JP2012033426A - Method of manufacturing electrode - Google Patents

Method of manufacturing electrode Download PDF

Info

Publication number
JP2012033426A
JP2012033426A JP2010173464A JP2010173464A JP2012033426A JP 2012033426 A JP2012033426 A JP 2012033426A JP 2010173464 A JP2010173464 A JP 2010173464A JP 2010173464 A JP2010173464 A JP 2010173464A JP 2012033426 A JP2012033426 A JP 2012033426A
Authority
JP
Japan
Prior art keywords
electrode
current collector
electrode mixture
roll
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010173464A
Other languages
Japanese (ja)
Inventor
Isanori Sato
功典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2010173464A priority Critical patent/JP2012033426A/en
Publication of JP2012033426A publication Critical patent/JP2012033426A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode capable of improving adhesive strength between an electrode mixture layer and a collector.SOLUTION: In the method of manufacturing the electrode by drying and remove a solution after applying an electrode mixture which contains an electrode active material, a binder and the solution on the collector, the collector is preheated to 70 to 100°C when the electrode mixture is applied.

Description

本発明は、電極合剤層と集電体の接着強度を向上させることが可能な電池の製造方法に関する。   The present invention relates to a battery manufacturing method capable of improving the adhesive strength between an electrode mixture layer and a current collector.

近年、ハイブリット自動車、電気自動車、電動アシスト自転車、家庭用二次電池電源や電動工具の二次電池として、高容量かつ高出力で安全性の高い非水電解二次電池が使用されている。これらの二次電池は、一般的に電極合剤の攪拌、集電体への塗布、乾燥、切断により電極を作製し、該電極とその他部材との組立を経て製造される。この工程において、切断や組立のハンドリング時に電極合剤が剥離しない電極が求められる。切断や組立工程で電極合剤が剥離すると、その剥離した電極合剤が二次電池内に混入し、正極と負極を隔離しているセパレータを破壊し、充放電時にショートする原因となる。また、充放電時に電荷が偏在し、著しく電池性能が低下する。   In recent years, non-aqueous electrolytic secondary batteries with high capacity, high output and high safety have been used as secondary batteries for hybrid cars, electric cars, electric assist bicycles, household secondary battery power supplies and electric tools. These secondary batteries are generally manufactured by preparing an electrode by stirring an electrode mixture, applying it to a current collector, drying and cutting, and assembling the electrode and other members. In this step, an electrode that does not peel off the electrode mixture during cutting or assembly handling is required. When the electrode mixture is peeled off in the cutting or assembling process, the peeled electrode mixture is mixed in the secondary battery, destroying the separator separating the positive electrode and the negative electrode, and causing a short circuit during charge / discharge. In addition, electric charges are unevenly distributed during charging and discharging, and battery performance is significantly reduced.

特許文献1には、比重の異なる2種類以上の結合剤、電極活物質材料及び溶媒からなる電極合剤を集電体に塗布する工程を有する二次電池の製造方法が開示されている。2種類以上の結合剤のうち、比重の大きい結合剤は集電体近傍に多く存在し、電極合剤層と集電体の接着性を向上させることができる。   Patent Document 1 discloses a method for manufacturing a secondary battery having a step of applying an electrode mixture composed of two or more kinds of binders having different specific gravities, an electrode active material, and a solvent to a current collector. Of the two or more types of binders, many binders having a large specific gravity are present in the vicinity of the current collector, and the adhesion between the electrode mixture layer and the current collector can be improved.

特開2009−245925号公報JP 2009-245925 A

しかしながら、特許文献1に記載の方法により製造される二次電池の電極の電極合剤層には、2種類以上の結合剤が入っているため、電極活物質材料との吸着において結合剤同士で競合が起こり、設計通りの接着性を実現することが難しい。また、最適な結合剤の種類と比率を求めるのに時間がかかる。   However, since the electrode mixture layer of the electrode of the secondary battery manufactured by the method described in Patent Document 1 contains two or more types of binders, Competition occurs and it is difficult to achieve adhesion as designed. Also, it takes time to determine the optimum binder type and ratio.

本発明は、電極合剤層と集電体との接着強度を向上させることが可能な電池の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the battery which can improve the adhesive strength of an electrode mixture layer and a collector.

本発明に係る電極の製造方法は、電極活物質材料、結合剤及び溶剤を含む電極合剤を集電体上へ塗布後、該溶剤を乾燥除去する電極の製造方法において、前記電極合剤の塗布時に、前記集電体が70〜100℃に予備加熱されている。   The method for producing an electrode according to the present invention is a method for producing an electrode in which an electrode mixture containing an electrode active material, a binder and a solvent is applied onto a current collector, and then the solvent is removed by drying. At the time of application, the current collector is preheated to 70 to 100 ° C.

本発明に係る方法によれば、電極合剤層と集電体との接着強度の高い電池を製造することができる。   According to the method of the present invention, a battery having high adhesive strength between the electrode mixture layer and the current collector can be produced.

本発明に係る方法により製造される電極の一例の断面図である。It is sectional drawing of an example of the electrode manufactured by the method concerning this invention. 本発明における電極合剤を集電体上に塗布する工程に用いられる装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus used for the process of apply | coating the electrode mixture in this invention on a collector.

本発明に係る電極の製造方法は、電極活物質材料、結合剤及び溶剤を含む電極合剤を集電体上へ塗布後、該溶剤を乾燥除去する電極の製造方法において、前記電極合剤の塗布時に、前記集電体が70〜100℃に予備加熱されていることを特徴とする。   The method for producing an electrode according to the present invention is a method for producing an electrode in which an electrode mixture containing an electrode active material, a binder and a solvent is applied onto a current collector, and then the solvent is removed by drying. At the time of application, the current collector is preheated to 70 to 100 ° C.

従来の方法では、乾燥時に電極合剤層表面から乾燥が進み、熱伝導に伴う結合剤の拡散が大きく、電極合剤層と集電体との間において十分な接着強度が得られない。本発明では、集電体を70〜100℃に予備加熱した状態で電極合剤を塗布するため、後の乾燥工程において熱伝導に伴う結合剤の拡散を抑制することができる。これにより、電極合剤中で結合剤が均一に分散した状態で乾燥を行うことが出来るため、電極合剤層と集電体との接着強度が高い電極を作製することができる。   In the conventional method, drying progresses from the surface of the electrode mixture layer during drying, and the diffusion of the binder accompanying heat conduction is large, so that sufficient adhesive strength cannot be obtained between the electrode mixture layer and the current collector. In the present invention, since the electrode mixture is applied in a state where the current collector is preheated to 70 to 100 ° C., diffusion of the binder accompanying heat conduction can be suppressed in the subsequent drying step. Thereby, since it can dry in the state which binder disperse | distributed uniformly in electrode mixture, the electrode with high adhesive strength of an electrode mixture layer and a collector can be produced.

(電極合剤)
電極合剤は、電極活物質材料、結合剤及び溶媒を含む。
(Electrode mixture)
The electrode mixture includes an electrode active material, a binder, and a solvent.

電極活物質材料としては、例えば二次電池の正極活物質材料として、LiCoO2、LiMn24、LiNiO2、LiFePO4、Li−遷移金属酸化物、Li−遷移金属リン酸化物、Li−遷移金属硫酸化物、Li金属等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。また、例えば二次電池の負極活物質材料として、グラファイト、ソフトカーボン、ハードカーボン、炭素材料、ケイ素、遷移金属酸化物、Li−遷移金属窒化物、Li金属等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 As an electrode active material, for example, as a positive electrode active material of a secondary battery, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 , Li-transition metal oxide, Li-transition metal phosphate, Li-transition Examples thereof include metal sulfates and Li metals. These may use only 1 type and may use 2 or more types together. Further, for example, as the negative electrode active material of the secondary battery, graphite, soft carbon, hard carbon, carbon material, silicon, transition metal oxide, Li-transition metal nitride, Li metal, and the like can be given. These may use only 1 type and may use 2 or more types together.

結合剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオライド(PTFE)、フッ素ポリマー、スチレンブタジエンコポリマー(SBR)、ポリアクリレート等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。但し、本発明においては特許文献1のように二種類以上の結合剤を必ずしも用いる必要はなく、結合剤として一種類の結合剤のみを用いることができる。   Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoride (PTFE), fluoropolymer, styrene butadiene copolymer (SBR), polyacrylate, and the like. These may use only 1 type and may use 2 or more types together. However, in the present invention, it is not always necessary to use two or more kinds of binders as in Patent Document 1, and only one kind of binder can be used as the binder.

溶媒としては、水、1−メチル−2−ピロリドン(NMP)等が挙げられる。   Examples of the solvent include water and 1-methyl-2-pyrrolidone (NMP).

前記電極活物質材料、結合剤及び溶媒をロールミル、ボールミル、サンドミル、KDミル、高速インペーラーミル、アトライター、ジェットミル、バイブレーターミル、ニーダー等の分散機又は攪拌機で攪拌することにより、電極合剤を調製することができる。前記電極合剤の混合比率としては、電極活物質材料が92〜99.5質量部、結合剤が0.5〜8質量部、溶媒が40〜110質量部であることが好ましい。前記電極合剤は、電極活物質材料、結合剤及び溶媒以外にも、炭素粉末、金属粉末等の導電性付与剤、カルボキシメチルセルロース(CMC)等の増粘剤を含んでもよい。   An electrode mixture is prepared by stirring the electrode active material, binder and solvent with a disperser or stirrer such as a roll mill, ball mill, sand mill, KD mill, high-speed impeller mill, attritor, jet mill, vibrator mill, kneader. can do. The mixing ratio of the electrode mixture is preferably 92 to 99.5 parts by mass of the electrode active material, 0.5 to 8 parts by mass of the binder, and 40 to 110 parts by mass of the solvent. In addition to the electrode active material, the binder, and the solvent, the electrode mixture may include a conductivity imparting agent such as carbon powder and metal powder, and a thickening agent such as carboxymethyl cellulose (CMC).

(集電体)
集電体としては、アルミ、銅、ニッケル、ステンレス等の導電性の金属箔を用いることができる。集電体の厚みは特に限定されないが、例えば1〜30μmとすることができる。
(Current collector)
As the current collector, a conductive metal foil such as aluminum, copper, nickel, and stainless steel can be used. Although the thickness of a collector is not specifically limited, For example, it can be set as 1-30 micrometers.

(電極の製造方法)
本発明に係る方法により製造される電極の一例の断面図を図1に示す。該電極は、集電体2の両面に電極合剤層1が形成されている。電極合剤層1の厚みは特に限定されず、該電極を使用する電池に合わせて適宜選択することができる。
(Method for manufacturing electrode)
A cross-sectional view of an example of an electrode manufactured by the method according to the present invention is shown in FIG. In the electrode, the electrode mixture layer 1 is formed on both surfaces of the current collector 2. The thickness of the electrode mixture layer 1 is not particularly limited, and can be appropriately selected according to the battery using the electrode.

本発明に係る電極は、前記電極合剤を前記集電体上へ塗布後、溶剤を乾燥除去することで製造され、前記電極合剤の塗布時に、該集電体が70〜100℃に予備加熱されている。   The electrode according to the present invention is manufactured by drying and removing the solvent after the electrode mixture is applied onto the current collector, and the current collector is preliminarily maintained at 70 to 100 ° C. when the electrode mixture is applied. It is heated.

電極合剤を集電体上に塗布する方法としては、特に限定されないが、例えば、ロールコーター、グラビアコーター、ナイフコーター、ブレードコーター、エアードクターコーター、カーテンコーター、ファンマウンテンコーター、ダイコーター、キスコーター等の塗工機を用いて集電体上に塗布することができる。集電体上に電極合剤を塗布して形成される電極合剤層の厚みとしては、特に限定されないが、例えば20〜100μmとすることができる。   The method for applying the electrode mixture onto the current collector is not particularly limited, but examples thereof include a roll coater, a gravure coater, a knife coater, a blade coater, an air doctor coater, a curtain coater, a fan mountain coater, a die coater, and a kiss coater. It can apply | coat on a collector using the coating machine of this. Although it does not specifically limit as a thickness of the electrode mixture layer formed by apply | coating an electrode mixture on a collector, For example, it can be set as 20-100 micrometers.

本発明においては、前記電極合剤の塗布時に、該集電体が70〜100℃に予備加熱されている。前記集電体の予備加熱温度が70℃未満の場合、電極合剤層と集電体の接着強度向上の効果が得られないため好ましくない。一方、前記集電体の予備加熱温度が100℃をこえる場合、熱膨張によるしわが発生することがあるため好ましくない。前記集電体の予備加熱温度は、90〜100℃であることが好ましい。   In this invention, this electrical power collector is preheated at 70-100 degreeC at the time of application | coating of the said electrode mixture. A preheating temperature of the current collector of less than 70 ° C. is not preferable because the effect of improving the adhesive strength between the electrode mixture layer and the current collector cannot be obtained. On the other hand, when the preheating temperature of the current collector exceeds 100 ° C., wrinkles due to thermal expansion may occur, which is not preferable. The preheating temperature of the current collector is preferably 90 to 100 ° C.

集電体を前記範囲に予備加熱する方法としては、加熱されたロールを集電体に接触させることにより行うことが好ましい。電極合剤の塗布時における集電体の予備加熱温度を70〜100℃とするために、前記ロールの表面温度は100〜160℃であることが好ましい。前記ロールの表面温度は、140〜160℃であることがより好ましい。   As a method of preheating the current collector to the above range, it is preferable to carry out by bringing a heated roll into contact with the current collector. In order to set the preheating temperature of the current collector at the time of application of the electrode mixture to 70 to 100 ° C, the surface temperature of the roll is preferably 100 to 160 ° C. The surface temperature of the roll is more preferably 140 to 160 ° C.

前記ロールを加熱する方式としては特に限定されないが、例えばロール内部にあるコイルに通電し、ロール本体を誘導加熱する誘導発熱式、ロール内部に熱溶媒を循環させて加熱する熱媒循環式、ロール内部にある抵抗式ヒーターが発熱する電気発熱式、ロール内部に蒸気を充満させて加熱する蒸気加熱式等が挙げられる。前記ロールの材質は特に限定されないが、例えば炭素工具鋼、ステンレス、合金工具鋼等が挙げられる。   The method for heating the roll is not particularly limited. For example, an induction heating type in which a coil inside the roll is energized to induce heating of the roll body, a heating medium circulation type in which a hot solvent is circulated inside the roll, and a roll Examples thereof include an electric heating type in which a resistance heater inside generates heat, a steam heating type in which a roll is filled with steam and heated. Although the material of the said roll is not specifically limited, For example, carbon tool steel, stainless steel, alloy tool steel, etc. are mentioned.

前記ロールとしては、例えばバックアップロール及びインフィードロールの少なくとも一方を用いることができる。ここで、バックアップロールとは、外周の一部において集電体と接触するロールであって、前記電極合剤の塗布に用いられる塗工機に対向して配置されるバックアップロールを示す。また、インフィードロールとは、集電体を挟むことにより外周の一部において集電体と接触する一対のロールであって、前記塗工機の前に設けられているロールを示す。   As the roll, for example, at least one of a backup roll and an infeed roll can be used. Here, the backup roll is a roll that comes into contact with the current collector at a part of the outer periphery, and indicates a backup roll that is disposed to face a coating machine used for application of the electrode mixture. The in-feed rolls are a pair of rolls that come into contact with the current collector in a part of the outer periphery by sandwiching the current collector, and indicate a roll provided in front of the coating machine.

本発明における電極合剤を集電体上に塗布する工程に用いられる装置の一例を図2に示す。図2では、まず、集電体2が巻き出しロール3から巻き出され、インフィードロール4、ガイドロール5を介してバックアップロール6に送られる。バックアップロール6は所定の温度に加熱されている。バックアップロール6に対向して設置されたダイコーターヘッド7により電極合剤1が集電体2上に塗布される。電極合剤1塗布時の集電体2の温度は70〜100℃である。これにより、電極合剤1が塗布された集電体2が製造される。なお、図2に示す装置ではバックアップロール6が加熱されているが、集電体2をダイコーターヘッド7まで搬送する経路にある巻き出しロール3、インフィードロール4、ガイドロール5、バックアップロール6のいずれか1つ以上を加熱して、集電体2を予備加熱してもよい。   An example of the apparatus used for the process of apply | coating the electrode mixture in this invention on a collector is shown in FIG. In FIG. 2, first, the current collector 2 is unwound from the unwinding roll 3 and sent to the backup roll 6 via the infeed roll 4 and the guide roll 5. The backup roll 6 is heated to a predetermined temperature. The electrode mixture 1 is applied onto the current collector 2 by a die coater head 7 disposed so as to face the backup roll 6. The temperature of the current collector 2 when the electrode mixture 1 is applied is 70 to 100 ° C. Thereby, the electrical power collector 2 with which the electrode mixture 1 was apply | coated is manufactured. In the apparatus shown in FIG. 2, the backup roll 6 is heated, but the unwinding roll 3, the infeed roll 4, the guide roll 5, and the backup roll 6 in the path for transporting the current collector 2 to the die coater head 7. Any one or more of these may be heated to preheat the current collector 2.

前記方法により製造された電極合剤が塗布された集電体は、乾燥により溶媒が除去される。電極合剤が塗布された集電体の乾燥方法としては、特に限定されないが、例えば熱風噴射式乾燥炉で乾燥する方法が挙げられる。熱風噴射式乾燥炉は1つ以上の乾燥室を有し、各々の乾燥室の上下に高温に加熱された乾燥空気を噴射するノズルが配置されている。乾燥温度としては、例えば80〜160℃とすることができる。また乾燥時間としては、例えば3〜15分とすることができる。   The solvent is removed from the current collector coated with the electrode mixture produced by the above method by drying. The method for drying the current collector coated with the electrode mixture is not particularly limited, and examples thereof include a method of drying in a hot air jet drying furnace. The hot-air spraying type drying furnace has one or more drying chambers, and nozzles for spraying dry air heated to a high temperature are arranged above and below each drying chamber. As a drying temperature, it can be 80-160 degreeC, for example. Moreover, as drying time, it can be 3-15 minutes, for example.

以下、実施例を用いて本発明の詳細について説明するが、本発明はこれらに限定されない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited to these.

(剥離強度試験)
製造した電極について、JIS K6854−2に従い180度剥離試験を実施し、剥離強度を算出した。なお、各実施例、比較例において電極サンプルを5つ作製し、各電極サンプルについて剥離強度を測定し、該剥離強度の平均値を算出した。
(Peel strength test)
About the manufactured electrode, the 180 degree | times peeling test was implemented according to JISK6854-2, and peeling strength was computed. In each example and comparative example, five electrode samples were prepared, the peel strength was measured for each electrode sample, and the average value of the peel strengths was calculated.

(実施例1)
電極活物質材料としてグラファイト粉末(商品名:カーボトロンP、株式会社クレハ製)95質量部、導電性付与剤として炭素粉末(商品名:EC300J、ライオン株式会社製)1質量部、結合剤としてフッ素ポリマー(商品名:KFポリマー、株式会社クレハ製)4質量部を混合し、混合物を調製した。該混合物と、該混合物に対して100質量部の1−メチル−2−ピロリドン(NMP)とを、3本ロールミルで攪拌し電極合剤を調製した。
Example 1
95 parts by mass of graphite powder (trade name: Carbotron P, manufactured by Kureha Co., Ltd.) as an electrode active material, 1 part by mass of carbon powder (trade name: EC300J, manufactured by Lion Corporation) as a conductivity imparting agent, and fluoropolymer as a binder (Product name: KF polymer, manufactured by Kureha Co., Ltd.) 4 parts by mass were mixed to prepare a mixture. The mixture and 100 parts by mass of 1-methyl-2-pyrrolidone (NMP) with respect to the mixture were stirred with a three-roll mill to prepare an electrode mixture.

前記電極合剤を図2に示す装置を用いて集電体2に塗布した。集電体2には、厚み10μmの銅箔を使用した。集電体2は巻き出しロール3から巻き出され、インフィードロール4、ガイドロール5を介してバックアップロール6に送られた。バックアップロール6の表面温度は100℃とした。なお、バックアップロール6の加熱方式は蒸気加熱式であった。バックアップロール6に対向して設置されたダイコーターヘッド7を用いて、前記電極合剤を集電体2上に厚さ40μmの層状に塗布した。電極合剤塗布時の集電体2の温度は70.9℃であった。   The electrode mixture was applied to the current collector 2 using the apparatus shown in FIG. The current collector 2 was a copper foil having a thickness of 10 μm. The current collector 2 was unwound from the unwinding roll 3 and sent to the backup roll 6 through the infeed roll 4 and the guide roll 5. The surface temperature of the backup roll 6 was 100 ° C. In addition, the heating system of the backup roll 6 was a steam heating system. The electrode mixture was applied on the current collector 2 in a layered form having a thickness of 40 μm by using a die coater head 7 installed facing the backup roll 6. The temperature of the current collector 2 during application of the electrode mixture was 70.9 ° C.

その後、電極合剤を塗布した集電体2を、乾燥炉内に搬送した。乾燥炉は熱風噴射式であり、乾燥炉は4室存在し、1室目の炉内温度は100℃、2室目の炉内温度は110℃、3室目の炉内温度は120℃、4室目の炉内温度は130℃とした。それぞれの乾燥炉の長さは3500mmであった。また、電極合剤を塗布した集電体2の搬送速度は1m/分とした。これにより電極を作製した。該電極を5つ作製し(サンプル1〜5)、前記剥離強度試験を行った。結果を表1に示す。   Thereafter, the current collector 2 to which the electrode mixture was applied was conveyed into a drying furnace. The drying furnace is a hot air jet type, and there are four drying furnaces, the temperature in the first chamber is 100 ° C., the temperature in the second chamber is 110 ° C., the temperature in the third chamber is 120 ° C., The furnace temperature in the fourth chamber was 130 ° C. The length of each drying furnace was 3500 mm. Moreover, the conveyance speed of the electrical power collector 2 which apply | coated the electrode mixture was 1 m / min. This produced an electrode. Five electrodes were prepared (Samples 1 to 5), and the peel strength test was performed. The results are shown in Table 1.

(実施例2)
バックアップロール6の表面温度を120℃とし、電極合剤塗布時の集電体2の温度を88.1℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表1に示す。
(Example 2)
An electrode was prepared in the same manner as in Example 1 except that the surface temperature of the backup roll 6 was 120 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 88.1 ° C., and a peel strength test was performed. The results are shown in Table 1.

(実施例3)
バックアップロール6の表面温度を140℃とし、電極合剤塗布時の集電体2の温度を92.8℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表1に示す。
(Example 3)
An electrode was prepared in the same manner as in Example 1 except that the surface temperature of the backup roll 6 was 140 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 92.8 ° C., and a peel strength test was performed. The results are shown in Table 1.

(実施例4)
バックアップロール6の表面温度を160℃とし、電極合剤塗布時の集電体2の温度を100℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表1に示す。
Example 4
An electrode was produced in the same manner as in Example 1 except that the surface temperature of the backup roll 6 was 160 ° C. and the temperature of the current collector 2 at the time of applying the electrode mixture was 100 ° C., and a peel strength test was performed. The results are shown in Table 1.

(比較例1)
バックアップロール6を加熱せず、バックアップロール6の表面温度を25℃とし、電極合剤塗布時の集電体2の温度を25.6℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表1に示す。
(Comparative Example 1)
An electrode was prepared in the same manner as in Example 1 except that the backup roll 6 was not heated, the surface temperature of the backup roll 6 was 25 ° C., and the temperature of the current collector 2 was 25.6 ° C. during application of the electrode mixture. A peel strength test was conducted. The results are shown in Table 1.

(比較例2)
バックアップロール6の表面温度を60℃とし、電極合剤塗布時の集電体2の温度を45.2℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表1に示す。
(Comparative Example 2)
An electrode was prepared in the same manner as in Example 1 except that the surface temperature of the backup roll 6 was 60 ° C., and the temperature of the current collector 2 at the time of application of the electrode mixture was 45.2 ° C., and a peel strength test was performed. The results are shown in Table 1.

(比較例3)
バックアップロール6の表面温度を80℃とし、電極合剤塗布時の集電体2の温度を61.7℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表1に示す。
(Comparative Example 3)
An electrode was produced in the same manner as in Example 1 except that the surface temperature of the backup roll 6 was 80 ° C. and the temperature of the current collector 2 at the time of applying the electrode mixture was 61.7 ° C., and a peel strength test was performed. The results are shown in Table 1.

Figure 2012033426
Figure 2012033426

予備加熱をしない比較例1に対して、集電体2を70〜100℃に予備加熱した実施例1〜4は、3〜31%の剥離強度の向上が確認できた。一方、集電体2を70℃未満に予備加熱した比較例2、3は、予備加熱をしない比較例1と比較して剥離強度は同等であった。また、バックアップロール6の表面温度は100℃以上であることが好ましいことが確認された。   It was confirmed that Examples 1 to 4 in which the current collector 2 was preheated to 70 to 100 ° C. were improved by 3 to 31% in comparison with Comparative Example 1 in which preheating was not performed. On the other hand, Comparative Examples 2 and 3 in which the current collector 2 was preheated to less than 70 ° C. had the same peel strength as Comparative Example 1 in which preheating was not performed. Moreover, it was confirmed that the surface temperature of the backup roll 6 is preferably 100 ° C. or higher.

(実施例5)
電極活物質材料としてグラファイト粉末(商品名:カーボトロンP、株式会社クレハ製)95質量部、導電性付与剤として炭素粉末(商品名:EC300J、ライオン株式会社製)1質量部、増粘剤としてカルボキシメチルセルロース(CMC)(商品名:SN80C、日本製紙ケミカル株式会社)1質量部、結合剤としてスチレンブタジエンコポリマー(商品名:BM−400B、日本ゼオン株式会社製)3質量部を混合し、混合物を調製した。該混合物と、該混合物に対して100質量部の水とを、高速インペーラーミルで攪拌し電極合剤を調製した。
(Example 5)
95 parts by mass of graphite powder (trade name: Carbotron P, manufactured by Kureha Co., Ltd.) as an electrode active material, 1 part by mass of carbon powder (trade name: EC300J, manufactured by Lion Corporation) as a conductivity imparting agent, carboxy as a thickener 1 part by mass of methyl cellulose (CMC) (trade name: SN80C, Nippon Paper Chemicals Co., Ltd.) and 3 parts by mass of styrene butadiene copolymer (trade name: BM-400B, produced by Nippon Zeon Co., Ltd.) as a binder are prepared to prepare a mixture. did. The mixture and 100 parts by mass of water with respect to the mixture were stirred with a high-speed impeller mill to prepare an electrode mixture.

前記電極合剤を用い、バックアップロール6の表面温度を100℃とし、電極合剤塗布時の集電体2の温度を72.0℃とした以外は実施例1と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。   Using the electrode mixture, the surface temperature of the backup roll 6 was 100 ° C., and the electrode 2 was prepared in the same manner as in Example 1 except that the temperature of the current collector 2 during application of the electrode mixture was 72.0 ° C. A peel strength test was performed. The results are shown in Table 2.

(実施例6)
バックアップロール6の表面温度を120℃とし、電極合剤塗布時の集電体2の温度を84.3℃とした以外は実施例5と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。
(Example 6)
An electrode was produced in the same manner as in Example 5 except that the surface temperature of the backup roll 6 was 120 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 84.3 ° C., and a peel strength test was performed. The results are shown in Table 2.

(実施例7)
バックアップロール6の表面温度を140℃とし、電極合剤塗布時の集電体2の温度を89.9℃とした以外は実施例5と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。
(Example 7)
An electrode was produced in the same manner as in Example 5 except that the surface temperature of the backup roll 6 was 140 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 89.9 ° C., and a peel strength test was performed. The results are shown in Table 2.

(実施例8)
バックアップロール6の表面温度を160℃とし、電極合剤塗布時の集電体2の温度を99.7℃とした以外は実施例5と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。
(Example 8)
An electrode was produced in the same manner as in Example 5 except that the surface temperature of the backup roll 6 was 160 ° C., and the temperature of the current collector 2 at the time of applying the electrode mixture was 99.7 ° C., and a peel strength test was performed. The results are shown in Table 2.

(比較例4)
バックアップロール6を加熱せず、バックアップロール6の表面温度を25℃とし、電極合剤塗布時の集電体2の温度を24.8℃とした以外は実施例5と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。
(Comparative Example 4)
An electrode was produced in the same manner as in Example 5 except that the backup roll 6 was not heated, the surface temperature of the backup roll 6 was 25 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 24.8 ° C. A peel strength test was conducted. The results are shown in Table 2.

(比較例5)
バックアップロール6の表面温度を60℃とし、電極合剤塗布時の集電体2の温度を44.8℃とした以外は実施例5と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。
(Comparative Example 5)
An electrode was produced in the same manner as in Example 5 except that the surface temperature of the backup roll 6 was 60 ° C. and the temperature of the current collector 2 was 44.8 ° C. during application of the electrode mixture, and a peel strength test was performed. The results are shown in Table 2.

(比較例6)
バックアップロール6の表面温度を80℃とし、電極合剤塗布時の集電体2の温度を60.1℃とした以外は実施例5と同様に電極を作製し、剥離強度試験を行った。結果を表2に示す。
(Comparative Example 6)
An electrode was produced in the same manner as in Example 5 except that the surface temperature of the backup roll 6 was set to 80 ° C., and the temperature of the current collector 2 during application of the electrode mixture was set to 60.1 ° C., and a peel strength test was performed. The results are shown in Table 2.

Figure 2012033426
Figure 2012033426

予備加熱をしない比較例4に対して、集電体2を70〜100℃に予備加熱した実施例5〜8は、8〜23%の剥離強度の向上が確認できた。一方、集電体2を70℃未満に予備加熱した比較例5、6は、予備加熱をしない比較例4と比較して剥離強度は同等であった。また、バックアップロール6の表面温度は100℃以上であることが好ましいことが確認された。   In comparison with Comparative Example 4 in which no preheating was performed, Examples 5 to 8 in which the current collector 2 was preheated to 70 to 100 ° C. were confirmed to have an improvement in peel strength of 8 to 23%. On the other hand, Comparative Examples 5 and 6 in which the current collector 2 was preheated to less than 70 ° C. had the same peel strength as Comparative Example 4 in which no preheating was performed. Moreover, it was confirmed that the surface temperature of the backup roll 6 is preferably 100 ° C. or higher.

(実施例9)
電極活物質材料としてLiCoO2(商品名:セリオン、AGCセイミケミカル株式会社製)95質量部、導電性付与剤として炭素粉末(商品名:EC300J、ライオン株式会社製)1質量部、結合剤としてフッ素ポリマー(商品名:KFポリマー、株式会社クレハ製)4質量部を混合し、混合物を調製した。該混合物と、該混合物に対して100質量部の1−メチル−2−ピロリドン(NMP)とを、3本ロールミルで攪拌し電極合剤を調製した。
Example 9
95 parts by mass of LiCoO 2 (trade name: Selion, manufactured by AGC Seimi Chemical Co., Ltd.) as an electrode active material, 1 part by mass of carbon powder (trade name: EC300J, manufactured by Lion Corporation) as a conductivity imparting agent, fluorine as a binder 4 parts by mass of a polymer (trade name: KF polymer, manufactured by Kureha Co., Ltd.) was mixed to prepare a mixture. The mixture and 100 parts by mass of 1-methyl-2-pyrrolidone (NMP) with respect to the mixture were stirred with a three-roll mill to prepare an electrode mixture.

前記電極合剤を図2に示す装置を用いて集電体2に塗布した。集電体2には、厚み20μmのアルミ箔を使用した。集電体2は巻き出しロール3から巻き出され、インフィードロール4、ガイドロール5を介してバックアップロール6に送られる。バックアップロール6の表面温度は140℃とした。なお、バックアップロール6の加熱方式は蒸気加熱式である。バックアップロール6に対向して設置されたダイコーターヘッド7を用いて、前記電極合剤を集電体2上に厚さ70μmの層状に塗布した。電極合剤塗布時の集電体2の温度は70.9℃である。その後、実施例1と同様に乾燥を行い、電極を作製し、剥離強度試験を行った。結果を表3に示す。   The electrode mixture was applied to the current collector 2 using the apparatus shown in FIG. The current collector 2 was an aluminum foil having a thickness of 20 μm. The current collector 2 is unwound from the unwinding roll 3 and sent to the backup roll 6 via the infeed roll 4 and the guide roll 5. The surface temperature of the backup roll 6 was 140 ° C. In addition, the heating system of the backup roll 6 is a steam heating system. The electrode mixture was applied on the current collector 2 in a layered form having a thickness of 70 μm by using a die coater head 7 installed facing the backup roll 6. The temperature of the current collector 2 during application of the electrode mixture is 70.9 ° C. Then, it dried similarly to Example 1, the electrode was produced, and the peeling strength test was done. The results are shown in Table 3.

(実施例10)
バックアップロール6の表面温度を160℃とし、電極合剤塗布時の集電体2の温度を85.3℃とした以外は実施例9と同様に電極を作製し、剥離強度試験を行った。結果を表3に示す。
(Example 10)
An electrode was prepared in the same manner as in Example 9 except that the surface temperature of the backup roll 6 was set to 160 ° C., and the temperature of the current collector 2 during application of the electrode mixture was set to 85.3 ° C., and a peel strength test was performed. The results are shown in Table 3.

(比較例7)
バックアップロール6を加熱せず、バックアップロール6の表面温度を25℃とし、電極合剤塗布時の集電体2の温度を25.1℃とした以外は実施例9と同様に電極を作製し、剥離強度試験を行った。結果を表3に示す。
(Comparative Example 7)
An electrode was prepared in the same manner as in Example 9 except that the backup roll 6 was not heated, the surface temperature of the backup roll 6 was 25 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 25.1 ° C. A peel strength test was conducted. The results are shown in Table 3.

(比較例8)
バックアップロール6の表面温度を60℃とし、電極合剤塗布時の集電体2の温度を41.0℃とした以外は実施例9と同様に電極を作製し、剥離強度試験を行った。結果を表3に示す。
(Comparative Example 8)
An electrode was prepared in the same manner as in Example 9 except that the surface temperature of the backup roll 6 was set to 60 ° C., and the temperature of the current collector 2 during application of the electrode mixture was set to 41.0 ° C., and a peel strength test was performed. The results are shown in Table 3.

(比較例9)
バックアップロール6の表面温度を80℃とし、電極合剤塗布時の集電体2の温度を46.7℃とした以外は実施例9と同様に電極を作製し、剥離強度試験を行った。結果を表3に示す。
(Comparative Example 9)
An electrode was produced in the same manner as in Example 9 except that the surface temperature of the backup roll 6 was set to 80 ° C., and the temperature of the current collector 2 during application of the electrode mixture was set to 46.7 ° C., and a peel strength test was performed. The results are shown in Table 3.

(比較例10)
バックアップロール6の表面温度を100℃とし、電極合剤塗布時の集電体2の温度を54.2℃とした以外は実施例9と同様に電極を作製し、剥離強度試験を行った。結果を表3に示す。
(Comparative Example 10)
An electrode was prepared in the same manner as in Example 9 except that the surface temperature of the backup roll 6 was 100 ° C. and the temperature of the current collector 2 at the time of applying the electrode mixture was 54.2 ° C., and a peel strength test was performed. The results are shown in Table 3.

(比較例11)
バックアップロール6の表面温度を120℃とし、電極合剤塗布時の集電体2の温度を66.1℃とした以外は実施例9と同様に電極を作製し、剥離強度試験を行った。結果を表3に示す。
(Comparative Example 11)
An electrode was produced in the same manner as in Example 9 except that the surface temperature of the backup roll 6 was 120 ° C., and the temperature of the current collector 2 during application of the electrode mixture was 66.1 ° C., and a peel strength test was performed. The results are shown in Table 3.

Figure 2012033426
Figure 2012033426

予備加熱をしない比較例7に対して、集電体2を70〜100℃に予備加熱した実施例9、10は、6〜11%の剥離強度の向上が確認できた。また、集電体2を70℃未満に予備加熱した比較例8〜11に対しても、実施例9、10は剥離強度の向上が確認された。   It was confirmed that Examples 9 and 10 in which the current collector 2 was preheated to 70 to 100 ° C., compared with Comparative Example 7 in which no preheating was performed, had an improvement in peel strength of 6 to 11%. Moreover, the improvement of peeling strength was confirmed also about Examples 9 and 10 also with respect to Comparative Examples 8 to 11 in which the current collector 2 was preheated to less than 70 ° C.

本発明により生産された電極は、非水電解質二次電池に活用できるが、これに限定されるものではなく他の電池にも適用可能である。   The electrode produced according to the present invention can be used for a non-aqueous electrolyte secondary battery, but is not limited to this and can be applied to other batteries.

1 電極合剤(層)
2 集電体
3 巻き出しロール
4 インフィードロール
5 ガイドロール
6 バックアップロール
7 ダイコーターヘッド
1 Electrode mixture (layer)
2 Current collector 3 Unwinding roll 4 Infeed roll 5 Guide roll 6 Backup roll 7 Die coater head

Claims (5)

電極活物質材料、結合剤及び溶剤を含む電極合剤を集電体上へ塗布後、該溶剤を乾燥除去する電極の製造方法において、
前記電極合剤の塗布時に、前記集電体が70〜100℃に予備加熱されている電極の製造方法。
In the method for producing an electrode in which an electrode mixture containing an electrode active material, a binder and a solvent is applied onto a current collector, and then the solvent is removed by drying
The manufacturing method of the electrode by which the said collector is preheated at 70-100 degreeC at the time of application | coating of the said electrode mixture.
前記予備加熱が、加熱されたロールを前記集電体に接触させることにより行われる請求項1に記載の電極の製造方法。   The method for producing an electrode according to claim 1, wherein the preheating is performed by bringing a heated roll into contact with the current collector. 前記ロールの表面温度が100〜160℃である請求項2に記載の電極の製造方法。   The electrode manufacturing method according to claim 2, wherein the roll has a surface temperature of 100 to 160 ° C. 4. 前記ロールが、バックアップロール及びインフィードロールの少なくとも一方である請求項2又は3に記載の電極の製造方法。   The method for producing an electrode according to claim 2, wherein the roll is at least one of a backup roll and an infeed roll. 請求項1から4のいずれか一項に記載の方法により製造される電極。   The electrode manufactured by the method as described in any one of Claim 1 to 4.
JP2010173464A 2010-08-02 2010-08-02 Method of manufacturing electrode Pending JP2012033426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173464A JP2012033426A (en) 2010-08-02 2010-08-02 Method of manufacturing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173464A JP2012033426A (en) 2010-08-02 2010-08-02 Method of manufacturing electrode

Publications (1)

Publication Number Publication Date
JP2012033426A true JP2012033426A (en) 2012-02-16

Family

ID=45846609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173464A Pending JP2012033426A (en) 2010-08-02 2010-08-02 Method of manufacturing electrode

Country Status (1)

Country Link
JP (1) JP2012033426A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506723A (en) * 2011-02-25 2014-03-17 アプライド マテリアルズ インコーポレイテッド Lithium ion cell design apparatus and method
JP2014139896A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Apparatus and method for manufacturing electric storage device
JP2015144055A (en) * 2014-01-31 2015-08-06 株式会社豊田自動織機 Manufacturing method of electrode and heating apparatus
KR20170111290A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 Preparation method of electrode for secondary battery, electrode for secondary battery prepared by the same and secondary battery comprising the electrode
CN107680823A (en) * 2017-10-25 2018-02-09 浙江九康电气有限公司 A kind of preparation method of electrode material suitable for ultracapacitor
JP2018113271A (en) * 2014-06-10 2018-07-19 東亞合成株式会社 Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same, and nonaqueous electrolyte secondary battery
JP2019533283A (en) * 2016-09-22 2019-11-14 ジーアールエスティー・インターナショナル・リミテッド Electrode assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114228A (en) * 2004-10-12 2006-04-27 Toyota Motor Corp Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery
JP2010034218A (en) * 2008-07-28 2010-02-12 Fdk Corp Coater, coating method using the same, and manufacturing method of electrical accumulation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114228A (en) * 2004-10-12 2006-04-27 Toyota Motor Corp Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery
JP2010034218A (en) * 2008-07-28 2010-02-12 Fdk Corp Coater, coating method using the same, and manufacturing method of electrical accumulation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506723A (en) * 2011-02-25 2014-03-17 アプライド マテリアルズ インコーポレイテッド Lithium ion cell design apparatus and method
JP2014139896A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Apparatus and method for manufacturing electric storage device
JP2015144055A (en) * 2014-01-31 2015-08-06 株式会社豊田自動織機 Manufacturing method of electrode and heating apparatus
JP2018113271A (en) * 2014-06-10 2018-07-19 東亞合成株式会社 Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same, and nonaqueous electrolyte secondary battery
KR20170111290A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 Preparation method of electrode for secondary battery, electrode for secondary battery prepared by the same and secondary battery comprising the electrode
KR102130051B1 (en) * 2016-03-25 2020-07-03 주식회사 엘지화학 Preparation method of electrode for secondary battery, electrode for secondary battery prepared by the same and secondary battery comprising the electrode
JP2019533283A (en) * 2016-09-22 2019-11-14 ジーアールエスティー・インターナショナル・リミテッド Electrode assembly
CN107680823A (en) * 2017-10-25 2018-02-09 浙江九康电气有限公司 A kind of preparation method of electrode material suitable for ultracapacitor

Similar Documents

Publication Publication Date Title
JP2012033426A (en) Method of manufacturing electrode
CN107342392B (en) Method for preparing battery electrode
JP3953911B2 (en) Method for producing coating sheet
JP7125409B2 (en) Large format battery anode containing silicon particles
JP2008103098A (en) Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment
JP5842407B2 (en) Method for producing lithium ion secondary battery
JP6547309B2 (en) Negative electrode material for lithium ion secondary battery, paste for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2005209570A (en) Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2007141540A (en) Manufacturing method and device of electrode plate
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
CN105895922A (en) Fabrication method of conductive coating aluminum foil
KR102116676B1 (en) Method for Preparing Electrode for Secondary Battery and Device for Manufacturing the Same
JP2016071956A (en) Method for manufacturing electrode for lithium ion secondary battery
JP6766596B2 (en) Method for manufacturing electrodes for lithium-ion secondary batteries
JP6077495B2 (en) Method for producing electrode for lithium ion secondary battery
JP2014007037A (en) Method for manufacturing nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery manufactured by the method
WO2020137436A1 (en) Method for manufacturing electrode
JP2013089573A (en) Electrode, electrode manufacturing device, and electrode manufacturing method
JP6705400B2 (en) Method for manufacturing secondary battery electrode
WO2013061890A1 (en) Electrode material, electrode, secondary cell, and method for producing electrode material
JP2009193932A (en) Manufacturing method of electrode
JP5454106B2 (en) Battery electrode paste, battery electrode paste manufacturing method and electrode plate manufacturing method
JP6958342B2 (en) Manufacturing method of laminated electrode body
JP6274935B2 (en) Method for producing electrode for lithium ion battery
JP2004273181A (en) Electrode plate for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701