JP6274935B2 - Method for producing electrode for lithium ion battery - Google Patents

Method for producing electrode for lithium ion battery Download PDF

Info

Publication number
JP6274935B2
JP6274935B2 JP2014061207A JP2014061207A JP6274935B2 JP 6274935 B2 JP6274935 B2 JP 6274935B2 JP 2014061207 A JP2014061207 A JP 2014061207A JP 2014061207 A JP2014061207 A JP 2014061207A JP 6274935 B2 JP6274935 B2 JP 6274935B2
Authority
JP
Japan
Prior art keywords
electrode
active material
binder
electrode active
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014061207A
Other languages
Japanese (ja)
Other versions
JP2015185403A (en
Inventor
優人 細野
優人 細野
祐二 柴田
祐二 柴田
淳哉 森
淳哉 森
坂下 康広
康広 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Toyota Motor Corp
Original Assignee
Zeon Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp, Toyota Motor Corp filed Critical Zeon Corp
Priority to JP2014061207A priority Critical patent/JP6274935B2/en
Publication of JP2015185403A publication Critical patent/JP2015185403A/en
Application granted granted Critical
Publication of JP6274935B2 publication Critical patent/JP6274935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電極活物質等を含む粉体を圧縮成形してリチウムイオン電池用電極を製造するリチウムイオン電池用電極の製造方法に関するものである。   The present invention relates to a method for producing an electrode for a lithium ion battery, in which a powder containing an electrode active material or the like is compression molded to produce an electrode for a lithium ion battery.

小型で軽量、且つエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン二次電池は、環境対応からも今後の需要の拡大が見込まれている。リチウムイオン電池は、エネルギー密度が大きいことから、携帯電話やノート型パソコン等の分野で利用されているが、用途の拡大や発展に伴い、安定性、低抵抗化、大容量化等、より一層の性能向上が求められている。その一方、市場の拡大には低コスト化も重要な課題であり、リチウムイオン二次電池用電極の生産安定性を実現させた安価な製造方法の提案も期待されている。   The demand for lithium-ion secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged is expected to increase in the future from the environmental viewpoint. Lithium-ion batteries are used in the fields of mobile phones and laptop computers because of their high energy density, but with the expansion and development of applications, stability, low resistance, increased capacity, etc. There is a need for improved performance. On the other hand, cost reduction is also an important issue for market expansion, and proposals for inexpensive manufacturing methods that realize production stability of electrodes for lithium ion secondary batteries are also expected.

リチウムイオン電池用電極は電極用シートとして得ることができ、例えば、電極活物質を含む粉体から電極用シート等の圧延シートを製造するために粉体圧延装置を用いた粉体の圧縮成形が行われている。粉体圧延装置では一対のプレス用ロールのロール間に供給される粉体を金属箔からなる集電体等の基材上に連続的に圧縮成形(プレス)する乾式法により圧延シートが得られる。ここで、圧延シートを製造する際には、薄膜であり、かつ、密度分布、膜厚分布のばらつきが少ない、精度のよい圧延シートを製造することが求められる。
しかし、バインダーを基材上に塗布した後に粉体の圧縮成形を行うと、応力集中により金属箔の端部にシワが発生する場合があった。
An electrode for a lithium ion battery can be obtained as an electrode sheet. For example, a powder compression apparatus using a powder rolling apparatus is used to manufacture a rolled sheet such as an electrode sheet from a powder containing an electrode active material. Has been done. In a powder rolling apparatus, a rolled sheet can be obtained by a dry method in which powder supplied between a pair of press rolls is continuously compression-formed (pressed) on a base material such as a current collector made of metal foil. . Here, when manufacturing a rolled sheet, it is required to manufacture a highly accurate rolled sheet that is a thin film and has little variation in density distribution and film thickness distribution.
However, when the powder is compression-molded after the binder is applied on the substrate, wrinkles may occur at the end of the metal foil due to stress concentration.

ここで、特許文献1には、熱収縮性フィルムで包装する際に発生するシワを除去するために熱風を吹き付けてシワを除去することが記載されている。また、特許文献2には、水、溶剤などを含むスラリーを塗布・乾燥して電極活物質層を形成する湿式法により電極を製造する際に、活物質を含むスラリーを集電体上に塗布・乾燥させて電極活物質層を形成した後に、集電体と電極活物質層をプレスし、さらに集電体の未塗布部を加熱することが記載されている。特許文献3には、水、溶剤などを含むスラリーを塗布・乾燥して電極活物質層を形成する湿式法により電極を製造する際に、活物質を含むスラリーを集電体上に塗布・乾燥させて電極活物質層を形成した後に、集電体の未塗布部を加熱し、集電体と電極活物質層をプレスすることが記載されている。   Here, Patent Document 1 describes that the wrinkle is removed by blowing hot air in order to remove wrinkles generated when packaging with a heat-shrinkable film. Further, in Patent Document 2, when an electrode is manufactured by a wet method in which a slurry containing water, a solvent, or the like is applied and dried to form an electrode active material layer, the slurry containing the active material is applied onto the current collector. It is described that after the electrode active material layer is formed by drying, the current collector and the electrode active material layer are pressed, and the uncoated portion of the current collector is heated. In Patent Document 3, when an electrode is manufactured by a wet method in which a slurry containing water, a solvent or the like is applied and dried to form an electrode active material layer, the slurry containing the active material is applied and dried on the current collector. After forming the electrode active material layer, the uncoated portion of the current collector is heated to press the current collector and the electrode active material layer.

特開平9−99920号公報JP-A-9-99920 特開2004−335374号公報JP 2004-335374 A 特開2007−273390号公報JP 2007-273390 A

しかし、特許文献1のように全体に熱風を吹き付けると、電極全体を加熱することになるため、金属箔のみの応力緩和を行うことができなかった。また、特許文献2では、湿式法において圧縮成形後に、特許文献3では、湿式法において圧縮成形を行う前に張力を加えながら集電体に加熱を行っているが、これを乾式法に適用すると、所望の応力緩和を行うことはできなかった。   However, when hot air is blown over the entire surface as in Patent Document 1, the entire electrode is heated, and therefore stress relaxation of only the metal foil cannot be performed. Further, in Patent Document 2, after compression molding in the wet method, in Patent Document 3, the current collector is heated while applying tension before compression molding in the wet method. When this is applied to the dry method, The desired stress relaxation could not be performed.

本発明の目的は、乾式法によりリチウムイオン電池用電極を製造する場合に、集電体に生じる歪みの除去を行うことができるリチウムイオン電池用電極の製造方法を提供することである。   The objective of this invention is providing the manufacturing method of the electrode for lithium ion batteries which can remove the distortion which arises in a collector, when manufacturing the electrode for lithium ion batteries by a dry process.

本発明者は、鋭意検討の結果、所定の加熱工程を行うことにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventor has found that the above object can be achieved by performing a predetermined heating step, and has completed the present invention.

即ち、本発明によれば、
(1)金属箔の少なくとも一面にバインダーを塗布しバインダー付集電体を得るバインダー塗布工程と、前記バインダー付集電体に電極活物質を含む粉体を圧密する乾式法により電極活物質層を形成し、電極活物質層付集電体を得る圧密工程と、前記電極活物質層付集電体を幅方向において5〜50N/mの張力で加熱装置に搬送する搬送工程と、前記電極活物質層付集電体の幅方向における端部を25〜150℃に加熱する加熱工程とを含むリチウムイオン電池用電極の製造方法、
(2)前記加熱工程は、誘導加熱により行われる(1)記載のリチウムイオン電池用電極の製造方法、
(3)前記粉体は、複合粒子である(1)または(2)記載のリチウムイオン電池用電極の製造方法、
が提供される。
That is, according to the present invention,
(1) A binder coating step of applying a binder to at least one surface of a metal foil to obtain a current collector with a binder, and an electrode active material layer by a dry method of compacting a powder containing an electrode active material on the current collector with a binder Forming a current collector with an electrode active material layer, a transporting step of transporting the current collector with an electrode active material layer to a heating device with a tension of 5 to 50 N / m in the width direction, and the electrode active A method for producing an electrode for a lithium ion battery, comprising a heating step of heating an end of the current collector with a material layer in a width direction to 25 to 150 ° C
(2) The method for producing an electrode for a lithium ion battery according to (1), wherein the heating step is performed by induction heating,
(3) The method for producing an electrode for a lithium ion battery according to (1) or (2), wherein the powder is composite particles,
Is provided.

本発明によれば、乾式法によりリチウムイオン電池用電極を製造する場合に、集電体に生じる歪みの除去を行なうことができるリチウムイオン電池用電極の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when manufacturing the electrode for lithium ion batteries by a dry process, the manufacturing method of the electrode for lithium ion batteries which can remove the distortion which arises in a collector can be provided.

実施の形態に係る粉体成形装置の概略を示す図である。It is a figure which shows the outline of the powder molding apparatus which concerns on embodiment. 実施の形態に係る粉体成形装置の一部分を加熱装置側から見た図である。It is the figure which looked at a part of powder molding device concerning an embodiment from the heating device side.

以下、図面を参照して本発明の実施の形態に係るリチウムイオン電池用電極の製造方法について説明する。本発明のリチウムイオン電池用電極の製造方法は、金属箔の少なくとも一面にバインダーを塗布しバインダー付集電体を得るバインダー塗布工程と、前記バインダー付集電体に電極活物質を含む粉体を圧密する乾式法により電極活物質層を形成し、電極活物質層付集電体を得る圧密工程と、前記電極活物質層付集電体の幅方向における端部を加熱する加熱工程とを含む。   Hereinafter, a method for manufacturing an electrode for a lithium ion battery according to an embodiment of the present invention will be described with reference to the drawings. The method for producing an electrode for a lithium ion battery according to the present invention comprises a binder coating step of obtaining a current collector with a binder by applying a binder to at least one surface of a metal foil, and a powder containing an electrode active material in the current collector with a binder. A consolidation step of forming an electrode active material layer by a dry method of consolidation to obtain a current collector with an electrode active material layer; and a heating step of heating an end in the width direction of the current collector with an electrode active material layer .

図1は実施の形態に係る粉体成形装置の概略を示す図である。図1に示すように、粉体成形装置2は、回転軸が水平かつ平行に配置された一対のロール4A,4Bを有し、集電体6にバインダーを塗布しバインダー層8を成形するバインダー塗布ロール4、バインダー塗布ロール4の下方に配置され、電極活物質および結着材を含む成分を造粒することにより得られる複合粒子等の粉体10を供給するフィーダ12A,12B、フィーダ12A,12Bの下方に配置され回転軸が水平かつ平行に配置された一対のロール14A,14Bを有しバインダー層8が形成された集電体6に粉体10を圧縮成形することにより電極活物質層16を形成するプレス用ロール14、集電体6の幅方向における端部を加熱する加熱装置18A,18Bを備えている。なお、バインダー塗布ロール4のロール4A,4Bの表面には、不図示のバインダー供給部からバインダーが供給される。   FIG. 1 is a diagram showing an outline of a powder molding apparatus according to an embodiment. As shown in FIG. 1, the powder molding apparatus 2 has a pair of rolls 4A and 4B whose rotational axes are arranged horizontally and in parallel, and a binder that forms a binder layer 8 by applying a binder to the current collector 6. Feeders 12A, 12B, feeders 12A, which are disposed below the coating roll 4 and the binder coating roll 4 and supply powder 10 such as composite particles obtained by granulating components including an electrode active material and a binder. An electrode active material layer is formed by compressing a powder 10 on a current collector 6 having a pair of rolls 14A and 14B disposed below 12B and having a rotation axis disposed horizontally and in parallel and having a binder layer 8 formed thereon. 16 is provided with heating rolls 18A and 18B for heating the end portion in the width direction of the current collector 6. A binder is supplied to the surfaces of the rolls 4A and 4B of the binder application roll 4 from a binder supply unit (not shown).

この粉体成形装置2を用いて、リチウムイオン電池用電極としての電極シートを作製する場合には、上方から下方に向けて集電体6を所定の速度で搬送し、集電体6がバインダー塗布ロール4のロール4A,4B間を通過する際に、図1のロール4A,4B中の矢印で示すようにロール4A,4Bの回転に従って集電体6の両面にバインダーを塗布し、常温で接着性を有するバインダー層8を形成する。また、集電体6を搬送する際の集電体6の張力は、集電体6の幅方向において5〜50N/m、好ましくは5〜40N/m、より好ましくは10〜30N/mである。 When producing an electrode sheet as an electrode for a lithium ion battery using this powder molding apparatus 2, the current collector 6 is conveyed at a predetermined speed from above to below, and the current collector 6 is a binder. When passing between the rolls 4A and 4B of the coating roll 4, as shown by the arrows in the rolls 4A and 4B in FIG. 1, a binder is applied to both surfaces of the current collector 6 according to the rotation of the rolls 4A and 4B. The binder layer 8 having adhesiveness is formed. Moreover, the tension | tensile_strength of the collector 6 at the time of conveying the collector 6 is 5-50 N / m in the width direction of the collector 6 , Preferably it is 5-40 N / m, More preferably, it is 10-30 N / m. is there.

次に、粉体10をフィーダ12A,12Bからロール14A,14B上にそれぞれ供給し、図1のロール14A,14B中の矢印で示すように一対のロール14A,14Bの回転に従って、供給された粉体10をロール14Aとロール14Bとの間を通過するバインダー層8が形成された集電体6(バインダー付集電体)の両面に圧密し、バインダー付集電体に粉体10が圧縮成形された電極活物質層16を形成する。   Next, the powder 10 is supplied from the feeders 12A and 12B onto the rolls 14A and 14B, respectively, and the supplied powder is indicated by the rotation of the pair of rolls 14A and 14B as indicated by the arrows in the rolls 14A and 14B in FIG. The body 10 is compacted on both surfaces of a current collector 6 (current collector with binder) on which a binder layer 8 passing between the rolls 14A and 14B is formed, and the powder 10 is compression-molded on the current collector with binder. The electrode active material layer 16 thus formed is formed.

即ち、本発明においては、水、溶剤などを含むスラリーを塗布、乾燥により電極組成物層を形成する方法(湿式法)ではなく、電極活物質層を形成するときに、水、溶剤を使用しない乾式法により電極活物質層を成形する。   That is, in the present invention, water or a solvent is not used when forming an electrode active material layer, rather than a method of forming an electrode composition layer by applying a slurry containing water, a solvent, etc. and drying (wet method). An electrode active material layer is formed by a dry method.

そして、電極活物質層16が形成されたバインダー付集電体(電極活物質層付集電体)の幅方向における端部に対して加熱装置18A,18Bにより加熱することにより(図2参照)、シート状のリチウムイオン電池用電極の製造が完了する。なお、図2は図1の矢印20方向(加熱装置18B側)から見た図を示し、加熱装置18Bは電極活物質層付集電体の幅方向における端部を加熱するように配置されている。また、加熱装置18Aは、加熱装置18Bと同様に電極活物質層付集電体の幅方向における端部を加熱するように配置されている。   Then, by heating the end portions in the width direction of the current collector with the binder (current collector with electrode active material layer) on which the electrode active material layer 16 is formed (see FIG. 2). The production of the sheet-like electrode for lithium ion battery is completed. 2 shows a view from the direction of the arrow 20 in FIG. 1 (on the heating device 18B side), and the heating device 18B is arranged so as to heat the end in the width direction of the current collector with the electrode active material layer. Yes. Further, the heating device 18A is arranged so as to heat the end in the width direction of the current collector with the electrode active material layer, similarly to the heating device 18B.

本発明において用いられる集電体6としては、薄いフィルム状の金属箔であればよく、好ましくは、厚さ1〜1000μm、より好ましくは5〜800μmである。金属箔としては、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の
合金などが挙げられ、目的に応じて適宜選択することができる。
The current collector 6 used in the present invention may be a thin film-like metal foil, and preferably has a thickness of 1 to 1000 μm, more preferably 5 to 800 μm. Examples of the metal foil include aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, and other alloys, which can be appropriately selected depending on the purpose.

これらの中でも、リチウムイオン電池用電極としての電極シートを製造する場合には、導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金の金属箔を使用することが好ましい。また、集電体6の表面には塗膜処理、穴あけ加工、バフ加工、サンドブラスト加工及び/又はエッチング加工等の処理が施されていても良い。集電体6の表面に接着剤等を塗布すると、集電体6上に形成されるバインダー層8及び電極活物質層16を強固に保持することができるため、特に好ましい。   Among these, when manufacturing an electrode sheet as an electrode for a lithium ion battery, it is preferable to use a metal foil of copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance. Further, the surface of the current collector 6 may be subjected to treatment such as coating treatment, drilling, buffing, sandblasting and / or etching. It is particularly preferable to apply an adhesive or the like to the surface of the current collector 6 because the binder layer 8 and the electrode active material layer 16 formed on the current collector 6 can be firmly held.

加熱装置18A,18Bとしては、電極活物質層付集電体のうち、金属箔である集電体6を選択的に加熱することができる加熱装置であれば、特に限定されないが、誘導加熱(IH)を行う誘導加熱装置が好ましい。誘導加熱を行うことにより、電極活物質層付集電体のうち、電気伝導性のよい金属箔である集電体6のみが応力緩和され、金属箔のシワを除去することができる。誘導加熱を行う場合には、集電体6の幅方向における端部が25〜150℃、好ましくは35〜120℃、より好ましくは40〜90℃となるように加熱する。   Although it will not specifically limit as heating apparatus 18A, 18B if it is a heating apparatus which can selectively heat the collector 6 which is metal foil among the collectors with an electrode active material layer, Induction heating ( An induction heating device that performs IH) is preferred. By performing induction heating, only the current collector 6 which is a metal foil having good electrical conductivity among the current collector with electrode active material layer is relieved in stress, and wrinkles of the metal foil can be removed. When performing induction heating, it heats so that the edge part in the width direction of the collector 6 may become 25-150 degreeC, Preferably it is 35-120 degreeC, More preferably, it is 40-90 degreeC.

本発明においてバインダー層8を形成するために用いられるバインダーとしては、SBR水分散液が用いられる。SBRの濃度は、10.0〜40wt%である。SBRのガラス転移温度は、−50℃〜30℃の範囲内である。バインダーは、塗液の粘度やぬれ性を調整するために、増粘剤や界面活性剤を含んでいてもよい。増粘剤や界面活性剤としては、公知のものを使用することができる。また、バインダーは、SBR以外にも、水系のポリアクリル酸(PAA)や、有機溶媒系のポリフッ化ビニリデン(PVDF)などを用いてもよい。   As the binder used for forming the binder layer 8 in the present invention, an SBR aqueous dispersion is used. The concentration of SBR is 10.0 to 40 wt%. The glass transition temperature of SBR is in the range of -50 ° C to 30 ° C. The binder may contain a thickener or a surfactant in order to adjust the viscosity and wettability of the coating solution. Known thickeners and surfactants can be used. In addition to SBR, the binder may be water-based polyacrylic acid (PAA), organic solvent-based polyvinylidene fluoride (PVDF), or the like.

複合粒子をリチウムイオン電池用電極の電極材料として用いる場合、正極用活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。   When the composite particles are used as an electrode material for a lithium ion battery electrode, examples of the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions. Examples of the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate. In addition, the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.

なお、リチウムイオン電池用正極の対極としての負極の活物質としては、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物等が挙げられる。なお、上記に例示した電極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。   The active material of the negative electrode as the counter electrode of the positive electrode for lithium ion batteries includes graphitizable carbon, non-graphitizable carbon, low crystalline carbon such as pyrolytic carbon (amorphous carbon), graphite (natural graphite) , Artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate. In addition, the electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.

リチウムイオン電池用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度なリチウムイオン電池用電極が形成できる。   The shape of the electrode active material used for the electrode for a lithium ion battery is preferably a granulated particle. When the particle shape is spherical, a higher-density electrode for a lithium ion battery can be formed at the time of forming the electrode.

リチウムイオン電池用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは0.5〜50μm、より好ましくは0.8〜30μmである。   The volume average particle diameter of the electrode active material used for the electrode for a lithium ion battery is usually 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably 0.8 to 30 μm for both the positive electrode and the negative electrode.

複合粒子に用いられる結着材としては、前記電極活物質を相互に結着させることができる化合物であれば特に制限はない。好適な結着材は、溶媒に分散する性質のある分散型結着材である。分散型結着材として、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素系含有重合体、共役系ジエン重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。   The binder used for the composite particles is not particularly limited as long as it is a compound capable of binding the electrode active materials to each other. A suitable binder is a dispersion type binder having a property of being dispersed in a solvent. Examples of the dispersion-type binder include high molecular compounds such as silicon polymers, fluorine-containing polymers, conjugated diene polymers, acrylate polymers, polyimides, polyamides, polyurethanes, and preferably fluorine-containing polymers. Polymers, conjugated diene polymers and acrylate polymers, more preferably conjugated diene polymers and acrylate polymers.

分散型結着材の形状は、特に制限はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる放電効率、サイクル寿命の劣化を抑えることができる。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粒子状のものが挙げられる。   The shape of the dispersion-type binder is not particularly limited, but is preferably particulate. By being in the form of particles, the binding property is good, and it is possible to suppress the decrease in capacity of the manufactured electrode and the deterioration of discharge efficiency and cycle life due to repeated charge and discharge. Examples of the particulate binder include those in which the particles of the binder such as latex are dispersed in water, and particulates obtained by drying such a dispersion.

結着材の量は、得られる電極活物質層と集電体との密着性が充分に確保でき、かつ、内部抵抗を低くすることができる観点から、電極活物質100重量部に対して、乾燥重量基準で通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜15重量部である。   The amount of the binder is sufficient with respect to 100 parts by weight of the electrode active material from the viewpoint of ensuring sufficient adhesion between the obtained electrode active material layer and the current collector and reducing the internal resistance. The amount is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight based on the dry weight.

複合粒子には、前述のように必要に応じて分散剤を用いてもよい。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩などが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。   As described above, a dispersant may be used for the composite particles as necessary. Specific examples of the dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium salts or alkali metal salts thereof. These dispersants can be used alone or in combination of two or more.

複合粒子には、前述のように必要に応じて導電材を用いてもよい。導電材の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベルケミカルズベスローテンフェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびケッチェンブラックが好ましい。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。   As described above, a conductive material may be used for the composite particles as necessary. Specific examples of the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennot Shap). Among these, acetylene black and ketjen black are preferable. These conductive materials can be used alone or in combination of two or more.

複合粒子は、電極活物質、結着材および必要に応じ添加される前記導電材等他の成分を用いて造粒することにより得られ、少なくとも電極活物質、結着材を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着材を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個〜数十個)の電極活物質が、結着材によって結着されて粒子を形成しているものが好ましい。
複合粒子の製造方法は特に制限されず、流動層造粒法、噴霧乾燥造粒法、転動層造粒法などの公知の造粒法により製造することができる。
The composite particles are obtained by granulating using an electrode active material, a binder, and other components such as the conductive material added as necessary, and include at least an electrode active material and a binder, Each of the above does not exist as an independent particle, but forms one particle by two or more components including an electrode active material and a binder as constituent components. Specifically, a plurality of (more preferably several to several tens) electrode active materials are formed by combining a plurality of the individual particles of the two or more components to form secondary particles. It is preferable that the particles are bound to form particles.
The production method of the composite particles is not particularly limited, and can be produced by a known granulation method such as a fluidized bed granulation method, a spray drying granulation method, or a rolling bed granulation method.

複合粒子の体積平均粒子径は、所望の厚みの電極活物質層を容易に得る観点から、通常0.1〜1000μm、好ましくは1〜500μm、より好ましくは30〜250μmの範囲である。   The volume average particle diameter of the composite particles is usually in the range of 0.1 to 1000 μm, preferably 1 to 500 μm, more preferably 30 to 250 μm, from the viewpoint of easily obtaining an electrode active material layer having a desired thickness.

なお、複合粒子の平均粒子径は、レーザー回折式粒度分布測定装置(たとえば、SALD−3100;島津製作所製)にて測定し、算出される体積平均粒子径である。   The average particle size of the composite particles is a volume average particle size calculated by measuring with a laser diffraction particle size distribution measuring device (for example, SALD-3100; manufactured by Shimadzu Corporation).

以下に実施例に基づいて、本発明をより具体的に説明するが、本発明は、以下の実施例および負極の製造方法に限定されるものではない。また、以下の実施例及び比較例においては、図1及び2に示す粉体成形装置2を用いて電極シートの製造を行った。また、加熱装置18A、18Bとして誘導加熱装置を用いた。   Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples and methods for producing a negative electrode. Moreover, in the following Examples and Comparative Examples, an electrode sheet was manufactured using the powder molding apparatus 2 shown in FIGS. In addition, induction heating devices were used as the heating devices 18A and 18B.

また、粉体成形装置2における集電体6の搬送速度、集電体6を搬送する際の集電体6の幅方向における張力および、誘導加熱により加熱される集電体6の温度を下記表1のように設定した。

Moreover, the conveyance speed of the current collector 6 in the powder molding apparatus 2, the tension in the width direction of the current collector 6 when conveying the current collector 6, and the temperature of the current collector 6 heated by induction heating are as follows. Table 1 was set.

<導電性接着剤層形成用スラリーの製造>
体積平均粒子径が0.7μmのカーボンブラック100部と、分散剤としてカルボキシメチルセルロースのアンモニウム塩の4.0%水溶液(DN−10L;ダイセル化学工業(株)社製)を固形分相当で4部、結着材の40%水分散体を固形分相当8部およびイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤層形成用スラリーを調整した。
<Manufacture of slurry for forming conductive adhesive layer>
100 parts of carbon black having a volume average particle diameter of 0.7 μm and 4 parts of a 4.0% aqueous solution of carboxymethylcellulose ammonium salt (DN-10L; manufactured by Daicel Chemical Industries, Ltd.) as a dispersing agent in terms of solid content The slurry for forming a conductive adhesive layer was prepared by mixing 40 parts of a 40% aqueous dispersion of the binder and 8 parts of solids and ion-exchanged water so that the total solids concentration was 30%.

<負極用複合粒子の製造>
負極活物質としてグラファイト(平均粒子径:10μm、BET比表面積:25m2/g)を100部、結着材の40%水分散体を固形分相当で3部、分散剤としてカルボキシメチルセルロースのナトリウム塩の0.8%水溶液(BSH−12;第一工業製薬社製)を固形分相当で1.0部、および溶媒として水を100部加えて、「TKホモミキサー」(プライミクス社製)で撹拌混合して固形分濃度が35%の負極用スラリーを得た。次いで、得られた負極用スラリーを、スプレー乾燥機(OC−16;大河原化工機社製)を使用し、回転円盤方式のアトマイザー(ベーン型、直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で噴霧乾燥造粒を行い、負極用複合粒子を得た。得られた負極用複合粒子の体積平均粒子径は78μmであり、嵩密度は0.40g/ccであった。
<Manufacture of composite particles for negative electrode>
100 parts of graphite (average particle size: 10 μm, BET specific surface area: 25 m 2 / g) as negative electrode active material, 3 parts of 40% aqueous dispersion of binder as solid content, sodium salt of carboxymethyl cellulose as dispersant 0.8 part aqueous solution (BSH-12; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in an amount of 1.0 part corresponding to the solid content and 100 parts of water as a solvent were added and stirred with “TK Homomixer” (Primics Co., Ltd.) By mixing, a negative electrode slurry having a solid content concentration of 35% was obtained. Subsequently, the obtained slurry for negative electrode was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.), and a rotating disk type atomizer (vane type, diameter 65 mm) was rotated at 25,000 rpm and hot air temperature was 150. Spray drying granulation was carried out under the conditions of 0 ° C. and the temperature of the particle recovery outlet being 90 ° C. to obtain composite particles for negative electrode. The obtained composite particles for negative electrode had a volume average particle diameter of 78 μm and a bulk density of 0.40 g / cc.

<負極の製造>
厚さ20μmの銅箔からなる集電体に、上記にて調整した導電性接着剤層形成用スラリーを塗布し、120℃で、10分間乾燥して、銅箔上に厚み4μmの導電性接着剤層を形成した。
<Manufacture of negative electrode>
The conductive adhesive layer-forming slurry prepared above is applied to a current collector made of copper foil having a thickness of 20 μm, dried at 120 ° C. for 10 minutes, and conductive adhesive having a thickness of 4 μm on the copper foil. An agent layer was formed.

定量フィーダー(ニッカ社製、ニッカスプレーK−V)を用い、負極用複合粒子を速度70g/分で、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研工業社製)のプレス用ロール(ロール温度120℃、プレス線圧400kN/m)に供給した。そして、プレス用ロール間に、導電性接着剤層が形成された銅箔を挿入し、定量フィーダーから供給された複合粒子を銅箔上の導電性接着剤層上の片面に付着させ、成形速度30m/分で加圧成形し、平均厚さ100μm、平均片面密度1.5g/cm3の負極用電極合剤層を片面に形成した。その後、同様にして負極用電極合剤層が形成されていない片面に負極用電極合剤層を形成し、負極を得た。 Using a quantitative feeder (Nikka, Nikka Spray K-V), the negative electrode composite particles at a speed of 70 g / min. 120 ° C., press linear pressure 400 kN / m). Then, a copper foil on which a conductive adhesive layer is formed is inserted between the rolls for pressing, and the composite particles supplied from the quantitative feeder are attached to one surface on the conductive adhesive layer on the copper foil, and the molding speed Press molding was performed at 30 m / min, and a negative electrode mixture layer having an average thickness of 100 μm and an average single-side density of 1.5 g / cm 3 was formed on one side. Thereafter, in the same manner, a negative electrode mixture layer was formed on one surface where the negative electrode mixture layer was not formed, to obtain a negative electrode.

Figure 0006274935
Figure 0006274935

実施例1においては、密度分布、膜厚分布のばらつきが少ない、精度のよい電極シートを得ることができた。また、搬送中に粉体10および/または電極活物質層16がバインダー付集電体から剥がれることがなかった。   In Example 1, an accurate electrode sheet with little variation in density distribution and film thickness distribution could be obtained. Further, the powder 10 and / or the electrode active material layer 16 were not peeled off from the current collector with binder during conveyance.

また、比較例1においては、密度分布、膜厚分布のばらつきが実施例1と比較して大きくなり、得られる電極の抵抗値が上昇した。また、搬送中に粉体10および/または電極活物質層16がバインダー付集電体から剥がれた。さらに得られる電極の強度が実施例1と比較して低下した。   Further, in Comparative Example 1, variations in density distribution and film thickness distribution were larger than those in Example 1, and the resistance value of the obtained electrode was increased. Moreover, the powder 10 and / or the electrode active material layer 16 were peeled off from the collector with a binder during conveyance. Furthermore, the strength of the obtained electrode was reduced as compared with Example 1.

また、比較例2においては、密度分布、膜厚分布のばらつきが実施例1と比較して大きくなり、得られる電極の抵抗値が上昇した。また、搬送中に粉体10および/または電極活物質層16がバインダー付集電体から剥がれた。   In Comparative Example 2, variations in density distribution and film thickness distribution were larger than in Example 1, and the resistance value of the obtained electrode was increased. Moreover, the powder 10 and / or the electrode active material layer 16 were peeled off from the collector with a binder during conveyance.

2…粉体成形装置、10…粉体、14…プレス用ロール、16…電極活物質層、18A,18B…加熱装置 2 ... powder forming device, 10 ... powder, 14 ... roll for press, 16 ... electrode active material layer, 18A, 18B ... heating device

Claims (3)

金属箔の少なくとも一面にバインダーを塗布しバインダー付集電体を得るバインダー塗布工程と、
前記バインダー付集電体に電極活物質を含む粉体を圧密する乾式法により電極活物質層を形成し、電極活物質層付集電体を得る圧密工程と、
前記電極活物質層付集電体を幅方向において5〜50N/mの張力を加えながらで加熱装置に搬送する搬送工程と、
前記電極活物質層付集電体の幅方向における端部を25〜150℃に加熱する加熱工程と
を含むリチウムイオン電池用電極の製造方法。
A binder application step of applying a binder to at least one surface of the metal foil to obtain a current collector with a binder; and
Forming an electrode active material layer by a dry method of compacting a powder containing an electrode active material on the binder-attached current collector, and obtaining a current collector with an electrode active material layer; and
A transporting step of transporting the current collector with an electrode active material layer to a heating device while applying a tension of 5 to 50 N / m in the width direction;
The manufacturing method of the electrode for lithium ion batteries including the heating process which heats the edge part in the width direction of the said collector with an electrode active material layer to 25-150 degreeC .
前記加熱工程は、誘導加熱により行われる請求項1記載のリチウムイオン電池用電極の製造方法。   The method for manufacturing an electrode for a lithium ion battery according to claim 1, wherein the heating step is performed by induction heating. 前記粉体は、複合粒子である請求項1または2記載のリチウムイオン電池用電極の製造方法。
The method for producing an electrode for a lithium ion battery according to claim 1, wherein the powder is composite particles.
JP2014061207A 2014-03-25 2014-03-25 Method for producing electrode for lithium ion battery Active JP6274935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061207A JP6274935B2 (en) 2014-03-25 2014-03-25 Method for producing electrode for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061207A JP6274935B2 (en) 2014-03-25 2014-03-25 Method for producing electrode for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2015185403A JP2015185403A (en) 2015-10-22
JP6274935B2 true JP6274935B2 (en) 2018-02-07

Family

ID=54351706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061207A Active JP6274935B2 (en) 2014-03-25 2014-03-25 Method for producing electrode for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6274935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017213377A1 (en) 2017-08-02 2019-02-07 Robert Bosch Gmbh Battery cell with separator side and / or frontally contacted anode layer supernatant and / or cathode layer supernatant
KR102082907B1 (en) * 2018-05-16 2020-02-28 주식회사 제이이노텍 Method for manufacturing lithium electrode of lithium battery using lithium metal as anode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093236A (en) * 2003-09-17 2005-04-07 Toyota Motor Corp Manufacturing method of sheet electrode
JP5201313B2 (en) * 2007-03-30 2013-06-05 日本ゼオン株式会社 Electrode for electrochemical device and method for producing the same
JP2012064432A (en) * 2010-09-16 2012-03-29 Toyota Motor Corp Method for manufacturing powder layer, method for manufacturing electrode body and method for manufacturing solid battery
JP2013045984A (en) * 2011-08-26 2013-03-04 Nippon Zeon Co Ltd Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
JP6020452B2 (en) * 2011-08-31 2016-11-02 日本ゼオン株式会社 Powder molding apparatus and method for manufacturing powder molded product

Also Published As

Publication number Publication date
JP2015185403A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP4840358B2 (en) Electrochemical element electrode
JP6086384B2 (en) Method for producing sheet for lithium ion secondary battery electrode
JP4876478B2 (en) Method for producing sheet for electrochemical element electrode
JP5293383B2 (en) Electrode composition layer with support and method for producing electrode for electrochemical device
WO2006115272A1 (en) Composite particles for electrochemical element electrode
JP2013077560A (en) Method for manufacturing electrode for electrochemical element
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP5311706B2 (en) Method for producing composite particle for electrochemical device electrode
JP2010097830A (en) Manufacturing method of electrode for electrochemical element
JP6170149B2 (en) Method for producing electrode for lithium ion battery
JP5767431B2 (en) Electrochemical element electrode forming material, method for producing the same, and electrochemical element electrode
JP6402200B2 (en) Method for producing electrode for lithium ion battery
JP2013077559A (en) Method for manufacturing electrode for electrochemical element
JP5255778B2 (en) Method for producing electrode for electrochemical device
JP5999237B2 (en) Powder rolling apparatus and rolled sheet manufacturing method
JP2016115569A (en) Method of manufacturing electrode for lithium ion battery
JP2016115567A (en) Method of manufacturing electrode for lithium ion battery
JP6274935B2 (en) Method for producing electrode for lithium ion battery
JP6533053B2 (en) Method of manufacturing electrode for lithium ion battery
JP6209457B2 (en) Method for producing electrode for lithium ion battery
JP2007095839A (en) Method for manufacturing electrode sheet for electric double-layer capacitor
JP2016100067A (en) Method of manufacturing electrode for lithium ion battery
JP5782927B2 (en) Powder molding apparatus and method for producing powder molded sheet
JP2009253168A (en) Method of manufacturing electrochemical device electrode
JP5790353B2 (en) Powder rolling apparatus and rolled sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6274935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250