.0%以下に抑えるには、フィルムの主収縮方向の延伸条件を制御することが有用である。例えば、テンター法により主収縮方向に延伸した場合、延伸温度、熱処理温度、及び弛緩率を制御する必要があり、延伸温度については破断しない程度に極力低い温度で延伸し、続いて収縮不足を引き起こさない程度に極力高い温度で熱処理を施すのが好ましい。その後に弛緩しながら再熱処理を施せば、更に収縮率を抑えることが可能である。より具体的に言えば、延伸温度はフィルムのガラス転移温度Tg〜(Tg+25℃)の範囲、好ましくはTg〜(Tg+20℃)の範囲で延伸するのがよく、熱処理は、伸温度と同等以上の温度で処理するのがよい。再熱処理における弛緩率は、0.1〜10%の範囲が好ましい。以上のように、極力低温で延伸した後、熱処理や弛緩により低温域の配向を緩和させることで、60℃×40%RH雰囲気下にて8時間保管したときの収縮率を2.0%以下に抑えることができる。   In order to suppress the shrinkage rate to 2.0% or less when stored in an atmosphere of 60 ° C. × 40% RH for 8 hours, it is useful to control the stretching conditions in the main shrinkage direction of the film. For example, when stretching in the main shrinkage direction by the tenter method, it is necessary to control the stretching temperature, the heat treatment temperature, and the relaxation rate, and the stretching temperature is stretched at a temperature that is as low as possible without breaking, and subsequently causes insufficient shrinkage. It is preferable to perform the heat treatment at a temperature as high as possible. If the heat treatment is then performed while relaxing, the shrinkage rate can be further suppressed. More specifically, the stretching temperature should be stretched in the range of the glass transition temperature Tg to (Tg + 25 ° C.) of the film, preferably in the range of Tg to (Tg + 20 ° C.). It is better to process at temperature. The relaxation rate in the reheat treatment is preferably in the range of 0.1 to 10%. As described above, after stretching at a low temperature as much as possible, the shrinkage rate when stored for 8 hours in a 60 ° C. × 40% RH atmosphere is relaxed by 2.0% or less by relaxing the orientation in the low temperature region by heat treatment or relaxation. Can be suppressed.

本発明の熱収縮性ポリエステル系フィルムは、80℃の温水に10秒間浸漬したときの主収縮方向の収縮率が10%以上80%未満であり、好ましくは15%以上75%未満、より好ましくは20%以上70%未満である。80℃の温水に10秒間浸漬したときの収縮率が10%未満であると、80℃以上に加熱した時に収縮不足が生じて、断熱容器の断熱把持部を完全に形成できない場合があり、好ましくない。また、80%以上であると、フィルムの自然収縮率が高くなってしまうため好ましくない。   The heat shrinkable polyester film of the present invention has a shrinkage ratio in the main shrinkage direction of 10% or more and less than 80%, preferably 15% or more and less than 75%, more preferably when immersed in warm water at 80 ° C. for 10 seconds. 20% or more and less than 70%. When the shrinkage rate when immersed in warm water at 80 ° C. for 10 seconds is less than 10%, there is a case where the heat insulation gripping part of the heat insulation container cannot be completely formed due to insufficient shrinkage when heated to 80 ° C. or higher. Absent. Moreover, since the natural shrinkage rate of a film will become high that it is 80% or more, it is unpreferable.

本発明の熱収縮性ポリエステル系フィルムは、全ポリエステル樹脂成分中において、ジカルボン酸成分の主成分をテレフタル酸、ジオール成分の主成分をエチレングリコールとし、かつ(a)イソフタル酸、(b)1,4−シクロヘキサンジメタノール、及び(c)ネオペンチルグリコールからなる群から選ばれる1種以上を含有した共重合ポリエステルであることが好ましい。   The heat-shrinkable polyester film of the present invention comprises terephthalic acid as the main component of the dicarboxylic acid component, ethylene glycol as the main component of the diol component, and (a) isophthalic acid, (b) 1, A copolymerized polyester containing at least one selected from the group consisting of 4-cyclohexanedimethanol and (c) neopentyl glycol is preferred.

ポリエステル系樹脂を構成する主なジカルボン酸成分は、前述のとおりテレフタル酸であり、ジカルボン酸成分100モル%に対してテレフタル酸を好ましくは50モル%以上、より好ましくは55モル%以上、更に好ましくは60モル%以上含有する。テレフタル酸以外のジカルボン酸成分としては、例えば、イソフタル酸、アジピン酸、セバシン酸、オルソフタル酸、ナフタレンジカルボン酸、コハク酸、アゼライン酸、デカン酸、ダイマー酸、シクロヘキサンジカルボン酸、トリメリット酸等を含有することができるが、中でもイソフタル酸を好適に含有することができる。   The main dicarboxylic acid component constituting the polyester-based resin is terephthalic acid as described above, and terephthalic acid is preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably based on 100 mol% of the dicarboxylic acid component. Contains 60 mol% or more. Dicarboxylic acid components other than terephthalic acid include, for example, isophthalic acid, adipic acid, sebacic acid, orthophthalic acid, naphthalenedicarboxylic acid, succinic acid, azelaic acid, decanoic acid, dimer acid, cyclohexanedicarboxylic acid, trimellitic acid, etc. Among them, isophthalic acid can be preferably contained.

ポリエステル系樹脂を構成する主なジオール成分は、前述のとおりエチレングリコールであり、ジオール成分100モル%に対してエチレングリコールを好ましくは50モル%以上、より好ましくは55モル%以上、更に好ましくは60モル%以上含有する。エチレングリコール以外のジオール成分としては、例えば、ネオペンチルグリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール、1,4−ブタンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−1,3−プロパンジオール、ヘキサンジオール、ノナンジオール、ダイマージオール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、2−ブチル−2−エチル−1,3−プロパンジオール、トリシクロデカンジメタノール、2,2,4−トリメチル−1,5−ペンタンジオール等を含有することができ、中でもネオペンチルグリコールや1,4−シクロヘキサンジメタノールを好適に含有することができる。また、1,4−シクロヘキサンジメタノールにはシス型及びトランス型の2種類の異性体が存在するが、いずれであってもよい。
ただし、1,4−ブタンジオールのように、エチレングリコールに比べてガラス転移温度(Tg)が低下するような成分を含有させる場合は、自然収縮率の上昇を抑える観点から、その含有量をジオール成分100モル%に対して、好ましくは5モル%以下、より好ましくは3%以下に抑える。
The main diol component constituting the polyester-based resin is ethylene glycol as described above, and ethylene glycol is preferably 50 mol% or more, more preferably 55 mol% or more, and still more preferably 60 with respect to 100 mol% of the diol component. Containing at least mol%. Examples of the diol component other than ethylene glycol include neopentyl glycol, diethylene glycol, 1,4-cyclohexanedimethanol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, 1,5- Pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, hexanediol, nonanediol, dimer diol, ethylene oxide adduct or propylene oxide adduct of bisphenol A, polyethylene glycol, Polypropylene glycol, polytetramethylene glycol, 2-butyl-2-ethyl-1,3-propanediol, tricyclodecane dimethanol, 2,2,4-trimethyl-1,5-pentanediol and the like can be contained. , But it is possible to suitably containing neopentyl glycol and 1,4-cyclohexanedimethanol. Further, 1,4-cyclohexanedimethanol has two types of isomers, cis type and trans type, which may be any.
However, when a component such as 1,4-butanediol that has a glass transition temperature (Tg) lower than that of ethylene glycol is contained, the content of diol is reduced from the viewpoint of suppressing an increase in the natural shrinkage rate. Preferably it is 5 mol% or less with respect to 100 mol% of components, More preferably, it restrains to 3% or less.

本発明において、特に好適に用いられるのは、ジカルボン酸成分がテレフタル酸100モル%であり、ジオール成分がエチレングリコールを主成分とし、第2成分として1,4−シクロヘキサンジメタノールを含有した熱収縮性ポリエステル系フィルムである。ここで言う主成分及び第2成分とは、全ポリエステル樹脂成分中におけるジカルボン酸成分、ジオール成分を各々100モル%(合計200モル%)としたとき、各成分においてモル比率が最も高いものを主成分、2番目に高いものを第2成分という。同様に3番目に高いものを第3成分といい、第3成分以降を含有していても本発明の要件を満たしていれば構わない。
イソフタル酸やネオペンチルグリコールを第2成分として含有した熱収縮性フィルムも好適に用いることができるが、ガラス転移温度をより適切な範囲として、耐自然収縮性、収縮応力、及び収縮率の制御を効率的に行う観点からは、1,4−シクロヘキサンジメタノールを第2成分として含有するフィルムがより好ましい。1,4−シクロヘキサンジメタノールの含有量は、上記観点から、全ジオール成分100モル%中、好ましくは10モル%以上45モル%以下であり、より好ましくは20モル%以上40モル%以下である。
In the present invention, heat shrinkage in which the dicarboxylic acid component is 100% by mole of terephthalic acid, the diol component is mainly composed of ethylene glycol and 1,4-cyclohexanedimethanol as the second component is particularly preferably used. Is a conductive polyester film. The main component and the second component referred to here are those having the highest molar ratio in each component when the dicarboxylic acid component and the diol component in the total polyester resin component are each 100 mol% (total 200 mol%). The second highest component is called the second component. Similarly, the third highest component is referred to as the third component, and even if it contains the third component and thereafter, it does not matter as long as it satisfies the requirements of the present invention.
A heat-shrinkable film containing isophthalic acid or neopentyl glycol as the second component can also be suitably used, but the glass transition temperature is set to a more appropriate range to control the natural shrinkage resistance, shrinkage stress, and shrinkage rate. From the viewpoint of performing efficiently, a film containing 1,4-cyclohexanedimethanol as the second component is more preferable. From the above viewpoint, the content of 1,4-cyclohexanedimethanol is preferably 10 mol% or more and 45 mol% or less, more preferably 20 mol% or more and 40 mol% or less, in 100 mol% of all diol components. .

本発明に係るポリエステル系樹脂は、ポリエステル系樹脂の慣用の製造方法、すなわち、直接重合法又はエステル交換法等により、回分式又は連続式によって製造することができる。ここで、任意の共重合成分は、重縮合反応過程の任意の段階で添加することができる。また、ジカルボン酸化合物とジオール化合物とから低重合度のオリゴマーを製造しておき、これと任意の共重合成分とを重縮合させてポリエステル樹脂を製造することもできる。
重縮合反応により得られた樹脂は、通常、重縮合反応槽の底部に設けられた抜き出し口からストランド状に抜き出して、水冷しながら若しくは水冷後、カッターで切断されてペレット状とされる。さらに、この重縮合後のペレットを加熱処理して固相重縮合させることにより、さらに高重合度化させ得ると共に、反応副生物のアセトアルデヒドや低分子オリゴマー等を低減化することもできる。
前記製造方法において、エステル化反応は、必要に応じて、例えば、三酸化二アンチモンや、アンチモン、チタン、マグネシウム、カルシウム等の有機酸塩や有機金属化合物等のエステル化反応触媒の存在下で行うことができ、エステル交換反応は、必要に応じて、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、マンガン、チタン、亜鉛等の有機酸塩や有機金属化合物等のエステル交換反応触媒の存在下で行うことができる。
また、重縮合反応は、例えば、正リン酸、亜リン酸、次亜リン酸、ポリリン酸、及びこれらのエステルや有機酸塩等のリン化合物の存在下で行うことができ、例えば、三酸化二アンチモン、二酸化ゲルマニウム、四酸化ゲルマニウム等の金属酸化物、或いは、アンチモン、ゲルマニウム、亜鉛、チタン、コバルト等の有機酸塩や有機金属化合物等の重縮合触媒の存在下で行うこともできる。これらの重縮合触媒のうち、特にテトラブトキシチタネート、三酸化二アンチモン、二酸化ゲルマニウムから選択される1種以上が好適に使用される。
また、重縮合過程での消泡を促進するため、シリコーンオイル等の消泡剤を添加することもできる。
The polyester resin according to the present invention can be produced by a batch method or a continuous method by a conventional method for producing a polyester resin, that is, a direct polymerization method or a transesterification method. Here, the optional copolymerization component can be added at any stage of the polycondensation reaction process. Alternatively, a polyester resin can be produced by producing an oligomer having a low polymerization degree from a dicarboxylic acid compound and a diol compound, and polycondensing this with an arbitrary copolymer component.
The resin obtained by the polycondensation reaction is usually extracted in the form of a strand from an extraction port provided at the bottom of the polycondensation reaction tank, and is cooled with water or after water cooling, and then cut into a pellet by cutting with a cutter. Furthermore, by subjecting the pellets after polycondensation to heat treatment and solid phase polycondensation, the degree of polymerization can be further increased, and reaction by-products such as acetaldehyde and low-molecular oligomers can be reduced.
In the above production method, the esterification reaction is performed in the presence of an esterification reaction catalyst such as antimony trioxide, an organic acid salt such as antimony, titanium, magnesium, calcium, or an organic metal compound, if necessary. The transesterification reaction can be carried out in the presence of a transesterification reaction catalyst such as an organic acid salt or an organic metal compound such as lithium, sodium, potassium, magnesium, calcium, manganese, titanium, or zinc, if necessary. It can be carried out.
The polycondensation reaction can be carried out in the presence of phosphorus compounds such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, and esters and organic acid salts thereof. It can also be carried out in the presence of a polycondensation catalyst such as metal oxides such as diantimony, germanium dioxide and germanium tetroxide, or organic acid salts and organometallic compounds such as antimony, germanium, zinc, titanium and cobalt. Of these polycondensation catalysts, at least one selected from tetrabutoxy titanate, antimony trioxide, and germanium dioxide is preferably used.
Further, an antifoaming agent such as silicone oil can be added to promote defoaming in the polycondensation process.

本発明の熱収縮性ポリエステル系フィルムは、50℃を超える雰囲気温度においても熱収縮しにくいという高い耐自然収縮性の観点から、60℃の温水に5分間浸漬したときの主収縮方向の収縮率が好ましくは2.7%以下、より好ましくは2.6%以下、更に好ましくは2.5%以下である。
また、同様の観点から、本発明の熱収縮性ポリエステル系フィルムは、70℃の温水に10秒間浸漬したときの主収縮方向の収縮率が好ましくは3%以下、より好ましくは2.5%以下である。
The heat-shrinkable polyester film of the present invention has a shrinkage ratio in the main shrinkage direction when immersed in warm water at 60 ° C. for 5 minutes from the viewpoint of high natural shrinkage resistance, which is difficult to heat shrink even at an atmospheric temperature exceeding 50 ° C. Is preferably 2.7% or less, more preferably 2.6% or less, and even more preferably 2.5% or less.
From the same viewpoint, the heat-shrinkable polyester film of the present invention preferably has a shrinkage in the main shrinkage direction of not more than 3%, more preferably not more than 2.5% when immersed in warm water at 70 ° C. for 10 seconds. It is.

本発明の熱収縮性フィルムは、単層フィルムであってもよく、積層フィルムの少なくとも1層に用いてもよい。積層フィルムの場合、本発明の要件を満たしていれば、積層するフィルムの材質や層の数には特に制限がなく、本発明のフィルムと同質の材料であっても異質の材料であっても構わない。異質の材料としては、例えばポリスチレン系樹脂、ポリオレフィン系樹脂等が挙げられる。しかし、本フィルムの特長である優れた耐自然収縮性を維持するためには、他層についてもポリエステル系樹脂で構成されるのが好ましい。また、積層フィルムとした場合の本フィルムの厚さについて、特に制限されるものではないが、全層の厚さに対して50%以上であれば、耐自然収縮性を阻害しにくいので好ましい。   The heat-shrinkable film of the present invention may be a single layer film or may be used for at least one layer of a laminated film. In the case of a laminated film, as long as the requirements of the present invention are satisfied, there is no particular limitation on the material and the number of layers of the laminated film, and it may be the same or different material as the film of the present invention. I do not care. Examples of the heterogeneous material include polystyrene resins and polyolefin resins. However, in order to maintain the excellent natural shrinkage resistance, which is a feature of this film, the other layers are preferably composed of a polyester resin. In addition, the thickness of the film in the case of a laminated film is not particularly limited, but if it is 50% or more with respect to the thickness of all layers, it is preferable because the natural shrinkage resistance is hardly inhibited.

本発明では、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、フィルムの耳等のトリミングロス等から発生するリサイクル樹脂、その他樹脂;シリカ、タルク、カオリン、炭酸カルシウム等の無機粒子;酸化チタン、カーボンブラック等の顔料;難燃剤、紫外線吸収剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤等の添加剤を適宜添加することもできる。   In the present invention, in addition to the above-described components, recycled resins and other resins generated from trimming loss of film ears and the like within a range that does not significantly impair the effects of the present invention; inorganics such as silica, talc, kaolin, calcium carbonate, etc. Particles: Pigments such as titanium oxide and carbon black; Add additives such as flame retardants, ultraviolet absorbers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, etc. as appropriate You can also.

[熱収縮性ポリエステル系フィルムの製造方法]
本発明の熱収縮性フィルムは、前述のポリエステル系樹脂や添加剤等からなる混合物を、一軸押出機、又は二軸(同方向、異方向)押出機によって溶融押出してシート又はフィルムを作製し、更に少なくとも1軸に延伸して製造されることが好ましい。混合物は、ヘンシェルミキサー等の公知の方法で作製してもよいし、押出機で溶融してペレット化しても構わない。押出方法としては、Tダイ法、チューブラ法等の公知の方法を採用してもよい。また、積層フィルムを製造する場合、共押出や、単層毎に押し出した後に重ね合わせる方法等を採用することができる。
[Method for producing heat-shrinkable polyester film]
The heat-shrinkable film of the present invention is a sheet or film produced by melt-extruding a mixture composed of the above-described polyester-based resin, additives, and the like with a single screw extruder or a biaxial (same direction, different direction) extruder, Furthermore, it is preferable to produce at least one axis. The mixture may be prepared by a known method such as a Henschel mixer, or may be melted and pelletized by an extruder. As the extrusion method, a known method such as a T-die method or a tubular method may be employed. Moreover, when manufacturing a laminated | multilayer film, the method of superimposing after extruding or extruding for every single layer can be employ | adopted.

溶融押出されたシート又はフィルムは、冷却ロール、空気、水等で冷却された後、熱風、温水、赤外線等の適当な方法で再加熱され、ロール法、テンター法、チューブラ法等により、少なくとも1軸に延伸されることが好ましい。延伸温度は、熱収縮性フィルムを構成する各樹脂のガラス転移温度(Tg)や要求される特性によって変える必要があるが、生産性や収縮特性の観点から、概ねTg〜(Tg+25℃)とするのがよい。   The melt-extruded sheet or film is cooled with a cooling roll, air, water, etc., and then reheated by a suitable method such as hot air, hot water, infrared rays, etc., and at least 1 by a roll method, a tenter method, a tubular method, etc. It is preferred to be stretched on the axis. The stretching temperature needs to be changed depending on the glass transition temperature (Tg) of each resin constituting the heat-shrinkable film and required characteristics, but is generally Tg to (Tg + 25 ° C.) from the viewpoint of productivity and shrinkage characteristics. It is good.

主収縮方向における延伸倍率は特に制限されるものではないが、生産性や収縮特性の観点から、2〜8倍の範囲が好ましい。   Although the draw ratio in the main shrinkage direction is not particularly limited, a range of 2 to 8 times is preferable from the viewpoint of productivity and shrinkage characteristics.

延伸されたフィルムは、加熱収縮時の急激な収縮を防ぎ、かつ耐自然収縮性を向上させる目的で、熱処理工程にて熱処理されることが好ましい。熱処理は、ロール、テンター等、公知のどの方法を採用しても構わない。熱処理条件は特に限定されないが、生産性や収縮特性の観点から、延伸温度〜(延伸温度+40℃)で2〜120秒処理するのが好ましい。   The stretched film is preferably heat-treated in a heat treatment step for the purpose of preventing rapid shrinkage during heat shrinkage and improving spontaneous shrinkage resistance. Any known method such as a roll or a tenter may be used for the heat treatment. The heat treatment conditions are not particularly limited, but from the viewpoint of productivity and shrinkage characteristics, it is preferable to perform the treatment at a stretching temperature to (stretching temperature + 40 ° C.) for 2 to 120 seconds.

熱処理工程は、弛緩せずに熱処理する工程と、主収縮方向に弛緩させながら熱処理する工程とを組み合わせるのが好ましい。主収縮方向への弛緩率が高いほど耐自然収縮性は向上するが、弛緩率は、生産性や収縮特性の観点から、0.5〜10%の範囲とするのが好ましい。   The heat treatment step is preferably a combination of a step of heat treatment without relaxation and a step of heat treatment while relaxing in the main shrinkage direction. The higher the relaxation rate in the main shrinkage direction, the better the natural shrinkage resistance. However, the relaxation rate is preferably in the range of 0.5 to 10% from the viewpoint of productivity and shrinkage characteristics.

本発明で得られるポリエステル系熱収縮フィルムの厚みは、特に限定されないが、断熱容器に用いる場合は、断熱把持部の形成の観点並びにフィルムを容器に貼り合わせる加工工程における作業性の観点から、10μm以上200μm以下、好ましくは20μm以上150μm以下とするのがよい。   The thickness of the polyester-based heat-shrinkable film obtained in the present invention is not particularly limited. However, when used in a heat-insulating container, the thickness is 10 μm from the viewpoint of forming a heat-insulating gripping part and workability in the processing step of bonding the film to the container. It is preferable that the thickness is not less than 200 μm, preferably not less than 20 μm and not more than 150 μm.

[断熱容器]
本発明の熱収縮性ポリエステル系フィルムを用いて断熱容器を製造することができる。当該断熱容器としては特に限定されないが、例えば上記の特許文献1〜3等に記載された断熱容器であってもよい。その製造方法も特に限定されず、例えば上記の特許文献1〜3等に記載された方法を参照することができる。具体的には、断熱突出部を形成する外スリーブの高さ方向にスリット群を形成し、スリットにより形成された短冊が上下方向に圧縮され突出するように短冊部に山折罫線と谷折り罫線を形成してなる外スリーブに、本発明の熱収縮性フィルムを、該スリーブとカップとの間にフィルムがカップ外面側に接するように、かつ、該スリーブのスリットにより形成される短冊群を覆うように添着して、断熱容器を製造することができる。
該スリーブがカップに巻かれるとき、該スリーブの接着部が必要であるが、接着部が二重になるため接着部のみ熱伝導が伝わりにくいため、そこに短冊の突出部を設けるとそこだけ突出が弱いか、突出しない場合がある。そのため、接着部の突出部については、重ならないように切り欠いておくことが好ましい。
本発明の熱収縮性ポリエステル系フィルムを用いた断熱容器は、断熱容器(カップ)内に熱湯を注ぐと、カップ外面に配置された熱収縮性フィルムに熱が伝わって該フィルムが高さ方向に収縮し、前記スリットにより形成される短冊が突出することで断熱把持部を形成する。
当該断熱容器は、容器内に熱湯を注ぐことにより飲食できるインスタントラーメンやスープ等用の容器として好適であり、使用者が手で把持する部分(断熱把持部)の断熱性が優れる。
[Insulated container]
A heat insulation container can be manufactured using the heat-shrinkable polyester film of the present invention. Although it does not specifically limit as the said heat insulation container, For example, the heat insulation container described in said patent document 1-3 etc. may be sufficient. The manufacturing method is not particularly limited, and for example, the methods described in the above Patent Documents 1 to 3 can be referred to. Specifically, a slit group is formed in the height direction of the outer sleeve that forms the heat insulating protruding portion, and a mountain fold ruled line and a valley fold ruled line are formed on the strip portion so that the strip formed by the slit is compressed in the vertical direction and protrudes. A heat-shrinkable film of the present invention is formed on the outer sleeve formed so that the film contacts the outer surface of the cup between the sleeve and the cup, and covers the strip group formed by the slit of the sleeve. A heat insulating container can be manufactured by attaching to the above.
When the sleeve is wound around the cup, an adhesive part of the sleeve is necessary. However, since the adhesive part becomes double, only the adhesive part is difficult to transmit heat conduction. May be weak or may not protrude. Therefore, it is preferable to cut out the protruding portion of the bonding portion so as not to overlap.
In the heat insulating container using the heat-shrinkable polyester film of the present invention, when hot water is poured into the heat-insulating container (cup), heat is transferred to the heat-shrinkable film disposed on the outer surface of the cup so that the film is in the height direction. The heat insulating gripping part is formed by shrinking and projecting the strip formed by the slit.
The said heat insulation container is suitable as a container for instant noodles, soup, etc. which can be eaten / drinked by pouring hot water in a container, and the heat insulation of the part (heat insulation holding part) which a user hold | grips by hand is excellent.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらによって何ら制限を受けるものではない。なお、実施例に示す測定値及び評価は、次のとおり実施した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited at all by these. In addition, the measured value shown in the Example and evaluation were implemented as follows.

[収縮応力]
(フィルムの主収縮方向における75℃の最大収縮応力)
主収縮方向が長手方向となるように幅10mm、長さ120mmの大きさにフィルムを切り取り、試料とした。その試料の両端をチャック間距離が50mmとなるように把持し、75℃に調整されたオイルバスに浸漬した際の荷重を検出し、その最大荷重から算出した値を最大収縮応力とした。
[Shrinkage stress]
(Maximum shrinkage stress at 75 ° C in the main shrinkage direction of the film)
A film was cut to a size of 10 mm in width and 120 mm in length so that the main shrinkage direction was the longitudinal direction, and used as a sample. Both ends of the sample were gripped so that the distance between chucks was 50 mm, the load when immersed in an oil bath adjusted to 75 ° C. was detected, and the value calculated from the maximum load was taken as the maximum contraction stress.

[熱収縮率]
(1)60℃×40%RH雰囲気×8時間保管後の主収縮方向の熱収縮率
主収縮方向が長手方向となるように幅30mm、長さ600mmの大きさにフィルムを切り取り、かつ500mm間隔となる標線を入れて試料とした。その試料を60℃×40%RHの雰囲気に調整された恒温槽に入れた。8時間保管後に恒温槽より取り出し、標線間A(mm)の寸法を計測した。その寸法より、熱収縮率を次式で算出した。
収縮率(%)=[(500−A)/500]×100
(2)80℃温水×10秒浸漬後の主収縮方向の熱収縮率
主収縮方向が長手方向となるように幅10mm、長さ140mmの大きさにフィルムを切り取り、かつ100mm間隔となる標線を入れて試料とした。その試料を80℃の温水に10秒間浸漬し、その後すばやく冷水で冷却してから標線間B(mm)の寸法を計測した。その寸法より、熱収縮率を次式で算出した。
収縮率(%)=[(100−B)/100]×100
(3)70℃温水×10秒浸漬後の主収縮方向の熱収縮率
主収縮方向が長手方向となるように幅10mm、長さ140mmの大きさにフィルムを切り取り、かつ100mm間隔となる標線を入れて試料とした。その試料を70℃の温水に10秒間浸漬し、その後すばやく冷水で冷却してから標線間C(mm)の寸法を計測した。その寸法より、熱収縮率を次式で算出した。
収縮率(%)=[(100−C)/100]×100
(4)60℃温水×5分浸漬後の主収縮方向の熱収縮率
主収縮方向が長手方向となるように幅30mm、長さ600mmの大きさにフィルムを切り取り、かつ500mm間隔となる標線を入れて試料とした。その試料を60℃の温水に5分間浸漬し、その後すばやく冷水で冷却してから標線間D(mm)の寸法を計測した。その寸法より、熱収縮率を次式で算出した。
収縮率(%)=[(500−D)/500]×100
[Heat shrinkage]
(1) 60 ° C. × 40% RH atmosphere × heat shrinkage rate in the main shrinkage direction after storage for 8 hours The film is cut into a size of 30 mm in width and 600 mm in length so that the main shrinkage direction becomes the longitudinal direction, and intervals of 500 mm A sample line was inserted and used as a sample. The sample was placed in a thermostatic chamber adjusted to an atmosphere of 60 ° C. × 40% RH. After storage for 8 hours, it was taken out from the thermostatic chamber, and the dimension between the marked lines A (mm) was measured. From the dimensions, the thermal contraction rate was calculated by the following equation.
Shrinkage rate (%) = [(500−A) / 500] × 100
(2) Heat shrinkage rate in the main shrinkage direction after immersion at 80 ° C. in warm water for 10 seconds The mark is cut into a size of 10 mm in width and 140 mm in length so that the main shrinkage direction becomes the longitudinal direction, and a marked line having an interval of 100 mm Was used as a sample. The sample was immersed in warm water at 80 ° C. for 10 seconds, and then quickly cooled with cold water, and then the dimension between the marked lines B (mm) was measured. From the dimensions, the thermal contraction rate was calculated by the following equation.
Shrinkage rate (%) = [(100−B) / 100] × 100
(3) Heat shrinkage rate in the main shrinkage direction after 70 ° C. warm water × 10 seconds immersion The film is cut into a size of 10 mm in width and 140 mm in length so that the main shrinkage direction is the longitudinal direction, and a marked line having an interval of 100 mm Was used as a sample. The sample was immersed in warm water at 70 ° C. for 10 seconds, and then quickly cooled with cold water, and then the dimension between the marked lines C (mm) was measured. From the dimensions, the thermal contraction rate was calculated by the following equation.
Shrinkage rate (%) = [(100−C) / 100] × 100
(4) Heat shrinkage rate in the main shrinkage direction after immersion at 60 ° C. in warm water × 5 minutes Marked lines with a width of 30 mm and a length of 600 mm so that the main shrinkage direction is the longitudinal direction and 500 mm intervals Was used as a sample. The sample was immersed in warm water at 60 ° C. for 5 minutes, and then quickly cooled with cold water, and then the dimension between marked lines D (mm) was measured. From the dimensions, the thermal contraction rate was calculated by the following equation.
Shrinkage rate (%) = [(500−D) / 500] × 100

[断熱容器についての評価]
(1)耐熱性評価
55℃×50%RHに調整された恒温恒湿槽に断熱容器を入れ、8時間保管後に恒温恒湿槽から断熱容器を取り出し、短冊把持部の変形の有無を目視観察した。
耐熱性の評価基準は、○=変形なし、△=丸みのある変形、×=突起部角が形成された変形、とした。
(2)機能性評価
断熱容器内に85℃の熱湯を注ぎ、3分後の短冊把持部の状態を目視観察した。
機能性の評価基準は、○=完全に変形完了、△=不完全な変形、×=若干の変形又は変形なし、とした。
[Evaluation of insulated containers]
(1) Evaluation of heat resistance A heat insulating container is put in a constant temperature and humidity chamber adjusted to 55 ° C x 50% RH, and after storage for 8 hours, the heat insulating container is taken out from the constant temperature and humidity chamber and visually observed for deformation of the strip gripping portion. did.
The evaluation criteria for heat resistance were as follows: ◯ = no deformation, Δ = round deformation, x = deformation with protrusion corners formed.
(2) Functionality evaluation The hot water of 85 degreeC was poured in the heat insulation container, and the state of the strip holding part after 3 minutes was observed visually.
The evaluation criteria for functionality were as follows: ◯ = completely deformed, Δ = incomplete deformation, x = slight or no deformation.

以下の実施例及び比較例では、表1に示された組成のポリエステル(A)〜(C)を使用した。なお、表1に示されたポリエステル系樹脂の組成は、それぞれNMR(核磁気共鳴装置)により定性定量分析して得られたものである。   In the following examples and comparative examples, polyesters (A) to (C) having the compositions shown in Table 1 were used. The composition of the polyester resin shown in Table 1 was obtained by qualitative and quantitative analysis by NMR (nuclear magnetic resonance apparatus).

Figure 2012036272
Figure 2012036272

実施例1
表1記載のポリエステル(A)を押出機で溶融した後、Tダイにて押出し、その溶融体をキャストロールで冷却し、厚さ260μmの未延伸フィルムを得た。この未延伸フィルムを流れ方向(MD)に1.05倍延伸してからテンターに導き、その直角方向(TD)に88℃で5.8倍延伸した。引き続き90℃で5秒間熱処理した後、85℃で4.6%TD方向に弛緩しながら5秒間再熱処理を施し、厚さ45μmの単層フィルムを作製した。このとき、主収縮方向はTD方向である。
作製したフィルムを、断熱突出部を形成する外スリーブの高さ方向にスリット群を形成し、スリットにより形成された短冊が上下方向に圧縮され突出するように短冊部に山折罫線と谷折り罫線を形成してなる外スリーブに、該スリーブとカップとの間にフィルムがカップ外面側に接するように、かつ、該スリーブのスリットにより形成される短冊群を覆うように添着して、断熱容器を作製した。
得られたフィルム及び断熱容器の評価結果を表2に示す。
Example 1
After melting the polyester (A) shown in Table 1 with an extruder, the polyester (A) was extruded with a T-die, and the melt was cooled with a cast roll to obtain an unstretched film having a thickness of 260 μm. This unstretched film was stretched 1.05 times in the flow direction (MD) and then led to a tenter, and stretched 5.8 times in the perpendicular direction (TD) at 88 ° C. Subsequently, after heat treatment at 90 ° C. for 5 seconds, reheat treatment was performed at 85 ° C. for 5 seconds while relaxing in the 4.6% TD direction, and a 45 μm thick single layer film was produced. At this time, the main contraction direction is the TD direction.
A slit group is formed in the height direction of the outer sleeve that forms the heat insulating protruding portion of the produced film, and a mountain fold ruled line and a valley fold ruled line are formed in the strip part so that the strip formed by the slit is compressed in the vertical direction and protrudes. A heat insulating container is manufactured by attaching to the outer sleeve formed so that the film is in contact with the outer surface of the cup between the sleeve and the cup and covers the strips formed by the slits of the sleeve. did.
Table 2 shows the evaluation results of the obtained film and the heat insulating container.

実施例2
実施例1のTD方向での延伸後における熱処理条件を変更して、88℃で5秒間熱処理した後、85℃で4.6%TD方向に弛緩しながら5秒間再熱処理を施したこと以外は、実施例1と同様にして厚さ45μmの単層フィルム及び断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Example 2
The heat treatment conditions after stretching in the TD direction of Example 1 were changed, and after heat treatment at 88 ° C. for 5 seconds, reheat treatment was performed for 5 seconds while relaxing in the 4.6% TD direction at 85 ° C. In the same manner as in Example 1, a 45 μm-thick single layer film and a heat insulating container were produced. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

実施例3
実施例1と同様にして厚さ235μmの未延伸フィルムを得た。この未延伸フィルムを流れ方向(MD)に1.05倍延伸してからテンターに導き、その直角方向(TD)に88℃で5.2倍延伸し、引き続き90℃で5秒間熱処理した後、90℃で5.2%TD方向に弛緩しながら5秒間再熱処理を施したこと以外は、実施例1と同様にして厚さ45μmの単層フィルム及び断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Example 3
In the same manner as in Example 1, an unstretched film having a thickness of 235 μm was obtained. This unstretched film was stretched 1.05 times in the flow direction (MD) and then led to a tenter, and stretched 5.2 times at 88 ° C. in the perpendicular direction (TD), followed by heat treatment at 90 ° C. for 5 seconds, A 45 μm-thick single layer film and a heat insulating container were produced in the same manner as in Example 1 except that reheating was performed for 5 seconds while relaxing in the 5.2% TD direction at 90 ° C. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

実施例4
実施例1と同様にして厚さ275μmの未延伸フィルムを得た。この未延伸フィルムを流れ方向(MD)に1.05倍延伸してからテンターに導き、その直角方向(TD)に88℃で5.8倍延伸した。引き続き90℃で5秒間熱処理した後、弛緩せずに80℃で5秒間再熱処理を施し、厚さ45μmの単層フィルムを作製した。このとき、主収縮方向はTD方向である。このフィルムを用いて実施例1と同様にして断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Example 4
In the same manner as in Example 1, an unstretched film having a thickness of 275 μm was obtained. This unstretched film was stretched 1.05 times in the flow direction (MD) and then led to a tenter, and stretched 5.8 times in the perpendicular direction (TD) at 88 ° C. Subsequently, after heat treatment at 90 ° C. for 5 seconds, re-heat treatment was performed at 80 ° C. for 5 seconds without relaxation, and a 45 μm-thick single layer film was produced. At this time, the main contraction direction is the TD direction. Using this film, a heat-insulating container was produced in the same manner as in Example 1. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

比較例1
実施例1と同様にして厚さ365μmの未延伸フィルムを得た。この未延伸フィルムを流れ方向(MD)に1.05倍延伸してからテンターに導き、その直角方向(TD)に87℃で5.8倍延伸した。引き続き84℃で5秒間熱処理した後、弛緩せずに80℃で5秒間再熱処理を施し、厚さ60μmの単層フィルムを作製した。このフィルムを用いて実施例1と同様にして断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Comparative Example 1
An unstretched film having a thickness of 365 μm was obtained in the same manner as in Example 1. The unstretched film was stretched 1.05 times in the flow direction (MD) and then guided to a tenter, and stretched 5.8 times at 87 ° C. in the perpendicular direction (TD). Subsequently, after heat treatment at 84 ° C. for 5 seconds, re-heat treatment was performed at 80 ° C. for 5 seconds without relaxation, and a single layer film having a thickness of 60 μm was produced. Using this film, a heat-insulating container was produced in the same manner as in Example 1. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

比較例2
表1記載の原材料ペレットのうち、ポリエステル(A)/ポリエステル(B)/ポリエステル(C)=58/27/15(重量比)の比率でブレンドしておき、押出機のホッパーへ投入して溶融した後、Tダイにて押出し、その溶融体をキャストロールで冷却し、厚さ245μmの未延伸フィルムを得た。この未延伸フィルムを流れ方向(MD)に1.05倍延伸してからテンターに導き、その直角方向(TD)に81℃で5.2倍延伸した。引き続き95℃で5秒間熱処理した後、弛緩せずに80℃で5秒間再熱処理を施し、厚さ45μmの単層フィルムを作製した。このフィルムを用いて実施例1と同様にして断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Comparative Example 2
Among the raw material pellets listed in Table 1, blended at a ratio of polyester (A) / polyester (B) / polyester (C) = 58/27/15 (weight ratio), and put into an hopper of an extruder to melt. After that, it was extruded with a T die, and the melt was cooled with a cast roll to obtain an unstretched film having a thickness of 245 μm. This unstretched film was stretched 1.05 times in the flow direction (MD), guided to a tenter, and stretched 5.2 times at 81 ° C. in the perpendicular direction (TD). Subsequently, after heat treatment at 95 ° C. for 5 seconds, re-heat treatment was performed at 80 ° C. for 5 seconds without relaxation, and a 45 μm-thick single layer film was produced. Using this film, a heat-insulating container was produced in the same manner as in Example 1. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

比較例3
比較例2と同様の方法で製膜したフィルムを、さらに60℃に調整された恒温槽にて24時間アニール処理し、厚さ45μmの単層フィルムを得た。このフィルムを用いて実施例1と同様にして断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Comparative Example 3
The film formed by the same method as in Comparative Example 2 was further annealed for 24 hours in a thermostatic chamber adjusted to 60 ° C. to obtain a single-layer film having a thickness of 45 μm. Using this film, a heat-insulating container was produced in the same manner as in Example 1. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

比較例4
比較例2と同様の方法で製膜したフィルムの両面に、グラビア校正機((株)日商グラビア製、型式:CM型)と、ベタ図柄版(版深36μm、ナベプロセス(株)製)を用いて白インキを塗布した後に自然乾燥し、総厚み55μmの印刷フィルムを得た。このとき、片面あたりのインキ厚みは5μmであった。なお、白インキは、DIC(株)製の「ファインラップNTV PET−HC白2」を80vol%、同じくDIC(株)製の「ユニビアNT No.20レジューサー」を20vol%の比率で混合したものを使用した。この印刷フィルムを用い、実施例1と同様にして断熱容器を作製した。得られたフィルム及び断熱容器の評価結果を表2に示す。
Comparative Example 4
A gravure proofing machine (manufactured by Nissho Gravure Co., Ltd., model: CM type) and a solid pattern plate (plate depth 36 μm, manufactured by Nabe Process Co., Ltd.) on both surfaces of a film formed in the same manner as in Comparative Example 2 After the white ink was applied using, it was naturally dried to obtain a printing film having a total thickness of 55 μm. At this time, the ink thickness per side was 5 μm. The white ink was mixed with 80% by volume of “Fine Wrap NTV PET-HC White 2” manufactured by DIC Corporation, and 20% by volume of “Univia NT No. 20 Reducer” manufactured by DIC Corporation. I used something. Using this printed film, the heat insulation container was produced like Example 1. FIG. Table 2 shows the evaluation results of the obtained film and the heat insulating container.

Figure 2012036272
Figure 2012036272

表2の結果より、実施例1〜4の熱収縮性ポリエステル系フィルムは、60℃40%RHの雰囲気下では収縮しにくく、かつ、60℃及び70℃の温水に浸漬した際にも収縮しにくく、耐自然収縮性に極めて優れることがわかる。その一方で、75℃における最大収縮応力が好適な範囲にあり、80℃の温水に浸漬した際には速やかに熱収縮することがわかる。そして、この熱収縮性フィルムを断熱容器に用いた場合には、耐熱性及び機能性のバランスに優れていることがわかる。
これに対し、比較例1〜4のフィルムは、60℃40%RHの雰囲気下において熱収縮が起きており、外気温が上昇する季節の製品搬送や保管の際には、製品の変形が生じる可能性が高いことがわかる。このようなフィルムを用いて作製した容器では、短冊把持部(断熱把持部)が突出し、断熱容器の直径変形量が大きくなることがわかる。また、収縮応力が低い比較例3のフィルムを用いて作製した容器では断熱把持部が形成されず、断熱容器としての機能性が発現されないことがわかる。
From the results in Table 2, the heat-shrinkable polyester films of Examples 1 to 4 are less likely to shrink in an atmosphere of 60 ° C. and 40% RH, and also shrink when immersed in hot water at 60 ° C. and 70 ° C. It is difficult to see and the natural shrinkage resistance is extremely excellent. On the other hand, it can be seen that the maximum shrinkage stress at 75 ° C. is in a suitable range, and when it is immersed in warm water at 80 ° C., it rapidly heat shrinks. And when this heat-shrinkable film is used for a heat insulation container, it turns out that it is excellent in the balance of heat resistance and functionality.
On the other hand, in the films of Comparative Examples 1 to 4, heat shrinkage occurs in an atmosphere of 60 ° C. and 40% RH, and product deformation occurs during product transportation and storage in the season when the outside air temperature rises. It turns out that the possibility is high. In the container produced using such a film, it turns out that a strip holding part (insulation holding part) protrudes and the diameter deformation amount of an insulation container becomes large. Moreover, in the container produced using the film of the comparative example 3 with low shrinkage stress, it turns out that a heat insulation grip part is not formed and the functionality as a heat insulation container is not expressed.

Claims (4)

フィルムの主収縮方向における75℃の最大収縮応力が4.4MPa以上12.0MPa以下であり、フィルムを60℃×40%RH雰囲気下にて8時間保管したときの主収縮方向の収縮率が2.0%以下であり、かつフィルムを80℃の温水に10秒間浸漬したときの主収縮方向の収縮率が10%以上80%未満であることを特徴とする熱収縮性ポリエステル系フィルム。   The maximum shrinkage stress at 75 ° C. in the main shrinkage direction of the film is 4.4 MPa or more and 12.0 MPa or less, and the shrinkage rate in the main shrinkage direction is 2 when the film is stored in an atmosphere of 60 ° C. × 40% RH for 8 hours. A heat-shrinkable polyester film having a shrinkage ratio in the main shrinkage direction of 10% or more and less than 80% when the film is immersed in warm water at 80 ° C. for 10 seconds. 全ポリエステル樹脂成分中において、ジカルボン酸成分の主成分をテレフタル酸、ジオール成分の主成分をエチレングリコールとし、かつ(a)イソフタル酸、(b)1,4−シクロヘキサンジメタノール、及び(c)ネオペンチルグリコールからなる群から選ばれる1種以上を含有した共重合ポリエステルである、請求項1に記載の熱収縮性ポリエステル系フィルム。   In all polyester resin components, the main component of the dicarboxylic acid component is terephthalic acid, the main component of the diol component is ethylene glycol, and (a) isophthalic acid, (b) 1,4-cyclohexanedimethanol, and (c) neo The heat-shrinkable polyester film according to claim 1, which is a copolyester containing one or more selected from the group consisting of pentyl glycol. 60℃の温水に5分間浸漬したときの主収縮方向の収縮率が2.7%以下であり、かつ70℃の温水に10秒間浸漬したときの主収縮方向の収縮率が3%以下である、請求項1又は2に記載の熱収縮性ポリエステル系フィルム。   The shrinkage rate in the main shrinkage direction when immersed in warm water at 60 ° C. for 5 minutes is 2.7% or less, and the shrinkage rate in the main shrinkage direction when immersed in warm water at 70 ° C. for 10 seconds is 3% or less. The heat-shrinkable polyester film according to claim 1 or 2. 請求項1〜3のいずれかに記載の熱収縮性ポリエステル系フィルムを用いた断熱容器。   The heat insulation container using the heat-shrinkable polyester-type film in any one of Claims 1-3.
JP2010176442A 2010-08-05 2010-08-05 Heat-shrinkable polyester film and heat insulating container using the same Active JP5249996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176442A JP5249996B2 (en) 2010-08-05 2010-08-05 Heat-shrinkable polyester film and heat insulating container using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176442A JP5249996B2 (en) 2010-08-05 2010-08-05 Heat-shrinkable polyester film and heat insulating container using the same

Publications (2)

Publication Number Publication Date
JP2012036272A true JP2012036272A (en) 2012-02-23
JP5249996B2 JP5249996B2 (en) 2013-07-31

Family

ID=45848612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176442A Active JP5249996B2 (en) 2010-08-05 2010-08-05 Heat-shrinkable polyester film and heat insulating container using the same

Country Status (1)

Country Link
JP (1) JP5249996B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268431A (en) * 1985-05-22 1986-11-27 Okura Ind Co Ltd Manufacture of multi-layer heat-shrinkable film
JPH05169536A (en) * 1991-12-26 1993-07-09 Sekisui Chem Co Ltd Polyester thermally shrinkable film
JPH05245930A (en) * 1991-12-26 1993-09-24 Sekisui Chem Co Ltd Polyester heat-shrinkable film
JPH07138388A (en) * 1993-11-17 1995-05-30 Sekisui Chem Co Ltd Production of heat-shrinking polyester film
JPH1067923A (en) * 1996-06-24 1998-03-10 Eastman Chem Co Plasticized polyester for shrinkable film
JP2000229357A (en) * 1999-02-09 2000-08-22 Gunze Ltd Heat-shrinkable film and container with the film fitted by heat-shrinking
WO2009054110A1 (en) * 2007-10-22 2009-04-30 Tokan Kogyo Co., Ltd. Heat insulated container
JP2010000799A (en) * 2006-06-14 2010-01-07 Toyobo Co Ltd Heat-shrinkable polyester film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268431A (en) * 1985-05-22 1986-11-27 Okura Ind Co Ltd Manufacture of multi-layer heat-shrinkable film
JPH05169536A (en) * 1991-12-26 1993-07-09 Sekisui Chem Co Ltd Polyester thermally shrinkable film
JPH05245930A (en) * 1991-12-26 1993-09-24 Sekisui Chem Co Ltd Polyester heat-shrinkable film
JPH07138388A (en) * 1993-11-17 1995-05-30 Sekisui Chem Co Ltd Production of heat-shrinking polyester film
JPH1067923A (en) * 1996-06-24 1998-03-10 Eastman Chem Co Plasticized polyester for shrinkable film
JP2000229357A (en) * 1999-02-09 2000-08-22 Gunze Ltd Heat-shrinkable film and container with the film fitted by heat-shrinking
JP2010000799A (en) * 2006-06-14 2010-01-07 Toyobo Co Ltd Heat-shrinkable polyester film
WO2009054110A1 (en) * 2007-10-22 2009-04-30 Tokan Kogyo Co., Ltd. Heat insulated container

Also Published As

Publication number Publication date
JP5249996B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5249997B2 (en) Heat-shrinkable polyester film
JP6890587B2 (en) Sealant film and its manufacturing method
JP2002518537A (en) High barrier polyester / phenylene (oxyacetic acid) polyester blend
JP3709869B2 (en) Polyester film
JP2006233092A (en) Polyester-based resin composition, and thermally shrinkable film using the composition, thermally shrinkable label, and container having the label attached thereto
JP2002020471A (en) Copolyester resin
JP3856628B2 (en) Copolyester resin composition and stretched film comprising the same
JP5249996B2 (en) Heat-shrinkable polyester film and heat insulating container using the same
JP4232143B2 (en) Method for producing heat-shrinkable polyester film
JP6740577B2 (en) Heat-shrinkable polyester film and package
JP2010168432A (en) Polyester film for metal plate lamination
JP2002020470A (en) Copolyester resin
JP2006233091A (en) Polyester-based resin composition, polyester-based thermally shrinkable film, thermally shrinkable label, and container having the label attached thereto
JP2004051888A (en) Heat shrinkable polyester film
JPH0827285A (en) Thermally shrinkable polyester film
JP4568043B2 (en) Polyester resin composition, heat-shrinkable polyester film comprising the resin composition, molded article and container
JP4024066B2 (en) Multilayer molded body and container
JP6307896B2 (en) Laminated film
JP5153463B2 (en) Stretched polyester film for molding
JP3856627B2 (en) Copolyester resin composition and stretched film comprising the same
JP2006233090A (en) Polyester-based resin composition, and thermally shrinkable film using the composition, thermally shrinkable label, and container having the label attached thereto
JP2003305816A (en) Multilayered polyester sheet, film, and molded article comprising them
JP3879445B2 (en) Heat-shrinkable polyethylene terephthalate film
JPH0434931B2 (en)
JP2004255671A (en) Heat shrinkable polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Ref document number: 5249996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250