JP2012032239A - Sample inspection device and sample inspection method - Google Patents

Sample inspection device and sample inspection method Download PDF

Info

Publication number
JP2012032239A
JP2012032239A JP2010171012A JP2010171012A JP2012032239A JP 2012032239 A JP2012032239 A JP 2012032239A JP 2010171012 A JP2010171012 A JP 2010171012A JP 2010171012 A JP2010171012 A JP 2010171012A JP 2012032239 A JP2012032239 A JP 2012032239A
Authority
JP
Japan
Prior art keywords
sample
unit
ray
thickness
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010171012A
Other languages
Japanese (ja)
Inventor
Kazuo Nishiogi
一夫 西萩
Masaaki Kagi
正章 鉤
Hideo Ueda
英雄 上田
Yoko Naka
庸行 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2010171012A priority Critical patent/JP2012032239A/en
Priority to KR1020110070873A priority patent/KR20120012391A/en
Priority to CN2011102127287A priority patent/CN102403247A/en
Priority to TW100126792A priority patent/TW201205062A/en
Publication of JP2012032239A publication Critical patent/JP2012032239A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample inspection device and a sample inspection method that never limits samples which can be inspected by combining a plurality of kinds of measuring method.SOLUTION: The sample inspection device includes an incident part 11, a reflected light reception part 12 and an analysis part 13 (ellipsometer part), an X-ray source 21, a fluorescent X-ray detection part 22 and an analysis part 23 (X-ray measurement part), a laser light source 31, a beam splitter 34, and a Raman scattered light detection part 32 and an analysis part 33 (Raman scattered light measurement part). A thickness of a sample can be measured using a suitable technique corresponding to the sample 6. Further, ellipsometry and fluorescent X-ray analysis are combined together to independently measure the thickness of the sample 6 and optical characteristics of a refraction factor etc. When the sample 6 is a multilayer sample, respective layers can be inspected with suitable samples.

Description

本発明は、試料の厚みを含む特性を計測する試料検査装置及び試料検査方法に関する。   The present invention relates to a sample inspection apparatus and a sample inspection method for measuring characteristics including the thickness of a sample.

太陽電池素子等の半導体素子には、互いに組成が異なる複数の層が積層した多層構造を持つ素子がある。このような素子の製造工程中又は製造後に、各層の厚み及びその他の特性の計測を行いたいというニーズがある。試料の厚み及びその他の特性を計測することにより試料を検査する装置としては、エリプソメータがある。エリプソメータは、試料に対して直線偏光を照射し、試料への入射光と反射光との間での偏光状態の変化を測定し、偏光状態の変化に基づいて試料の厚み及び屈折率等を計測する。特許文献1には、エリプソメータにより試料の厚みを計測する技術が開示されている。また他の試料検査装置としては、X線を試料に照射し、試料から発生する蛍光X線を分析する蛍光X線分析装置がある。試料の組成が既知である場合は、蛍光X線の強度から試料の厚みを計測することができる。   Semiconductor devices such as solar cell devices include devices having a multilayer structure in which a plurality of layers having different compositions are stacked. There is a need to measure the thickness of each layer and other characteristics during or after the manufacturing process of such an element. An apparatus for inspecting a sample by measuring the thickness and other characteristics of the sample includes an ellipsometer. The ellipsometer irradiates the sample with linearly polarized light, measures the change in the polarization state between the incident light and the reflected light on the sample, and measures the thickness and refractive index of the sample based on the change in the polarization state To do. Patent Document 1 discloses a technique for measuring the thickness of a sample using an ellipsometer. As another sample inspection apparatus, there is a fluorescent X-ray analyzer that irradiates a sample with X-rays and analyzes fluorescent X-rays generated from the sample. When the composition of the sample is known, the thickness of the sample can be measured from the intensity of the fluorescent X-ray.

特開2005−233928号公報Japanese Patent Laid-Open No. 2005-233828

多層構造を持つ試料にゲート絶縁層等の透明層が含まれる場合、エリプソメータにより透明層の厚みを計測することが可能である。しかし、試料に配線層等の金属層が含まれる場合、光は金属層の内部へは侵入できないので、エリプソメータにより金属層の厚みを計測することはできない。これに対し、蛍光X線分析装置は、金属層の厚みを計測することは可能である。しかし、試料の組成によっては、蛍光X線分析装置で厚みを測定することが困難な層を含む試料がある。例えば、二酸化ケイ素を成分とするゲート絶縁層である透明層がシリコン基板上に形成されている試料では、シリコン基板からのシリコンの蛍光X線と透明層からのシリコンの蛍光X線とを区別することが困難であるので、各層の厚みを個別に計測することは困難である。このように、試料によって適切な試料検査装置が異なっており、試料によって試料検査装置を使い分ける必要があるという問題がある。特に、多層試料の特性を計測するためには複数の試料検査装置を使用する必要があり、手間が掛かるという問題がある。   When a sample having a multilayer structure includes a transparent layer such as a gate insulating layer, the thickness of the transparent layer can be measured by an ellipsometer. However, when the sample includes a metal layer such as a wiring layer, light cannot enter the inside of the metal layer, and thus the thickness of the metal layer cannot be measured by an ellipsometer. On the other hand, the fluorescent X-ray analyzer can measure the thickness of the metal layer. However, depending on the composition of the sample, there is a sample including a layer whose thickness is difficult to measure with a fluorescent X-ray analyzer. For example, in a sample in which a transparent layer, which is a gate insulating layer composed of silicon dioxide, is formed on a silicon substrate, silicon fluorescent X-rays from the silicon substrate are distinguished from silicon fluorescent X-rays from the transparent layer. It is difficult to measure the thickness of each layer individually. As described above, the appropriate sample inspection apparatus differs depending on the sample, and there is a problem that it is necessary to use the sample inspection apparatus properly depending on the sample. In particular, in order to measure the characteristics of a multilayer sample, it is necessary to use a plurality of sample inspection apparatuses, which is troublesome.

本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、複数種類の計測方法を組み合わせることにより、検査可能な試料を制限することのない試料検査装置及び試料検査方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sample inspection apparatus and a sample inspection that do not limit the samples that can be inspected by combining a plurality of types of measurement methods. It is to provide a method.

本発明に係る試料検査装置は、試料へ直線偏光を入射し、試料からの反射光を受光し、入射光と反射光との間での偏光の変化を測定するエリプソメータ部と、試料へX線を照射し、試料からのX線を測定するX線測定部と、前記エリプソメータ部又は前記X線測定部での測定結果に基づいて、試料の厚みを求めるための解析を行う解析部とを備えることを特徴とする試料検査装置。   The sample inspection apparatus according to the present invention includes an ellipsometer unit that makes linearly polarized light incident on a sample, receives reflected light from the sample, and measures a change in polarized light between the incident light and reflected light, and X-rays to the sample And an X-ray measurement unit that measures X-rays from the sample, and an analysis unit that performs an analysis for obtaining the thickness of the sample based on the measurement result of the ellipsometer unit or the X-ray measurement unit A sample inspection apparatus.

本発明に係る試料検査装置は、前記解析部は、前記X線測定部での測定結果に基づいて、試料の厚みを計算する手段と、前記エリプソメータ部での測定結果、及び試料の厚みの計算結果に基づいて、試料の光学特性を計算する手段とを有することを特徴とする。   In the sample inspection apparatus according to the present invention, the analysis unit calculates a sample thickness based on a measurement result in the X-ray measurement unit, a measurement result in the ellipsometer unit, and a calculation of the sample thickness. And a means for calculating an optical characteristic of the sample based on the result.

本発明に係る試料検査装置は、試料が多層試料である場合に、前記エリプソメータ部で直線偏光を入射する位置を、多層試料中の任意の一層に直線偏光が入射されるように調整する手段を更に備え、前記解析部は、前記エリプソメータ部での測定結果に基づいて、前記エリプソメータ部が直線偏光を入射した前記任意の一層の厚みを計算する手段と、前記X線測定部での測定結果に基づいて、前記多層試料中の他の層の厚みを計算する手段とを更に有することを特徴とする。   When the sample is a multilayer sample, the sample inspection apparatus according to the present invention includes means for adjusting the position where the linearly polarized light is incident on the ellipsometer so that the linearly polarized light is incident on an arbitrary layer in the multilayer sample. The analysis unit further includes means for calculating the thickness of the arbitrary layer on which the ellipsometer unit is incident with linearly polarized light based on the measurement result in the ellipsometer unit, and the measurement result in the X-ray measurement unit. And a means for calculating a thickness of another layer in the multilayer sample.

本発明に係る試料検査装置は、試料へ単色光を入射し、試料から発生するラマン散乱光を測定するラマン散乱光測定部を更に備え、前記解析部は、前記ラマン散乱光測定部の測定結果に基づいて、試料の構造特性を計算する手段を更に有することを特徴とする。   The sample inspection apparatus according to the present invention further includes a Raman scattered light measurement unit that enters monochromatic light into the sample and measures Raman scattered light generated from the sample, and the analysis unit is a measurement result of the Raman scattered light measurement unit. The method further comprises means for calculating the structural characteristics of the sample based on the above.

本発明に係る試料検査方法は、平板状の試料へ直線偏光を入射し、試料からの反射光を受光し、入射光と反射光との間での偏光の変化を測定するエリプソメータ部と、試料へX線を照射し、試料からのX線を測定するX線測定部とを備える試料検査装置を用いて、前記X線測定部での測定結果に基づいて、試料の厚みを計算し、前記エリプソメータ部での測定結果、及び試料の厚みの計算結果に基づいて、試料の光学特性を計算することを特徴とする。   The sample inspection method according to the present invention includes an ellipsometer unit that receives linearly polarized light on a flat sample, receives reflected light from the sample, and measures a change in polarized light between the incident light and the reflected light, and the sample Using a sample inspection apparatus comprising an X-ray measurement unit that irradiates X-rays and measures X-rays from the sample, calculates the thickness of the sample based on the measurement result in the X-ray measurement unit, The optical characteristics of the sample are calculated based on the measurement result in the ellipsometer section and the calculation result of the thickness of the sample.

本発明に係る試料検査方法は、試料が多層試料である場合に、前記エリプソメータ部で多層試料中の任意の一の層について入射光と反射光との間での偏光の変化を測定し、前記X線測定部で前記多層試料からのX線を測定し、前記エリプソメータ部での測定結果に基づいて、前記一の層の厚みを計算し、前記X線測定部での測定結果に基づいて、前記多層試料中の他の層の厚みを計算することを特徴とする。   In the sample inspection method according to the present invention, when the sample is a multilayer sample, the ellipsometer unit measures a change in polarization between incident light and reflected light for any one layer in the multilayer sample, Measure X-rays from the multilayer sample in the X-ray measurement unit, calculate the thickness of the one layer based on the measurement results in the ellipsometer unit, and based on the measurement results in the X-ray measurement unit, The thickness of the other layer in the multilayer sample is calculated.

本発明においては、試料検査装置は、エリプソメータ部とX線測定部とを備え、エリプソメータ部又はX線測定部での測定結果に基づいて、試料の厚みを計測する。従って、蛍光X線分析等、X線を用いた分析が利用できる試料についてはX線を用いて試料の厚みを計測し、X線を用いた分析の利用が困難である試料についてはエリプソメトリにより試料の厚みを計測することができる。   In the present invention, the sample inspection apparatus includes an ellipsometer unit and an X-ray measurement unit, and measures the thickness of the sample based on the measurement result in the ellipsometer unit or the X-ray measurement unit. Therefore, for samples that can be used for analysis using X-rays such as fluorescent X-ray analysis, the thickness of the sample is measured using X-rays, and for samples that are difficult to use for analysis using X-rays, ellipsometry is used. The thickness of the sample can be measured.

また本発明においては、試料検査装置は、X線を用いた分析により試料の厚みを計測し、エリプソメータ部の測定結果及び計測した試料の厚みに基づいて、試料の屈折率等の光学特性を計測する。従って、単独のエリプソメータとは異なって、試料の光学特性及び厚みの夫々を独立に計測することができる。   In the present invention, the sample inspection apparatus measures the thickness of the sample by analysis using X-rays, and measures optical characteristics such as the refractive index of the sample based on the measurement result of the ellipsometer unit and the measured thickness of the sample. To do. Therefore, unlike a single ellipsometer, each of the optical properties and thickness of the sample can be measured independently.

また本発明においては、試料検査装置は、多層試料中の任意の一層についてエリプソメトリにより厚みを計測し、他の一層についてX線を用いた分析により厚みを計測することができる。各層の厚みの計測は同時に行うこともできる。   In the present invention, the sample inspection apparatus can measure the thickness of an arbitrary layer in the multilayer sample by ellipsometry, and can measure the thickness of the other layer by analysis using X-rays. The thickness of each layer can be measured simultaneously.

また本発明においては、試料検査装置は、ラマン散乱光測定部を更に備え、エリプソメトリ及びX線を用いた分析とは別に、ラマン散乱光分析により試料の結晶化度等の構造特性を計測することができる。   In the present invention, the sample inspection apparatus further includes a Raman scattered light measurement unit, and measures structural characteristics such as crystallinity of the sample by Raman scattered light analysis separately from analysis using ellipsometry and X-rays. be able to.

本発明にあっては、試料に応じた適切な手法を用いて試料の厚みの計測が可能である。試料によって試料検査装置を使い分ける必要がないので、試料を検査する際の手間が簡便となる等、本発明は優れた効果を奏する。   In the present invention, the thickness of the sample can be measured using an appropriate method according to the sample. Since there is no need to use different sample inspection apparatuses depending on the sample, the present invention has excellent effects such as simple labor for inspecting the sample.

実施の形態1に係る試料検査装置の構成を示す模式図である。1 is a schematic diagram showing a configuration of a sample inspection apparatus according to Embodiment 1. FIG. 試料の例を示す模式的断面図である。It is typical sectional drawing which shows the example of a sample. 実施の形態2に係る試料検査装置の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of a sample inspection apparatus according to Embodiment 2. FIG.

以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施の形態1)
図1は、実施の形態1に係る試料検査装置の構成を示す模式図である。試料検査装置は、試料6を載置する試料台51と、試料台51上の試料6へ直線偏光を入射する入射部11と、入射光が試料6で反射した反射光を受光する反射光受光部12とを備えている。図1中には、入射光及び反射光を破線矢印で示している。入射部11は、キセノンランプ等の白色光源と、スリットと、白色光を直線偏光に変換する偏光子とを含んで構成された光学系である。反射光受光部12は、反射光の位相を変調する位相変調器と、検光子と、検光子を通った光を分光する分光器と、分光された光を検出する光検出器とを含んで構成された光学系である。反射光受光部12には、反射光受光部12での反射光の受光結果を分析する分析部13が接続されている。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
(Embodiment 1)
FIG. 1 is a schematic diagram showing the configuration of the sample inspection apparatus according to the first embodiment. The sample inspection apparatus includes a sample stage 51 on which the sample 6 is placed, an incident unit 11 that makes linearly polarized light incident on the sample 6 on the sample stage 51, and a reflected light receiving unit that receives reflected light reflected by the sample 6. Part 12. In FIG. 1, incident light and reflected light are indicated by broken-line arrows. The incident unit 11 is an optical system including a white light source such as a xenon lamp, a slit, and a polarizer that converts white light into linearly polarized light. The reflected light receiving unit 12 includes a phase modulator that modulates the phase of the reflected light, an analyzer, a spectrometer that splits the light that has passed through the analyzer, and a photodetector that detects the dispersed light. This is a configured optical system. The reflected light receiving unit 12 is connected to an analysis unit 13 that analyzes the light reception result of the reflected light from the reflected light receiving unit 12.

反射光受光部12は、分光された波長別に、位相の変調に応じた光の検出強度を分析部13へ出力する。分析部13は、位相の変調に応じた光の検出強度から、試料6の入射面に垂直な偏光成分であるs偏光と平行な偏光成分であるp偏光との位相差Δ、及びs偏光とp偏光との反射振幅比角Ψを、波長毎に計測する。Δ及びΨはエリプソメトリにおける測定値である。このようにして、分析部13は、試料6のΔ及びΨの波長変化を取得する。入射部11、反射光受光部12及び分析部13は、本発明におけるエリプソメータ部に対応し、エリプソメトリによる試料6の検査を行う。   The reflected light receiving unit 12 outputs the detected intensity of light corresponding to the phase modulation to the analyzing unit 13 for each of the dispersed wavelengths. The analysis unit 13 determines the phase difference Δ between the s-polarized light that is the polarization component perpendicular to the incident surface of the sample 6 and the p-polarization that is the parallel polarization component, and the s-polarization from the detected intensity of light according to the phase modulation The reflection amplitude ratio angle Ψ with p-polarized light is measured for each wavelength. Δ and ψ are measured values in ellipsometry. In this way, the analysis unit 13 acquires the change in wavelength of Δ and Ψ of the sample 6. The incident part 11, the reflected light receiving part 12, and the analysis part 13 correspond to the ellipsometer part in the present invention, and inspect the sample 6 by ellipsometry.

試料検査装置は、更に、X線源21と、X線源21が発生したX線を試料6へ照射させる図示しない光学系と、X線の照射によって試料6で発生した蛍光X線を検出する蛍光X線検出部22とを備える。少なくともX線源21、試料台51及び蛍光X線検出部22は、X線を遮蔽する図示しない筐体内に納められている。図1中には、試料6へ照射するX線及び蛍光X線を実線矢印で示している。X線源21は、金属製のターゲットに加速電子を衝突させることによってX線を発生させるX線管である。蛍光X線検出部22は、試料6から発生した蛍光X線を検出できる位置に配置されている。蛍光X線検出部22は、比例計数管又は半導体検出器等の検出素子を備える。蛍光X線検出部22には、蛍光X線の検出結果を分析する分析部23が接続されている。   The sample inspection apparatus further detects an X-ray source 21, an optical system (not shown) that irradiates the sample 6 with X-rays generated by the X-ray source 21, and fluorescent X-rays generated on the sample 6 by X-ray irradiation. And a fluorescent X-ray detection unit 22. At least the X-ray source 21, the sample stage 51, and the fluorescent X-ray detector 22 are housed in a housing (not shown) that shields X-rays. In FIG. 1, X-rays and fluorescent X-rays applied to the sample 6 are indicated by solid arrows. The X-ray source 21 is an X-ray tube that generates X-rays by causing accelerated electrons to collide with a metal target. The fluorescent X-ray detection unit 22 is disposed at a position where the fluorescent X-ray generated from the sample 6 can be detected. The fluorescent X-ray detection unit 22 includes a detection element such as a proportional counter or a semiconductor detector. Connected to the fluorescent X-ray detection unit 22 is an analysis unit 23 that analyzes the detection result of the fluorescent X-rays.

蛍光X線検出部22は、検出素子に入射した蛍光X線のエネルギーに比例した電気信号を分析部23へ出力する。分析部23は、蛍光X線検出部22からの電気信号を信号強度に応じて選別し、各信号強度の電気信号をカウントすることにより、蛍光X線の波長とカウント数との関係、即ち蛍光X線のスペクトルを取得する。X線源21、蛍光X線検出部22及び分析部23は、本発明におけるX線測定部に対応し、蛍光X線分析による試料6の検査を行う。なお、図1には、エリプソメトリで利用する光の光路と、蛍光X線分析で利用するX線の光路とが同一の平面上にある形態を示しているが、試料検査装置は、二つの光路が互いに交差する平面上にある形態であってもよい。   The fluorescent X-ray detection unit 22 outputs an electrical signal proportional to the energy of the fluorescent X-rays incident on the detection element to the analysis unit 23. The analysis unit 23 sorts the electric signal from the fluorescent X-ray detection unit 22 according to the signal intensity, and counts the electric signal of each signal intensity, whereby the relationship between the wavelength of the fluorescent X-ray and the count number, that is, the fluorescence. An X-ray spectrum is acquired. The X-ray source 21, the fluorescent X-ray detection unit 22, and the analysis unit 23 correspond to the X-ray measurement unit in the present invention, and inspect the sample 6 by fluorescent X-ray analysis. FIG. 1 shows a form in which the optical path of light used in ellipsometry and the optical path of X-ray used in fluorescent X-ray analysis are on the same plane. The form which exists on the plane which an optical path cross | intersects may be sufficient.

試料検査装置は、更に、レーザ光源31と、レーザ光源31からのレーザ光を試料6へ略垂直に照射する図示しない光学系と、レーザ光の照射により試料6から発生したラマン散乱光を分離するビームスプリッタ34と、ラマン散乱光検出部32を備えている。レーザ光の試料6への照射により、試料6からはレーザ光によって励起されたラマン散乱光が発生する。ラマン散乱光は、ビームスプリッタ34でレーザ光から分離され、ラマン散乱光検出部32へ入射する。図1中には、試料6へ照射するレーザ光及びラマン散乱光を二点鎖線の矢印で示している。ラマン散乱光検出部32は、光フィルタと、ラマン散乱光を分光する分光器と、分光された光を検出する光検出器とを含んで構成された光学系である。ラマン散乱光検出部32には、ラマン散乱光の検出結果を分析する分析部33が接続されている。   The sample inspection apparatus further separates the laser light source 31, an optical system (not shown) that irradiates the sample 6 with the laser light from the laser light source 31, and the Raman scattered light generated from the sample 6 by the laser light irradiation. A beam splitter 34 and a Raman scattered light detector 32 are provided. By irradiating the sample 6 with laser light, Raman scattered light excited by the laser light is generated from the sample 6. The Raman scattered light is separated from the laser light by the beam splitter 34 and enters the Raman scattered light detection unit 32. In FIG. 1, laser light and Raman scattered light irradiated on the sample 6 are indicated by two-dot chain arrows. The Raman scattered light detection unit 32 is an optical system that includes an optical filter, a spectroscope that splits Raman scattered light, and a photodetector that detects the split light. The Raman scattered light detection unit 32 is connected to an analysis unit 33 that analyzes the detection result of the Raman scattered light.

ラマン散乱光検出部32は、分光された波長別に、ラマン散乱光の検出強度を分析部33へ出力する。分析部33は、ラマン散乱光の波長と検出強度との関係、即ちラマン散乱光のスペクトルを取得する。レーザ光源31、ビームスプリッタ34、ラマン散乱光検出部32及び分析部33は、本発明におけるラマン散乱光測定部に対応し、ラマン散乱光分析による試料6の検査を行う。   The Raman scattered light detection unit 32 outputs the detected intensity of the Raman scattered light to the analysis unit 33 for each of the dispersed wavelengths. The analysis unit 33 acquires the relationship between the wavelength of the Raman scattered light and the detection intensity, that is, the spectrum of the Raman scattered light. The laser light source 31, the beam splitter 34, the Raman scattered light detection unit 32, and the analysis unit 33 correspond to the Raman scattered light measurement unit in the present invention, and inspect the sample 6 by the Raman scattered light analysis.

試料台51には、モータ等を用いて試料台51を上下させる駆動部52が連結されている。駆動部52が試料台51を上下させることにより、試料6を上下に移動させ、入射部11が入射する直線偏光の試料6内での焦点位置と、レーザ光源31が照射するレーザ光の試料6内での焦点位置とを調整することができる。試料6が多層構造である場合、駆動部52は、試料6中の測定対象の層へ直線偏光又はレーザ光が入射するように焦点位置を調整することができる。また駆動部52は、試料6内での焦点位置を移動させることにより、エリプソメトリ及びラマン散乱光分析の測定対象の層を変更することができる。   The sample stage 51 is connected to a drive unit 52 that moves the sample stage 51 up and down using a motor or the like. When the driving unit 52 moves the sample stage 51 up and down, the sample 6 is moved up and down, and the focal position in the linearly polarized sample 6 on which the incident unit 11 is incident and the sample 6 of the laser beam irradiated by the laser light source 31 are displayed. It is possible to adjust the focal position within. When the sample 6 has a multilayer structure, the drive unit 52 can adjust the focal position so that linearly polarized light or laser light is incident on the measurement target layer in the sample 6. The drive unit 52 can change the measurement target layer for ellipsometry and Raman scattering light analysis by moving the focal position in the sample 6.

分析部13、23及び33、並びに駆動部52は、解析部4に接続されている。解析部4は、データの入出力を行うインタフェース、使用者からの指示を入力される入力部、各種の演算を実行する演算部、演算に必要な情報及びプログラムを記憶するメモリ、及び解析結果を出力するプリンタ等の出力部を含んで構成されている。分析部13は試料6のΔ及びΨの波長変化を解析部4へ出力し、分析部23は蛍光X線のスペクトルを解析部4へ出力し、分析部33は、ラマン散乱光のスペクトルを解析部4へ出力する。また解析部4は、駆動部52の動作を制御する機能を有する。   The analysis units 13, 23 and 33 and the drive unit 52 are connected to the analysis unit 4. The analysis unit 4 includes an interface for inputting / outputting data, an input unit for inputting instructions from the user, a calculation unit for executing various calculations, a memory for storing information and programs necessary for the calculation, and an analysis result. An output unit such as a printer for output is included. The analysis unit 13 outputs Δ and Ψ wavelength changes of the sample 6 to the analysis unit 4, the analysis unit 23 outputs the fluorescent X-ray spectrum to the analysis unit 4, and the analysis unit 33 analyzes the spectrum of the Raman scattered light. Output to unit 4. The analysis unit 4 has a function of controlling the operation of the drive unit 52.

図2は、試料6の例を示す模式的断面図である。図2に示す試料6は、多層構造の太陽電池素子である。試料6は、金属製の金属層64、p型半導体でなるp型層63、n型半導体でなるn型層62、及び透明層61が積層している。金属層64は、Cu又はMo等の金属でなる裏面電極である。透明層61は、ZnO又はITO等でなる透明電極である。p型層63及びn型層62は、多結晶シリコン、アモルファスシリコン又は化合物半導体等の半導体でなり、太陽電池素子の光吸収層である。図2では簡略化しているが、実際の太陽電池素子はより多くの層を含む。なお、本発明では、一層構造の試料の検査を行うことも可能である。   FIG. 2 is a schematic cross-sectional view showing an example of the sample 6. A sample 6 shown in FIG. 2 is a solar cell element having a multilayer structure. In the sample 6, a metal metal layer 64, a p-type layer 63 made of a p-type semiconductor, an n-type layer 62 made of an n-type semiconductor, and a transparent layer 61 are laminated. The metal layer 64 is a back electrode made of a metal such as Cu or Mo. The transparent layer 61 is a transparent electrode made of ZnO or ITO. The p-type layer 63 and the n-type layer 62 are made of a semiconductor such as polycrystalline silicon, amorphous silicon, or a compound semiconductor, and are light absorption layers of the solar cell element. Although simplified in FIG. 2, an actual solar cell element includes more layers. In the present invention, it is also possible to inspect a sample having a single layer structure.

図2に示す試料6中の透明層61の厚みを計測することを考える。透明層61の組成がn型層62、p型層63及び金属層64と異なっている場合は、蛍光X線分析を用いた厚みの計測が可能である。このとき、X線源21はX線を試料6へ照射し、蛍光X線検出部22は試料6からの蛍光X線を検出し、分析部23は蛍光X線のスペクトルを取得する。解析部4は、蛍光X線のスペクトルから、透明層61に含まれる元素の内で他の層に含まれていない元素の蛍光X線強度を抽出し、抽出した蛍光X線強度、及び予め判明している当該元素の透明層61中の濃度に基づいて、透明層61の厚みを計算する処理を行う。   Consider measuring the thickness of the transparent layer 61 in the sample 6 shown in FIG. When the composition of the transparent layer 61 is different from that of the n-type layer 62, the p-type layer 63, and the metal layer 64, the thickness can be measured using fluorescent X-ray analysis. At this time, the X-ray source 21 irradiates the sample 6 with X-rays, the fluorescent X-ray detection unit 22 detects fluorescent X-rays from the sample 6, and the analysis unit 23 acquires a fluorescent X-ray spectrum. The analysis unit 4 extracts the fluorescent X-ray intensity of the element not included in the other layer among the elements included in the transparent layer 61 from the fluorescent X-ray spectrum, and the extracted fluorescent X-ray intensity and previously determined A process for calculating the thickness of the transparent layer 61 is performed based on the concentration of the element in the transparent layer 61.

また、透明層61中の元素がn型層62、p型層63及び金属層64のいずれかにも含まれている場合は、蛍光X線分析を用いた厚みの計測は困難であるものの、エリプソメトリを用いた厚みの計測が可能である。駆動部52は、試料台51を上下させることにより、入射部11が入射する直線偏光の焦点を透明層61上に位置させる。入射部11は、直線偏光を試料6の透明層61へ入射し、透明層61での反射光を反射光受光部12で受光し、分析部13は透明層61のΔ及びΨの波長変化を取得する。解析部4は、仮定した透明層61の屈折率等の光学特性及び厚みから導かれるΔ及びΨの波長変化と、実際に取得されたΔ及びΨの波長変化とを比較し、光学特性及び厚みを変化させながら比較を繰り返すことにより、透明層61の光学特性及び厚みを求める処理を行う。   In addition, when the element in the transparent layer 61 is included in any of the n-type layer 62, the p-type layer 63, and the metal layer 64, it is difficult to measure the thickness using fluorescent X-ray analysis. Thickness measurement using ellipsometry is possible. The drive unit 52 moves the sample stage 51 up and down to position the focal point of linearly polarized light on which the incident unit 11 is incident on the transparent layer 61. The incident part 11 makes linearly polarized light incident on the transparent layer 61 of the sample 6, the reflected light from the transparent layer 61 is received by the reflected light receiving part 12, and the analyzing part 13 changes the wavelength changes of Δ and Ψ of the transparent layer 61. get. The analysis unit 4 compares the assumed wavelength change of Δ and Ψ derived from the assumed optical characteristics such as refractive index and the thickness of the transparent layer 61 and the thickness with the actually obtained wavelength change of Δ and Ψ, and compares the optical characteristics and thickness. The process of obtaining the optical characteristics and thickness of the transparent layer 61 is performed by repeating the comparison while changing.

以上のように、実施の形態1に係る試料検査装置は、蛍光X線分析が利用できる場合は蛍光X線分析により試料6中の一つの層の厚みを計測し、蛍光X線分析の利用が困難である場合はエリプソメトリにより層の厚みを計測することができる。このように、実施の形態1に係る試料検査装置は、どのような試料6であっても、試料6に応じた適切な手法を用いて各層の厚みの計測が可能である。試料6によって試料検査装置を使い分ける必要がないので、試料6を検査する際の手間が簡便となる。なお、組成が不明な試料6の場合は、蛍光X線分析により組成分析を行うことも可能である。   As described above, the sample inspection apparatus according to the first embodiment measures the thickness of one layer in the sample 6 by the fluorescent X-ray analysis when the fluorescent X-ray analysis can be used, and the fluorescent X-ray analysis can be used. When it is difficult, the thickness of the layer can be measured by ellipsometry. As described above, the sample inspection apparatus according to the first embodiment can measure the thickness of each layer by using an appropriate method according to the sample 6 regardless of the sample 6. Since there is no need to use a different sample inspection apparatus depending on the sample 6, the labor involved in inspecting the sample 6 becomes simple. In the case of the sample 6 whose composition is unknown, it is also possible to perform composition analysis by fluorescent X-ray analysis.

次に、透明層61の光学特性を計測することを考える。透明層61の組成がn型層62、p型層63及び金属層64と異なっている場合は、蛍光X線分析及びエリプソメトリの両方を利用することが可能である。まず、X線源21がX線を試料6へ照射し、解析部4は、蛍光X線のスペクトルを解析することにより透明層61の厚みを計算し、計算した透明層61の厚みを記憶する。入射部11は、次に、直線偏光を試料6の透明層61へ入射する。解析部4は、透明層61の厚みの値を蛍光X線分析により計測した値に固定し、透明層61の光学特性を変化させながら、透明層61の光学特性及び厚みから導かれるΔ及びΨの波長変化と、実際に取得されたΔ及びΨの波長変化との比較を繰り返すことにより、透明層61の光学特性を求める処理を行う。   Next, consider measuring the optical characteristics of the transparent layer 61. When the composition of the transparent layer 61 is different from that of the n-type layer 62, the p-type layer 63, and the metal layer 64, it is possible to use both X-ray fluorescence analysis and ellipsometry. First, the X-ray source 21 irradiates the sample 6 with X-rays, and the analysis unit 4 calculates the thickness of the transparent layer 61 by analyzing the spectrum of fluorescent X-rays, and stores the calculated thickness of the transparent layer 61. . Next, the incident part 11 makes linearly polarized light incident on the transparent layer 61 of the sample 6. The analysis unit 4 fixes the thickness value of the transparent layer 61 to a value measured by fluorescent X-ray analysis, and changes Δ and Ψ derived from the optical characteristics and thickness of the transparent layer 61 while changing the optical characteristics of the transparent layer 61. The process of obtaining the optical characteristics of the transparent layer 61 is performed by repeating the comparison between the change in wavelength and the actually obtained change in wavelength of Δ and Ψ.

以上のように、本発明では、蛍光X線分析により試料6中の一つの層の厚みを計測し、エリプソメトリにより同一層の屈折率等の光学特性を計測することができる。単体のエリプソメータでは、層の光学特性及び厚みの夫々を独立に計測することはできない。これに対し、本発明では、層の光学特性及び厚みの夫々を独立に計測することができる。従って、本発明により、試料6に含まれる各層の屈折率等の光学特性と厚みとをより高精度に計測することが可能となる。   As described above, in the present invention, the thickness of one layer in the sample 6 can be measured by fluorescent X-ray analysis, and the optical characteristics such as the refractive index of the same layer can be measured by ellipsometry. A single ellipsometer cannot measure the optical properties and thickness of the layers independently. On the other hand, in the present invention, each of the optical characteristics and thickness of the layer can be measured independently. Therefore, according to the present invention, the optical characteristics such as the refractive index and the thickness of each layer included in the sample 6 can be measured with higher accuracy.

また実施の形態1に係る試料検査装置は、解析部4が入射部11及びX線源21の動作を制御し、入射部11とX線源21とを同時に動作させることが可能である。入射部11が試料6へ入射する可視光と、X線源21が試料6へ照射するX線は、波長領域が異なるので、互いに干渉することがない。また反射光受光部12が受光する反射光と、蛍光X線検出部22が検出する蛍光X線とは、波長領域が異なるので、互いに干渉せずに同時に検出を行うことができる。即ち、実施の形態1に係る試料検査装置は、試料6のΔ及びΨの波長変化と、試料6の蛍光X線スペクトルとを同時に取得することができる。解析部4は、同時に取得した試料6のΔ及びΨの波長変化並びに蛍光X線スペクトルに基づいて、試料6の光学特性及び厚みの夫々を独立に求める処理を行う。従って、実施の形態1に係る試料検査装置は、試料6に含まれる各層の屈折率等の光学特性と厚みとを短時間で計測することが可能となる。   In the sample inspection apparatus according to the first embodiment, the analysis unit 4 can control the operations of the incident unit 11 and the X-ray source 21 so that the incident unit 11 and the X-ray source 21 can be operated simultaneously. Visible light incident on the sample 6 by the incident part 11 and X-rays irradiated by the X-ray source 21 on the sample 6 have different wavelength regions, and thus do not interfere with each other. The reflected light received by the reflected light receiving unit 12 and the fluorescent X-ray detected by the fluorescent X-ray detection unit 22 have different wavelength regions, and therefore can be detected simultaneously without interfering with each other. That is, the sample inspection apparatus according to Embodiment 1 can simultaneously acquire the wavelength change of Δ and Ψ of the sample 6 and the fluorescent X-ray spectrum of the sample 6. The analysis unit 4 performs processing for independently obtaining the optical characteristics and thickness of the sample 6 based on the wavelength changes of Δ and Ψ of the sample 6 and the fluorescent X-ray spectrum obtained at the same time. Therefore, the sample inspection apparatus according to Embodiment 1 can measure the optical characteristics such as the refractive index and the thickness of each layer included in the sample 6 in a short time.

次に、試料6中の透明層61及び金属層64の厚みを計測することを考える。エリプソメトリでは金属層64の厚みを計測することは困難であるので、蛍光X線分析により金属層64の厚みを計測し、エリプソメトリにより透明層61の厚みを計測する。駆動部52は、入射部11が入射する直線偏光の焦点を透明層61上に位置させ、入射部11は直線偏光を試料6の透明層61へ入射し、反射光受光部12は透明層61での反射光を受光し、分析部13は透明層61のΔ及びΨの波長変化を取得する。解析部4は、Δ及びΨの波長変化に基づき、透明層61の厚みを求める処理を行う。また、X線源21はX線を試料6へ照射し、蛍光X線検出部22は試料6からの蛍光X線を検出し、分析部23は蛍光X線のスペクトルを取得する。解析部4は、蛍光X線のスペクトルから、金属層64に含まれる元素の内で他の層に含まれていない元素の蛍光X線強度を抽出し、抽出した蛍光X線強度に基づいて、金属層64の厚みを計算する処理を行う。   Next, consider measuring the thickness of the transparent layer 61 and the metal layer 64 in the sample 6. Since it is difficult to measure the thickness of the metal layer 64 by ellipsometry, the thickness of the metal layer 64 is measured by fluorescent X-ray analysis, and the thickness of the transparent layer 61 is measured by ellipsometry. The driving unit 52 positions the focal point of the linearly polarized light incident on the incident unit 11 on the transparent layer 61, the incident unit 11 enters the linearly polarized light on the transparent layer 61 of the sample 6, and the reflected light receiving unit 12 is the transparent layer 61. The analysis unit 13 acquires the change in wavelength of Δ and Ψ of the transparent layer 61. The analysis unit 4 performs processing for obtaining the thickness of the transparent layer 61 based on the wavelength change of Δ and Ψ. The X-ray source 21 irradiates the sample 6 with X-rays, the fluorescent X-ray detection unit 22 detects fluorescent X-rays from the sample 6, and the analysis unit 23 acquires a fluorescent X-ray spectrum. The analysis unit 4 extracts, from the fluorescent X-ray spectrum, the fluorescent X-ray intensity of elements included in the metal layer 64 that are not included in other layers, and based on the extracted fluorescent X-ray intensity, A process of calculating the thickness of the metal layer 64 is performed.

以上のように、実施の形態1に係る試料検査装置は、試料6に含まれる複数の層の内、蛍光X線分析が利用できる層については蛍光X線分析により層の厚みを計測し、エリプソメトリが利用できる層についてはエリプソメトリにより層の厚みを計測することができる。このように、実施の形態1に係る試料検査装置は、多層構造の試料6に含まれる複数の層の夫々について、層に応じた適切な手法を用いて厚みの計測が可能である。測定対象となる層に応じて試料検査装置を使い分ける必要がなく、複数の層の厚みを同一の試料検査装置で計測できるので、試料を検査する際の手間が簡便となる。   As described above, the sample inspection apparatus according to the first embodiment measures the thickness of a plurality of layers included in the sample 6 by using the fluorescent X-ray analysis for the layers that can be used for the fluorescent X-ray analysis. For layers for which metrics can be used, the thickness of the layer can be measured by ellipsometry. As described above, the sample inspection apparatus according to Embodiment 1 can measure the thickness of each of the plurality of layers included in the sample 6 having the multilayer structure by using an appropriate technique according to the layer. There is no need to use a different sample inspection apparatus depending on the layer to be measured, and the thickness of a plurality of layers can be measured with the same sample inspection apparatus, so that labor for inspecting the sample is simplified.

また実施の形態1に係る試料検査装置は、入射部11とX線源21とを同時に動作させ、透明層61のΔ及びΨの波長変化と、金属層64の蛍光X線スペクトルとを同時に取得することができる。解析部4は、同時に取得した透明層61のΔ及びΨの波長変化並びに金属層64の蛍光X線スペクトルに基づいて、透明層61の厚みと金属層64の厚みとを独立に求める処理を行う。従って、実施の形態1に係る試料検査装置は、多層構造の試料6に含まれる複数の層の夫々の厚みを短時間で計測することが可能となる。   In the sample inspection apparatus according to the first embodiment, the incident unit 11 and the X-ray source 21 are simultaneously operated to simultaneously acquire the Δ and Ψ wavelength changes of the transparent layer 61 and the fluorescent X-ray spectrum of the metal layer 64. can do. The analysis unit 4 performs processing for independently obtaining the thickness of the transparent layer 61 and the thickness of the metal layer 64 based on the simultaneously obtained Δ and Ψ wavelength changes of the transparent layer 61 and the fluorescent X-ray spectrum of the metal layer 64. . Therefore, the sample inspection apparatus according to Embodiment 1 can measure the thickness of each of a plurality of layers included in the sample 6 having a multilayer structure in a short time.

更に、実施の形態1に係る試料検査装置は、試料6のラマン散乱光分析を行うことが可能である。ラマン散乱光分析測定の対象となる層をnが多層62とする。駆動部52は、試料台51を上下させることにより、レーザ光源31からのレーザ光の焦点をn型層62上に位置させる。レーザ光源31はレーザ光をn型層62へ照射し、ラマン散乱光検出部32はn型層62からのラマン散乱光を検出し、分析部33はn型層62からのラマン散乱光のスペクトルを取得する。解析部4は、ラマン散乱光のスペクトルから、n型層62の結晶化度等の構造特性を計算する処理を行う。これにより、例えば、n型層62に含まれる多結晶シリコン又はアモルファスシリコンの結晶化度を計測することができる。なお、ラマン散乱光分析により、結晶化度以外に、n型層62内の応力等、その他の構造特性を計測することができる。また、n型層62以外の他の層についても、ラマン散乱光分析を行うことができる。   Furthermore, the sample inspection apparatus according to Embodiment 1 can perform Raman scattering light analysis of the sample 6. The layer to be subjected to the Raman scattered light analysis measurement is defined as n being multilayer 62. The drive unit 52 moves the sample stage 51 up and down to position the focal point of the laser light from the laser light source 31 on the n-type layer 62. The laser light source 31 irradiates the n-type layer 62 with laser light, the Raman scattered light detector 32 detects the Raman scattered light from the n-type layer 62, and the analyzer 33 analyzes the spectrum of the Raman scattered light from the n-type layer 62. To get. The analysis unit 4 performs a process of calculating structural characteristics such as crystallinity of the n-type layer 62 from the spectrum of Raman scattered light. Thereby, for example, the crystallinity of polycrystalline silicon or amorphous silicon contained in the n-type layer 62 can be measured. In addition to the crystallinity, other structural characteristics such as stress in the n-type layer 62 can be measured by Raman scattering light analysis. Further, the Raman scattered light analysis can be performed on other layers other than the n-type layer 62.

以上のように、実施の形態1に係る試料検査装置は、エリプソメトリ及び蛍光X線分析とは別に、ラマン散乱光分析により試料6中の各層について結晶化度等の構造特性を計測することができる。ラマン散乱光分析を行うために他の試料検査装置を使用する必要がないので、試料を検査する際の手間が簡便となる。またラマン散乱光分析を行うためにレーザ光源31が試料6へ照射するレーザ光及びラマン散乱光はX線と波長領域が異なるので、ラマン散乱光分析と蛍光X線分析とを同時に行うことができる。例えば、試料検査装置は、n型層62のラマン散乱光スペクトルと蛍光X線スペクトルとを同時に取得し、解析部4は、n型層62の構造特性と厚みとを求める処理を行うことができる。従って、実施の形態1に係る試料検査装置は、試料6の結晶化度等の構造特性と厚みとを短時間で計測することが可能となる。   As described above, the sample inspection apparatus according to Embodiment 1 can measure structural characteristics such as crystallinity for each layer in the sample 6 by Raman scattering light analysis, separately from ellipsometry and fluorescent X-ray analysis. it can. Since it is not necessary to use another sample inspection apparatus for performing the Raman scattered light analysis, the labor for inspecting the sample becomes simple. In addition, since the laser light and the Raman scattered light irradiated to the sample 6 by the laser light source 31 in order to perform the Raman scattered light analysis have different wavelength regions from the X-rays, the Raman scattered light analysis and the fluorescent X-ray analysis can be performed simultaneously. . For example, the sample inspection apparatus acquires the Raman scattered light spectrum and the fluorescent X-ray spectrum of the n-type layer 62 at the same time, and the analysis unit 4 can perform processing for obtaining the structural characteristics and thickness of the n-type layer 62. . Therefore, the sample inspection apparatus according to Embodiment 1 can measure the structural characteristics such as crystallinity and the thickness of the sample 6 in a short time.

(実施の形態2)
図3は、実施の形態2に係る試料検査装置の構成を示す模式図である。試料検査装置は、X線源21、蛍光X線検出部22及び分析部23の代わりに、X線源71と、X線源71からのX線が試料6で反射した反射X線を検出する反射X線検出部72と、反射X線の検出結果を分析する分析部73とを備えている。更に、試料検査装置は、X線源71からのX線を試料6へ照射させ、X線の照射中に試料6に対するX線の入射角度を変化させる図示しない光学系を備えている。X線源71はX線管であり、反射X線検出部72は、試料6からの反射X線を検出できる位置に配置されている。反射X線検出部72は、X線強度をカウントする検出素子を備え、検出した反射X線の強度を示す電気信号を分析部73へ出力する。X線源71、反射X線検出部72及び分析部73は、本発明におけるX線測定部に対応する。
(Embodiment 2)
FIG. 3 is a schematic diagram showing the configuration of the sample inspection apparatus according to the second embodiment. The sample inspection apparatus detects an X-ray source 71 and reflected X-rays reflected by the sample 6 from the X-ray source 71 instead of the X-ray source 21, the fluorescent X-ray detection unit 22, and the analysis unit 23. The apparatus includes a reflected X-ray detection unit 72 and an analysis unit 73 that analyzes the detection result of the reflected X-ray. The sample inspection apparatus further includes an optical system (not shown) that irradiates the sample 6 with X-rays from the X-ray source 71 and changes the incident angle of the X-rays with respect to the sample 6 during X-ray irradiation. The X-ray source 71 is an X-ray tube, and the reflected X-ray detector 72 is arranged at a position where the reflected X-ray from the sample 6 can be detected. The reflected X-ray detection unit 72 includes a detection element that counts the X-ray intensity, and outputs an electrical signal indicating the detected intensity of the reflected X-ray to the analysis unit 73. The X-ray source 71, the reflected X-ray detection unit 72, and the analysis unit 73 correspond to the X-ray measurement unit in the present invention.

分析部73は、反射X線検出部72からの電気信号をX線の入射角度別に分類し、試料6に対するX線の入射角度と反射X線の強度との関係、即ちX線の入射角度に対する反射X線の強度変化を取得する。分析部73は、解析部4に接続されており、X線の入射角度に対する反射X線の強度変化を解析部4へ出力する。解析部4は、X線の入射角度に対する反射X線の強度変化のシミュレーションを実行し、分析部73から入力された反射X線の強度変化の測定結果とシミュレーション結果とを比較し、シミュレーションパラメータを最適化する処理を行う。解析部4は、シミュレーションパラメータを最適化することにより、試料6の各層の膜厚、密度、及びラフネスを計算する。このようにして、X線源71、反射X線検出部72、分析部73及び解析部4は、XRR(X線反射率法)による試料6の分析を行う。試料検査装置のその他の構成は、実施の形態1と同様であり、対応する部分に同符号を付してその説明を省略する。   The analysis unit 73 classifies the electrical signals from the reflected X-ray detection unit 72 according to the incident angle of the X-ray, and relates to the relationship between the incident angle of the X-ray and the intensity of the reflected X-ray with respect to the sample 6, that is, the incident angle of the X-ray The intensity change of the reflected X-ray is acquired. The analysis unit 73 is connected to the analysis unit 4 and outputs a change in the intensity of the reflected X-ray with respect to the incident angle of the X-rays to the analysis unit 4. The analysis unit 4 executes a simulation of the intensity change of the reflected X-ray with respect to the incident angle of the X-ray, compares the measurement result of the intensity change of the reflected X-ray input from the analysis unit 73 with the simulation result, and sets the simulation parameter. Perform optimization processing. The analysis unit 4 calculates the film thickness, density, and roughness of each layer of the sample 6 by optimizing the simulation parameters. In this way, the X-ray source 71, the reflected X-ray detector 72, the analyzer 73, and the analyzer 4 analyze the sample 6 by XRR (X-ray reflectivity method). Other configurations of the sample inspection apparatus are the same as those of the first embodiment, and the corresponding parts are denoted by the same reference numerals and the description thereof is omitted.

実施の形態2に係る試料検査装置は、実施の形態1と同様に、XRRが利用できる場合はXRRにより試料6中の一つの層の厚みを計測し、XRRの利用が困難である場合はエリプソメトリにより層の厚みを計測することができる。このように、実施の形態2に係る試料検査装置は、試料6に応じた適切な手法を用いて各層の厚みの計測が可能であり、試料6によって試料検査装置を使い分ける必要がない。また実施の形態1と同様に、実施の形態2に係る試料検査装置は、多層構造の試料6に含まれる複数の層の夫々について、層に応じた適切な手法を用いて厚みの計測が可能であり、測定対象となる層に応じて試料検査装置を使い分ける必要がない。従って、試料6を検査する際の手間が簡便となる。また実施の形態2に係る試料検査装置は、XRRにより、試料6に含まれる各層の密度及びラフネスを計測することが可能である。   Similarly to the first embodiment, the sample inspection apparatus according to the second embodiment measures the thickness of one layer in the sample 6 by XRR when XRR can be used, and the ellipso when XRR is difficult to use. The thickness of the layer can be measured by measurement. As described above, the sample inspection apparatus according to the second embodiment can measure the thickness of each layer by using an appropriate method according to the sample 6, and it is not necessary to use a different sample inspection apparatus depending on the sample 6. Similarly to the first embodiment, the sample inspection apparatus according to the second embodiment can measure the thickness of each of a plurality of layers included in the multilayer structure sample 6 by using an appropriate method according to the layers. Therefore, it is not necessary to use different sample inspection apparatuses depending on the layer to be measured. Therefore, the labor for inspecting the sample 6 is simplified. In addition, the sample inspection apparatus according to Embodiment 2 can measure the density and roughness of each layer included in the sample 6 by XRR.

また実施の形態2に係る試料検査装置は、実施の形態1と同様に、XRRにより試料6中の一つの層の厚みを計測し、エリプソメトリにより同一層の屈折率等の光学特性を計測することができる。従って、実施の形態2においても、試料6に含まれる各層の屈折率等の光学特性と厚みとをより高精度に計測することが可能となる。また実施の形態2に係る試料検査装置は、実施の形態1と同様に、XRRの処理とエリプソメトリの処理とを並行して行うことにより、多層構造の試料6に含まれる複数の層の夫々の厚みを短時間で計測することが可能となる。   In addition, the sample inspection apparatus according to the second embodiment measures the thickness of one layer in the sample 6 by XRR and measures optical characteristics such as the refractive index of the same layer by ellipsometry, as in the first embodiment. be able to. Therefore, also in Embodiment 2, it is possible to measure the optical characteristics such as the refractive index and the thickness of each layer included in the sample 6 with higher accuracy. Similarly to the first embodiment, the sample inspection apparatus according to the second embodiment performs XRR processing and ellipsometry processing in parallel, so that each of a plurality of layers included in the multilayered sample 6 is performed. Can be measured in a short time.

更に、実施の形態2に係る試料検査装置は、実施の形態1と同様に、XRR及びエリプソメトリとは別に、ラマン散乱光分析により試料6中の各層について結晶化度等の構造特性を計測することができる。ラマン散乱光分析とXRRとは並行して行うことができ、実施の形態2に係る試料検査装置は、実施の形態1と同様に、試料6の結晶化度等の構造特性と厚みとを短時間で計測することが可能となる。   Furthermore, the sample inspection apparatus according to the second embodiment measures structural characteristics such as crystallinity for each layer in the sample 6 by Raman scattered light analysis, separately from XRR and ellipsometry, as in the first embodiment. be able to. The Raman scattered light analysis and the XRR can be performed in parallel, and the sample inspection apparatus according to the second embodiment shortens the structural characteristics such as crystallinity and the thickness of the sample 6 as in the first embodiment. It becomes possible to measure in time.

なお、実施の形態2においては、蛍光X線分析を行わずにXRRを行う形態を示したが、本発明の試料検査装置は、XRRに加えて蛍光X線分析をも行うことができる形態であってもよい。即ち、試料検査装置は、図3に示す構成に加えて、X線源21、蛍光X線検出部22及び分析部23を更に備えた形態であってもよい。また試料検査装置は、XRRのために試料6へ照射するX線のX線源と蛍光X線分析のために試料6へ照射するX線のX線源とを共通化した形態であってもよい。   In the second embodiment, the XRR is performed without performing the fluorescent X-ray analysis. However, the sample inspection apparatus according to the present invention can perform the fluorescent X-ray analysis in addition to the XRR. There may be. That is, the sample inspection apparatus may further include an X-ray source 21, a fluorescent X-ray detection unit 22, and an analysis unit 23 in addition to the configuration shown in FIG. Further, the sample inspection apparatus may have a form in which an X-ray X-ray source irradiated to the sample 6 for XRR and an X-ray X-ray source irradiated to the sample 6 for fluorescent X-ray analysis are shared. Good.

11 入射部
12 反射光受光部
13 分析部
21 X線源
22 蛍光X線検出部
23 分析部
31 レーザ光源
32 ラマン散乱光検出部
33 分析部
34 ビームスプリッタ
4 解析部
51 試料台
6 試料
71 X線源
72 反射X線検出部
73 分析部
DESCRIPTION OF SYMBOLS 11 Incident part 12 Reflected light light-receiving part 13 Analysis part 21 X-ray source 22 Fluorescence X-ray detection part 23 Analysis part 31 Laser light source 32 Raman scattered light detection part 33 Analysis part 34 Beam splitter 4 Analysis part 51 Sample stand 6 Sample 71 X-ray Source 72 Reflected X-ray detection unit 73 Analysis unit

Claims (6)

試料へ直線偏光を入射し、試料からの反射光を受光し、入射光と反射光との間での偏光の変化を測定するエリプソメータ部と、
試料へX線を照射し、試料からのX線を測定するX線測定部と、
前記エリプソメータ部又は前記X線測定部での測定結果に基づいて、試料の厚みを求めるための解析を行う解析部と
を備えることを特徴とする試料検査装置。
An ellipsometer unit that receives linearly polarized light on the sample, receives reflected light from the sample, and measures a change in polarized light between the incident light and the reflected light;
An X-ray measurement unit that irradiates the sample with X-rays and measures the X-rays from the sample;
A sample inspection apparatus comprising: an analysis unit that performs an analysis for obtaining a thickness of the sample based on a measurement result in the ellipsometer unit or the X-ray measurement unit.
前記解析部は、
前記X線測定部での測定結果に基づいて、試料の厚みを計算する手段と、
前記エリプソメータ部での測定結果、及び試料の厚みの計算結果に基づいて、試料の光学特性を計算する手段と
を有することを特徴とする請求項1に記載の試料検査装置。
The analysis unit
Means for calculating the thickness of the sample based on the measurement result in the X-ray measurement unit;
The sample inspection apparatus according to claim 1, further comprising: a unit that calculates an optical characteristic of the sample based on a measurement result of the ellipsometer unit and a calculation result of the thickness of the sample.
試料が多層試料である場合に、前記エリプソメータ部で直線偏光を入射する位置を、多層試料中の任意の一層に直線偏光が入射されるように調整する手段を更に備え、
前記解析部は、
前記エリプソメータ部での測定結果に基づいて、前記エリプソメータ部が直線偏光を入射した前記任意の一層の厚みを計算する手段と、
前記X線測定部での測定結果に基づいて、前記多層試料中の他の層の厚みを計算する手段と
を更に有することを特徴とする請求項1又は2に記載の試料検査装置。
When the sample is a multilayer sample, the ellipsometer unit further includes means for adjusting the position where the linearly polarized light is incident so that the linearly polarized light is incident on an arbitrary layer in the multilayer sample,
The analysis unit
Based on the measurement result in the ellipsometer unit, the ellipsometer unit calculates the thickness of the arbitrary layer on which the linearly polarized light is incident;
The sample inspection apparatus according to claim 1, further comprising: means for calculating a thickness of another layer in the multilayer sample based on a measurement result in the X-ray measurement unit.
試料へ単色光を入射し、試料から発生するラマン散乱光を測定するラマン散乱光測定部を更に備え、
前記解析部は、
前記ラマン散乱光測定部の測定結果に基づいて、試料の構造特性を計算する手段を更に有すること
を特徴とする請求項1から3のいずれか一つに記載の試料検査装置。
A monochromatic light is incident on the sample, and a Raman scattered light measurement unit that measures the Raman scattered light generated from the sample is further provided.
The analysis unit
The sample inspection apparatus according to any one of claims 1 to 3, further comprising means for calculating a structural characteristic of the sample based on a measurement result of the Raman scattered light measurement unit.
平板状の試料へ直線偏光を入射し、試料からの反射光を受光し、入射光と反射光との間での偏光の変化を測定するエリプソメータ部と、
試料へX線を照射し、試料からのX線を測定するX線測定部とを備える試料検査装置を用いて、
前記X線測定部での測定結果に基づいて、試料の厚みを計算し、
前記エリプソメータ部での測定結果、及び試料の厚みの計算結果に基づいて、試料の光学特性を計算すること
を特徴とする試料検査方法。
An ellipsometer that enters linearly polarized light into a flat sample, receives reflected light from the sample, and measures the change in polarization between the incident light and reflected light;
Using a sample inspection apparatus that includes an X-ray measurement unit that irradiates a sample with X-rays and measures X-rays from the sample,
Based on the measurement result in the X-ray measurement unit, the thickness of the sample is calculated,
A sample inspection method, comprising: calculating an optical characteristic of a sample based on a measurement result in the ellipsometer unit and a calculation result of a sample thickness.
試料が多層試料である場合に、前記エリプソメータ部で多層試料中の任意の一の層について入射光と反射光との間での偏光の変化を測定し、
前記X線測定部で前記多層試料からのX線を測定し、
前記エリプソメータ部での測定結果に基づいて、前記一の層の厚みを計算し、
前記X線測定部での測定結果に基づいて、前記多層試料中の他の層の厚みを計算すること
を特徴とする請求項5に記載の試料検査方法。
When the sample is a multilayer sample, the ellipsometer unit measures the change in polarization between incident light and reflected light for any one layer in the multilayer sample,
The X-ray measurement unit measures X-rays from the multilayer sample,
Based on the measurement result in the ellipsometer, calculate the thickness of the one layer,
The sample inspection method according to claim 5, wherein the thickness of another layer in the multilayer sample is calculated based on a measurement result in the X-ray measurement unit.
JP2010171012A 2010-07-29 2010-07-29 Sample inspection device and sample inspection method Ceased JP2012032239A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010171012A JP2012032239A (en) 2010-07-29 2010-07-29 Sample inspection device and sample inspection method
KR1020110070873A KR20120012391A (en) 2010-07-29 2011-07-18 Sample inspection device and sample inspection method
CN2011102127287A CN102403247A (en) 2010-07-29 2011-07-27 Sample Inspection Device And Sample Inspection Method
TW100126792A TW201205062A (en) 2010-07-29 2011-07-28 Sample inspection device and sample inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171012A JP2012032239A (en) 2010-07-29 2010-07-29 Sample inspection device and sample inspection method

Publications (1)

Publication Number Publication Date
JP2012032239A true JP2012032239A (en) 2012-02-16

Family

ID=45836338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171012A Ceased JP2012032239A (en) 2010-07-29 2010-07-29 Sample inspection device and sample inspection method

Country Status (4)

Country Link
JP (1) JP2012032239A (en)
KR (1) KR20120012391A (en)
CN (1) CN102403247A (en)
TW (1) TW201205062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868444A (en) * 2012-12-07 2014-06-18 台积太阳能股份有限公司 Rapid analysis of buffer layer thickness for thin film solar cells
WO2017198764A1 (en) * 2016-05-20 2017-11-23 Sentech Instruments Gmbh Device and method for measuring layer thicknesses and indices of refraction of layers on rough and smooth surfaces
WO2020066161A1 (en) 2018-09-28 2020-04-02 株式会社リガク Measurement device, program, and measure device control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI588446B (en) * 2013-03-14 2017-06-21 Tokyo Electron Ltd X-ray non-destructive inspection device
CN104048915A (en) * 2014-06-27 2014-09-17 无锡利弗莫尔仪器有限公司 Real-time monitoring device and method of optical material and laser interaction process
CN110160452B (en) * 2019-06-19 2020-09-01 哈尔滨工业大学(威海) Method for measuring thickness of water surface oil film based on laser Raman and laser fluorescence
CN111504977A (en) * 2020-05-12 2020-08-07 湖南航天天麓新材料检测有限责任公司 Method and system for measuring thickness of each component layer of pellet
JP7395775B2 (en) 2020-05-18 2023-12-11 シグレイ、インコーポレイテッド Systems and methods for X-ray absorption spectroscopy using a crystal analyzer and multiple detector elements
WO2022061347A1 (en) * 2020-09-17 2022-03-24 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
CN113791098B (en) * 2021-11-16 2024-03-26 四川大学 Multi-feature surface analysis device
WO2023177981A1 (en) 2022-03-15 2023-09-21 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423105A (en) * 1987-07-17 1989-01-25 Japan Aviation Electron Film thickness evaluating device
JPH02263105A (en) * 1988-11-28 1990-10-25 Hoogovens Groep Bv Film thickness measuring apparatus
JP2005233928A (en) * 2004-01-23 2005-09-02 Horiba Ltd Substrate inspecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423105A (en) * 1987-07-17 1989-01-25 Japan Aviation Electron Film thickness evaluating device
JPH02263105A (en) * 1988-11-28 1990-10-25 Hoogovens Groep Bv Film thickness measuring apparatus
JP2005233928A (en) * 2004-01-23 2005-09-02 Horiba Ltd Substrate inspecting apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868444A (en) * 2012-12-07 2014-06-18 台积太阳能股份有限公司 Rapid analysis of buffer layer thickness for thin film solar cells
WO2017198764A1 (en) * 2016-05-20 2017-11-23 Sentech Instruments Gmbh Device and method for measuring layer thicknesses and indices of refraction of layers on rough and smooth surfaces
WO2020066161A1 (en) 2018-09-28 2020-04-02 株式会社リガク Measurement device, program, and measure device control method
KR20200136037A (en) 2018-09-28 2020-12-04 가부시키가이샤 리가쿠 Measuring device, program and control method of measuring device
KR102238799B1 (en) 2018-09-28 2021-04-09 가부시키가이샤 리가쿠 Measuring device, program and control method of measuring device
US11125704B2 (en) 2018-09-28 2021-09-21 Rigaku Corporation Measurement system, program, and measurement system control method

Also Published As

Publication number Publication date
KR20120012391A (en) 2012-02-09
TW201205062A (en) 2012-02-01
CN102403247A (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP2012032239A (en) Sample inspection device and sample inspection method
JP5980822B2 (en) How to do surface inspection
JP6790248B2 (en) Infrared spectroreflector for high aspect ratio structure measurement
US10571407B2 (en) Determining information for defects on wafers
CN110313059A (en) For measuring the method and system of thick film and high aspect ratio structures
KR102518214B1 (en) Mid-infrared Spectroscopy for Measurement of High Aspect Ratio Structures
US9651498B2 (en) Optical method and system for detecting defects in three-dimensional structures
WO2020135540A1 (en) Quantum yield measurement method
KR102281621B1 (en) Systems and methods for semiconductor wafer inspection and metrology
JP2012104586A (en) Semiconductor measurement device
US20230035404A1 (en) Combined ocd and photoreflectance method and system
JP4031712B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus for semiconductor multilayer film
JP2013217903A (en) Sample analyzer and sample analysis program
JP5197818B2 (en) Method and apparatus for measuring strain of thin film semiconductor crystal layer
JP7313221B2 (en) Measuring device and measuring method
KR20220105864A (en) Optical analysis device and method
TW202331771A (en) Inspection device and film quality inspection method
JP2017062263A (en) Sample analyzing device and sample analysis program
JP2013160651A (en) Line spectrometric measurement apparatus
WO2001020662A1 (en) Device for mapping composition ratio of specific element which compound semiconductor wafer contains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150127