JP6533053B2 - Method of manufacturing electrode for lithium ion battery - Google Patents

Method of manufacturing electrode for lithium ion battery Download PDF

Info

Publication number
JP6533053B2
JP6533053B2 JP2014254904A JP2014254904A JP6533053B2 JP 6533053 B2 JP6533053 B2 JP 6533053B2 JP 2014254904 A JP2014254904 A JP 2014254904A JP 2014254904 A JP2014254904 A JP 2014254904A JP 6533053 B2 JP6533053 B2 JP 6533053B2
Authority
JP
Japan
Prior art keywords
binder coating
active material
binder
material layer
coating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014254904A
Other languages
Japanese (ja)
Other versions
JP2016115603A (en
Inventor
荒井 邦仁
邦仁 荒井
慎吾 小村
慎吾 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Toyota Motor Corp
Original Assignee
Zeon Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp, Toyota Motor Corp filed Critical Zeon Corp
Priority to JP2014254904A priority Critical patent/JP6533053B2/en
Publication of JP2016115603A publication Critical patent/JP2016115603A/en
Application granted granted Critical
Publication of JP6533053B2 publication Critical patent/JP6533053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電極活物質等を含む粉体を圧縮成形してリチウムイオン電池用電極を製造するリチウムイオン電池用電極の製造方法に関するものである。   The present invention relates to a method for producing an electrode for a lithium ion battery, in which a powder containing an electrode active material or the like is compression-molded to produce an electrode for a lithium ion battery.

小型で軽量、且つエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン電池は、環境対応からも今後の需要の拡大が見込まれている。リチウムイオン電池は、エネルギー密度が大きいことから、携帯電話やノート型パソコン等の分野で利用されているが、用途の拡大や発展に伴い、低抵抗化、大容量化等、より一層の性能向上が求められている。   The lithium ion battery, which is compact, light in weight, high in energy density, and capable of repeated charge and discharge, is expected to expand in the future in view of environmental protection. Lithium ion batteries are used in fields such as mobile phones and laptop computers because of their high energy density, but with the expansion and development of applications, performance is further improved, such as resistance reduction and capacity increase. Is required.

リチウムイオン電池用電極は電極シートとして得ることができる。例えば、特許文献1には、基材にバインダーを塗付した後に粉体を散布して基材の表面に活物質層を形成し、基材を一対のプレス用ロール間を通過させて基材の表面に活物質層を連続的に圧縮成形することにより電極シートを得るリチウムイオン二次電池の製造方法が開示されている。   The lithium ion battery electrode can be obtained as an electrode sheet. For example, in Patent Document 1, a binder is applied to a substrate and then powder is dispersed to form an active material layer on the surface of the substrate, and the substrate is allowed to pass between a pair of pressing rolls to be a substrate The manufacturing method of the lithium ion secondary battery which obtains an electrode sheet by compression-molding an active material layer continuously on the surface of is disclosed.

特開2014−078497号公報JP, 2014-078497, A

ところで、上述のリチウムイオン二次電池の製造方法を用いて電極シートを製造する場合、一対のプレス用ロール間に基材を通過させたときに粉体が幅方向外側に流動して活物質層の端部にダレが生じる。このため、活物質層の幅方向両端部がプレス不足となって活物質層と基材との間の密着力が低下し、結果として活物質層の幅方向両端部における活物質層と基材との剥離強度が低下するという問題があった。   By the way, when manufacturing an electrode sheet using the manufacturing method of the above-mentioned lithium ion secondary battery, when a base material is made to pass between a pair of rolls for presses, powder flows outside the cross direction and an active material layer The sagging occurs at the end of the For this reason, both ends in the width direction of the active material layer are insufficiently pressed, and the adhesion between the active material layer and the base is reduced, and as a result, the active material layer and the base at both ends in the width direction of the active material layer There is a problem that the peeling strength with the

本発明の目的は、活物質層の幅方向両端部における活物質層と基材との剥離強度を高く維持することができるリチウムイオン電池用電極の製造方法を提供することである。   An object of the present invention is to provide a method of manufacturing an electrode for a lithium ion battery capable of maintaining high peel strength between the active material layer and the base at both widthwise end portions of the active material layer.

本発明者らは、鋭意検討の結果、リチウムイオン電池用電極活物質層の幅方向の中央部に対応する基材表面に第1結着材塗液を塗布し、リチウムイオン電池用電極活物質層の幅方向の両端部に対応する基材表面に第1結着材塗液と異なる第2結着材塗液を塗布することにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive investigations, the present inventors apply the first binder coating solution to the surface of the base material corresponding to the central part in the width direction of the lithium ion battery electrode active material layer, and It is found that the above object can be achieved by applying a second binder coating solution different from the first binder coating solution on the substrate surface corresponding to both ends in the width direction of the layer, and the present invention is completed. It reached.

即ち、本発明によれば、
(1)リチウムイオン電池用電極活物質層の幅方向の中央部に対応する基材表面に第1結着材塗液を塗布する第1塗布工程と、前記リチウムイオン電池用電極活物質層の幅方向の両端部に対応する前記基材表面に前記第1結着材塗液と異なる第2結着材塗液を塗布する第2塗布工程と、前記第1結着材塗液及び前記第2結着材塗液が塗布された前記基材表面に電極活物質を含む粉体を供給する供給工程と、前記基材表面に供給される前記粉体の目付量を制御する制御工程と、前記基材表面に供給された前記粉体をプレスすることにより活物質層を形成する形成工程と、を含み、前記第2結着材塗液に用いられる結着材のタック強度が前記第1結着材塗液に用いられる結着材のタック強度より大きい、または前記第2結着材塗液の固形分濃度が前記第1結着材塗液の固形分濃度より大きいことを特徴とするリチウムイオン電池用電極の製造方法、
That is, according to the present invention,
(1) A first application step of applying a first binder material coating solution to the surface of the base material corresponding to the central part in the width direction of the lithium ion battery electrode active material layer, and the lithium ion battery electrode active material layer A second applying step of applying a second binder coating solution different from the first binder coating solution on the surface of the base material corresponding to both end portions in the width direction, the first binder coating solution and the second binder coating solution (2) a supplying step of supplying a powder containing an electrode active material to the surface of the base material to which the binder coating liquid is applied, and a control step of controlling a coated amount of the powder supplied to the base surface; And forming the active material layer by pressing the powder supplied to the surface of the base material, wherein the tack strength of the binder used in the second binder coating solution is the first one. Greater than the tack strength of the binder used for the binder coating solution, or the solid content concentration of the second binder coating solution is Method for producing a lithium ion battery electrode, wherein the serial greater than the solid concentration of the first binder coating liquid,

(2)前記第2結着材塗液に用いられる結着材のタック強度は、前記第1結着材塗液に用いられる結着材のタック強度の1.5倍以上であることを特徴とする(1)記載のリチウムイオン電池用電極の製造方法、 (2) The tack strength of the binder used in the second binder coating liquid is 1.5 times or more of the tack strength of the binder used in the first binder coating liquid. (1) The method for producing a lithium ion battery electrode according to (1),

(3)前記第2結着材塗液の固形分濃度は、前記第1結着材塗液の固形分濃度の1.3倍以上であることを特徴とする(1)または(2)記載のリチウムイオン電池用電極の製造方法、 (3) The solid content concentration of the second binder coating liquid is at least 1.3 times the solid concentration of the first binder coating liquid, (1) or (2) described A method of manufacturing an electrode for lithium ion battery,

(4)前記リチウムイオン電池用電極活物質層の幅方向の端部の幅は、前記リチウムイオン電池用電極活物質層の幅に対して0.5%以上5%以下であることを特徴とする(1)〜(3)の何れかに記載のリチウムイオン電池用電極の製造方法、
が提供される。
(4) The width of the end portion in the width direction of the lithium ion battery electrode active material layer is 0.5% to 5% with respect to the width of the lithium ion battery electrode active material layer The manufacturing method of the electrode for lithium ion batteries in any one of (1)-(3),
Is provided.

本発明によれば、活物質層の幅方向両端部における活物質と基材との剥離強度を高く維持することができるリチウムイオン電池用電極の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrode for lithium ion batteries which can maintain the peeling strength of the active material and base material in the width direction both ends of an active material layer highly can be provided.

本発明の実施の形態に係る粉体成形装置の概略を示す図である。It is a figure showing an outline of a powder molding device concerning an embodiment of the invention. 本発明の実施の形態に係る第1結着材塗液及び第2結着材塗液が基材表面に塗布される領域について説明するための図である。It is a figure for demonstrating the area | region where the 1st binder coating liquid and 2nd binder coating liquid which concern on embodiment of this invention are apply | coated on the base-material surface. 第1結着材塗液が基材の表面に塗布された場合の活物質層幅に対する粉体の目付量を示すグラフである。It is a graph which shows the fabric weight of the powder with respect to the active material layer width | variety at the time of 1st binder coating liquid being apply | coated on the surface of a base material. 第1結着材塗液及び第2結着材塗液が基材の表面に塗布された場合の活物質層幅に対する粉体の目付量を示すグラフである。When the 1st binder coating liquid and the 2nd binder coating liquid are applied to the surface of a substrate, it is a graph which shows the area weight of the powder to the active material layer width. 本発明の実施の形態に係る第1結着材塗液及び第2結着材塗液が基材表面に塗布される他の領域について説明するための図である。It is a figure for demonstrating the other area | region where the 1st binder coating liquid and the 2nd binder coating liquid which concern on embodiment of this invention are apply | coated on the base-material surface.

以下、図面を参照して本発明の実施の形態に係るリチウムイオン電池用電極の製造方法について説明する。図1は、本発明の実施の形態に係るリチウムイオン電池用電極の製造に用いる粉体成形装置2の概略を示す図である。図1に示すように、粉体成形装置2は、第1結着材塗液4を塗布する第1塗布部6、第2結着材塗液8を塗布する第2塗布部10、基材12を搬送する搬送ローラ14A,14B、粉体16を収容するホッパー18、ホッパー18から基材12の表面に供給される粉体16の目付量を制御するスキージ部材20、及び基材12の表面に供給される粉体16をプレスする一対のプレス用ロール22A,22Bを備えている。   Hereinafter, a method of manufacturing an electrode for a lithium ion battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an outline of a powder molding apparatus 2 used for manufacturing a lithium ion battery electrode according to an embodiment of the present invention. As shown in FIG. 1, the powder molding device 2 includes a first application unit 6 for applying the first binder coating solution 4, a second application unit 10 for applying the second binder coating solution 8, and a base material. 12, conveying rollers 14A and 14B for conveying 12, a hopper 18 for containing powder 16, a squeegee member 20 for controlling a coated amount of powder 16 supplied from hopper 18 to the surface of substrate 12, and a surface of substrate 12 A pair of press rolls 22A and 22B are provided to press the powder 16 supplied to the

第1塗布部6は、第1結着材塗液4を貯留する第1貯留槽6a及びリチウムイオン電池用電極活物質層の幅方向中央部に対応する基材12の表面の領域12a(図2参照)に第1結着材塗液4を塗布する第1グラビアロール6bを備えている。第1グラビアロール6bの幅は、基材12の領域12aに第1結着材塗液4を塗付するために、領域12aの幅A(図2参照)に設定されている。   The first application portion 6 is a first storage tank 6a for storing the first binder coating liquid 4 and a region 12a of the surface of the base 12 corresponding to the widthwise center of the electrode active material layer for a lithium ion battery (see FIG. 2) is provided with a first gravure roll 6b for applying a first binder coating solution 4 thereto. The width of the first gravure roll 6 b is set to the width A (see FIG. 2) of the area 12 a in order to apply the first binder coating liquid 4 to the area 12 a of the substrate 12.

第2塗布部10は、第1結着材塗液4と異なる第2結着材塗液8を貯留する第2貯留槽10a及びリチウムイオン電池用電極活物質層の幅方向両端部に対応する基材12の表面の領域12b,12c(図2参照)に第2結着材塗液8を塗布する第2グラビアロール10bを備えている。第2グラビアロール10bの幅は、リチウムイオン電池用活物質層の幅に対応する基材12の領域12a,12b及び12cの幅A+B+C(図2参照)に設定されている。また、第2グラビアロール10bの幅方向両端部のロール径は中央部のロール径より大きく、一方の端部のロール径が大きい部分の幅は基材12の領域12bの幅B(図2参照)、他方の端部のロール径が大きい部分の幅は基材12の領域12cの幅C(図2参照)に設定されている。第2結着材塗液8を基材12の領域12aに塗布せず、領域12b,12cのみに塗付するためである。   The second application unit 10 corresponds to the second storage tank 10 a storing the second binder coating solution 8 different from the first binder coating solution 4 and both widthwise end portions of the lithium ion battery electrode active material layer. The second gravure roll 10b is provided to apply the second binder coating liquid 8 to the areas 12b and 12c (see FIG. 2) of the surface of the base material 12. The width of the second gravure roll 10b is set to the width A + B + C (see FIG. 2) of the regions 12a, 12b and 12c of the base 12 corresponding to the width of the lithium ion battery active material layer. Further, the roll diameter at both widthwise end portions of the second gravure roll 10b is larger than the roll diameter at the central portion, and the width of a portion where the roll diameter at one end portion is larger is the width B of the region 12b of the base 12 (see FIG. 2) The width of the portion of the other end where the roll diameter is large is set to the width C (see FIG. 2) of the region 12 c of the base 12. This is because the second binder coating liquid 8 is not applied to the area 12 a of the base 12 but applied only to the areas 12 b and 12 c.

スキージ部材20は、円柱形状を有し、ホッパー18の下流側であって、一対のプレス用ロール22A,22Bの上流側に配置されている。スキージ部材20の回転軸は、一対のプレス用ロール22A,22Bの回転軸と平行である。   The squeegee member 20 has a cylindrical shape, and is disposed downstream of the hopper 18 and upstream of the pair of press rolls 22A and 22B. The rotation axis of the squeegee member 20 is parallel to the rotation axes of the pair of pressing rolls 22A and 22B.

この粉体成形装置2を用いてリチウムイオン電池用電極としての電極シートを製造する場合には、まず、図2に示すように、リチウムイオン電池用電極活物質層の幅方向中央部に対応する基材12の領域12aに、第1塗布部6の第1貯留槽6aに貯留されている第1結着材塗液4を塗布する。具体的には、第1結着材塗液4に浸かった第1塗布部6の第1グラビアロール6bを基材12の領域12aに当て回転させることにより第1結着材塗液4を塗布する。次に、図2に示すように、リチウムイオン電池用電極活物質層の幅方向両端部に対応する基材12の領域12b,12cに、第2塗布部10の第2貯留槽10aに貯留されている第2結着材塗液8を塗布する。具体的には、第2結着材塗液8に浸かった第2塗布部10の第2グラビアロール10bを基材12表面の領域12b、12cに当て回転させることにより第2結着材塗液8を塗布する。第1結着材塗液4が領域12aに、第2結着材塗液8が領域12b,12cに塗布された基材12は搬送ローラ14A,14Bを介してホッパー18に到達し、ホッパー18から粉体16が基材12の表面に供給される。基材12の表面に供給された粉体16はスキージ部材20によりその目付量が制御され、一対のプレス用ロール22A,22Bの間を通過することによりプレスされ、活物質層24が形成される。これにより、基材12の表面に活物質層24が圧縮成形された電極シートが製造される。   In the case of producing an electrode sheet as a lithium ion battery electrode using this powder molding apparatus 2, first, as shown in FIG. 2, it corresponds to the widthwise central portion of the lithium ion battery electrode active material layer. The first binder coating liquid 4 stored in the first storage tank 6 a of the first application unit 6 is applied to the area 12 a of the base 12. Specifically, the first gravure roll 6b of the first application unit 6 dipped in the first binder coating liquid 4 is applied to the area 12a of the base 12 and rotated to apply the first binder coating liquid 4 Do. Next, as shown in FIG. 2, it is stored in the second storage tank 10 a of the second application unit 10 in the regions 12 b and 12 c of the base 12 corresponding to both widthwise end portions of the lithium ion battery electrode active material layer. The second binder coating liquid 8 is applied. More specifically, the second gravure roll 10b of the second application unit 10 dipped in the second binder coating liquid 8 is brought into contact with the areas 12b and 12c of the surface of the base 12 and rotated, thereby the second binder coating liquid Apply 8 The base 12 having the first binder coating solution 4 applied to the area 12 a and the second binder coating solution 8 applied to the areas 12 b and 12 c reaches the hopper 18 via the transport rollers 14 A and 14 B, and the hopper 18 The powder 16 is then supplied to the surface of the substrate 12. The powder 16 supplied to the surface of the base material 12 is controlled by the squeegee member 20 so that the coating amount is controlled, and it is pressed by passing between the pair of pressing rolls 22A and 22B to form the active material layer 24 . Thereby, an electrode sheet in which the active material layer 24 is compression-formed on the surface of the base 12 is manufactured.

ここで、基材12としては、薄いフィルム状の基材であればよく、通常、厚さ1μm〜1000μm、好ましくは5μm〜800μmである。基材12としては、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金などの金属箔または炭素、導電性高分子、紙、天然繊維、高分子繊維、布帛、高分子樹脂フィルムなどが挙げられ、目的に応じて適宜選択することができる。高分子樹脂フィルムとしては、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル樹脂フィルム、ポリイミド、ポリプロピレン、ポリフェニレンサルファイド、ポリ塩化ビニル、アラミドフィルム、PEN、PEEK等を含んで構成されるプラスチックフィルム、シート等が挙げられる。   Here, the substrate 12 may be a thin film-like substrate, and usually has a thickness of 1 μm to 1000 μm, preferably 5 μm to 800 μm. As the substrate 12, metal foil or carbon such as aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys or the like, conductive polymer, paper, natural fiber, polymer fiber, fabric, polymer resin A film etc. are mentioned and it can select suitably according to the objective. As the polymer resin film, mention may be made of polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, polyimides, polypropylenes, polyphenylene sulfides, polyvinyl chlorides, aramid films, plastic films comprising PEN, PEEK, etc. Be

これらの中でも、リチウムイオン電池電極用の電極シートを製造する場合には、基材12として、金属箔または炭素フィルム、導電性高分子フィルムを用いることができ、好適には金属が用いられる。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用することが好ましい。また、基材12の表面には塗膜処理、穴あけ加工、バフ加工、サンドブラスト加工及び/又はエッチング加工等の処理が施されていても良い。   Among these, when manufacturing the electrode sheet for lithium ion battery electrodes, metal foil or a carbon film and a conductive polymer film can be used as the base material 12, A metal is used suitably. Among them, copper, aluminum or an aluminum alloy is preferably used in terms of conductivity and voltage resistance. Further, the surface of the substrate 12 may be subjected to treatments such as coating treatment, drilling, buffing, sand blasting and / or etching.

第1結着材塗液4は、活物質を含む粉体と基材を相互に結着させられることができる化合物であれば特に制限はない。第1結着材塗液4には、塗液の粘度やぬれ性を調整するために、増粘剤や界面活性剤が含まれていてもよい。増粘剤や界面活性剤としては、公知のものを使用することができる。結着材として、例えば、SBR水分散液、アクリレート系重合体水分散液、水系のポリアクリル酸(PAA)、および有機溶媒系のポリフッ化ビニリデン(PVDF)などが挙げられる。   The first binder coating liquid 4 is not particularly limited as long as it is a compound capable of mutually binding the powder containing the active material and the base material. The first binder coating solution 4 may contain a thickener or a surfactant in order to adjust the viscosity and the wettability of the coating solution. Known thickeners and surfactants can be used. Examples of the binder include SBR aqueous dispersion, acrylate polymer aqueous dispersion, water-based polyacrylic acid (PAA), and organic solvent-based polyvinylidene fluoride (PVDF).

また、第2結着材塗液8は、第1結着材塗液4と同様に活物質を含む粉体と基材を相互に結着させられることができる化合物から選択でき、かつ第1結着材塗液4とは結着材種、結着材のタック強度、固形分濃度等の少なくともいずれかが異なる結着材塗液である。   In addition, the second binder coating solution 8 can be selected from a compound capable of mutually binding the powder containing the active material and the base material in the same manner as the first binder coating solution 4 and the first The binder coating solution 4 is a binder coating solution in which at least one of the binder type, the tack strength of the binder, the solid content concentration and the like is different.

第1結着材塗液4及び第2結着材塗液8は、異なる結着材塗液であり、第2結着材塗液8に用いられる結着材のタック強度は、第1結着材塗液4に用いられる結着材のタック強度より大きく、更に第1結着材塗液4に含まれる結着材のタック強度の1.5倍以上であることが好ましい。結着材のタック強度が大きくなると、結着材塗液上に堆積される粉体の目付量が大きくなり、粉体の密度が大きくなり、粉体の基材への接着強度が大きくなるからである。   The first binder coating solution 4 and the second binder coating solution 8 are different binder coating solutions, and the tack strength of the binder used for the second binder coating solution 8 is the first binder coating solution. It is preferable that the tack strength of the binder used for the adhesive coating liquid 4 is 1.5 times or more than that of the binder contained in the first binder coating liquid 4. When the tack strength of the binder increases, the weight per unit area of the powder deposited on the binder coating solution increases, the density of the powder increases, and the adhesion strength of the powder to the substrate increases. It is.

または、第2結着材塗液8の固形分濃度は、第1結着材塗液4の固形分濃度より大きく、更に第1結着材塗液4の固形分濃度の1.3倍以上であることが好ましい。結着材塗液の固形分濃度が大きくなると、結着材塗液上に堆積される粉体の目付量が大きくなり、粉体の密度が大きくなり、粉体の基材への接着強度が大きくなるからである。なお、第2結着材塗液8に用いられる結着材のタック強度が第1結着材塗液4に用いられる結着材のタック強度より大きく、かつ第2結着材塗液8の固形分濃度が第1結着材塗液4の固形分濃度より大きい第2結着材塗液8を使用してもよい。   Alternatively, the solid content concentration of the second binder coating liquid 8 is larger than the solid content concentration of the first binder coating liquid 4 and further 1.3 times or more the solid content concentration of the first binder coating liquid 4 Is preferred. As the solid content concentration of the binder coating liquid increases, the coating weight of the powder deposited on the binder coating liquid increases, the density of the powder increases, and the adhesion strength of the powder to the substrate is increased. It is because it becomes large. The tack strength of the binder used for the second binder coating liquid 8 is larger than the tack strength of the binder used for the first binder coating liquid 4 and the second binder coating liquid 8 The second binder coating solution 8 may be used in which the solid concentration is higher than the solid concentration of the first binder coating solution 4.

図3は、第1結着材塗液4のみが基材12の領域12a,12b,12cに塗布された場合の活物質層幅に対する粉体16の目付量を示すグラフである。図4は、第1結着材塗液4が基材12の領域12a及び第2結着材塗液8が基材12の領域12b,12cに塗布された場合の活物質層幅に対する粉体16の目付量を示すグラフである。第1結着材塗液4のみが基材12の領域12a,12b,12cに塗布された場合、図3のグラフに示すように、活物質層の幅方向両端部の粉体16の目付量は、幅方向中央部の粉体16の目付量よりも小さくなる。これに対し、第1結着材塗液4が基材12の領域12a及び第2結着材塗液8が基材12の領域12b,12cに塗布された場合、図4のグラフに示すように、活物質層の幅方向両端部の粉体16の目付量は、幅方向中央部の粉体16の目付量よりも大きくなる。したがって、活物質層の幅方向の両端部の粉体16の接着強度を大きくすることができるため、両端部の活物質層24が基材12から剥離するのを防止することができる。   FIG. 3 is a graph showing the coating weight of the powder 16 with respect to the width of the active material layer when only the first binder coating liquid 4 is applied to the regions 12 a, 12 b and 12 c of the substrate 12. FIG. 4 shows the powder with respect to the active material layer width when the first binder coating solution 4 is applied to the area 12 a of the substrate 12 and the second binder coating solution 8 to the areas 12 b and 12 c of the substrate 12. It is a graph which shows a fabric weight of 16. When only the first binder coating liquid 4 is applied to the regions 12a, 12b and 12c of the substrate 12, as shown in the graph of FIG. 3, the coated weight of the powder 16 at both ends in the width direction of the active material layer Is smaller than the coating weight of the powder 16 at the central portion in the width direction. On the other hand, when the first binder coating solution 4 is applied to the area 12 a of the substrate 12 and the second binder coating solution 8 is applied to the areas 12 b and 12 c of the substrate 12, as shown in the graph of FIG. The coating weight of the powder 16 at both end portions in the width direction of the active material layer is larger than the coating weight of the powder 16 at the central portion in the width direction. Therefore, since the adhesive strength of the powder 16 of the both ends of the width direction of an active material layer can be enlarged, it can prevent that the active material layer 24 of both ends peels from the base material 12. FIG.

一方、第2結着材塗液8のみを基材12の領域12a,12b,12cに塗布した場合、電気抵抗が増大し、かつ粉体16の目付量が過大となり、スキージ部材20を通過する際に粉体16に過剰なせん断力がかかるため、基材12が裂けるなどの不具合が生じる場合がある。また、活物質層の幅方向中央部に第1結着材塗液4を塗布し、幅方向両端部に第2結着材塗液8を塗布することにより、電気抵抗の増大を抑制することができる。したがって、活物質層の幅方向の両端部の粉体16の目付量を中央部の粉体16の目付量よりも大きくしつつ、スキージ部材20を通過する際に粉体16にかかるせん断力を適度に維持させることができ、電極の生産効率を低下させることなく、良好な電極を製造することができる。   On the other hand, when only the second binder coating liquid 8 is applied to the regions 12 a, 12 b and 12 c of the substrate 12, the electrical resistance increases and the coating weight of the powder 16 becomes excessive and passes through the squeegee member 20. At that time, since excessive shearing force is applied to the powder 16, problems such as tearing of the base 12 may occur. Further, the first binder coating solution 4 is applied to the central portion in the width direction of the active material layer, and the second binder coating solution 8 is applied to both end portions in the width direction, thereby suppressing an increase in electrical resistance. Can. Therefore, the shear force applied to the powder 16 when passing through the squeegee member 20 while making the coated weight of the powder 16 at both ends in the width direction of the active material layer larger than the coated weight of the powder 16 in the central part. An appropriate electrode can be manufactured without lowering the production efficiency of the electrode.

なお、第2結着材塗液8を塗付する活物質層の幅方向の端部の幅は、活物質層の幅に対して0.5%以上5%以下であることが好ましい。スキージ部材20を通過する際に粉体16にかかるせん断力を適度に維持し、電極の生産効率を低下させないためである。   The width of the end in the width direction of the active material layer to which the second binder coating liquid 8 is applied is preferably 0.5% to 5% with respect to the width of the active material layer. The shear force applied to the powder 16 when passing through the squeegee member 20 is appropriately maintained, and the production efficiency of the electrode is not reduced.

ホッパー18に収容される粉体16としては、電極活物質を含む複合粒子が挙げられる。複合粒子は、電極活物質及び結着材を含み、必要に応じてその他の分散剤、導電材および添加剤を含んでもよい。   The powder 16 contained in the hopper 18 includes composite particles containing an electrode active material. The composite particles contain an electrode active material and a binder, and may optionally contain other dispersants, conductive materials and additives.

複合粒子をリチウムイオン電池の電極材料として用いる場合、正極用活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。   When the composite particles are used as an electrode material of a lithium ion battery, examples of the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions. Examples of such metal oxides include lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate and the like. In addition, according to a use, the positive electrode active material illustrated above may be suitably used independently, and multiple types may be mixed and used.

なお、リチウムイオン電池用正極の対極としての負極の活物質としては、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物、等が挙げられる。なお、上記に例示した電極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。   In addition, as an active material of the negative electrode as a counter electrode of the positive electrode for lithium ion batteries, graphitizable carbon, non-graphitizable carbon, low crystalline carbon (amorphous carbon) such as pyrolytic carbon, graphite (natural graphite) , Artificial graphite), alloy materials such as tin and silicon, silicon oxides, tin oxides, oxides such as lithium titanate, and the like. The electrode active materials exemplified above may be used singly or in combination of two or more, depending on the application.

リチウムイオン電池電極用の電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。   The shape of the electrode active material for a lithium ion battery electrode is preferably granular. When the shape of the particles is spherical, a denser electrode can be formed at the time of electrode formation.

リチウムイオン電池電極用の電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは0.5〜50μm、より好ましくは0.8〜30μmである。   The volume average particle diameter of the electrode active material for lithium ion battery electrodes is usually 0.1 to 100 μm, preferably 0.5 to 50 μm, and more preferably 0.8 to 30 μm, for both the positive electrode and the negative electrode.

複合粒子に用いられる結着材としては、前記電極活物質を相互に結着させることができる化合物であれば特に制限はない。好適な結着材は、溶媒に分散する性質のある分散型結着材である。分散型結着材として、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素系含有重合体、共役系ジエン重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。   The binder used in the composite particles is not particularly limited as long as it is a compound capable of binding the electrode active materials to each other. A preferred binder is a dispersed binder having a property of dispersing in a solvent. Examples of the dispersion-type binder include polymer compounds such as silicon polymers, fluorine-containing polymers, conjugated diene polymers, acrylate polymers, polyimides, polyamides, polyurethanes, etc. Preferably, fluorine-containing polymers are used. Examples thereof include coalescent, conjugated diene polymers and acrylate polymers, more preferably conjugated diene polymers and acrylate polymers.

分散型結着材の形状は、特に制限はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粒子状のものが挙げられる。   The shape of the dispersed binder is not particularly limited, but is preferably in the form of particles. By being in the form of particles, the binding property is good, and it is possible to suppress the decrease in capacity of the manufactured electrode and the deterioration due to the repetition of charge and discharge. Examples of the particulate binder include particles of a binder such as latex dispersed in water, and particulate particles obtained by drying such a dispersion.

結着材の量は、得られる電極活物質層と基材との密着性が充分に確保でき、かつ、内部抵抗を低くすることができる観点から、電極活物質100重量部に対して、乾燥重量基準で通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜15重量部である。   The amount of the binder is dried with respect to 100 parts by weight of the electrode active material from the viewpoint that adhesion between the obtained electrode active material layer and the substrate can be sufficiently secured and internal resistance can be lowered. It is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight on a weight basis.

複合粒子には、前述のように必要に応じて分散剤を用いてもよい。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩などが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。   In the composite particles, a dispersant may be used as needed as described above. Specific examples of the dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium salts or alkali metal salts of these. These dispersants can be used alone or in combination of two or more.

複合粒子には、前述のように必要に応じて導電材を用いてもよい。導電材の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびケッチェンブラックが好ましい。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。   For the composite particles, as described above, a conductive material may be used as needed. Specific examples of the conductive material include conductive carbon blacks such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Beslothene fennot shap). Among these, acetylene black and ketjen black are preferable. These conductive materials can be used alone or in combination of two or more.

複合粒子は、電極活物質、結着材および必要に応じ添加される前記導電材等他の成分を用いて造粒することにより得られ、少なくとも電極活物質、結着材を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着材を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個〜数十個)の電極活物質が、結着材によって結着されて粒子を形成しているものが好ましい。   The composite particles are obtained by granulating using other components such as an electrode active material, a binder, and the above-mentioned conductive material optionally added, and at least comprise an electrode active material and a binder, Each of the above does not exist as individually independent particles, but one particle is formed by two or more components including an electrode active material as a component and a binder. Specifically, a plurality of individual particles of the two or more components are combined to form a secondary particle, and a plurality (preferably several to several tens) of electrode active materials are used as a binder. Preferably, the particles are bound to form particles.

複合粒子の製造方法は特に制限されず、流動層造粒法、噴霧乾燥造粒法、転動層造粒法などの公知の造粒法により製造することができる。   The method for producing the composite particles is not particularly limited, and the composite particles can be produced by a known granulation method such as a fluidized bed granulation method, a spray drying granulation method, and a rolling bed granulation method.

複合粒子の体積平均粒子径は、所望の厚みの電極活物質層を容易に得る観点から、通常0.1〜1000μm、好ましくは1〜500μm、より好ましくは30〜250μmの範囲である。   The volume average particle diameter of the composite particles is usually in the range of 0.1 to 1000 μm, preferably 1 to 500 μm, more preferably 30 to 250 μm from the viewpoint of easily obtaining an electrode active material layer having a desired thickness.

なお、複合粒子の平均粒子径は、レーザー回折式粒度分布測定装置(例えば、マイクロトラックMT3300EX II;日機装)にて測定し、算出される体積平均粒子径である。   The average particle size of the composite particles is a volume average particle size calculated by measurement using a laser diffraction type particle size distribution measuring apparatus (for example, Microtrac MT3300EX II; Nikkiso).

この実施の形態に係るリチウムイオン電池用電極の製造方法によれば、粉体成形装置2を用いて、リチウムイオン電池用電極活物質層の幅方向の中央部に対応する基材12の領域12aに第1結着材塗液4を塗布し、リチウムイオン電池用電極活物質層の幅方向の両端部に対応する基材12の領域12b,12cに第2結着材塗液8を塗布する。即ち、リチウムイオン電池用電極活物質層の幅方向の両端部に対応する基材12の領域12b,12cに高タック強度、高固形分濃度の第2結着材塗液8を塗布するため、領域12a,12bに堆積させる粉体16の目付量を増大させることができる。したがって、活物質層の幅方向両端部における活物質層24と基材12との剥離強度を高く維持することができ、幅方向両端部における活物質層24が基材12の表面から剥離するのを防止することができる。   According to the method of manufacturing a lithium ion battery electrode according to this embodiment, region 12a of base 12 corresponding to the central portion in the width direction of the lithium ion battery electrode active material layer using powder forming apparatus 2 The first binder coating solution 4 is applied to the first layer 12 and the second binder coating solution 8 is applied to the regions 12b and 12c of the base 12 corresponding to both end portions in the width direction of the lithium ion battery electrode active material layer. . That is, in order to apply the second binder coating liquid 8 with high tack strength and high solid content concentration to the regions 12 b and 12 c of the base material 12 corresponding to both end portions in the width direction of the lithium ion battery electrode active material layer, The coating weight of the powder 16 deposited in the regions 12a and 12b can be increased. Therefore, the peeling strength between the active material layer 24 and the base 12 at both ends in the width direction of the active material layer can be maintained high, and the active material layers 24 at both ends in the width direction peel from the surface of the base 12 Can be prevented.

なお、上述の実施の形態においては、基材12の領域12aに第1結着材塗液4、基材12の領域12b,12cに第2結着材塗液8を塗布し(図2参照)、1条の電極を製造しているが、例えば図5に示すように、基材12の幅方向両端部の領域12d,12e及び幅方向中央部の領域12fに第2結着材塗液8を塗布し、領域12d,12e,12f以外の領域12g,12hに第1結着材塗液4を塗布し、2条の電極を製造するようにしてもよい。この場合には、粉体成形装置2において粉体成形を終えた後、図5に示す破線Lの位置で切り分けることにより2条の電極を製造する。   In the above embodiment, the first binder coating solution 4 is applied to the region 12a of the base 12 and the second binder coating solution 8 is applied to the regions 12b and 12c of the base 12 (see FIG. 2). , 1 row of electrodes are manufactured, for example, as shown in FIG. 5, the second binder coating liquid is applied to the regions 12d and 12e at both widthwise end portions of the base 12 and the region 12f at the widthwise center portion 8 may be applied, and the first binder coating liquid 4 may be applied to the areas 12g and 12h other than the areas 12d, 12e and 12f to manufacture two lines of electrodes. In this case, after completion of the powder forming in the powder forming device 2, two electrodes are manufactured by cutting at the position of the broken line L shown in FIG.

以下の実施例及び比較例において用いた結着材塗液(第1結着材塗液及び第2結着材塗液)に用いられる結着材のタック強度は、プローブタック法での測定結果によるものである。タッキング試験機(TAC−1000:レスカ製)を用いて、25℃の雰囲気下での結着材塗液(第1結着材塗液及び第2結着材塗液)に用いられる結着材のSUS製プローブ(10mmφ)に対するプローブタックを測定し、結着材のタック強度(N/10mmφ)を得た。   The tack strength of the binder used for the binder coating solution (first binder coating solution and second binder coating solution) used in the following examples and comparative examples is the measurement result by the probe tack method. Is due to A binder used for a binder coating solution (first binder coating solution and second binder coating solution) in an atmosphere at 25 ° C. using a tacking tester (TAC-1000: made by Lesca) The probe tack to the SUS probe (10 mmφ) was measured to obtain the tack strength (N / 10 mmφ) of the binder.

(実施例1)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が30%の第1結着材塗液を活物質層の幅方向の中央部に対応する基材表面に、タック強度が4.2N/10mmφ、固形分濃度が30%の第2結着材塗液を活物質層の幅方向の両端部(活物質層の幅方向の端部が活物質層の幅の2%)に対応する基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗(ここで「低温」とは常温(25℃)に対する低温(例えば−30℃)をいう。)を表1に示す。
Example 1
Using the powder molding apparatus 2 shown in FIG. 1, a first binder coating liquid having a tack strength of 1.5 N / 10 mm and a solid content concentration of 30% corresponds to the central portion in the width direction of the active material layer. On the surface of the material, a second binder coating solution with a tack strength of 4.2 N / 10 mmφ and a solid content concentration of 30% is applied to both ends in the width direction of the active material layer (the end in the width direction of the active material layer is the active material) It apply | coated to the base-material surface corresponding to 2% of the width | variety of layer, and obtained the electrode sheet. The adhesive strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance (here, “low temperature” means low temperature (for example, −30 ° C. to normal temperature (25 ° C.)) are shown in Table 1.

(実施例2)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が30%の第1結着材塗液を活物質層の幅方向の中央部に対応する基材表面に、タック強度が2.3N/10mmφ、固形分濃度が30%の第2結着材塗液を活物質層の幅方向の両端部(活物質層の幅方向の端部が活物質層の幅の2%)に対応する基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Example 2)
Using the powder molding apparatus 2 shown in FIG. 1, a first binder coating liquid having a tack strength of 1.5 N / 10 mm and a solid content concentration of 30% corresponds to the central portion in the width direction of the active material layer. On the surface of the material, a second binder coating solution with a tack strength of 2.3 N / 10 mmφ and a solid content concentration of 30% is applied to both ends in the width direction of the active material layer (the end in the width direction of the active material layer is the active material) It apply | coated to the base-material surface corresponding to 2% of the width | variety of layer, and obtained the electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

(実施例3)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が30%の第1結着材塗液を活物質層の幅方向の中央部に対応する基材表面に、タック強度が1.5N/10mmφ、固形分濃度が46%の第2結着材塗液を活物質層の幅方向の両端部(活物質層の幅方向の端部が活物質層の幅の2%)に対応する基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Example 3)
Using the powder molding apparatus 2 shown in FIG. 1, a first binder coating liquid having a tack strength of 1.5 N / 10 mm and a solid content concentration of 30% corresponds to the central portion in the width direction of the active material layer. On the surface of the material, a second binder coating solution with a tack strength of 1.5 N / 10 mmφ and a solid content concentration of 46% is applied to both ends in the width direction of the active material layer (the end in the width direction of the active material layer is the active material) It apply | coated to the base-material surface corresponding to 2% of the width | variety of layer, and obtained the electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

(実施例4)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が30%の第1結着材塗液を活物質層の幅方向の中央部に対応する基材表面に、タック強度が1.5N/10mmφ、固形分濃度が40%の第2結着材塗液を活物質層の幅方向の両端部(活物質層の幅方向の端部が活物質層の幅の2%)に対応する基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Example 4)
Using the powder molding apparatus 2 shown in FIG. 1, a first binder coating liquid having a tack strength of 1.5 N / 10 mm and a solid content concentration of 30% corresponds to the central portion in the width direction of the active material layer. On the surface of the material, a second binder coating solution with a tack strength of 1.5 N / 10 mmφ and a solid content concentration of 40% is applied to both ends in the width direction of the active material layer (the end in the width direction of the active material layer is the active material) It apply | coated to the base-material surface corresponding to 2% of the width | variety of layer, and obtained the electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

(実施例5)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が30%の第1結着材塗液を活物質層の幅方向の中央部に対応する基材表面に、タック強度が3.5N/10mmφ、固形分濃度が30%の第2結着材塗液を活物質層の幅方向の両端部(活物質層の幅方向の端部が活物質層の幅の8%)に対応する基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Example 5)
Using the powder molding apparatus 2 shown in FIG. 1, a first binder coating liquid having a tack strength of 1.5 N / 10 mm and a solid content concentration of 30% corresponds to the central portion in the width direction of the active material layer. On the surface of the material, a second binder coating solution with a tack strength of 3.5 N / 10 mmφ and a solid content concentration of 30% is applied to both ends in the width direction of the active material layer (the end in the width direction of the active material layer is the active material) It apply | coated to the base-material surface corresponding to 8% of the width | variety of layers, and obtained the electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

(比較例1)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が30%の結着材塗液を基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Comparative example 1)
Using the powder molding apparatus 2 shown in FIG. 1, a binder coating solution with a tack strength of 1.5 N / 10 mm and a solid content concentration of 30% was applied to the surface of a substrate to obtain an electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

(比較例2)
図1に示す粉体成形装置2を用いて、タック強度が4.2N/10mmφ、固形分濃度が30%の結着材塗液を基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Comparative example 2)
Using the powder molding apparatus 2 shown in FIG. 1, a binder coating solution having a tack strength of 4.2 N / 10 mm and a solid content concentration of 30% was applied to the surface of a substrate to obtain an electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

(比較例3)
図1に示す粉体成形装置2を用いて、タック強度が1.5N/10mmφ、固形分濃度が45%の結着材塗液を基材表面に塗布し、電極シートを得た。活物質層の両端部の接着強度、電極シートの生産効率及び低温反応抵抗を表1に示す。
(Comparative example 3)
Using the powder molding apparatus 2 shown in FIG. 1, a binder coating solution having a tack strength of 1.5 N / 10 mm and a solid content concentration of 45% was applied to the surface of a substrate to obtain an electrode sheet. The adhesion strength at both ends of the active material layer, the production efficiency of the electrode sheet and the low temperature reaction resistance are shown in Table 1.

Figure 0006533053
Figure 0006533053

なお、T1は第1結着材塗液に含まれる結着材のタック強度、T2は第2結着材塗液に含まれる結着材のタック強度、C1は第1結着材の固形分濃度、C2は第2結着材の固形分濃度のことである。また、端部の接着強度の結果Aは接着強度が高く、BはAより接着強度が低く、DはBより更に接着強度が低いことを示している。生産効率の結果○は高生産効率、×は低生産効率であることを示しており、低温反応抵抗の結果Aは低抵抗、BはAより高抵抗であることを示している。   T1 is the tack strength of the binder contained in the first binder coating liquid, T2 is the tack strength of the binder contained in the second binder coating liquid, and C1 is the solid content of the first binder. The concentration, C2, is the solid concentration of the second binder. Further, as a result of the adhesive strength at the end, A indicates that the adhesive strength is high, B indicates that the adhesive strength is lower than A, and D indicates that the adhesive strength is lower than B. Production efficiency results O show high production efficiency, X shows low production efficiency, low temperature reaction resistance results A show low resistance, B shows higher resistance than A.

以上、表1に示す実施例及び比較例の結果に示すように、高タック強度または高固形分濃度の結着材塗液を電極シートの幅方向の両端部に塗布した場合、高生産効率及び低抵抗を維持しつつ、端部における活物質層と基材との剥離強度を高く維持した電極シート、即ち端部の活物質層が基材から剥離し難い電極シートを得ることができる。   As described above, as shown in the results of Examples and Comparative Examples shown in Table 1, when the binder coating solution with high tack strength or high solid content concentration is applied to both ends in the width direction of the electrode sheet, high production efficiency and It is possible to obtain an electrode sheet in which the peel strength between the active material layer and the substrate at the end is maintained high while maintaining low resistance, that is, an electrode sheet in which the active material layer at the edge is less likely to peel from the substrate.

2…粉体成形装置、4…第1結着材塗液、6…第1塗布部、6a…第1貯留槽、6b…第1グラビアロール、8…第2結着材塗液、10…第2塗布部、10a…第2貯留槽、10b…第2グラビアロール、12…基材、14a,14b…搬送ローラ、16…粉体、18…ホッパー、20…スキージ部材、22A,22B…プレス用ロール、24…活物質層。   2 powder forming apparatus, 4 first binder coating solution, 6 first coating unit, 6 a first reservoir, 6 b first gravure roll, 8 second binder coating solution, 10 Second application unit, 10a: second storage tank, 10b: second gravure roll, 12: base material, 14a, 14b: transport roller, 16: powder, 18: hopper, 20: squeegee member, 22A, 22B: press Roll, 24 ... active material layer.

Claims (3)

リチウムイオン電池用電極活物質層の幅方向の中央部に対応する基材表面に第1結着材塗液を塗布する第1塗布工程と、
前記リチウムイオン電池用電極活物質層の幅方向の両端部に対応する前記基材表面に前記第1結着材塗液と異なる第2結着材塗液を塗布する第2塗布工程と、
前記第1結着材塗液及び前記第2結着材塗液が塗布された前記基材表面に電極活物質を含む粉体を供給する供給工程と、
前記基材表面に供給される前記粉体の目付量を制御する制御工程と、
一対のプレス用ロールを用いて前記基材表面に供給された前記粉体をプレスすることにより活物質層を形成する形成工程と、
を含み、
前記第2結着材塗液に用いられる結着材のタック強度が前記第1結着材塗液に用いられる結着材のタック強度より大きい、または前記第2結着材塗液の固形分濃度が前記第1結着材塗液の固形分濃度より大きく、
前記リチウムイオン電池用電極活物質層の幅方向の端部の幅は、前記リチウムイオン電池用電極活物質層の幅に対して0.5%以上5%以下であり、
前記制御工程は、スキージ部材によって前記粉体の目付量が制御されることを特徴とするリチウムイオン電池用電極の製造方法。
A first application step of applying a first binder coating solution to the surface of the base material corresponding to the center in the width direction of the lithium ion battery electrode active material layer;
A second application step of applying a second binder coating solution different from the first binder coating solution on the surface of the substrate corresponding to both end portions in the width direction of the lithium ion battery electrode active material layer;
Supplying a powder containing an electrode active material to the surface of the substrate to which the first binder coating solution and the second binder coating solution have been applied;
A control step of controlling a coated amount of the powder supplied to the surface of the substrate;
A forming step of forming an active material layer by pressing the powder supplied to the surface of the base material using a pair of pressing rolls;
Including
The tack strength of the binder used in the second binder coating liquid is greater than the tack strength of the binder used in the first binder coating liquid, or the solid content of the second binder coating liquid The concentration is higher than the solid content concentration of the first binder coating solution ,
The width of the end in the width direction of the lithium ion battery electrode active material layer is 0.5% or more and 5% or less with respect to the width of the lithium ion battery electrode active material layer,
In the control step, a coated amount of the powder is controlled by a squeegee member .
前記第2結着材塗液に用いられる結着材のタック強度は、前記第1結着材塗液に用いられる結着材のタック強度の1.5倍以上であることを特徴とする請求項1記載のリチウムイオン電池用電極の製造方法。   The tack strength of the binder used in the second binder coating liquid is 1.5 or more times the tack strength of the binder used in the first binder coating liquid. The manufacturing method of the electrode for lithium ion batteries of the claim | item 1 statement. 前記第2結着材塗液の固形分濃度は、前記第1結着材塗液の固形分濃度の1.3倍以上であることを特徴とする請求項1または請求項2記載のリチウムイオン電池用電極の製造方法。
The lithium ion according to claim 1 or 2, wherein a solid content concentration of the second binder coating liquid is 1.3 times or more of a solid content concentration of the first binder coating liquid. Method of manufacturing battery electrode.
JP2014254904A 2014-12-17 2014-12-17 Method of manufacturing electrode for lithium ion battery Active JP6533053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254904A JP6533053B2 (en) 2014-12-17 2014-12-17 Method of manufacturing electrode for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254904A JP6533053B2 (en) 2014-12-17 2014-12-17 Method of manufacturing electrode for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016115603A JP2016115603A (en) 2016-06-23
JP6533053B2 true JP6533053B2 (en) 2019-06-19

Family

ID=56140090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254904A Active JP6533053B2 (en) 2014-12-17 2014-12-17 Method of manufacturing electrode for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6533053B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859863A4 (en) * 2018-09-28 2022-06-22 Zeon Corporation Secondary battery and production method therefor
WO2022041193A1 (en) * 2020-08-31 2022-03-03 宁德新能源科技有限公司 Electrode plate, electrochemical device, and electronic device
CN115332478A (en) * 2022-09-16 2022-11-11 江苏正力新能电池技术有限公司 Pole piece, pole piece coating method and equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687458B2 (en) * 2003-02-25 2011-05-25 日本ゼオン株式会社 Method for producing electrode for electrochemical device
JP5842407B2 (en) * 2011-06-28 2016-01-13 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP6044095B2 (en) * 2012-03-28 2016-12-14 株式会社Gsユアサ Electricity storage element
JP6046538B2 (en) * 2013-03-29 2016-12-14 トヨタ自動車株式会社 Manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP2016115603A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
EP3244470B1 (en) Method for manufacturing electrode for lithium ion battery
JP7127235B2 (en) Solid electrolyte sheet and manufacturing method thereof, all-solid battery, and manufacturing method of all-solid battery
US20110168550A1 (en) Graded electrode technologies for high energy lithium-ion batteries
JP2016115569A (en) Method of manufacturing electrode for lithium ion battery
JP6086384B2 (en) Method for producing sheet for lithium ion secondary battery electrode
JP5281706B2 (en) Current collector, current collector manufacturing method, electrode, and secondary battery
JP2007005747A (en) Manufacturing method of sheet for electrochemical element electrode
JP6533053B2 (en) Method of manufacturing electrode for lithium ion battery
JP2016100067A (en) Method of manufacturing electrode for lithium ion battery
JP6170149B2 (en) Method for producing electrode for lithium ion battery
JP2016115567A (en) Method of manufacturing electrode for lithium ion battery
JP2016018762A (en) Method for manufacturing electrode for lithium ion secondary battery
JP5999237B2 (en) Powder rolling apparatus and rolled sheet manufacturing method
JP2016018725A (en) Method for manufacturing electrode for lithium ion secondary battery
JP2016115432A (en) Method of manufacturing electrode for lithium ion battery
JP6274935B2 (en) Method for producing electrode for lithium ion battery
JP6209457B2 (en) Method for producing electrode for lithium ion battery
TWI547004B (en) Method for making current collector and methode for making electrode of electrochemical battery
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
JP2016115568A (en) Method of manufacturing electrode for lithium ion battery
JP2015130279A (en) Method of manufacturing electrode for lithium ion battery
US10658652B2 (en) Method of manufacturing lithium-ion secondary battery electrode sheet
JP6215737B2 (en) Method for producing electrode for lithium ion battery
WO2023100709A1 (en) Electrode active material layer manufacturing device, and electrode active material layer manufacturing method employing same
JP2006107779A (en) Manufacturing method of electrode plate, and electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6533053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250