JP2006107779A - Manufacturing method of electrode plate, and electrode plate - Google Patents

Manufacturing method of electrode plate, and electrode plate Download PDF

Info

Publication number
JP2006107779A
JP2006107779A JP2004289200A JP2004289200A JP2006107779A JP 2006107779 A JP2006107779 A JP 2006107779A JP 2004289200 A JP2004289200 A JP 2004289200A JP 2004289200 A JP2004289200 A JP 2004289200A JP 2006107779 A JP2006107779 A JP 2006107779A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode plate
less
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004289200A
Other languages
Japanese (ja)
Inventor
Yuichi Miyazaki
祐一 宮崎
Masayuki Tsunekawa
雅行 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004289200A priority Critical patent/JP2006107779A/en
Publication of JP2006107779A publication Critical patent/JP2006107779A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode plate capable of forming the electrode which is a thinly coated activator layer with excellent surface quality, having high uniformity of film thickness, high conductivity, and high safety, as well as an electrode plate suited for high-output use, and a nonaqueous electrolyte solution secondary battery. <P>SOLUTION: A coating composition for an activator layer of which, a maximum particle size (D<SB>90</SB>) of activator contained therein is less than a gap (G) between a tip of a die head (1a) and a coating face of a collector (A), and less than a target thickness (T2) of the activator layer after a pressing process; and at the same time, a central particle size (D<SB>50</SB>) is not more than a half of the target thickness of the active material layer after the pressing process; is used for the electrode plate. A solid portion of a coating volume of the coating composition of the activator is made 110g/m<SP>2</SP>or less in case of a cathode, and 40g/m<SP>2</SP>or less in case of an anode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池に代表される非水電解質液二次電池や電気二重層キャパシタ等の正極及び/又は負極として用いられる電極板の製造方法に関する。
また本発明は、電極板、特に好適には上記製造方法により製造される電極板、及び、当該電極板を組み込んだ非水電解質液二次電池に関する。
The present invention relates to a method for producing an electrode plate used as a positive electrode and / or a negative electrode of a nonaqueous electrolyte liquid secondary battery or an electric double layer capacitor typified by a lithium ion secondary battery.
The present invention also relates to an electrode plate, particularly preferably an electrode plate manufactured by the above manufacturing method, and a non-aqueous electrolyte liquid secondary battery incorporating the electrode plate.

近年、電子機器や通信機器の小型化および軽量化が急速に進んでおり、これらの駆動用電源として用いられる二次電池に対しても小型化および軽量化が要求されている。このため、従来のアルカリ蓄電池に代わり、高エネルギー密度で高電圧を有する非水電解質液二次電池、代表的にはリチウムイオン二次電池が提案されている。
一般に、非水電解質液二次電池、電気二重層キャパシタ等の電極板は、集電体の少なくとも一面に電極活物質層を所定パターン状に断続的に設けた構成をとる。電極活物質層のパターンが存在しない非塗工部は、端子を取り付ける等の目的のために集電体が露出した部分である。
In recent years, electronic devices and communication devices are rapidly becoming smaller and lighter, and secondary batteries used as power sources for driving these devices are also required to be smaller and lighter. For this reason, a non-aqueous electrolyte secondary battery, typically a lithium ion secondary battery, having a high energy density and a high voltage has been proposed in place of the conventional alkaline storage battery.
In general, electrode plates such as non-aqueous electrolyte liquid secondary batteries and electric double layer capacitors have a configuration in which an electrode active material layer is intermittently provided in a predetermined pattern on at least one surface of a current collector. The non-coated portion where the electrode active material layer pattern does not exist is a portion where the current collector is exposed for the purpose of attaching a terminal or the like.

電極板は、通常、平均粒径が数μmから数十μmの活物質粒子と結着材の混合物スラリーを調製し、これを金属箔等の集電体上に塗布することにより活物質層を形成し、乾燥し(コーティング工程)、必要に応じて該活物質層が形成された集電体をプレスし(プレス工程)、該プレスした集電体を必要に応じて所定の幅に切断し(スリット工程)、さらに、必要に応じて所定の長さに切断する(裁断工程)ことにより製造される。   The electrode plate is usually prepared by preparing a slurry of a mixture of active material particles having an average particle diameter of several μm to several tens of μm and a binder, and applying the slurry onto a current collector such as a metal foil. Forming, drying (coating process), if necessary, pressing the current collector on which the active material layer is formed (pressing process), cutting the pressed current collector to a predetermined width as necessary (Slit process), and further, it is manufactured by cutting to a predetermined length as necessary (cutting process).

上記のコーティング工程では、活物質層用塗工組成物を塗布した塗工部と塗布していない非塗工部を順次形成する間歇塗布方式や、塗布幅よりも広い集電体に塗工部を連続的に形成し、塗工部の外側に非塗工部を形成する連続塗布方式が広く用いられている。一般的にコンマリバース、コンマダイレクト、ダイコート等の方法により、間歇塗布や連続塗布が行われる。   In the above coating process, an intermittent application method in which a coated part coated with the active material layer coating composition and an uncoated non-coated part are sequentially formed, or the coated part is applied to a current collector wider than the coated width. A continuous coating method is widely used in which a non-coated portion is formed outside the coated portion. In general, intermittent coating or continuous coating is performed by a method such as comma reverse, comma direct, or die coating.

近年、自動車等の高出力用途の電池として、単位面積当りの活物質量を減らした、いわゆる薄塗りの電極が広く検討されている。薄塗りの電極は、活物質層を広く薄く塗ることで電池の抵抗を小さくし且つ電極板の有効面積を広げ、大電力を取り出せるようにしたものであり、単位面積当りの活物質量は従来の厚さを有する活物質層と比べて少ない。   In recent years, so-called thin-coated electrodes with a reduced amount of active material per unit area have been widely studied as batteries for high-power applications such as automobiles. Thin-coated electrodes are made by spreading the active material layer widely and thinly to reduce the battery resistance and increase the effective area of the electrode plate, so that large power can be taken out. The amount of active material per unit area is Less than the active material layer having a thickness of.

しかしながら、活物質層を薄く形成するために活物質層用塗工組成物の塗工量を減らすと、ダイヘッド等のコーティングヘッドの先端(吐出孔)と集電体の塗工面との距離を限界まで近づけても塗膜面が粗くなってしまう。この場合には、塗工ライン上で、いわゆる原反切れ(長尺状の集電体が搬送路を走行中に切れる現象)も発生しやすい。
また、活物質層用塗工組成物を薄く塗工した電極板の中間品にプレス加工を行うと、サイズの大きい粒子成分が塗膜面から突出するため、プレス後の膜厚が均一になりにくく、プレスロールを損傷させる問題も発生する。
However, if the coating amount of the active material layer coating composition is reduced to form a thin active material layer, the distance between the tip of the coating head (discharge hole) such as a die head and the coated surface of the current collector is limited. Even if it approaches, the coating surface becomes rough. In this case, so-called raw fabric cutting (a phenomenon in which a long current collector is cut while traveling on the conveyance path) is also likely to occur on the coating line.
In addition, when an intermediate product of an electrode plate coated with a thin coating composition for the active material layer is pressed, large particle components protrude from the coating surface, so that the film thickness after pressing becomes uniform. Difficult to damage the press roll.

プレス後の活物質層の膜厚が不均一であるか或いは膜面が粗い電極板をセパレータと共に積層又は巻き込んで電池に組み込むと、所定のサイズにおさまらない、或いは、ソフトショートを発生させやすいという問題もある。
さらに、活物質層を薄く形成した場合には、活物質層内に含有される活物質の粒子は活物質層の厚さ方向(深さ方向)に分布しずらくなり、集電体の面方向に沿って単層膜状に分布する傾向が強まるため、活物質粒子同士で接触する確率が低くなり、導電性が低くなりやすい。また、活物質層を薄く形成すると、塗工部中の粒子間に集電体が露出した部分が発生する場合があり、このような塗工部中の露出部分ではデンドライトの析出が起こりやすく、安全性に支障を来たす場合がある。
If the active material layer after pressing has a non-uniform film thickness or an electrode plate with a rough film surface is laminated or rolled together with a separator and incorporated into a battery, it will not fit within a prescribed size or will tend to cause a soft short. There is also a problem.
Furthermore, when the active material layer is formed thin, the active material particles contained in the active material layer are difficult to be distributed in the thickness direction (depth direction) of the active material layer, and the surface of the current collector Since the tendency to be distributed in the form of a single-layer film along the direction is increased, the probability that the active material particles are in contact with each other is low, and the conductivity tends to be low. In addition, when the active material layer is formed thin, a portion where the current collector is exposed between particles in the coating part may occur, and in such an exposed part in the coating part, precipitation of dendrites easily occurs, May interfere with safety.

本発明は、上記の実状に鑑みて成し遂げられたものであり、その第一の目的は、いわゆる薄塗りの活物質層であって面質が良く、膜厚の均一性が高く、導電性、安全性の高いものを形成することができる電極板の好適な製造方法を提供することにある。
また、本発明の第二の目的は、面質が良く、膜厚の均一性が高く、導電性、安全性の高い薄塗りの活物質層を有し、好適には本発明の製造方法により製造される電極板を提供することにある。
また、本発明の第三の目的は、上記電極板を用いて高出力用途に適した非水電解質液二次電池を提供することにある。
The present invention has been achieved in view of the above-mentioned actual situation, and the first object thereof is a so-called thin-coated active material layer having good surface quality, high uniformity of film thickness, conductivity, An object of the present invention is to provide a suitable manufacturing method of an electrode plate capable of forming a highly safe one.
In addition, the second object of the present invention is to have a thin-coated active material layer with good surface quality, high uniformity of film thickness, and high conductivity and safety, preferably by the production method of the present invention. The object is to provide a manufactured electrode plate.
A third object of the present invention is to provide a non-aqueous electrolyte liquid secondary battery suitable for high power applications using the electrode plate.

本発明により提供される電極板の製造方法は、少なくとも活物質を含有する活物質層用塗工組成物を集電体上に塗工して活物質層を形成する工程、及び、該活物質層が形成された電極板中間品をプレス加工する工程を含む、正極及び負極電極板のうち少なくとも一方を製造する方法であって、
前記活物質層用塗工組成物中の活物質の最大粒径(D90)が、塗工する際のコーティングヘッド先端と集電体塗工面との間の隙間未満で且つプレス加工後の活物質層の目標厚み未満であると共に、該活物質の中心粒径(D50)が、プレス加工後の活物質層の目標厚みの2分の1以下である活物質層用塗工組成物を用い、
集電体上に、前記活物質層用塗工組成物を単位面積当りの固形分塗工量を、正極の場合は110g/m以下、負極の場合は40g/m以下として塗工することを特徴とする。
The method for producing an electrode plate provided by the present invention comprises a step of coating an active material layer coating composition containing at least an active material on a current collector to form an active material layer, and the active material A method for producing at least one of a positive electrode and a negative electrode plate, comprising a step of pressing an electrode plate intermediate product on which a layer is formed,
The maximum particle size (D 90 ) of the active material in the coating composition for active material layer is less than the gap between the coating head tip and the current collector coating surface during coating, and the active material after press working An active material layer coating composition having a thickness less than the target thickness of the material layer and a center particle size (D 50 ) of the active material being ½ or less of the target thickness of the active material layer after press working Use
On the current collector, the active material layer coating composition is applied at a solid content coating amount per unit area of 110 g / m 2 or less for the positive electrode and 40 g / m 2 or less for the negative electrode. It is characterized by that.

前記製造方法においては、活物質層用塗工組成物中に含まれる粒子成分の種類ごとの最大粒径(D90)のうち最も値が大きいもの、及び/又は、粒子成分の種類ごとの中心粒径(D50)のうち最も値が大きいものが、上記活物質に求められるサイズの条件を満たしていることが、好ましい。 In the manufacturing method, the largest value among the maximum particle diameters (D 90 ) for each type of particle component contained in the active material layer coating composition and / or the center for each type of particle component It is preferable that the particle size (D 50 ) having the largest value satisfies the size requirements for the active material.

前記活物質層用塗工組成物中に含有される固形分全体に占める活物質の割合が80質量%以上であることが好ましい。
前記製造方法におけるプレス加工後の活物質層の目標厚みが、正極の場合は70μm以下、負極の場合は50μm以下であることが好ましい。
The ratio of the active material to the entire solid content contained in the active material layer coating composition is preferably 80% by mass or more.
In the production method, the target thickness of the active material layer after press working is preferably 70 μm or less for the positive electrode and 50 μm or less for the negative electrode.

次に、本発明により提供される電極板は、集電体上に、少なくとも活物質を含有する活物質層が設けられた電極板であって、
活物質層の単位面積当りの固形分塗工量が、正極の場合は110g/m以下、負極の場合は40g/m以下であり、
前記活物質層中の活物質の最大粒径(D90)が活物質層の厚み未満であり、且つ、該活物質層中の活物質の中心粒径(D50)が、活物質層の厚みの2分の1以下であることを特徴とする。
Next, the electrode plate provided by the present invention is an electrode plate provided with an active material layer containing at least an active material on a current collector,
The solid content coating amount per unit area of the active material layer is 110 g / m 2 or less in the case of the positive electrode and 40 g / m 2 or less in the case of the negative electrode.
The maximum particle size (D 90 ) of the active material in the active material layer is less than the thickness of the active material layer, and the center particle size (D 50 ) of the active material in the active material layer is It is characterized by being not more than one half of the thickness.

前記電極板においては、活物質層中に含まれる粒子成分の種類ごとの最大粒径(D90)のうち最も値が大きいもの、及び/又は、粒子成分の種類ごとの中心粒径(D50)のうち最も値が大きいものが、上記活物質に求められるサイズの条件を満たしていることが、好ましい。
前記活物質層中に含有される活物質の割合が80質量%以上であることが好ましい。
前記電極板における活物質層の厚みが、正極の場合は70μm以下、負極の場合は50μm以下であることが好ましい。
In the electrode plate, the largest particle size (D 90 ) for each type of particle component contained in the active material layer and / or the center particle size (D 50) for each type of particle component. ) Having the largest value preferably satisfies the size requirements for the active material.
The ratio of the active material contained in the active material layer is preferably 80% by mass or more.
The thickness of the active material layer in the electrode plate is preferably 70 μm or less for the positive electrode and 50 μm or less for the negative electrode.

本発明によれば、活物質層用塗工組成物中の活物質として、その最大粒径及び中心粒径が上記したサイズ範囲内のものを用いることによって、活物質層を薄く形成する場合でも、活物質層の膜面から大径粒子が突出しないので、塗膜面が粗くなく、且つ、膜厚の均一性が高い活物質層が形成される。
従って、塗工ライン上での原反切れやプレスロールの損傷のような製造過程中の事故や、電池中でのソフトショートのような使用段階での事故を防止することができる。
また、活物質として、活物質の中心粒径(D50)が、プレス加工後の活物質層の目標厚みの2分の1以下であるものを用いることによって、活物質層を薄く形成する場合でも、活物質層内に含有される活物質の粒子が、集電体の面方向に沿って分布するだけでなく、活物質層の厚さ方向に分布しやすくなる。
According to the present invention, even when the active material layer is formed thin by using the active material in the coating composition for the active material layer that has a maximum particle size and a center particle size within the above-mentioned size range. Since the large-diameter particles do not protrude from the film surface of the active material layer, an active material layer having a uniform coating film surface and high film thickness is formed.
Therefore, it is possible to prevent accidents during the manufacturing process such as raw material breakage on the coating line and damage to the press roll, and accidents during use such as soft shorts in the battery.
When the active material layer is formed thin by using the active material whose center particle diameter (D 50 ) is less than half the target thickness of the active material layer after press working. However, the particles of the active material contained in the active material layer are easily distributed not only along the surface direction of the current collector but also in the thickness direction of the active material layer.

従って、活物質層内において活物質粒子同士が接触する確率が高くなり、高い導電性、安全性を確保することができるので、電池の抵抗が小さくなり、大電力を取り出すのに有利になる。
従って本発明によれば、面質が良く、膜厚の均一性が高く、導電性、安全性の高い薄塗りの活物質層を有する高出力用途に適した電極板、及び、非水電解質液二次電池が提供される。
Accordingly, the probability that the active material particles come into contact with each other in the active material layer is increased, and high conductivity and safety can be ensured. Therefore, the resistance of the battery is reduced, which is advantageous for taking out large electric power.
Therefore, according to the present invention, an electrode plate suitable for high power use having a thin active material layer with good surface quality, high film thickness uniformity, high conductivity, and high safety, and a non-aqueous electrolyte solution A secondary battery is provided.

本発明により提供される電極板の製造方法は、少なくとも活物質を含有する活物質層用塗工組成物を集電体上に塗工して活物質層を形成する工程、及び、該活物質層が形成された電極板中間品をプレス加工する工程を含む、正極及び負極電極板のうち少なくとも一方を製造する方法であって、
前記活物質層用塗工組成物中の活物質の最大粒径(D90)が、コーティングヘッド先端(吐出孔)と集電体塗工面との間の隙間未満で且つプレス加工後の活物質層の目標厚み未満であると共に、該活物質の中心粒径(D50)が、プレス加工後の活物質層の目標厚みの2分の1以下である活物質層用塗工組成物を用い、
集電体上に、前記活物質層用塗工組成物を単位面積当りの固形分塗工量を、正極の場合は110g/m以下、負極の場合は40g/m以下として塗工することを特徴とするものである。
The method for producing an electrode plate provided by the present invention comprises a step of coating an active material layer coating composition containing at least an active material on a current collector to form an active material layer, and the active material A method for producing at least one of a positive electrode and a negative electrode plate, comprising a step of pressing an electrode plate intermediate product on which a layer is formed,
The maximum particle size ( D90 ) of the active material in the active material layer coating composition is less than the gap between the coating head tip (discharge hole) and the current collector coating surface, and the active material after press working Use is made of a coating composition for an active material layer that is less than the target thickness of the layer and has a center particle size (D 50 ) of the active material that is less than or equal to half the target thickness of the active material layer after press working ,
On the current collector, the active material layer coating composition is applied at a solid content coating amount per unit area of 110 g / m 2 or less for the positive electrode and 40 g / m 2 or less for the negative electrode. It is characterized by this.

(活物質層用塗工組成物)
本発明に用いられる活物質層用塗工組成物は、活物質と共に、通常は少なくとも結着材(バインダー)を含有し、必要に応じて導電材等の他の成分を含有する。
活物質は、従来から非水電解質液二次電池用、電気二重層キャパシタ用等の活物質として知られている材料を用いることができる。活物質は2種以上を組み合わせて用いても良い。
非水電解質液二次電池の正極用活物質としては、例えば、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)若しくはLiNiO(ニッケル酸リチウム)等のリチウム酸化物、又は、TiS、MnO、MoO若しくはV等のカルコゲン化合物を例示することができる。特に、LiCoO若しくはLiMnを正極用活物質として用い、炭素質材料を負極用活物質として用いることにより、4ボルト程度の高い放電電圧を有するリチウム系二次電池が得られる。
(Coating composition for active material layer)
The active material layer coating composition used in the present invention usually contains at least a binder (binder) together with the active material and, if necessary, other components such as a conductive material.
As the active material, materials conventionally known as active materials for non-aqueous electrolyte liquid secondary batteries, electric double layer capacitors and the like can be used. Two or more active materials may be used in combination.
As the positive electrode active material of the nonaqueous electrolyte secondary battery, for example, lithium oxide such as LiCoO 2 (lithium cobaltate), LiMn 2 O 4 (lithium manganate) or LiNiO 2 (lithium nickelate), or Examples include chalcogen compounds such as TiS 2 , MnO 2 , MoO 3 or V 2 O 5 . In particular, by using LiCoO 2 or LiMn 2 O 4 as the positive electrode active material and using the carbonaceous material as the negative electrode active material, a lithium secondary battery having a high discharge voltage of about 4 volts can be obtained.

一方、非水電解質液二次電池の負極用活物質としては、例えば、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、アセチレンブラック又は、これらの成分に異種元素を添加したもののような炭素質材料が好んで用いられる。溶媒が有機系の場合には、金属リチウム又はリチウム合金等のようなリチウム含有金属が好適に用いられる。
電気二重層キャパシタの活物質としては、例えば、活性炭や金属酸化物を用いることができる。
On the other hand, as the negative electrode active material of the nonaqueous electrolyte secondary battery, for example, natural graphite, artificial graphite, amorphous carbon, carbon black, acetylene black, or a carbonaceous material obtained by adding a different element to these components Is preferred. When the solvent is organic, a lithium-containing metal such as metallic lithium or a lithium alloy is preferably used.
As an active material of the electric double layer capacitor, for example, activated carbon or metal oxide can be used.

結着材としては従来から知られているもの、例えば、非水電解質液二次電池用電極板であれば、熱可塑性樹脂、より具体的にはポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂又はポリイミド樹脂等を使用することができる。
この際、反応性官能基を導入したアクリレートモノマー又はオリゴマーを結着材中に混入させることも可能である。そのほかにも、ゴム系の樹脂や、セルロース樹脂、アクリル樹脂、ウレタン樹脂等の熱硬化性樹脂、アクリレートモノマー、アクリレートオリゴマー或いはそれらの混合物からなる電離放射線硬化性樹脂、上記各種の樹脂の混合物を使用することもできる。
結着材は2種以上を組み合わせて用いても良い。
As a binder, what is conventionally known, for example, an electrode plate for a non-aqueous electrolyte secondary battery, a thermoplastic resin, more specifically, a polyester resin, a polyamide resin, a polyacrylate resin, A polycarbonate resin, a polyurethane resin, a cellulose resin, a polyolefin resin, a polyvinyl resin, a fluorine resin, a polyimide resin, or the like can be used.
At this time, an acrylate monomer or oligomer into which a reactive functional group is introduced can be mixed in the binder. In addition, thermosetting resins such as rubber resins, cellulose resins, acrylic resins, urethane resins, ionizing radiation curable resins composed of acrylate monomers, acrylate oligomers or mixtures thereof, and mixtures of the above various resins are used. You can also
Two or more binders may be used in combination.

活物質層塗工組成物には、導電材を添加しても良い。導電材としては、例えば、非水電解質液二次電池用電極板であれば、グラファイト、カーボンブラック又はアセチレンブラック等の炭素質材料が必要に応じて用いられる。導電材は2種以上を組み合わせて用いても良い。   A conductive material may be added to the active material layer coating composition. As the conductive material, for example, in the case of an electrode plate for a non-aqueous electrolyte liquid secondary battery, a carbonaceous material such as graphite, carbon black, or acetylene black is used as necessary. Two or more kinds of conductive materials may be used in combination.

活物質層用塗工組成物を調製する溶剤としては、例えば、トルエン、メチルエチルケトン、N−メチル−2−ピロリドン或いはこれらの混合物のような有機溶剤や水を用いることができる。
上記したような活物質層、結着剤、及び必要に応じてその他の成分を溶剤中に投入し、ホモジナイザー、ボールミル、サンドミル又はロールミル等の分散機により溶解又は分散して、スラリー状の活物質層用塗工組成物を調製する。
活物質層用塗工組成物中に含有される活物質の含有割合は特に制限されないが、充分な電池容量を得る観点から、固形分中の質量比で80質量%以上、特に90質量%以上であることが好ましい。また、活物質の含有割合が多すぎると結着材の量が相対的に少なくなり活物質層の密着性が不足しやすいことから、活物質層用塗工組成物中に含有される活物質の含有割合は、固形分中の質量比で99.5質量%以下、特に98.5質量%以下であることが好ましい。
また、活物質層用塗工組成物中の導電材の含有割合は、例えば、非水電解質液二次電池用電極板であれば、通常、固形分中の質量比で、1.5〜10重量%とする。
ここで、「固形分」とは、活物質層用塗工組成物中に含有される溶剤以外の全成分であり、該塗工組成物が、例えば、硬化性を有する液状のモノマー成分を含有する場合には、そのような液状成分も固形分に含まれる。
また、本発明においては、活物質層用塗工組成物中に含有される固形分中の活物質の質量比が、完成された活物質層中の活物質の含有割合とみなすことができる。
As a solvent for preparing the active material layer coating composition, for example, an organic solvent such as toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone, or a mixture thereof, or water can be used.
The above active material layer, binder, and other components as required are charged into a solvent, and dissolved or dispersed by a disperser such as a homogenizer, ball mill, sand mill, or roll mill, to obtain a slurry-like active material A layer coating composition is prepared.
The content ratio of the active material contained in the active material layer coating composition is not particularly limited, but from the viewpoint of obtaining a sufficient battery capacity, the mass ratio in the solid content is 80% by mass or more, particularly 90% by mass or more. It is preferable that In addition, when the content ratio of the active material is too large, the amount of the binder is relatively small, and the adhesiveness of the active material layer is likely to be insufficient. Therefore, the active material contained in the active material layer coating composition Is preferably 99.5% by mass or less, more preferably 98.5% by mass or less in terms of mass ratio in the solid content.
Moreover, if the content rate of the electrically conductive material in the coating composition for active material layers is an electrode board for nonaqueous electrolyte liquid secondary batteries, for example, it is 1.5-10 in mass ratio in solid content normally. Weight%.
Here, the “solid content” is all components other than the solvent contained in the coating composition for active material layer, and the coating composition contains, for example, a curable liquid monomer component. In such a case, such a liquid component is also included in the solid content.
Moreover, in this invention, the mass ratio of the active material in solid content contained in the coating composition for active material layers can be considered as the content rate of the active material in the completed active material layer.

本発明においては、品質のよい薄塗りの活物質層を形成するために、上記活物質層用塗工組成物中の粒子成分の粒子サイズを選定する。
具体的には、活物質層用塗工組成物中の活物質として、その最大粒径(D90)が、ダイヘッド等のコーティングヘッド先端と集電体塗工面との間の隙間(図1中の符号Gで表される距離)未満で且つプレス加工後の活物質層の目標厚み未満であると共に、該活物質の中心粒径(D50)が、プレス加工後の活物質層の目標厚み(図2中の符号T2で表される厚さ)の2分の1以下であるような活物質、さらに好ましくは5分の2以下、特に好ましくは3分の1以下であるようなサイズの活物質を用いる。
In the present invention, in order to form a thin active material layer of good quality, the particle size of the particle component in the active material layer coating composition is selected.
Specifically, as the active material in the active material layer coating composition, the maximum particle size (D 90 ) is the gap between the tip of a coating head such as a die head and the current collector coating surface (in FIG. 1). And the center particle diameter (D 50 ) of the active material after the press working is the target thickness of the active material layer after the press working. An active material that is less than or equal to one-half of the thickness (the thickness represented by T2 in FIG. 2), more preferably less than or equal to two-fifth, particularly preferably less than or equal to one-third. Use active material.

ここで、塗工組成物中の活物質層及びその他の粒子成分の粒径とは、JIS Z8901において説明されている意味であり、その測定方法としては、やはり同JIS Z8901において挙げられている光散乱法等の様々な方法を適用することができる。
また、本発明において粒子の「最大粒径(D90)」とは、粒度分布において、ある粒子径Dnより粒子径の小さい粒子分が占める割合が全粉体の90質量%に達する時の粒子径Dnを意味する。
Here, the particle size of the active material layer and other particle components in the coating composition has the meaning described in JIS Z8901, and the measurement method includes the light mentioned in the JIS Z8901. Various methods such as a scattering method can be applied.
Further, in the present invention, the “maximum particle size (D 90 )” of the particle is a particle when the proportion of particles having a particle size smaller than a certain particle size Dn in the particle size distribution reaches 90% by mass of the total powder. It means the diameter Dn.

また、本発明において粒子の「中心粒径(D50)」とは、粒度分布において、ある粒子径Dnより粒子径の小さい粒子分が占める割合が全粉体の50質量%に達する時の粒子径Dnを意味する。 Further, in the present invention, the “center particle size (D 50 )” of the particle is a particle when the proportion of particles having a particle size smaller than a certain particle size Dn in the particle size distribution reaches 50% by mass of the total powder. It means the diameter Dn.

活物質層用塗工組成物中の活物質として、その最大粒径(D90)及び中心粒径(D50)が上記したサイズ範囲内のものを用いることによって、活物質層を薄く形成する場合でも、活物質層の膜面から大径粒子が突出しないので、塗膜面が粗くなく、且つ、膜厚の均一性が高い活物質層が形成される。
従って、塗工ライン上での原反切れやプレスロールの損傷のような製造過程中の事故や、電池中でのソフトショートのような使用段階での事故を防止することができる。
The active material layer is thinly formed by using the active material in the coating composition for the active material layer having the maximum particle size (D 90 ) and the center particle size (D 50 ) within the above-mentioned size range. Even in such a case, since the large-diameter particles do not protrude from the film surface of the active material layer, an active material layer having a uniform coating film surface and high film thickness is formed.
Therefore, it is possible to prevent accidents during the manufacturing process such as raw material breakage on the coating line and damage to the press roll, and accidents during use such as soft shorts in the battery.

また、活物質として、その中心粒径(D50)が、プレス加工後の活物質層の目標厚みの2分の1以下であるものを用いることによって、活物質層を薄く形成する場合でも、活物質層内に含有される活物質の粒子が、集電体の面方向に沿って分布するだけでなく、活物質層の厚さ方向に分布しやすくなる。
従って、活物質層内において活物質粒子同士が接触する確率が高くなり、高い導電性及び安全性を確保することができるので、電池の抵抗が小さくなり、大電力を取り出すのに有利になる。
Moreover, even when the active material layer is formed thin by using the active material whose center particle diameter (D 50 ) is one half or less of the target thickness of the active material layer after press working, The particles of the active material contained in the active material layer are not only distributed along the surface direction of the current collector, but also easily distributed in the thickness direction of the active material layer.
Therefore, the probability that the active material particles come into contact with each other in the active material layer is increased, and high conductivity and safety can be ensured. Therefore, the resistance of the battery is reduced, which is advantageous for taking out large electric power.

本発明の目的を達成する観点からは、活物質の最大粒径及び中心粒径が小さいほど好ましいが、現実に入手できる活物質の粒径、及び、塗工用組成物中での活物質の凝集の問題を考慮すると、実用上は、ある程度以上の粒径のものを用いることが好ましい。
係る観点から、本発明において用いる活物質のサイズは、平均粒径で表したときに、一般的には0.1〜25μm程度の範囲のものであり、好ましくは0.2〜10μm、さらに好ましくは0.5〜4μmのものである。
From the viewpoint of achieving the object of the present invention, the smaller the maximum particle size and the center particle size of the active material, the better. However, the particle size of the active material that can be actually obtained, and the active material in the coating composition Considering the problem of aggregation, it is preferable in practice to use a particle having a particle size of a certain level or more.
From such a viewpoint, the size of the active material used in the present invention is generally in the range of about 0.1 to 25 μm, preferably 0.2 to 10 μm, more preferably when expressed in terms of average particle diameter. Is 0.5-4 μm.

活物質層用塗工組成物中の粒子成分は主に活物質であるから、本発明においては、活物質の最大粒径及び中心粒径が上記したサイズ範囲内の条件を満たしていればよいが、活物質層用塗工組成物が、2種類以上の活物質を含有する場合や、或いは、活物質以外にも粒子成分を含有する場合には、活物質層用塗工組成物中に含まれる粒子成分の種類ごとに特定される最大粒径(D90)のうち最も大きい値のもの、及び、活物質層用塗工組成物中に含まれる粒子成分の種類ごとに特定される中心粒径(D50)のうち最も大きい値のものが、上記した活物質に求められるサイズ条件を満たすことが特に好ましい。 Since the particle component in the coating composition for the active material layer is mainly the active material, in the present invention, the maximum particle diameter and the center particle diameter of the active material only need to satisfy the conditions within the above-described size range. However, when the active material layer coating composition contains two or more kinds of active materials, or when it contains a particle component other than the active material, the active material layer coating composition contains The largest value among the maximum particle diameters (D 90 ) specified for each type of particle component included, and the center specified for each type of particle component included in the active material layer coating composition It is particularly preferable that the largest value among the particle diameters (D 50 ) satisfies the size condition required for the above active material.

すなわち、活物質層用塗工組成物が、2種類以上の活物質を含有する場合や、或いは、活物質以外にも粒子成分を含有する場合には、活物質層用塗工組成物中に含まれる粒子成分の種類ごとに特定される最大粒径(D90)のうち最も大きい値のものが、コーティングヘッド先端と集電体塗工面との間の隙間未満で且つプレス加工後の活物質層の目標厚み未満であることが好ましい。
また、活物質層用塗工組成物が、2種類以上の活物質を含有する場合や、或いは、活物質以外にも粒子成分を含有する場合には、活物質層用塗工組成物中に含まれる粒子成分の種類ごとに特定される中心粒径(D50)のうち最も大きい値のものが、プレス加工後の活物質層の目標厚みの2分の1以下であることが好ましい。
この場合には、さらに、活物質層用塗工組成物中に含まれる粒子成分の種類ごとに特定される平均粒径がいずれも、上記した活物質に求められるサイズ条件を満たすことが特に好ましい。
That is, when the active material layer coating composition contains two or more kinds of active materials, or when it contains a particle component in addition to the active material, the active material layer coating composition contains The largest value of the maximum particle size (D 90 ) specified for each type of particle component contained is less than the gap between the coating head tip and the current collector coating surface, and the active material after press working It is preferably less than the target thickness of the layer.
Moreover, when the active material layer coating composition contains two or more types of active materials, or when it contains a particle component in addition to the active material, the active material layer coating composition contains those of the largest value among the median particle size specified for each type of particle component (D 50) contained is preferably less than one-half of the target thickness of the active material layer after pressing.
In this case, it is particularly preferable that the average particle size specified for each type of particle component contained in the active material layer coating composition satisfies the size requirements for the active material described above. .

また、活物質層用塗工組成物が、2種類以上の活物質を含有する場合や、或いは、活物質以外にも粒子成分を含有する場合には、活物質を含む全粒子成分の粒度分布から特定される最大粒径(D90)及び/又は中心粒径(D50)が、上記した活物質に求められるサイズ条件を満たすことが好ましい。
その場合には、さらに、全粒子成分の平均粒径も、上記した活物質に求められるサイズ条件を満たすことが特に好ましい。
In addition, when the active material layer coating composition contains two or more kinds of active materials, or when it contains particle components in addition to the active materials, the particle size distribution of all the particle components including the active materials It is preferable that the maximum particle size (D 90 ) and / or the center particle size (D 50 ) specified from the above satisfy the size requirements for the active material described above.
In that case, it is particularly preferable that the average particle size of all the particle components also satisfies the size requirements for the active material described above.

(集電体)
本発明においては、従来から電極板の集電体として用いられている金属箔や金属シートを用いることができる。正極板の集電体としては、通常、アルミニウム箔が好ましく用いられる。一方、負極板の集電体としては、通常、電解銅箔や圧延銅箔等の銅箔が好ましく用いられる。
集電体の厚さは、例えば、非水電解質液二次電池用電極板であれば、通常、5〜50μm程度とする。
(Current collector)
In this invention, the metal foil and metal sheet which are conventionally used as a collector of an electrode plate can be used. In general, an aluminum foil is preferably used as the current collector of the positive electrode plate. On the other hand, as the current collector for the negative electrode plate, a copper foil such as an electrolytic copper foil or a rolled copper foil is usually preferably used.
The thickness of the current collector is usually about 5 to 50 μm, for example, in the case of an electrode plate for a nonaqueous electrolyte secondary battery.

(電極板の製造)
本発明の電極板製造方法は、集電体を搬送手段によりコーティングマシンのコーティングヘッドの位置を走行、通過させながら、コーティングヘッドの先端から活物質層形成用塗工組成物を集電体表面に塗布し、必要に応じて断続的に吐出とその停止を繰り返して間歇塗工を行うことで活物質層を形成した後、該活物質層をプレスすることによって電極板を製造するものである。集電体としては一般的には長尺状の集電体を用い、走行中の集電体上にダイコーターにより間歇又は無間歇塗工を連続的に行う。
(Manufacture of electrode plates)
In the electrode plate manufacturing method of the present invention, the active material layer-forming coating composition is applied to the surface of the current collector from the tip of the coating head while the current collector travels and passes through the position of the coating head of the coating machine by the conveying means. The active material layer is formed by applying and intermittently applying and intermittently discharging and stopping as necessary, and then the active material layer is pressed to manufacture an electrode plate. In general, a long current collector is used as the current collector, and intermittent or non-glare coating is continuously performed on the running current collector by a die coater.

本発明においては、特に薄塗りの電極板を製造するため、活物質層用塗工組成物の塗工量を少量に制限する。具体的な塗工量は、電池の設計に応じて適宜決定され、特に制限されないが、正極の場合であれば、通常は、活物質層用塗工組成物及び完成した活物質層の片面・単位面積当りの固形分塗工量を110g/m以下とし、さらに100g/m以下とすることが好ましい。一方、負極の場合であれば、通常は、活物質層用塗工組成物及び完成した活物質層の片面・単位面積当りの固形分塗工量を40g/m以下とし、さらに35g/m以下とすることが好ましい。
また、活物質層用塗工組成物又は完成した活物質層の塗工量の下限は、特に限定されないが、実用上、通常は片面・単位面積当りの固形分塗工量を3g/m以上とする。
In the present invention, particularly in order to produce a thin electrode plate, the coating amount of the active material layer coating composition is limited to a small amount. The specific coating amount is appropriately determined according to the design of the battery, and is not particularly limited. However, in the case of the positive electrode, the coating composition for the active material layer and one side of the completed active material layer are usually The solid content coating amount per unit area is preferably 110 g / m 2 or less, more preferably 100 g / m 2 or less. On the other hand, in the case of the negative electrode, the coating amount for the active material layer and the solid material coating amount per unit area of the finished active material layer are usually 40 g / m 2 or less, and further 35 g / m. It is preferable to set it to 2 or less.
Moreover, the lower limit of the coating amount of the active material layer coating composition or the finished active material layer is not particularly limited, but in practice, the solid content coating amount per side / unit area is usually 3 g / m 2. That's it.

また、薄塗りの電極板という観点から、プレス加工後の活物質層の目標厚み及び完成した活物質層の厚さは、正極の場合は70μm以下であることが好ましく、負極の場合は50μm以下であることが好ましい。
また、上記活物質層の目標厚み及び完成後厚みの下限は、実用上、通常は3μm以上とする。
From the viewpoint of a thin-coated electrode plate, the target thickness of the active material layer after press working and the thickness of the completed active material layer are preferably 70 μm or less in the case of the positive electrode, and 50 μm or less in the case of the negative electrode. It is preferable that
Further, the lower limit of the target thickness and the thickness after completion of the active material layer is usually 3 μm or more in practice.

図1に、本発明に係る電極板の製造方法を実施するためのコーティング装置の一例(コーティング装置101)の概略構成を示す。また図2に、本発明に係る電極板の製造方法を実施するためのプレス装置の一例(プレス装置102)の概略構成を示す。   FIG. 1 shows a schematic configuration of an example of a coating apparatus (coating apparatus 101) for carrying out the electrode plate manufacturing method according to the present invention. FIG. 2 shows a schematic configuration of an example of a press apparatus (press apparatus 102) for carrying out the electrode plate manufacturing method according to the present invention.

図1においてコーティング装置101は、少なくとも、被塗工体である集電体Aを搬送する搬送手段と、塗工手段であるダイコーター1と、乾燥手段2とを備えている。
搬送手段は、集電体Aを諸工程のために供給し、巻き取るための手段である。図1の例では、電極板供給ロール3を取り付けた供給部4と、電極板巻取りロール5を取り付けた巻取り部6と、搬送路上を移動する集電体Aを支持するガイドローラ7と、必要に応じてその他の部材から搬送手段が構成される。
In FIG. 1, the coating apparatus 101 includes at least a conveying unit that conveys a current collector A that is an object to be coated, a die coater 1 that is a coating unit, and a drying unit 2.
A conveyance means is a means for supplying and winding up the electrical power collector A for various processes. In the example of FIG. 1, a supply unit 4 to which an electrode plate supply roll 3 is attached, a winding unit 6 to which an electrode plate take-up roll 5 is attached, a guide roller 7 that supports a current collector A that moves on a conveyance path, The conveying means is constituted by other members as necessary.

集電体Aは、電極板供給ロール3から繰り出され、搬送路上を走行し、ダイコーター1に到達する。ダイコーター1は、ダイヘッド1aから塗工材料である活物質層用塗工組成物を吐出して、走行している集電体Aに間歇塗工し、活物質層Bが存在する塗工部Cと、非塗工部Dとを所定のパターン状に形成する。
ダイヘッド1aの先端と集電体塗工面との間の隙間(距離)Gは、塗膜の塗工量に合わせて適宜決定されるが、薄塗り塗工を行う場合には、通常、30〜100μm程度とする。
間歇塗工された集電体Aは、さらに搬送手段により搬送され、乾燥手段2に到達し、やはり走行しながら乾燥される。乾燥工程における熱源としては、熱風、赤外線、遠赤外線、マイクロ波、高周波、或いはそれらを組み合わせて利用できる。乾燥工程において集電体をサポート又はプレスする金属ローラーや金属シートを加熱して放出させた熱によって乾燥してもよい。
乾燥後、塗工が完了した電極板の中間品Eは、巻取り部6によって電極板巻取りロール5に巻き取られる。
The current collector A is fed out from the electrode plate supply roll 3, travels on the conveyance path, and reaches the die coater 1. The die coater 1 discharges the active material layer coating composition, which is a coating material, from the die head 1a, and intermittently coats the traveling current collector A so that the active material layer B is present. C and the non-coating part D are formed in a predetermined pattern.
The gap (distance) G between the tip of the die head 1a and the current collector coating surface is appropriately determined according to the coating amount of the coating film. The thickness is about 100 μm.
The intermittently coated current collector A is further transported by the transport means, reaches the drying means 2, and is also dried while traveling. As a heat source in the drying process, hot air, infrared rays, far infrared rays, microwaves, high frequencies, or a combination thereof can be used. You may dry with the heat which discharge | released the metal roller and metal sheet which support or press a collector in a drying process.
After drying, the intermediate product E of the electrode plate that has been coated is wound around the electrode plate winding roll 5 by the winding unit 6.

図2においてプレス装置102は、電極板の中間品Eを搬送する搬送手段と、プレス手段である一対のプレスロール8(8a、8b)とを備えている。
プレス装置102の搬送手段は、上記コーティング装置101のものと同様であり、図中、共通の符号で表される。プレスロール8は、アッパーロール8aとアンダーロール8bを有し、これらのうち少なくとも一方は、図示していないモーターによって中間品Eの搬送速度に合わせて回転駆動される。プレスロールとしては、金属ロール、弾性ロール又は加熱ロールなどの各種ロールを適宜組み合わせて用いる。また、プレスロール以外のプレス手段としては、例えば、シートプレス機等を用いてもよい。
In FIG. 2, the press device 102 includes a transport unit that transports the intermediate product E of the electrode plate, and a pair of press rolls 8 (8 a and 8 b) that are press units.
The conveying means of the press apparatus 102 is the same as that of the coating apparatus 101, and is represented by a common symbol in the drawing. The press roll 8 has an upper roll 8a and an under roll 8b, and at least one of them is rotationally driven in accordance with the conveyance speed of the intermediate product E by a motor (not shown). As the press roll, various rolls such as a metal roll, an elastic roll or a heating roll are used in appropriate combination. Moreover, as a press means other than the press roll, for example, a sheet press machine or the like may be used.

中間品Eは、電極板供給ロール3から繰り出され、搬送路上を走行し、一対のプレスロール8の間を通過してプレス加工されて活物質層が完成した電極板Fとなり、巻取り部6によって電極板巻取りロール5に巻き取られる。このプレス加工によって、プレス後の活物質層の厚さT2はプレス前の厚さT1よりも薄くなり、活物質層の密度、集電体に対する密着性、均質性を向上させることができる。
図2の例では塗工工程とは別のラインでプレス加工を行っているが、プレス加工は、上記図1のコーティング装置101内において、コーティング工程から連続して行ってもよい。その場合には、乾燥手段2の下流側に図示していないプレス手段を設け、コーティング、乾燥及びプレスを全て行ってから巻取りロール5に巻き取る。
The intermediate product E is unwound from the electrode plate supply roll 3, travels on the conveyance path, passes through a pair of press rolls 8 and is pressed to form an electrode plate F having an active material layer completed, and the winding unit 6. Is wound on the electrode plate winding roll 5. By this pressing, the thickness T2 of the active material layer after pressing becomes thinner than the thickness T1 before pressing, and the density of the active material layer, the adhesion to the current collector, and the homogeneity can be improved.
In the example of FIG. 2, pressing is performed on a line different from the coating process, but the pressing may be performed continuously from the coating process in the coating apparatus 101 of FIG. 1. In that case, a pressing means (not shown) is provided on the downstream side of the drying means 2, and after the coating, drying and pressing are all performed, the winding roll 5 is wound.

このようにして、本発明に係る正極用又は負極用電極板が得られる。本発明の電極板は、集電体上の片面又は両面に、少なくとも活物質を含有する活物質層が設けられた正極及び負極いずれかの電極板であって、
活物質層の単位面積当りの固形分塗工量が、正極の場合は110g/m以下、負極の場合は40g/m以下であり、
前記活物質層中の活物質の最大粒径(D90)が活物質層の厚み未満であり、且つ、該活物質層中の活物質の中心粒径(D50)が、活物質層の厚みの2分の1以下であることを特徴とするものである。
Thus, the electrode plate for positive electrodes or negative electrodes according to the present invention is obtained. The electrode plate of the present invention is either a positive electrode or a negative electrode plate in which an active material layer containing at least an active material is provided on one side or both sides of a current collector,
The solid content coating amount per unit area of the active material layer is 110 g / m 2 or less in the case of the positive electrode and 40 g / m 2 or less in the case of the negative electrode.
The maximum particle size (D 90 ) of the active material in the active material layer is less than the thickness of the active material layer, and the center particle size (D 50 ) of the active material in the active material layer is The thickness is less than or equal to one half of the thickness.

(実施例1)
負極活物質としてMCMB(メソカーボンマイクロビーズ)、バインダーとしてPVDF(ポリフッ化ビニリデン)を用い、固形分量が50質量%の負極用スラリーを定法により作製した。また、集電体として14μmの圧延銅箔を用いた。
MCMBは、事前に粒径20μm以上のものを分離除去し、且つ、前記分離除去後の平均粒径(この場合は中心粒径でもある)が6μmのものを用いた。
上記の負極用スラリーを、乾燥後の塗工量が30g/mとなるように集電体上にダイコーターで塗布し、乾燥させて電極板の中間品を得た。この時、ダイヘッド先端と集電体表面の間の距離は70μmだった。この塗布工程は、何ら支障なく行うことができた。
次に、電極板の中間品を、活物質層の厚みが25μmとなるようにプレスした。このプレス工程も何ら支障なく行うことができた。
Example 1
MCMB (mesocarbon microbeads) was used as the negative electrode active material, PVDF (polyvinylidene fluoride) was used as the binder, and a slurry for negative electrode having a solid content of 50% by mass was prepared by a conventional method. A 14 μm rolled copper foil was used as a current collector.
MCMB having a particle diameter of 20 μm or more was separated and removed in advance, and the average particle diameter after separation and removal (in this case, the central particle diameter) was 6 μm.
The negative electrode slurry was applied on a current collector with a die coater so that the coating amount after drying was 30 g / m 2 and dried to obtain an intermediate product of an electrode plate. At this time, the distance between the tip of the die head and the current collector surface was 70 μm. This coating process could be performed without any trouble.
Next, the intermediate product of the electrode plate was pressed so that the thickness of the active material layer was 25 μm. This pressing process could be performed without any trouble.

(実施例2)
正極活物質としてコバルト酸リチウム、導電材としてアセチレンブラック、バインダーとしてPVDFを用い、固形分量が70質量%の正極用スラリーを定法により作製した。また、集電体として15μmのアルミニウム箔を用いた。
コバルト酸リチウムは、事前に粒径25μm以上のものを分離除去し、且つ、前記分離除去後の平均粒径(この場合は中心粒径でもある)が5μmのものを用いた。
上記の正極用スラリーを、乾燥後の塗工量が100g/mとなるように集電体上にダイコーターで塗布し、乾燥させて電極板の中間品を得た。この時、ダイヘッド先端と集電体表面の間の距離は70μmだった。この塗布工程は、何ら支障なく行うことができた。
次に、電極板の中間品を、活物質層の厚みが34μmとなるようにプレスした。このプレス工程も何ら支障なく行うことができた。
(Example 2)
A positive electrode slurry having a solid content of 70% by mass was prepared by a conventional method using lithium cobaltate as a positive electrode active material, acetylene black as a conductive material, and PVDF as a binder. Also, a 15 μm aluminum foil was used as a current collector.
The lithium cobalt oxide having a particle size of 25 μm or more was separated and removed in advance, and the average particle size after separation and removal (in this case, the central particle size) was 5 μm.
The positive electrode slurry was applied on a current collector with a die coater so that the coating amount after drying was 100 g / m 2 and dried to obtain an intermediate product of an electrode plate. At this time, the distance between the tip of the die head and the current collector surface was 70 μm. This coating process could be performed without any trouble.
Next, the intermediate product of the electrode plate was pressed so that the thickness of the active material layer was 34 μm. This pressing process could be performed without any trouble.

(比較例1)
負極活物質としてMCMB、バインダーとしてPVDFを用い、固形分量が50質量%の負極用スラリーを定法により作製した。また、集電体として14μmの圧延銅箔を用いた。MCMBは、最大粒径が80μmであり、且つ、平均粒径が6μmのものを用いた。
上記の負極用スラリーを、乾燥後の塗工量が30g/mとなるように集電体上にダイコーターで塗布し、乾燥させて電極板の中間品を得た。この時、ダイヘッド先端と集電体表面の間の距離は80μmだった。
この比較例は、上記塗布工程において塗膜の膜面にスジが多発してしまった。
(Comparative Example 1)
MCMB was used as the negative electrode active material, PVDF was used as the binder, and a negative electrode slurry having a solid content of 50% by mass was prepared by a conventional method. A 14 μm rolled copper foil was used as a current collector. MCMB having a maximum particle size of 80 μm and an average particle size of 6 μm was used.
The negative electrode slurry was applied on a current collector with a die coater so that the coating amount after drying was 30 g / m 2 and dried to obtain an intermediate product of an electrode plate. At this time, the distance between the tip of the die head and the current collector surface was 80 μm.
In this comparative example, streaks frequently occurred on the film surface of the coating film in the coating step.

(比較例2)
正極活物質としてコバルト酸リチウム、導電材としてアセチレンブラック、バインダーとしてPVDFを用い、固形分量が50質量%の正極用スラリーを定法により作製した。また、集電体として15μmのアルミニウム箔を用いた。コバルト酸リチウムは、最大粒径が100μmであり、且つ、平均粒径が5μmのものを用いた。
上記の正極用スラリーを、乾燥後の塗工量が100g/mとなるように集電体上にダイコーターで塗布し、乾燥させて電極板の中間品を得た。この時、ダイヘッド先端と集電体表面の間の距離は70μmだった。この塗布工程において、塗膜の膜面に若干スジが発生した。
次に、電極板の中間品を、活物質層の厚みが34μmとなるようにプレスした。このプレス工程において、光沢のある粒状の塊が現れ、プレスロールにエンボス状の跡がついてしまった。また、得られた塗膜も均一ではなく、所々に100μm程度の厚みになる部分が観測された。
(Comparative Example 2)
A positive electrode slurry having a solid content of 50% by mass was prepared by a conventional method using lithium cobaltate as a positive electrode active material, acetylene black as a conductive material, and PVDF as a binder. Also, a 15 μm aluminum foil was used as a current collector. A lithium cobalt oxide having a maximum particle size of 100 μm and an average particle size of 5 μm was used.
The positive electrode slurry was applied on a current collector with a die coater so that the coating amount after drying was 100 g / m 2 and dried to obtain an intermediate product of an electrode plate. At this time, the distance between the tip of the die head and the current collector surface was 70 μm. In this coating process, some streaks occurred on the film surface of the coating film.
Next, the intermediate product of the electrode plate was pressed so that the thickness of the active material layer was 34 μm. In this pressing step, a glossy granular lump appeared and an embossed mark was left on the press roll. Further, the obtained coating film was not uniform, and portions having a thickness of about 100 μm were observed in some places.

本発明に係る電極板の製造方法を実施し得るコーティング装置の一例の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of an example of the coating apparatus which can implement the manufacturing method of the electrode plate which concerns on this invention. 本発明に係る電極板の製造方法を実施し得るプレス装置の一例の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of an example of the press apparatus which can implement the manufacturing method of the electrode plate which concerns on this invention.

符号の説明Explanation of symbols

101:コーティング装置
102:プレス装置
A:集電体
B:塗工層又は活物質層
C:塗工部
D:非塗工部
E:電極板の中間品
F:電極板
1:ダイコーター
1a:ダイヘッド
2:乾燥手段
3:電極板供給ロール
4:供給部
5:電極板巻取りロール
6:巻取り部
7:ガイドローラ
8(8a、8b):プレスロール
DESCRIPTION OF SYMBOLS 101: Coating apparatus 102: Press apparatus A: Current collector B: Coating layer or active material layer C: Coating part D: Non-coating part E: Intermediate product of electrode plate F: Electrode plate 1: Die coater 1a: Die head 2: Drying means 3: Electrode plate supply roll 4: Supply section 5: Electrode plate winding roll 6: Winding section 7: Guide roller 8 (8a, 8b): Press roll

Claims (11)

少なくとも活物質を含有する活物質層用塗工組成物を集電体上に塗工して活物質層を形成する工程、及び、該活物質層が形成された電極板中間品をプレス加工する工程を含む、正極及び負極電極板のうち少なくとも一方を製造する方法であって、
前記活物質層用塗工組成物中の活物質の最大粒径(D90)が、塗工する際のコーティングヘッド先端と集電体塗工面との間の隙間未満で且つプレス加工後の活物質層の目標厚み未満であると共に、該活物質の中心粒径(D50)が、プレス加工後の活物質層の目標厚みの2分の1以下である活物質層用塗工組成物を用い、
集電体上に、前記活物質層用塗工組成物を単位面積当りの固形分塗工量を、正極の場合は110g/m以下、負極の場合は40g/m以下として塗工することを特徴とする、電極板の製造方法。
A step of coating an active material layer coating composition containing at least an active material on a current collector to form an active material layer; and an electrode plate intermediate product on which the active material layer is formed is pressed. A method for producing at least one of a positive electrode and a negative electrode plate, comprising:
The maximum particle size (D 90 ) of the active material in the coating composition for active material layer is less than the gap between the coating head tip and the current collector coating surface during coating, and the active material after press working An active material layer coating composition having a thickness less than the target thickness of the material layer and a center particle size (D 50 ) of the active material being ½ or less of the target thickness of the active material layer after press working Use
On the current collector, the active material layer coating composition is applied at a solid content coating amount per unit area of 110 g / m 2 or less for the positive electrode and 40 g / m 2 or less for the negative electrode. A method for manufacturing an electrode plate.
前記活物質層用塗工組成物中に含まれる粒子成分の種類ごとの最大粒径(D90)のうち最も大きい値のものが、コーティングヘッド先端と集電体塗工面との間の隙間未満で且つプレス加工後の活物質層の目標厚み未満である、請求項1に記載の電極板の製造方法。 Of the maximum particle size (D 90 ) for each type of particle component contained in the active material layer coating composition, the largest value is less than the gap between the coating head tip and the current collector coating surface And the manufacturing method of the electrode plate of Claim 1 which is less than the target thickness of the active material layer after press work. 前記活物質層用塗工組成物中に含まれる粒子成分の種類ごとの中心粒径(D50)のうち最も大きい値のものが、プレス加工後の活物質層の目標厚みの2分の1以下である、請求項1又は2に記載の電極板の製造方法。 The largest value of the center particle diameter (D 50 ) for each type of particle component contained in the active material layer coating composition is one half of the target thickness of the active material layer after press working. The manufacturing method of the electrode plate of Claim 1 or 2 which is the following. 前記活物質層用塗工組成物中に含有される固形分全体に占める活物質の割合が80質量%以上である、請求項1乃至3のいずれかに記載の電極板の製造方法。   The manufacturing method of the electrode plate in any one of Claims 1 thru | or 3 whose ratio of the active material which occupies for the whole solid content contained in the said coating composition for active material layers is 80 mass% or more. プレス加工後の活物質層の目標厚みが、正極の場合は70μm以下、負極の場合は50μm以下である、請求項1乃至4のいずれかに記載の電極板の製造方法。   The method for producing an electrode plate according to any one of claims 1 to 4, wherein the target thickness of the active material layer after press working is 70 µm or less for a positive electrode and 50 µm or less for a negative electrode. 集電体上に、少なくとも活物質を含有する活物質層が設けられた電極板であって、
活物質層の単位面積当りの固形分塗工量が、正極の場合は110g/m以下、負極の場合は40g/m以下であり、
前記活物質層中の活物質の最大粒径(D90)が活物質層の厚み未満であり、且つ、該活物質層中の活物質の中心粒径(D50)が、活物質層の厚みの2分の1以下であることを特徴とする電極板。
An electrode plate provided with an active material layer containing at least an active material on a current collector,
The solid content coating amount per unit area of the active material layer is 110 g / m 2 or less in the case of the positive electrode and 40 g / m 2 or less in the case of the negative electrode.
The maximum particle size (D 90 ) of the active material in the active material layer is less than the thickness of the active material layer, and the center particle size (D 50 ) of the active material in the active material layer is An electrode plate having a thickness of half or less.
前記活物質層中に含まれる粒子成分の種類ごとの最大粒径(D90)のうち最も大きい値のものが、活物質層の厚み未満である、請求項6に記載の電極板。 The electrode plate according to claim 6, wherein the largest value among the maximum particle diameters (D 90 ) for each kind of particle component contained in the active material layer is less than the thickness of the active material layer. 前記活物質層中に含まれる粒子成分の種類ごとの中心粒径(D50)のうち最も大きい値のものが、活物質層の厚みの2分の1以下である、請求項6又は7に記載の電極板。 The center particle diameter (D 50 ) for each type of particle component contained in the active material layer has the largest value that is not more than one half of the thickness of the active material layer. The electrode plate as described. 前記活物質層中に含有される活物質の割合が80質量%以上である、請求項6乃至8のいずれかに記載の電極板。   The electrode plate according to claim 6, wherein a ratio of the active material contained in the active material layer is 80% by mass or more. 活物質層の厚みが、正極の場合は70μm以下、負極の場合は50μm以下である、請求項6乃至9のいずれかに記載の電極板。   10. The electrode plate according to claim 6, wherein the active material layer has a thickness of 70 μm or less in the case of a positive electrode and 50 μm or less in the case of a negative electrode. 前記請求項6乃至10のいずれかに記載の電極板を備えることを特徴とする、非水電解質液二次電池。   A non-aqueous electrolyte secondary battery comprising the electrode plate according to claim 6.
JP2004289200A 2004-09-30 2004-09-30 Manufacturing method of electrode plate, and electrode plate Pending JP2006107779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289200A JP2006107779A (en) 2004-09-30 2004-09-30 Manufacturing method of electrode plate, and electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289200A JP2006107779A (en) 2004-09-30 2004-09-30 Manufacturing method of electrode plate, and electrode plate

Publications (1)

Publication Number Publication Date
JP2006107779A true JP2006107779A (en) 2006-04-20

Family

ID=36377246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289200A Pending JP2006107779A (en) 2004-09-30 2004-09-30 Manufacturing method of electrode plate, and electrode plate

Country Status (1)

Country Link
JP (1) JP2006107779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411371B1 (en) * 2013-02-21 2014-02-12 株式会社日立パワーソリューションズ Roll press equipment and thickness measurement system
JP2017152177A (en) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140138A (en) * 1997-07-18 1999-02-12 Ricoh Co Ltd Electrode and nonaqueous secondary battery using it
JP2002075343A (en) * 2000-09-04 2002-03-15 Hitachi Maxell Ltd Hydrogen storage alloy electrode and secondary battery using the electrode
JP2003151556A (en) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
JP2003157831A (en) * 2001-11-21 2003-05-30 Mitsubishi Cable Ind Ltd Positive electrode plate for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
JP2003331829A (en) * 2002-05-14 2003-11-21 Kyushu Electric Power Co Inc Method of manufacturing secondary battery electrode, secondary battery electrode, and secondary battery
JP2004014136A (en) * 2002-06-03 2004-01-15 Matsushita Electric Ind Co Ltd Secondary battery
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JP2004311108A (en) * 2003-04-03 2004-11-04 Nissan Motor Co Ltd Total polymer electrolyte battery and manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140138A (en) * 1997-07-18 1999-02-12 Ricoh Co Ltd Electrode and nonaqueous secondary battery using it
JP2002075343A (en) * 2000-09-04 2002-03-15 Hitachi Maxell Ltd Hydrogen storage alloy electrode and secondary battery using the electrode
JP2003151556A (en) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
JP2003157831A (en) * 2001-11-21 2003-05-30 Mitsubishi Cable Ind Ltd Positive electrode plate for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
JP2003331829A (en) * 2002-05-14 2003-11-21 Kyushu Electric Power Co Inc Method of manufacturing secondary battery electrode, secondary battery electrode, and secondary battery
JP2004014136A (en) * 2002-06-03 2004-01-15 Matsushita Electric Ind Co Ltd Secondary battery
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JP2004311108A (en) * 2003-04-03 2004-11-04 Nissan Motor Co Ltd Total polymer electrolyte battery and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411371B1 (en) * 2013-02-21 2014-02-12 株式会社日立パワーソリューションズ Roll press equipment and thickness measurement system
JP2017152177A (en) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR100763090B1 (en) Method for producing lithium ion secondary battery
JP7031249B2 (en) Method of manufacturing electrodes for secondary batteries and method of manufacturing secondary batteries
JP6108166B2 (en) Secondary battery electrode
CN103250281A (en) Process for manufacture of lithium ion secondary battery
JP2006260892A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the above electrode plate
JP5070721B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
WO2021025072A1 (en) Method for manufacturing lithium ion cell
JP4043956B2 (en) Manufacturing method of battery electrode plate
CN107004836A (en) The manufacture method of electrode for lithium ion secondary battery
JPH10144301A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JP3851195B2 (en) Battery electrode manufacturing drying apparatus and battery electrode manufacturing method
CN111386616B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP2016071956A (en) Method for manufacturing electrode for lithium ion secondary battery
CN102460779A (en) Electropostive plate, battery, vehicle battery-mounted device, and electropositive plate manufacturing method
KR20050031997A (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3969690B2 (en) Application method
JP2006107779A (en) Manufacturing method of electrode plate, and electrode plate
JP3697324B2 (en) Sheet electrode manufacturing method and non-aqueous electrolyte battery
JPH08250110A (en) Manufacture of electrode plate for nonaqueous electrolytic secondary battery
US20210036330A1 (en) Electrode for secondary battery, secondary battery using the electrode and method for manufacturing thereof
JP2006024375A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
CN106663778B (en) Method for manufacturing electrode plate of lithium ion secondary battery
JP2004139800A (en) Nonaqueous electrolyte battery and its electrode plate
CN103647039A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412