JP2008103098A - Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment - Google Patents

Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment Download PDF

Info

Publication number
JP2008103098A
JP2008103098A JP2006282415A JP2006282415A JP2008103098A JP 2008103098 A JP2008103098 A JP 2008103098A JP 2006282415 A JP2006282415 A JP 2006282415A JP 2006282415 A JP2006282415 A JP 2006282415A JP 2008103098 A JP2008103098 A JP 2008103098A
Authority
JP
Japan
Prior art keywords
temperature
active material
unit
solvent
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006282415A
Other languages
Japanese (ja)
Inventor
Tomofumi Yanagi
智文 柳
Seiichi Kato
誠一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006282415A priority Critical patent/JP2008103098A/en
Publication of JP2008103098A publication Critical patent/JP2008103098A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method and the manufacturing equipment of an electrode plate high in adhesion of an electrode active material mix layer to a metallic collector. <P>SOLUTION: The manufacturing method of the electrode plate for a nonaqueous electrolyte secondary battery is that a mix of an electrode active material is prepared by mixing and dispersing at least the electrode active material and a binder in a solvent, prepared electrode active material mix paint is applied to the surface of the collector, a coating film of the electrode active material is formed, dried while removing the solvent, and pressed to form the electrode active material mix layer. The manufacturing method and the manufacturing equipment of the electrode plate are that in the process heating and drying the coating film while removing the solvent, the solvent is removed by heating the electrode plate under the presence of the high temperature vapor of the solvent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水電解液二次電池用電極板の電極活物質合剤層と集電体との密着性を向上させる非水電解液二次電池用電極板の製造方法およびその製造装置に関するものである。   The present invention relates to an electrode for a non-aqueous electrolyte secondary battery that improves the adhesion between the electrode active material mixture layer of the electrode plate for a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery and the current collector. The present invention relates to a plate manufacturing method and a manufacturing apparatus therefor.

近年、AV機器あるいはパソコンや携帯型通信機器などのポータブル化やコードレス化が急速に促進されており、これらの電子機器やその他の動力用の駆動機器電源として、高エネルギー密度で負荷特性の優れた二次電池が要望されている。特にリチウム二次電池はエネルギー密度および電圧が高く、貯蔵寿命が長いなどの多くの特長を有する携帯型電子機器等の電源として利用が広がっている。   In recent years, portable devices and cordless devices such as AV devices, personal computers and portable communication devices have been rapidly promoted, and these electronic devices and other power drive devices for power supplies have high energy density and excellent load characteristics. Secondary batteries are desired. In particular, lithium secondary batteries are widely used as power sources for portable electronic devices having many features such as high energy density and voltage and long storage life.

リチウム二次電池は、負極にリチウムの吸蔵及び放出が可能な炭素質材料等を集電体に塗布された負極板を用い、正極にLiCoO2等の遷移金属とリチウムの複合酸化物を活物質として集電体に塗布された正極板を用いており、これによって、高電位で高放電容量のリチウム二次電池を実現しているが、近年の電子機器および通信機器の多機能化に伴って、さらなる高容量化が望まれている。 A lithium secondary battery uses a negative electrode plate in which a carbonaceous material capable of occluding and releasing lithium is applied to a negative electrode on a current collector, and an active material is a composite oxide of a transition metal such as LiCoO 2 and lithium for the positive electrode As a result, a lithium secondary battery with a high potential and a high discharge capacity has been realized by using a positive electrode plate applied to a current collector, but with the recent multifunctionalization of electronic devices and communication devices Further increase in capacity is desired.

非水電解液二次電池用負極板は、炭素質材料を負極活物質として用い、この負極活物質とバインダ(結着剤)とを適切な分散媒に混練分散し負極の合剤塗料とし、この負極の合剤塗料を金属箔からなる集電体上に塗布して、負極活物質の塗工膜を形成後、プレスして負極活物質合剤層を成形することで作製される。   A negative electrode plate for a non-aqueous electrolyte secondary battery uses a carbonaceous material as a negative electrode active material, and the negative electrode active material and a binder (binder) are kneaded and dispersed in an appropriate dispersion medium to form a negative electrode mixture paint, The negative electrode mixture paint is applied onto a current collector made of a metal foil to form a negative electrode active material coating film, and then pressed to form a negative electrode active material mixture layer.

一方、非水電解液二次電池用正極板は、リチウム複合酸化物を正極活物質として用い、この正極活物質と導電剤およびバインダとを適切な分散媒に混練分散し正極の合剤塗料とし、この正極の合剤塗料を金属箔からなる集電体上に塗布して、正極活物質の塗工膜を形成後、プレスして正極活物質合剤層を成形することで作製される。   On the other hand, a positive electrode plate for a non-aqueous electrolyte secondary battery uses a lithium composite oxide as a positive electrode active material, and the positive electrode active material, a conductive agent and a binder are kneaded and dispersed in an appropriate dispersion medium to form a positive electrode mixture paint. The positive electrode mixture paint is applied onto a current collector made of metal foil to form a positive electrode active material coating film, and then pressed to form a positive electrode active material mixture layer.

ここで、金属箔からなる集電体上に塗布、乾燥されプレスされた負極活物質合剤層および正極活物質合剤層は電極板の製造工程やリチウム二次電池の組立工程において、活物質合剤層の剥離、脱落、ひび割れ等が発生しないように、集電体との密着性に優れていることが要求される。   Here, the negative electrode active material mixture layer and the positive electrode active material mixture layer coated on a current collector made of metal foil, dried and pressed are used as active materials in the electrode plate manufacturing process and the lithium secondary battery assembly process. It is required to have excellent adhesion to the current collector so that the mixture layer does not peel, fall off or crack.

そこで、従来の電極板の製造方法としては、少なくとも電極活物質およびバインダを溶媒に混合分散した電極活物質の合剤塗料を調製し、電極活物質の合剤塗料を集電体の表面に塗布した後、電極活物質の合剤塗料に含まれる溶媒を除去する工程において、図3に示すように集電体54の電極活物質の塗工膜53を塗布した反対面より加熱部55にて加熱することにより、溶媒の乾燥が電極活物質の塗工膜53の集電体54の表面側から進み、バインダが電極活物質の塗工膜53の表面側へ偏析するのを防止し、電極活物質の塗工膜53と集電体54との密着性を向上させる方法が提案されている(例えば特許文献1参照)。
特開平9−283122号公報
Therefore, as a conventional electrode plate manufacturing method, an electrode active material mixture paint prepared by mixing and dispersing at least an electrode active material and a binder in a solvent is prepared, and an electrode active material mixture paint is applied to the surface of the current collector. After that, in the step of removing the solvent contained in the electrode active material mixture paint, as shown in FIG. 3, the heating unit 55 starts from the opposite surface of the current collector 54 to which the electrode active material coating film 53 is applied. By heating, the drying of the solvent proceeds from the surface side of the current collector 54 of the electrode active material coating film 53, and the binder is prevented from segregating to the surface side of the electrode active material coating film 53. There has been proposed a method for improving the adhesion between the active material coating film 53 and the current collector 54 (see, for example, Patent Document 1).
JP-A-9-283122

しかしながら上述した従来技術である特許文献では、図3に示すように集電体34の電極活物質の塗工膜53を塗布した反対面からの加熱をすることで、バインダが電極活物質
の塗工膜53の表面側へ偏析するのを防止し高い密着強度が得られるため、集電体54の走行速度を速くし、乾燥工程の高速化を図ることができる。電極板の製作時には集電体54の進行方向62に集電体54を走行させると、集電体54および電極活物質の塗工膜53の表面には走行速度と同じ速度の相対的な風58が発生する。
However, in the above-described prior art patent document, as shown in FIG. 3, the binder is coated with the electrode active material by heating from the opposite surface of the current collector 34 to which the coating film 53 of the electrode active material is applied. Since segregation to the surface side of the work film 53 is prevented and high adhesion strength is obtained, the traveling speed of the current collector 54 can be increased, and the drying process can be speeded up. When the current collector 54 is caused to travel in the traveling direction 62 of the current collector 54 when the electrode plate is manufactured, the surface of the current collector 54 and the electrode active material coating film 53 has a relative wind at the same speed as the travel speed. 58 occurs.

従来技術である特許文献で乾燥時間を短くするため、電極板61の走行速度を速くし乾燥速度を早くすると相対的な風58の速度も当然早くなる。相対的な風58の速度が早くなると乾燥速度が一層加速され、バインダの偏析を起こすとともに、気化熱が奪われることにより電極活物質の塗工膜53の温度が低くなりバインダの溶融温度に到達しなくなり、電極活物質の塗工膜53と集電体54の高い密着強度が得られないという課題を有していた。   In order to shorten the drying time in the patent document which is the prior art, when the traveling speed of the electrode plate 61 is increased and the drying speed is increased, the speed of the relative wind 58 is naturally increased. When the speed of the relative wind 58 is increased, the drying speed is further accelerated, causing the segregation of the binder, and the temperature of the coating film 53 of the electrode active material is lowered by depriving the heat of vaporization and reaches the melting temperature of the binder. Therefore, there is a problem that high adhesion strength between the electrode active material coating film 53 and the current collector 54 cannot be obtained.

本発明は上記従来の課題を鑑みてなされたもので、電極活物質およびバインダを溶媒に混合分散した電極活物質の合剤を調製した電極活物質の合剤塗料を集電体の表面に塗布し電極活物質の塗工膜を形成して、乾燥後にプレスし電極活物質合剤層を形成する非水電解液二次電池用電極板の製造方法であって、電極板を溶媒の高温蒸気を供給、乾燥工程を経て電極板に含有した溶媒を除去しながら乾燥することにより、バインダをバインダの溶融温度に到達し易く促進し高い密着強度と乾燥工程の高速化が可能となる非水電解液二次電池用電極板の製造方法とその製造装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems. An electrode active material mixture paint prepared by preparing an electrode active material mixture in which an electrode active material and a binder are mixed and dispersed in a solvent is applied to the surface of the current collector. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery in which an electrode active material coating film is formed and pressed after drying to form an electrode active material mixture layer. Non-aqueous electrolysis that facilitates reaching the melting temperature of the binder and promotes high adhesion strength and speeds up the drying process by drying while removing the solvent contained in the electrode plate through a drying process It aims at providing the manufacturing method of the electrode plate for liquid secondary batteries, and its manufacturing apparatus.

上記のような目的を達成するために本発明は、少なくとも電極活物質およびバインダを溶媒に混合分散した電極活物質の合剤を調製した電極活物質の合剤塗料を集電体の表面に塗布し電極活物質の塗工膜を形成して、乾燥後にプレスし電極活物質合剤層を形成する非水電解液二次電池用電極板の製造方法であって、電極板を溶媒の高温蒸気を供給し、乾燥する乾燥工程を経て電極板に含有した溶媒を除去しながら乾燥することを特徴とするものである。   In order to achieve the above object, the present invention applies an electrode active material mixture paint prepared on an electrode active material mixture in which at least an electrode active material and a binder are mixed and dispersed in a solvent to the surface of the current collector. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery in which an electrode active material coating film is formed and pressed after drying to form an electrode active material mixture layer. Is dried while removing the solvent contained in the electrode plate through a drying process.

本発明によると、電極活物質およびバインダを溶媒に混合分散した電極活物質の合剤を調製した電極活物質の合剤塗料を集電体の表面に塗布し電極活物質の塗工膜を形成して、乾燥後にプレスし電極活物質合剤層を形成する非水電解液二次電池用電極板の製造方法であって、電極板を溶媒の高温蒸気を供給し、乾燥する乾燥工程を経て電極板に含有した溶媒を除去しながら乾燥することにより、溶媒の高温蒸気を存在させた相対風にて電極活物質の合剤塗料が乾燥する速度を抑制し、且つ高温蒸気であるためバインダを溶融させる温度を確保することが可能となり、電極活物質の塗工膜と集電体の高い密着強度と乾燥工程の高速化を得ることができる。   According to the present invention, an electrode active material mixture prepared by mixing and dispersing an electrode active material and a binder in a solvent is applied to the surface of the current collector to form a coating film of the electrode active material A method of manufacturing an electrode plate for a non-aqueous electrolyte secondary battery that is pressed after drying to form an electrode active material mixture layer, and the electrode plate is supplied with a high-temperature vapor of a solvent and dried. By drying while removing the solvent contained in the electrode plate, the rate at which the electrode active material mixture paint dries with the relative air in the presence of the high-temperature vapor of the solvent is suppressed, and the binder is removed because it is high-temperature vapor. It is possible to ensure the melting temperature, and it is possible to obtain a high adhesion strength between the coating film of the electrode active material and the current collector and a high speed drying process.

本発明の第1の発明では、少なくとも電極活物質およびバインダを溶媒に混合分散した電極活物質の合剤を調製した電極活物質の合剤塗料を集電体の表面に塗布し電極活物質の塗工膜を形成して、乾燥後にプレスし電極活物質合剤層を形成する非水電解液二次電池用電極板の製造方法であって、電極板を溶媒の高温蒸気を供給し、乾燥する乾燥工程を経て電極板に含有した溶媒を除去しながら乾燥することにより、溶媒の高温蒸気を存在させた相対風にて電極活物質の合剤塗料が乾燥する速度を抑制し、且つ高温蒸気であるためバインダを溶融させる温度を確保することが可能となり、電極活物質の塗工膜と集電体の高い密着強度と乾燥工程の高速化が可能となる。   In the first invention of the present invention, an electrode active material mixture prepared by preparing an electrode active material mixture in which at least an electrode active material and a binder are mixed and dispersed in a solvent is applied to the surface of the current collector, and the electrode active material A method for producing an electrode plate for a non-aqueous electrolyte secondary battery in which a coating film is formed and pressed after drying to form an electrode active material mixture layer. The electrode plate is dried by supplying high-temperature vapor of a solvent. By drying while removing the solvent contained in the electrode plate through a drying step, the rate at which the electrode active material mixture paint dries with the relative air in the presence of the high-temperature vapor of the solvent is suppressed, and the high-temperature vapor Therefore, it is possible to secure a temperature at which the binder is melted, high adhesion strength between the coating film of the electrode active material and the current collector, and a high speed drying process.

本発明の第2の発明では、少なくとも温度または湿度ならびに供給流量がコントロールされた溶媒の高温蒸気を供給することにより、電極活物質の合剤塗料が乾燥する速度を抑
制し、電極活物質の塗工膜と集電体の高い密着強度を得ることが可能となる。
In the second invention of the present invention, by supplying a high-temperature vapor of a solvent whose temperature or humidity and supply flow rate are controlled at least, the rate at which the electrode active material mixture paint dries is suppressed, and the electrode active material is applied. It is possible to obtain high adhesion strength between the film and the current collector.

本発明の第3の発明では、乾燥工程において、電極板を溶媒の蒸発温度に到達させる予熱工程と電極板を恒率乾燥させる恒率乾燥工程と、電極板を減率乾燥させる減率乾燥工程からなることにより、高温蒸気であるためバインダを溶融させる温度を確保でき、バインダの偏析を抑制することが可能となる。   In the third invention of the present invention, in the drying step, a preheating step for bringing the electrode plate to the evaporation temperature of the solvent, a constant rate drying step for drying the electrode plate at a constant rate, and a reduction rate drying step for drying the electrode plate at a reduced rate. By being comprised, since it is high temperature steam, the temperature which fuse | melts a binder can be ensured and it becomes possible to suppress the segregation of a binder.

本発明の第4の発明では、集電体および電極板を連続的に搬送する搬送部と、電極活物質の合剤塗料を集電体の表面に塗布する活物質供給部と、電極板を乾燥させる乾燥部と、乾燥部に熱源を供給する加熱部と、乾燥部の熱源を発生する熱源部と、乾燥部の内部に溶媒の高温蒸気を吹き付ける溶媒蒸気供給ノズル部と、溶媒の高温蒸気を供給する溶媒供給部と、乾燥部の内部の温度を計測する検知部と、乾燥部の内部の温度を計測する湿度検知部と、溶媒の高温蒸気の供給量を制御する流量制御部と、溶媒の高温蒸気の温度と湿度を制御する温度湿度制御部と、加熱部の温度を制御する温度制御部とで構成されることにより、溶媒の高温蒸気を存在させた相対風にて電極活物質の合剤塗料が乾燥する速度を抑制し、且つ高温蒸気であるためバインダを溶融させる温度を確保することが可能となり、電極活物質合剤層と集電体の高い密着強度と乾燥工程の高速化が可能となる。   According to a fourth aspect of the present invention, a transport unit that continuously transports a current collector and an electrode plate, an active material supply unit that applies a mixture paint of an electrode active material to the surface of the current collector, and an electrode plate A drying section for drying, a heating section for supplying a heat source to the drying section, a heat source section for generating a heat source for the drying section, a solvent vapor supply nozzle section for blowing a high-temperature vapor of the solvent inside the drying section, and a high-temperature vapor of the solvent A solvent supply unit for supplying the water, a detection unit for measuring the temperature inside the drying unit, a humidity detection unit for measuring the temperature inside the drying unit, a flow rate control unit for controlling the supply amount of high-temperature vapor of the solvent, It is composed of a temperature / humidity control unit that controls the temperature and humidity of the high-temperature vapor of the solvent, and a temperature control unit that controls the temperature of the heating unit. Suppresses the drying speed of the mixture paint and is a high-temperature steam. Sunda the it is possible to ensure the temperature for melting, speed of the electrode active material mixture layer and the current collector with high adhesion strength and drying process can be realized.

本発明の第5の発明では、加熱部が赤外線加熱部、熱風加熱部、電磁誘導加熱部、マイクロ波加熱部、高周波加熱部のいずれかの一つおよびその組み合わせからなる構成にしたことにより、電極板の全体を効率よく急速加熱が可能となり、短時間にバインダの溶融温度に到達することで乾燥工程の高速化が可能となる。   In the fifth invention of the present invention, the heating part is composed of any one of an infrared heating part, a hot air heating part, an electromagnetic induction heating part, a microwave heating part, a high-frequency heating part and a combination thereof, The entire electrode plate can be rapidly heated efficiently, and the drying process can be speeded up by reaching the melting temperature of the binder in a short time.

本発明の第6の発明では、乾燥部の内部の検知された温度と湿度に伴って、溶媒の高温蒸気の温度または湿度あるいは流量を調整する構成にしたことにより、電極板の急速加熱後に溶媒の高温蒸気を一定の温度および湿度にて供給することが可能となり、電極板に含まれるバインダの気化熱となる蒸発温度を一定に供給して偏析を緩和することができる。   According to the sixth aspect of the present invention, the temperature, humidity or flow rate of the high-temperature vapor of the solvent is adjusted in accordance with the detected temperature and humidity inside the drying section, so that the solvent after the rapid heating of the electrode plate It is possible to supply the high-temperature steam at a constant temperature and humidity, and it is possible to alleviate segregation by supplying a constant evaporation temperature as the heat of vaporization of the binder contained in the electrode plate.

以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。図1は本発明の実施の形態における電極活物質の合剤塗料を集電体の表面に塗布し電極活物質の塗工膜を形成後に乾燥する製造装置の構成図である。このあと、プレスして電極活物質合剤層を形成した非水電解液二次電池用電極板となる。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a manufacturing apparatus for drying after forming a coating film of an electrode active material by applying a mixture paint of an electrode active material on the surface of a current collector in an embodiment of the present invention. Thereafter, the electrode plate for a non-aqueous electrolyte secondary battery is formed by pressing to form an electrode active material mixture layer.

集電体4や電極活物質の合剤塗料を集電体4の表面に塗布した電極板25を連続的に搬送する搬送部26には巻出し部1および巻取り部21を備え、その巻出し部1および巻取り部21の間に電極活物質の合剤塗料を集電体4の表面に塗布する活物質供給部2と、電極活物質の合剤塗料を集電体4の表面に塗布した電極板25を乾燥させる乾燥部5が配置している。   The transport unit 26 that continuously transports the electrode plate 25 in which the current collector 4 and the electrode active material mixture paint are applied to the surface of the current collector 4 includes an unwinding unit 1 and a winding unit 21. An active material supply unit 2 for applying a mixture paint of an electrode active material on the surface of the current collector 4 between the take-out unit 1 and the winding unit 21; and a mixture paint of an electrode active material on the surface of the current collector 4 A drying unit 5 for drying the applied electrode plate 25 is disposed.

乾燥部5の内部は3室に分けられ、電極板25を溶媒の蒸発温度に到達させるための予熱工程を処理する予熱乾燥部18と電極板25を恒率乾燥させる恒率乾燥工程を処理するための恒率乾燥部19、さらに電極板25を減率乾燥させる減率乾燥工程を処理する減率乾燥部20から構成している。各乾燥部18,19,20には、乾燥部5の内部の温度または湿度を検出するための各温度センサ8a,8b,8c,13,22または湿度検知部14を備え、赤外線ヒータ10の温度や溶媒の高温蒸気の温度および湿度を制御し、加熱部6である各熱風ノズル部6a,6b,6c,6dおよび溶媒供給部17に接続されている溶媒蒸気供給ノズル部12より電極板25を加熱している。   The interior of the drying unit 5 is divided into three chambers, and a preheating drying unit 18 that processes a preheating process for causing the electrode plate 25 to reach the evaporation temperature of the solvent and a constant rate drying process that performs constant drying of the electrode plate 25 are processed. For this reason, the constant rate drying unit 19 and the reduction rate drying unit 20 for processing the rate reduction drying process for drying the electrode plate 25 at a rate reduction rate are configured. Each of the drying units 18, 19, 20 includes temperature sensors 8 a, 8 b, 8 c, 13, 22 or a humidity detection unit 14 for detecting the temperature or humidity inside the drying unit 5, and the temperature of the infrared heater 10. Further, the temperature and humidity of the high-temperature vapor of the solvent are controlled, and the electrode plate 25 is moved from the solvent vapor supply nozzle unit 12 connected to each hot air nozzle unit 6a, 6b, 6c, 6d as the heating unit 6 and the solvent supply unit 17. Heating.

まず、活物質とバインダまたは活物質とバインダおよび導電材を適切な分散媒中に入れ、分散機により混合分散して、集電体4への塗布に最適な粘度に調整して混練を行い、電
極活物質の合剤塗料を作製し活物質供給部2に投入する。次にコイル状に巻かれた集電体4が巻出し部1より繰り出され、活物質供給部2より電極活物質の合剤塗料が供給され集電体4に塗布される。
First, an active material and a binder or an active material and a binder and a conductive material are put in an appropriate dispersion medium, mixed and dispersed by a disperser, adjusted to an optimum viscosity for application to the current collector 4, and kneaded. An electrode active material mixture paint is prepared and charged into the active material supply unit 2. Next, the current collector 4 wound in a coil shape is fed out from the unwinding unit 1, and a mixture paint of an electrode active material is supplied from the active material supply unit 2 and applied to the current collector 4.

電極活物質の合剤塗料が塗布され電極活物質の塗工膜3を成形した集電体4は、乾燥部5の内部に搬送部26により搬送され乾燥後、巻取り部21にコイル状に巻き取られる。その後、巻取り部21に巻き取られた電極板25である電極活物質の塗工膜3が形成された集電体4をプレスして、集電体4の表面に電極活物質合材層を形成する非水電解液二次電池用電極板が作製される。   The current collector 4 coated with the electrode active material mixture paint and formed with the electrode active material coating film 3 is conveyed inside the drying unit 5 by the conveyance unit 26 and dried, and then coiled in the winding unit 21. It is wound up. Thereafter, the current collector 4 on which the electrode active material coating film 3, which is the electrode plate 25 wound around the winding portion 21, is pressed, and the electrode active material mixture layer is formed on the surface of the current collector 4. An electrode plate for a non-aqueous electrolyte secondary battery is formed.

また、乾燥部5の内部では、第一の工程として塗布された電極活物質の塗工膜3の温度を溶媒の蒸発温度まで高める予熱乾燥工程を処理する予熱乾燥部18と、第二の工程として溶媒が一定速度で蒸発するため蒸発時に気化熱として熱が奪われ、電極活物質の塗工膜3の表面温度が低下する現象を防ぐための電極活物質の塗工膜3から溶媒が蒸発する速度と加熱する速度を同等にしながら乾燥させる恒率乾燥工程を処理する恒率乾燥部19と、第三の工程として溶媒の蒸発する量が少なくなるため、電極活物質の塗工膜3の温度が上昇し電極活物質の塗工膜3の表面だけを急激に硬化する現象を防ぐための電極活物質の塗工膜3を加熱する温度を制御しながら乾燥させる減率乾燥工程を処理する減率乾燥部20の三つの構成に分けられる。   Further, inside the drying section 5, a preheating drying section 18 for processing a preheating drying process for increasing the temperature of the coating film 3 of the electrode active material applied as the first process to the evaporation temperature of the solvent, and a second process. As the solvent evaporates at a constant rate, heat is removed as the heat of vaporization during evaporation, and the solvent evaporates from the electrode active material coating film 3 to prevent the surface temperature of the electrode active material coating film 3 from decreasing. The constant rate drying unit 19 for processing the constant rate drying step for drying while equalizing the heating rate and the heating rate, and the amount of evaporation of the solvent as the third step is reduced, so that the coating film 3 of the electrode active material A rate-decreasing drying process is performed in which the temperature of the electrode active material coating film 3 is controlled to be controlled while the temperature of the electrode active material coating film 3 is controlled to prevent the phenomenon that the temperature rises and only the surface of the electrode active material coating film 3 is rapidly cured. The reduction rate drying unit 20 is divided into three configurations.

第一の工程である予熱工程を処理する予熱乾燥部18では、できる限り早く溶媒の蒸発温度に到達させるために、搬送部26により連続走行している集電体4側より熱風ノズル部6aから熱風を吹き付けて集電体4を加熱する。さらに、電極活物質の塗工膜3側より赤外線ヒータ10にて加熱し、電極活物質の塗工膜3を溶媒の蒸発温度に急速に到達するよう促進している。   In the preheating drying section 18 that processes the preheating process that is the first process, in order to reach the evaporation temperature of the solvent as soon as possible, from the hot air nozzle section 6a from the current collector 4 side continuously running by the transport section 26. The current collector 4 is heated by blowing hot air. Furthermore, the electrode active material coating film 3 is heated from the side of the infrared heater 10 to accelerate the electrode active material coating film 3 to rapidly reach the evaporation temperature of the solvent.

また、予熱乾燥部18内には温度検知部8として温度センサ8aが設置され、予熱乾燥部18内の温度が検知される。その計測した温度を温度制御部9にて熱源部7である熱風発生器7aへの指令信号として発信し、熱風ノズル部6aより放出される熱風の温度を制御している。さらに、予熱乾燥部18内には温度センサ22が設置され、計測された温度を赤外線ヒータ制御部11で処理し赤外線ヒータ10の温度を制御している。   Further, a temperature sensor 8 a is installed as the temperature detection unit 8 in the preheating drying unit 18, and the temperature in the preheating drying unit 18 is detected. The measured temperature is transmitted as a command signal to the hot air generator 7a, which is the heat source unit 7, by the temperature control unit 9, and the temperature of the hot air discharged from the hot air nozzle unit 6a is controlled. Further, a temperature sensor 22 is installed in the preheating drying unit 18, and the measured temperature is processed by the infrared heater control unit 11 to control the temperature of the infrared heater 10.

第二の工程である恒率乾燥工程を処理する恒率乾燥部19では、連続走行している集電体4側より熱風ノズル部6bから熱風を吹き付けて集電体4を加熱する。さらに、電極活物質の塗工膜3側より溶媒蒸気供給ノズル部12から溶媒の高温蒸気を吹き付けて電極活物質の塗工膜3を加熱する。   In the constant rate drying part 19 which processes the constant rate drying process which is a 2nd process, the hot air is blown from the hot air nozzle part 6b from the current collector 4 side which is running continuously, and the current collector 4 is heated. Further, high temperature vapor of the solvent is sprayed from the solvent vapor supply nozzle portion 12 from the electrode active material coating film 3 side to heat the electrode active material coating film 3.

また、恒率乾燥部19内には温度センサ8bが設置され、恒率乾燥部19内の温度が検知される。その計測した温度を温度制御部9にて処理し熱風発生器7bへの指令信号として発信し、熱風ノズル部6bより放出される熱風の温度を制御している。   Further, a temperature sensor 8b is installed in the constant rate drying unit 19, and the temperature in the constant rate drying unit 19 is detected. The measured temperature is processed by the temperature control unit 9 and transmitted as a command signal to the hot air generator 7b to control the temperature of the hot air discharged from the hot air nozzle unit 6b.

さらに、溶媒蒸気供給ノズル部12より放出される溶媒の高温蒸気は、恒率乾燥部19内の温度センサ13と湿度検知部14で温度と湿度を検知し、その温度と湿度の情報を温度湿度制御部15にて演算処理して流量制御部16へ指令信号を発信し制御している。溶媒蒸気供給ノズル部12は、流量制御部16を間に配置した溶媒蒸気供給部17と接続されている。この溶媒蒸気供給部17は、溶媒にあわせて最良のものを選択し、本発明では溶媒が水であるためボイラーを使用したが、有機系の溶媒であるならばシールポットなどがあげられる。   Further, the high temperature vapor of the solvent released from the solvent vapor supply nozzle unit 12 detects the temperature and humidity by the temperature sensor 13 and the humidity detection unit 14 in the constant rate drying unit 19, and the temperature and humidity information is converted to temperature humidity. The control unit 15 performs arithmetic processing and transmits a command signal to the flow rate control unit 16 to control it. The solvent vapor supply nozzle unit 12 is connected to a solvent vapor supply unit 17 having a flow rate control unit 16 disposed therebetween. The best solvent vapor supply unit 17 is selected in accordance with the solvent. In the present invention, the boiler is used because the solvent is water. However, if it is an organic solvent, a seal pot can be used.

第三の工程である減率乾燥工程を処理する減率乾燥部20では、強乾燥するため連続走
行している集電体4側および電極活物質の塗工膜3側より熱風ノズル部6c,6dから熱風を吹き付けて電極板25を加熱する。
In the reduction rate drying unit 20 that processes the reduction rate drying step that is the third step, the hot air nozzle unit 6c, from the side of the current collector 4 and the side of the electrode active material coating film 3 that are continuously running for strong drying. The electrode plate 25 is heated by blowing hot air from 6d.

また、減率乾燥部20内には温度センサ8cが設置され、減率乾燥部20内の温度が検知される。その計測した温度の情報を温度制御部9にて処理し、熱風発生器7cへ指令信号を発信して熱風ノズル部6c,6dより放出される熱風の温度を制御している。   Further, a temperature sensor 8c is installed in the reduction rate drying unit 20, and the temperature in the reduction rate drying unit 20 is detected. Information on the measured temperature is processed by the temperature control unit 9, and a command signal is transmitted to the hot air generator 7c to control the temperature of the hot air discharged from the hot air nozzle units 6c and 6d.

乾燥部5内の熱源7としては、赤外線加熱、熱風加熱、電磁誘導加熱、マイクロ波加熱、高周波加熱のいずれかの一つおよびその組み合わせでもよい。なお、本実施の形態では、二次電池の電極板のひとつである負極板を例として引用し説明するが、正極板においても同様に電極活物質の塗工膜の溶媒と同成分の高温蒸気を供給する。   The heat source 7 in the drying unit 5 may be one of infrared heating, hot air heating, electromagnetic induction heating, microwave heating, and high frequency heating, and a combination thereof. In this embodiment, a negative electrode plate which is one of the electrode plates of the secondary battery is cited and described as an example, but the high temperature vapor having the same component as the solvent of the electrode active material coating film is similarly applied to the positive electrode plate. Supply.

負極活物質として人造黒鉛100重量部に対して、バインダとしてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を2.5重量部(結着材の固形分換算で1重量部)、増粘材として1質量%水溶液のカルボキシメチルセルロース1重量部を混合したものに、分散媒として水を分割添加して、双腕式練合機にて攪拌し、負極活物質の合剤塗料を作製した。   2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as a binder (1 part by weight in terms of solid content of the binder) with respect to 100 parts by weight of artificial graphite as the negative electrode active material ), 1 part by weight of carboxymethyl cellulose as a thickener mixed with 1 part by weight of water as a thickener, water added as a dispersion medium, and stirred in a double-arm kneader to mix the negative electrode active material mixture paint Was made.

図1に示すように、負極活物質の合剤塗料を活物質供給部2に投入し、巻出し部1より巻き出される厚み10μmの銅箔を材料とした集電体4の表面に活物質供給部2より負極活物質の合剤塗料を塗布した。次に負極活物質の塗工膜3を形成した集電体4が搬送部26にて、乾燥部5の予熱乾燥部18に搬送され、赤外線ヒータ制御部11にて制御された赤外線ヒータ10で負極活物質の塗工膜3側より加熱し、また集電体4側より加熱部6である熱風ノズル部6aから熱風を吹き付け加熱して電極板25の急速加熱を行った。   As shown in FIG. 1, a negative electrode active material mixture paint is put into the active material supply unit 2, and the active material is formed on the surface of the current collector 4 made of a 10 μm-thick copper foil that is unwound from the unwinding unit 1. A negative electrode active material mixture paint was applied from the supply unit 2. Next, the current collector 4 on which the coating film 3 of the negative electrode active material is formed is transported by the transport unit 26 to the preheating drying unit 18 of the drying unit 5, and the infrared heater 10 controlled by the infrared heater control unit 11. The electrode plate 25 was rapidly heated by heating from the coating film 3 side of the negative electrode active material and by blowing hot air from the hot air nozzle part 6a which is the heating part 6 from the current collector 4 side.

さらに、恒率乾燥部19では連続走行している集電体4側より、温度制御部9からの指令信号を受けて熱風発生器7bにて制御された熱風を熱風ノズル部6bから吹き付けて集電体4を加熱し、負極活物質の塗工膜3に含まれるバインダの偏析を緩和するため負極活物質の塗工膜3側より、温度湿度制御部15からの指令信号を受けて流量制御部16にて制御された水の高温蒸気を溶媒蒸気供給ノズル部12から吹き付けて加熱した。   Further, the constant rate drying unit 19 receives the command signal from the temperature control unit 9 from the continuously running current collector 4 side and collects hot air controlled by the hot air generator 7b from the hot air nozzle unit 6b. In order to relieve the segregation of the binder contained in the coating film 3 of the negative electrode active material by heating the electric body 4, the flow rate is controlled by receiving a command signal from the temperature / humidity control unit 15 from the coating film 3 side of the negative electrode active material. A high-temperature steam of water controlled by the section 16 was sprayed from the solvent vapor supply nozzle section 12 and heated.

最後に減率乾燥部20では集電体4側および負極活物質の塗工膜3側より、温度制御部9からの指令信号を受取った熱風発生器7cで熱風を制御し、熱風ノズル部6c,6dから制御された熱風を吹き付けて電極板25を加熱した。この際、厚み10μmの銅箔の集電体4および負極活物質の塗工膜3の表面には走行時に発生する相対的な風24が側面より風速2m/秒で当りながらの乾燥となり、乾燥した電極板25を巻取り部21にて巻き取った。さらに、巻き取られた電極板25をプレスして負極活物質合剤層を形成した非水電解液二次電池用電極板を実施例1とした。   Finally, in the reduction rate drying unit 20, the hot air is controlled by the hot air generator 7c that has received a command signal from the temperature control unit 9 from the current collector 4 side and the negative electrode active material coating film 3 side, and the hot air nozzle unit 6c. The electrode plate 25 was heated by blowing hot air controlled from 6d. At this time, the surface of the copper foil current collector 4 and the negative electrode active material coating film 3 having a thickness of 10 μm is dried while the relative wind 24 generated during traveling hits from the side surface at a wind speed of 2 m / sec. The electrode plate 25 was wound up by the winding unit 21. Furthermore, the electrode plate for a non-aqueous electrolyte secondary battery in which the wound electrode plate 25 was pressed to form a negative electrode active material mixture layer was taken as Example 1.

(比較例1)
実施例と同じ負極活物質の合剤塗料および厚み10μmの銅箔を材料とした集電体を用い、図3に示すような製造装置の巻出し部51より集電体54を送り出す。次に負極活物質の合剤塗料が供給されている活物質供給部50にて負極活物質の合剤塗料を集電体54の表面に塗布し、負極活物質の塗工膜53を形成し、乾燥部60に搬送する。
(Comparative Example 1)
The current collector 54 is sent out from the unwinding part 51 of the manufacturing apparatus as shown in FIG. 3 using a current collector made of the same negative electrode active material mixture paint and a copper foil having a thickness of 10 μm. Next, a negative electrode active material mixture paint is applied to the surface of the current collector 54 in the active material supply unit 50 to which the negative electrode active material mixture paint is supplied to form a negative electrode active material coating film 53. Then, it is conveyed to the drying unit 60.

乾燥部60内に設置した温度センサ56で温度を測定し、温度制御部57より指令命令を送信して熱発生部59で熱風の温度を制御した。さらに、熱発生部59に接続した加熱部55より熱風を厚み10μmの銅箔の集電体54側より吹き付けて乾燥を行なった。集電体54および負極活物質の塗工膜53の表面には走行時に発生する相対的な風58が側
面より風速2m/秒で当りながら乾燥した電極板61を巻取り部52にて巻き取った。その後、巻き取った電極板61をプレスして負極活物質合剤層を形成した非水電解液二次電池用電極板を比較例1とした。
The temperature was measured by the temperature sensor 56 installed in the drying unit 60, a command command was transmitted from the temperature control unit 57, and the temperature of the hot air was controlled by the heat generation unit 59. Further, drying was performed by blowing hot air from the heating unit 55 connected to the heat generation unit 59 from the collector 54 side of a copper foil having a thickness of 10 μm. On the surface of the current collector 54 and the coating film 53 of the negative electrode active material, the electrode plate 61 dried while the relative wind 58 generated during traveling hits from the side surface at a wind speed of 2 m / sec. It was. Then, the electrode plate for non-aqueous electrolyte secondary batteries in which the wound electrode plate 61 was pressed to form a negative electrode active material mixture layer was used as Comparative Example 1.

上記のように作製された非水電解液二次電池用電極板での電極板の集電体と電極活物質合剤層の密着強度について評価を行った結果を(表1)に示す
密着強度の評価として、剥離試験を行う。実施例1と比較例1で作製した負極の電極板にテープを貼り付け10mm幅に切り出した後、テープを引っ張って引張り荷重を測定する剥離試験機にて集電体と電極活物質合剤層との剥離応力を測定したものを密着強度として比較値を表1に示す。(表1)の数値は10mm幅を1m幅に換算したものである。
(Table 1) shows the results of evaluating the adhesion strength between the electrode plate current collector and the electrode active material mixture layer in the non-aqueous electrolyte secondary battery electrode plate produced as described above. As an evaluation, a peel test is performed. A tape is applied to the negative electrode plate produced in Example 1 and Comparative Example 1 and cut out to a width of 10 mm, and then the current collector and the electrode active material mixture layer are measured with a peeling tester that measures the tensile load by pulling the tape. Table 1 shows the comparative values with the adhesion strength measured as the peel stress. The numerical values in (Table 1) are obtained by converting a 10 mm width into a 1 m width.

Figure 2008103098
Figure 2008103098

(表1)に示すように水の高温蒸気を溶媒蒸気供給ノズル部から吹き付けて加熱して乾燥を行っていない比較例1の電極板に比べ、水の高温蒸気を溶媒蒸気供給ノズル部から吹き付けて加熱して乾燥を行った実施例1の電極板の方が、密着強度が高いことが判る。   As shown in (Table 1), high-temperature water vapor is sprayed from the solvent vapor supply nozzle part as compared with the electrode plate of Comparative Example 1 in which high-temperature water vapor is blown from the solvent vapor supply nozzle part and heated and dried. It can be seen that the electrode plate of Example 1, which was heated and dried, had higher adhesion strength.

この密着強度の違いを検証するため、図2に示すように実施例1および比較例1を製作したときにおける電極活物質の塗工膜の表面温度を測定した。実施例1での電極活物質の塗工膜の表面温度27と比較例1での電極活物質の塗工膜の表面温度28では、違いが明確に表れた結果となった。   In order to verify this difference in adhesion strength, the surface temperature of the coating film of the electrode active material when Example 1 and Comparative Example 1 were produced as shown in FIG. 2 was measured. The difference between the surface temperature 27 of the electrode active material coating film in Example 1 and the surface temperature 28 of the electrode active material coating film in Comparative Example 1 clearly appeared.

実施例1では乾燥の第二の工程である恒率乾燥工程を処理する恒率乾燥部部で溶媒と同成分の高温蒸気を供給したことにより、電極活物質の塗工膜の表面温度27がバインダの溶融温度29を超えていることが確認されており、バインダが溶融して電極活物質と集電体が強固に結着したと考える。   In Example 1, the surface temperature 27 of the coating film of the electrode active material is obtained by supplying the high-temperature vapor having the same component as the solvent in the constant-rate drying unit that processes the constant-rate drying step that is the second step of drying. It is confirmed that the melting temperature of the binder exceeds 29, and it is considered that the binder is melted and the electrode active material and the current collector are firmly bound.

一方、比較例1では電極活物質の塗工膜の表面温度28がバインダの溶融温度29に達しておらずバインダの溶融が十分にされていないため、電極活物質と集電体が強固に結着されていないと考えられる。また、実施例1での恒率乾燥時間30と比較例1の恒率乾燥時間31も時間的には変わらないため、実施例1の方が高い温度でありながら過乾燥によるバインダの偏析も抑制されているといえる。   On the other hand, in Comparative Example 1, since the surface temperature 28 of the coating film of the electrode active material did not reach the binder melting temperature 29 and the binder was not sufficiently melted, the electrode active material and the current collector were firmly bonded. Probably not worn. Moreover, since the constant rate drying time 30 in Example 1 and the constant rate drying time 31 in Comparative Example 1 do not change in time, the segregation of the binder due to overdrying is suppressed while Example 1 has a higher temperature. It can be said that.

以上の結果から本発明を用いることで、バインダの溶融温度に到達し易く促進し、電極板の温度を急速に加熱するにも関わらず、電極活物質と集電体との密着強度をあげることが可能となる。さらに、走行速度を速くし乾燥速度を早くすると相対的な風も当然早くなって乾燥速度が一層加速されて、バインダの偏析を起こすとともに気化熱を奪われることにより、電極活物質の塗工膜の温度が低くなりバインダの溶融温度に到達しなくなるのを抑制でき、より強い密着強度の極板製造と乾燥工程の高速化を可能とする。   From the above results, by using the present invention, it is easy to reach the melting temperature of the binder, and the adhesion strength between the electrode active material and the current collector is increased despite the rapid heating of the electrode plate temperature. Is possible. Furthermore, when the traveling speed is increased and the drying speed is increased, the relative wind is naturally increased, and the drying speed is further accelerated, causing segregation of the binder and removing the heat of vaporization. Therefore, it is possible to prevent the temperature of the resin from becoming low and not to reach the melting temperature of the binder, and it is possible to manufacture an electrode plate with stronger adhesion strength and speed up the drying process.

本発明によれば、第二の工程の乾燥において電極活物質の塗工膜と同じ成分の高温蒸気を供給することで、集電体と電極活物質の塗工膜との密着性が優れている電極板の製作が
可能となり、電池の組立工程および充放電時の剥離、ひび割れ、脱落等が抑制でき、高エネルギー密度で負荷特性が優れ、貯蔵寿命が長いなどの効果をもたらす二次電池の製作が可能となる。
According to the present invention, by supplying a high-temperature vapor having the same component as the electrode active material coating film in the drying in the second step, the adhesion between the current collector and the electrode active material coating film is excellent. It is possible to manufacture the electrode plate, which can suppress the peeling, cracking, dropping, etc. during the battery assembly process and charging / discharging, and has the effect of high energy density, excellent load characteristics, long shelf life, etc. Production is possible.

また、集電体と電極活物質の塗工膜との密着性が優れているにも関わらず、乾燥工程の高速化が可能となるため生産性の高い高速乾燥ができる非水電解液二次電池用電極板の製造方法およびその製造装置となる。   In addition, despite the excellent adhesion between the current collector and the coating film of the electrode active material, the drying process can be speeded up, so the non-aqueous electrolyte secondary solution that enables high-speed drying with high productivity A battery electrode plate manufacturing method and manufacturing apparatus thereof are provided.

本発明の実施の形態における製造装置の模式図The schematic diagram of the manufacturing apparatus in embodiment of this invention 実施例1と比較例1との電極活物質の塗工膜の表面温度の比較図Comparison diagram of surface temperature of coating film of electrode active material of Example 1 and Comparative Example 1 従来技術における製造装置の模式図Schematic diagram of manufacturing equipment in the prior art

符号の説明Explanation of symbols

1 巻出し部
2 活物質供給部
3 電極活物質の塗工膜
4 集電体
5 乾燥部
6 加熱部
6a 熱風供給ノズル部
6b 熱風供給ノズル部
6c 熱風供給ノズル部
7 熱源部
7a 熱風発生器
7b 熱風発生器
7c 熱風発生器
8 温度検知部
8a 温度センサ
8b 温度センサ
8c 温度センサ
9 温度制御部
10 赤外線ヒータ
11 赤外線ヒータ制御部
12 溶媒蒸気供給ノズル部
13 温度センサ
14 湿度検知部
15 温度湿度制御部
16 流量制御部
17 溶媒供給部
18 予熱乾燥部
19 恒率乾燥部
20 減率乾燥部
21 巻取り部
22 温度センサ
23 集電体の進行方向
24 集電体の走行時に発生する相対的な風
25 電極板
26 搬送部27 実施例1での電極活物質の塗工膜の表面温度
28 比較例1での電極活物質の塗工膜の表面温度
29 バインダの溶融温度
30 実施例1での恒率乾燥時間
31 比較例1での恒率乾燥時間
DESCRIPTION OF SYMBOLS 1 Unwinding part 2 Active material supply part 3 Electrode active material coating film 4 Current collector 5 Drying part 6 Heating part 6a Hot air supply nozzle part 6b Hot air supply nozzle part 6c Hot air supply nozzle part 7 Heat source part 7a Hot air generator 7b Hot air generator 7c Hot air generator 8 Temperature detector 8a Temperature sensor 8b Temperature sensor 8c Temperature sensor 9 Temperature controller 10 Infrared heater 11 Infrared heater controller 12 Solvent vapor supply nozzle 13 Temperature sensor 14 Humidity detector 15 Temperature humidity controller 16 Flow Control Unit 17 Solvent Supply Unit 18 Preheating Drying Unit 19 Constant Rate Drying Unit 20 Decrease Rate Drying Unit 21 Winding Unit 22 Temperature Sensor 23 Current Direction of Current Collector 24 Relative Wind Generated When Current Collector is Running 25 Electrode plate 26 Conveying section 27 Surface temperature of electrode active material coating film in Example 1 28 Surface temperature of electrode active material coating film in Comparative Example 1 29 Binder melting temperature 30 Constant rate drying time in Example 1 31 Constant rate drying time in Comparative Example 1

Claims (6)

少なくとも電極活物質およびバインダを溶媒に混合分散した電極活物質の合剤を調製した電極活物質の合剤塗料を集電体の表面に塗布し電極活物質の塗工膜を形成して、乾燥後にプレスし電極活物質合剤層を形成する非水電解液二次電池用電極板の製造方法であって、前記電極板を溶媒の高温蒸気を供給し、乾燥する乾燥工程を経て前記電極板に含有した溶媒を除去しながら乾燥することを特徴とする非水電解液二次電池用電極板の製造方法。   At least the electrode active material and binder are mixed and dispersed in a solvent to prepare a mixture of electrode active materials. The electrode active material mixture paint is applied to the surface of the current collector to form an electrode active material coating film and then dried. A method for manufacturing an electrode plate for a non-aqueous electrolyte secondary battery, which is pressed later to form an electrode active material mixture layer, wherein the electrode plate is subjected to a drying process in which high-temperature vapor of a solvent is supplied and dried. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery, wherein drying is performed while removing the solvent contained in the battery. 少なくとも温度または湿度ならびに供給流量がコントロールされた溶媒の高温蒸気を供給することを特長とする請求項1に記載の非水電解液二次電池用極板の製造方法。   The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein a high-temperature vapor of a solvent whose temperature or humidity and supply flow rate are controlled is supplied. 乾燥工程において、電極板を溶媒の蒸発温度に到達させる予熱工程と前記電極板を恒率乾燥させる恒率乾燥工程と、前記電極板を減率乾燥させる減率乾燥工程からなることを特徴とする請求項1に記載の非水電解液二次電池用極板の製造方法。   The drying step includes a preheating step for causing the electrode plate to reach the evaporation temperature of the solvent, a constant rate drying step for drying the electrode plate at a constant rate, and a rate reduction drying step for drying the electrode plate at a reduced rate. The manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries of Claim 1. 集電体および電極板を連続的に搬送する搬送部と、電極活物質の合剤塗料を前記集電体の表面に塗布する活物質供給部と、前記電極板を乾燥させる乾燥部と、前記乾燥部に熱源を供給する加熱部と、前記乾燥部の熱源を発生する熱源部と、前記乾燥部の内部に溶媒の高温蒸気を吹き付ける溶媒蒸気供給ノズル部と、前記溶媒の高温蒸気を供給する溶媒供給部と、前記乾燥部の内部の温度を計測する温度検知部と、前記乾燥部の内部の温度を計測する湿度検知部と、前記溶媒の高温蒸気の供給量を制御する流量制御部と、前記溶媒の高温蒸気の温度と湿度を制御する温度湿度制御部と、前記加熱部の温度を制御する温度制御部とで構成されることを特徴とする非水電解液二次電池用極板の製造装置。   A transport unit that continuously transports the current collector and the electrode plate; an active material supply unit that applies a mixture paint of an electrode active material to the surface of the current collector; a drying unit that dries the electrode plate; A heating unit that supplies a heat source to the drying unit, a heat source unit that generates a heat source of the drying unit, a solvent vapor supply nozzle unit that sprays a high-temperature vapor of the solvent into the drying unit, and a high-temperature vapor of the solvent A solvent supply unit, a temperature detection unit that measures the temperature inside the drying unit, a humidity detection unit that measures the temperature inside the drying unit, and a flow rate control unit that controls the supply amount of high-temperature vapor of the solvent; And a temperature / humidity control unit for controlling the temperature and humidity of the high-temperature steam of the solvent, and a temperature control unit for controlling the temperature of the heating unit. Manufacturing equipment. 加熱部が赤外線加熱部、熱風加熱部、電磁誘導加熱部、マイクロ波加熱部、高周波加熱部のいずれかの一つおよびその組み合わせからなる構成にしたことを特徴とする請求項4に記載の非水電解液二次電池用電極板の製造装置。   5. The non-heating device according to claim 4, wherein the heating unit includes one of an infrared heating unit, a hot air heating unit, an electromagnetic induction heating unit, a microwave heating unit, and a high-frequency heating unit and a combination thereof. An apparatus for producing an electrode plate for a water electrolyte secondary battery. 乾燥部の内部の検知された温度と湿度に伴って、溶媒の高温蒸気の温度または湿度あるいは流量を調整する構成にしたことを特徴とする請求項4に記載の非水電解液二次電池用電極板の製造装置。   5. The non-aqueous electrolyte secondary battery according to claim 4, wherein the temperature, humidity, or flow rate of the high-temperature vapor of the solvent is adjusted in accordance with the detected temperature and humidity inside the drying unit. Electrode plate manufacturing equipment.
JP2006282415A 2006-10-17 2006-10-17 Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment Pending JP2008103098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282415A JP2008103098A (en) 2006-10-17 2006-10-17 Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282415A JP2008103098A (en) 2006-10-17 2006-10-17 Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2008103098A true JP2008103098A (en) 2008-05-01

Family

ID=39437290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282415A Pending JP2008103098A (en) 2006-10-17 2006-10-17 Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2008103098A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022858A (en) * 2010-07-14 2012-02-02 Tokyo Electric Power Co Inc:The Method for manufacturing electrode
JP2012028164A (en) * 2010-07-23 2012-02-09 Ngk Insulators Ltd Drying furnace for electrode coating film for lithium ion battery
WO2012026009A1 (en) * 2010-08-25 2012-03-01 トヨタ自動車株式会社 Process for production of battery electrode
WO2013039005A1 (en) * 2011-09-15 2013-03-21 第一実業株式会社 Drying device and drying method
KR20140134541A (en) * 2013-05-14 2014-11-24 주식회사 엘지화학 Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP2015011964A (en) * 2013-07-02 2015-01-19 トヨタ自動車株式会社 Electrode plate for battery, apparatus of manufacturing electrode plate for battery and method of manufacturing electrode plate for battery
KR20150021019A (en) * 2012-03-16 2015-02-27 에이일이삼 시스템즈, 엘엘씨 Microwave drying of lithium-ion battery materials
KR101521684B1 (en) * 2012-07-24 2015-05-19 주식회사 엘지화학 Fabricating method of seperator and electrochemical cell having the same
JP2015170541A (en) * 2014-03-10 2015-09-28 日本ゼオン株式会社 Manufacturing method of electrode for lithium ion battery
US9318747B2 (en) 2012-02-22 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Electrode and power storage device comprising said electrode
JP2019012709A (en) * 2018-10-30 2019-01-24 マクセルホールディングス株式会社 Manufacturing method of negative electrode of nonaqueous secondary battery, and manufacturing method of nonaqueous secondary battery
CN114174748A (en) * 2019-08-01 2022-03-11 株式会社Lg新能源 Electrode drying apparatus equipped with moisture supply unit and electrode drying method using the same
WO2022108162A1 (en) * 2020-11-18 2022-05-27 주식회사 엘지에너지솔루션 Electrode substrate drying equipment comprising screen for flow distribution, and method thereof
WO2022225237A1 (en) * 2021-04-21 2022-10-27 주식회사 엘지에너지솔루션 Automated system for drying conditions of electrodes for secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022858A (en) * 2010-07-14 2012-02-02 Tokyo Electric Power Co Inc:The Method for manufacturing electrode
JP2012028164A (en) * 2010-07-23 2012-02-09 Ngk Insulators Ltd Drying furnace for electrode coating film for lithium ion battery
WO2012026009A1 (en) * 2010-08-25 2012-03-01 トヨタ自動車株式会社 Process for production of battery electrode
JPWO2012026009A1 (en) * 2010-08-25 2013-10-28 トヨタ自動車株式会社 Method for manufacturing battery electrode
JP5594548B2 (en) * 2010-08-25 2014-09-24 トヨタ自動車株式会社 Method for manufacturing battery electrode
US8900747B2 (en) 2010-08-25 2014-12-02 Toyota Jidosha Kabushiki Kaisha Method for producing battery electrode
CN104040275B (en) * 2011-09-15 2015-11-25 第一实业株式会社 Drying device and drying means
WO2013039005A1 (en) * 2011-09-15 2013-03-21 第一実業株式会社 Drying device and drying method
JP2013064516A (en) * 2011-09-15 2013-04-11 Daiichi Jitsugyo Kk Drying device and drying method
CN104040275A (en) * 2011-09-15 2014-09-10 第一实业株式会社 Drying device and drying method
US9318747B2 (en) 2012-02-22 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Electrode and power storage device comprising said electrode
KR20150021019A (en) * 2012-03-16 2015-02-27 에이일이삼 시스템즈, 엘엘씨 Microwave drying of lithium-ion battery materials
JP2015511056A (en) * 2012-03-16 2015-04-13 エー123 システムズ, リミテッド ライアビリティ カンパニー Microwave drying of lithium-ion battery materials
CN104521055A (en) * 2012-03-16 2015-04-15 A123系统公司 Microwave drying of lithium-ion battery materials
KR102027616B1 (en) * 2012-03-16 2019-10-01 에이일이삼 시스템즈, 엘엘씨 Microwave drying of lithium-ion battery materials
US10181599B2 (en) 2012-03-16 2019-01-15 A123 Systems, LLC Microwave drying of lithium-ion battery materials
KR101521684B1 (en) * 2012-07-24 2015-05-19 주식회사 엘지화학 Fabricating method of seperator and electrochemical cell having the same
KR101588624B1 (en) 2013-05-14 2016-01-26 주식회사 엘지화학 Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
KR20140134541A (en) * 2013-05-14 2014-11-24 주식회사 엘지화학 Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP2015011964A (en) * 2013-07-02 2015-01-19 トヨタ自動車株式会社 Electrode plate for battery, apparatus of manufacturing electrode plate for battery and method of manufacturing electrode plate for battery
JP2015170541A (en) * 2014-03-10 2015-09-28 日本ゼオン株式会社 Manufacturing method of electrode for lithium ion battery
JP2019012709A (en) * 2018-10-30 2019-01-24 マクセルホールディングス株式会社 Manufacturing method of negative electrode of nonaqueous secondary battery, and manufacturing method of nonaqueous secondary battery
CN114174748A (en) * 2019-08-01 2022-03-11 株式会社Lg新能源 Electrode drying apparatus equipped with moisture supply unit and electrode drying method using the same
CN114174748B (en) * 2019-08-01 2023-03-24 株式会社Lg新能源 Electrode drying apparatus equipped with moisture supply unit and electrode drying method using the same
WO2022108162A1 (en) * 2020-11-18 2022-05-27 주식회사 엘지에너지솔루션 Electrode substrate drying equipment comprising screen for flow distribution, and method thereof
WO2022225237A1 (en) * 2021-04-21 2022-10-27 주식회사 엘지에너지솔루션 Automated system for drying conditions of electrodes for secondary battery

Similar Documents

Publication Publication Date Title
JP2008103098A (en) Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment
JP3953911B2 (en) Method for producing coating sheet
JP4904782B2 (en) Electrode plate manufacturing method and manufacturing apparatus thereof
US8962098B2 (en) Method of manufacturing battery electrode and coating die for use therein
JP5842407B2 (en) Method for producing lithium ion secondary battery
KR101550487B1 (en) Method for drying electrode and apparatus for drying electrode
JP4571841B2 (en) Electrode plate manufacturing method
JP2012033426A (en) Method of manufacturing electrode
JP6329050B2 (en) Method for producing electrode for lithium ion secondary battery
JP2011048912A (en) Lithium ion secondary battery electrode, and coater for electrode mixture
JP2014179170A (en) Manufacturing device and method of lithium ion secondary battery
JP2009037893A (en) Manufacturing method of negative electrode plate for nonaqueous secondary battery
JP6011478B2 (en) Battery electrode plate manufacturing apparatus and battery electrode plate manufacturing method
JP5798144B2 (en) Lithium ion battery manufacturing apparatus and lithium ion battery manufacturing method
KR20130044160A (en) Electrode, electrode manufacturing apparatus and electrode manufacturing method
JPH11149918A (en) Manufacture of battery electrode
JP2014127438A (en) Method of manufacturing electrode and dryer
KR20160037673A (en) Electrode slurry dryer, method of drying electrode slurry, electrode dride thereby and secondary cell comprising the electrode
JP2003178752A (en) Dried state evaluation method for sheet-shaped electrode
JP2006172807A (en) Method of manufacturing electrode plate
JP6760882B2 (en) Method for manufacturing electrodes for lithium-ion secondary batteries
JP4565953B2 (en) Electrode plate manufacturing method and manufacturing apparatus
CN104549930A (en) Lithium ion battery electrode with reinforcing fiber on surface and coating method
CN107768734A (en) Reduce the lithium battery production technology of energy resource consumption
JP2024504154A (en) Apparatus for producing positive electrode for lithium secondary battery and method for producing same